35
Option B – Muscles Movement and Fitness

Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

Embed Size (px)

Citation preview

Page 1: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

Option B – Muscles Movement and Fitness

Page 2: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B1 - Muscles and movementB.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement.

Bones provide the structure onto which soft tissue is built, they provide protection for internal organs, as well as provide a system of levers that allow for movement by way of muscular contraction.

http://jagpower.blogspot.com/2011/10/bones-provide-structure-onto-which-soft.html

Ligaments hold bones together

http://www.aclsolutions.com/images/Seif_knee%20anatomy02.jpg

Muscles do the work….They pull against bones to provide movement.

http://www.human-body-facts.com/images/human-body-muscle-diagram.jpg

Tendons join muscles to bones.

httphttp://www.ehrenchiropractic.com/nervous_sys.jpg://www.nlm.nih.gov/medlineplus/ency/images/ency/fullsize/8956.jpg

Nerves signal muscles to contract.

Page 3: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.1.2 Label a diagram of the human elbow joint, including cartilage, synovial fluid, joint capsule, named bones and antagonistic muscles (biceps and triceps).

Outline the functions of the structures in the human elbow joint named.

Bending the elbow diagram - put the numbers in the right places!1. Ulna2. Radius3. Contracted biceps brachii muscle4. Relaxed triceps muscle5. Humerus

1

2

34

5

Straightening the elbow diagram - put the numbers in the right places!1. Radius2. Relaxed biceps brachii muscle3. Humerus4. Contracted triceps muscle5. Tendon6. Ulna

http://campaigns2.axappphealthcare.co.uk/medical-encyclopaedia/bending-the-elbow

1

2

34

55556

Page 4: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

Match the description on the right with the part on the left : • Holds the bones

together.

• Provides a very smooth surface to reduce friction.

• Acts as a lubricant.

• Secretes and holds in synovial fluid

Page 6: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.1.5 Describe the structure of striated muscle fibres, including the myofibrils with light and dark bands,

mitochondria, the sarcoplasmic reticulum, nuclei and the sarcolemma.

Page 7: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.1.6 Draw and label a diagram to show the structure of a sarcomere, including Z lines, actin filaments, myosin

filaments with heads, and the resultant light and dark bands.

Page 8: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.1.7 Explain how skeletal muscle contracts, including the release of calcium ions from the sarcoplasmic reticulum, the formation of cross-bridges, the sliding of actin and myosin

filaments, and the use of ATP to break cross-bridges and re-set myosin heads.

http://www.youtube.com/watch?v=CepeYFvqmk4

http://www.blackwellpublishing.com/matthews/myosin.html

http://highered.mcgraw-hill.com/sites/0072495855/student_view0/chapter10/animation__action_potentials_and_muscle_contraction.html

http://www.brookscole.com/chemistry_d/templates/student_resources/shared_resources/animations/muscles/muscles.html

Click on the image to go to a great animation that guides you through how a muscle contracts and has great questions to help you see how much you’ve learned.

(alternatively click the hyperlink below…)

Some other animations you might try….

Page 9: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.1.8 Analyse electron micrographs to find the state of contraction of muscle fibres.

If electron micrographs of a relaxed and contracted myofibril are compared it can be seen that: 1. Each sarcomere gets shorter (Z-Z) when the muscle contracts, so the whole muscle gets shorter. 2. But the dark band, which represents the thick filament, does not change in length.

This shows that the filaments don’t contract themselves, but instead they slide past each other.

http://click4biology.info/c4b/11/hum11.2.htm#8

Page 10: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B2 - Training and the Pulmonary system

Page 11: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.2.1 Define total lung capacity, vital capacity, tidal volume and ventilation rate.

: volume of air in the lungs after a maximum inhalation.: maximum volume of air that can be exhaled after a maximum inhalation.: volume of air taken in or out with each inhalation or exhalation.: number of inhalations or exhalations per minute (this term is used, not breathing rate).

Total lung capacity

Vital capacity

Tidal volume

Ventilation rate

Page 12: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.2.2 Explain the need for increases in tidal volume and ventilation rate during exercise.http://www.livestrong.com/article/288393-increase-in-tidal-volume-during-exercise/ Read the article then complete the sentences:When you exercise you need to breath deeper because…..When you exercise you need to breath more often because…..The ventilation and depth are controlled by negative feedback. What is the stimulus? Where is the stimulus detected?

Page 13: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

A feed back loop to describe control of breathing.

