21
1 Orbital Diagrams and Electron Configuration • Drawing orbital diagrams gives information not only about the orbitals that are/have been filled but also about the number of unpaired electrons. • Orbital diagrams can be cumbersome!!

Orbital Diagrams and Electron Configuration

Embed Size (px)

DESCRIPTION

Orbital Diagrams and Electron Configuration. Drawing orbital diagrams gives information not only about the orbitals that are/have been filled but also about the number of unpaired electrons. Orbital diagrams can be cumbersome!!. Electron Configuration. - PowerPoint PPT Presentation

Citation preview

Page 1: Orbital Diagrams and  Electron Configuration

1

Orbital Diagrams and Electron Configuration

• Drawing orbital diagrams gives information not only about the orbitals that are/have been filled but also about the number of unpaired electrons.

• Orbital diagrams can be cumbersome!!

Page 2: Orbital Diagrams and  Electron Configuration

2

Electron Configuration

• A short-hand notation is commonly used in place of orbital diagrams to describe the electron configuration of an atom.

• Electron configuration:– a particular arrangement of electrons in the

orbitals of an atom

Page 3: Orbital Diagrams and  Electron Configuration

3

Another way of expressing electron distribution:

Electron Configurations• Know relative energies of orbitals• Pauli exclusion principle

Distribution of electrons among the various orbitals =

Electron configuration

eg: Carbon: 1s2 2s22p2

6 electrons

Page 4: Orbital Diagrams and  Electron Configuration

4

Electron Configurations• Each component

consists of – A number denoting

the energy level (n),

– A letter denoting the type of orbital (l),

- A superscript denoting the number of electrons in those orbitals.

Page 5: Orbital Diagrams and  Electron Configuration

5

Electron Configuration

• The electron configuration tells the number of electrons found in each subshell using superscripts

• If there are three electrons in a 2p subshell, we would write:

2p3

where the superscript (3) indicates the number of electrons in that subshell

Page 6: Orbital Diagrams and  Electron Configuration

6

Electron Configuration

• The orbital diagram for an O atom:

1s 2s 2p 3s

The electron configuration for an O atom:

1s22s22p4

Page 7: Orbital Diagrams and  Electron Configuration

7

Orbital Diagrams & Electron Configurations

The orbital diagram for potassium.

Z = 19 so there are 19 electrons

And number of subshells (s,p,d..) and orbitals per energy level (n)

3p 4s1s 2s 2p 3s

Electron configuration of K: 1s2 2s22p6 3s23p6 4s1

Page 8: Orbital Diagrams and  Electron Configuration

8

Electron Configuration

To determine the electron configuration of an atom (or ion) without first writing the orbital diagram:– determine the number of electrons present– add electrons to each subshell in the

correct filling order until all electrons have been added

• use the “diagonal” diagram to help determine the filling order

Page 9: Orbital Diagrams and  Electron Configuration

9

Electron Configuration

Example: Write the electron configuration of a Mn atom (Z = 25).

1s2 2s22p6 3s23p6 4s2 3d5

Page 10: Orbital Diagrams and  Electron Configuration

10

Electron Configuration can be written for ions as well

Example: Write the electron configuration of an O2- ion (Z = 8).

1s22s22p6

An O2- ion has 8 protons and 10 electrons

Page 11: Orbital Diagrams and  Electron Configuration

11

Electron Configuration

Write the electron configuration of a krypton atom (Z = 36).

1s22s22p63s23p64s23d104p6

This is the Kr “core” [Kr]

• The noble gas “core” can be used to write the electron configuration of an element using

core notation:

noble gas “core” + valence electrons

Page 12: Orbital Diagrams and  Electron Configuration

12

Core notation

To write the electron configuration using the core notation:• Find the Noble Gas that comes before the atom.• Determine how many additional electrons must be

added beyond what that noble gas has.

(= Atomic number of atom minus atomic number of noble gas)

• Determine the period that element is in. (This determines the value of n of the s subshell to start with when adding extra electrons)

• Add electrons starting in that “n” subshell

Page 13: Orbital Diagrams and  Electron Configuration

13

Electron Configuration

Write the core electron configuration of Sr (Z = 38).

Previous noble gas: Kr (Z = 36)Extra electrons: 38 (e of Sr) - 36 = 2Period number of Sr: 5So: Kr core plus 2 extra e- starting in 5s

[Kr] 5s2

Page 14: Orbital Diagrams and  Electron Configuration

14

Electron Configuration

Write the core electron configuration of Br (Z = 35).

Previous noble gas: Ar (Z = 18) Extra electrons: 35 - 18 = 17Period number: 4So: Ar core plus 17 extra e- starting with 4s

[Ar] 4s23d104p5

Page 15: Orbital Diagrams and  Electron Configuration

15

Isoelectronic Series

• When atoms ionize, they form ions with the same number of electrons as the nearest

(in atomic number) noble gas.

Na = 1s22s22p63s1 = [Ne]3s1

Na+ = 1s22s22p6 = [Ne]

Cl = 1s22s22p63s23p5 = [Ne]3s23p5

Cl- = 1s22s22p63s23p6 = [Ar]

Page 16: Orbital Diagrams and  Electron Configuration

16

Isoelectronic Series

• N (7 e-): 1s22s22p3

• O (8 e-): 1s22s22p4

• F (9 e-): 1s22s22p5

N3- (10 e-): 1s22s22p6 = [Ne]

O2- (10 e-): 1s22s22p6 = [Ne]

F- (10 e-): 1s22s22p6 = [Ne]

Page 17: Orbital Diagrams and  Electron Configuration

17

Isoelectronic Series

• Na (11 e-): 1s22s22p63s1

• Mg (12 e-): 1s22s22p63s2

• Al (13 e-): 1s22s22p63s23p1

Na+ (10 e-): 1s22s22p6 = [Ne]

Mg2+ (10 e-): 1s22s22p6 = [Ne]

Al3+ (10 e-): 1s22s22p6 = [Ne]

Page 18: Orbital Diagrams and  Electron Configuration

18

H

Li Be

Na Mg

Rb

Cs

Fr Ra

Ba

Sr ITeSbSnInCdAgPdRhRuTcMoNbZrY

La

Ac Rf

Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At

Db Sg Bh Hs Mt

LuYbTmErHoDyTbGdEuSmPmNdPrCe

Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

F

ClSPSiAl

B C N O

1A

2A

3B 4B 5B 6B 7B 8B 8B 8B 1B 2B

3A 4A 5A 6A 7A

CaK Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Xe

Rn

Ar

Ne

He

8AIons of the highlighted elements are

isoelectronic with Ne.

Page 19: Orbital Diagrams and  Electron Configuration

19

Isoelectronic Series

• Isoelectronic: having the same number of electrons

• N3-, O2-, F-, Ne, Na+, Mg2+, and Al3+ form an isoelectronic series.– A group of atoms or ions that all contain the

same number of electrons

Page 20: Orbital Diagrams and  Electron Configuration

20

Isoelectronic Series

• Examples of isoelectronic series:– N3-, O2-, F-, Ne, Na+, Mg2+, Al3+

– Se2-, Br-, Kr, Rb+, Sr2+, Y3+

– Also: Cr, Fe2+, and Co3+

Page 21: Orbital Diagrams and  Electron Configuration

21

Sizes of Ions - Trends

• In an isoelectronic series, ions have the same number of electrons.

• Ionic size decreases with an increasing nuclear charge.