Exercise causes CO2 production

Blood pH rise detected in the Hypothalamus

Signal sent to lungs and thorax to increase depth and frequency

of breathing

Blood pH falls

Normal blood pH

Page 14: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

http://www.normalbreathing.com/c-effects-of-exercise-on-the-respiratory-system.php Read the article and try to make a summary table in words rather than numbers…….:

B.2.3 Outline the effects of training on the pulmonary system, including changes in ventilation rate at rest, maximum ventilation rate and vital capacity.

Page 15: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B3 – Training and the Cardiovascular system

Page 16: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.3.1 Define heart rate, stroke volume, cardiac output and venous return.

Learn these definitions: volume of blood pumped out with each contraction of the heart.: volume of blood pumped out by the heart per minute.: volume of blood returning to the heart via the veins per minute.

Stroke volume

Cardiac output

Venous return

Page 17: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.3.2 Explain the changes in cardiac output and venous return during exercise.

Why does the heart rate need to speed up when you exercise?

How is this speed up controlled?

What effect will speeding up the heart have on how much blood is pumped out per minute?

What effect will pumping more blood out of the heart per minute have on the amount of blood returning (venous return)?

Detection of lowered blood pH causes impulses to be sent by the brain to the pacemaker, increasing cardiac output. Contraction of muscles used during exercise squeezes blood in adjacent veins, increasing venous return. Venous return (VR) is the flow of blood back to the heart. Under steady-state conditions, venous return must equal cardiac output (CO) when averaged over time because the cardiovascular system is essentially a closed loop. Otherwise, blood would accumulate in either the systemic or pulmonary circulations.http://wiki.answers.com/Q/What_is_the_effect_of_exercise_on_venous_return#ixzz1niqa1II1

Page 18: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.3.3 Compare the distribution of blood flow at rest and during exercise.

• Blood flow to the brain is unchanged during exercise. Blood flow to the heart wall, skeletal muscles and skin is increased, but blood flow to the kidneys, stomach, intestines and other abdominal organs is reduced.

http://www.teachpe.com/anatomy/blood_flow.php

But why?

Page 20: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.3.5 Evaluate the risks and benefits of using EPO (erythropoietin) and blood transfusions to improve

performance in sports

Using EPO (erythropoietin) or blood transfusions as a performance enhancerRisks Benefits

↑chance of thrombosis More red blood cells means more oxygen carried and better performance↑ chance of Heart attack

↑ chance of Stroke

It is all about oxygen supply to the muscles! The more oxygen you can supply the longer before muscles get tired. If you have maxed out you vital capacity and maxed out you heart efficiency the next thing you can do is increase the amount of oxygen the blood can carry…… one way to do this is to increase the number of red blood cells – and there are 3 ways of doing this;1. Train at high altitude - http://en.wikipedia.org/wiki/Altitude_training 2. Inject EPO - http://en.wikipedia.org/wiki/Erythropoietin 3. Use a blood transfusion (also called blood doping)- http://

en.wikipedia.org/wiki/Blood_doping

Page 21: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B4 – Exercise and respiration

Page 22: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.4.1 Define VO2 and VO2 max. VO2 max is the maximum capacity of an individual's body to transport and use oxygen during exercise, which reflects the physical fitness of the individual. The name is derived from V - volume, O2 - oxygen, max - maximum.

http://en.wikipedia.org/wiki/File:Ergospirometry_laboratory.jpg

This instrument measures the amount of oxygen in the air breathed in and compares it with the amount in the air breathed out as the test subject carries out increasing levels of exercise.

Page 23: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.4.2 Outline the roles of glycogen and myoglobin in muscle fibres.

Glycogen is an glucose storage molecule in muscles.

Myoglobin is an oxygen storage molecule in muscles(Like heamoglobin but it remains in the muscle.)

http://wikis.lib.ncsu.edu/images/1/19/Hemoglobin.jpg

Page 24: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.4.3 Outline the method of ATP production used by muscle fibres during exercise of varying intensity and

duration.

Creatine phosphate can be used to regenerate ATP for 8–10 seconds of intense exercise. Beyond 10 seconds, ATP is produced entirely by cell respiration. As the intensity of exercise decreases and the duration increases, the percentage of anaerobic cell respiration decreases and aerobic cell respiration increases.• Look at the first 1min30secs of this you tube clip:http://www.youtube.com/watch?v=BR3dDO1Sz0E

Then look at the side effects in th esecond half of this clip.(Less exciting clip but informative): http://www.youtube.com/watch?v=OzGJnbBay90&feature=related

Page 25: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

Artificial supplementation of the diet with creatine phosphate increases the amount of the molecule needed to create more ATP quickly and anaerobically. Creatine phosphate is normally readily available in meats and fish. So supplementation may be effective in vegetarians. It is only performance enhancing in sprint sports such as weight lifting and running swimming.Training has no impact on Creatine phosphate levels.Too high creatine phosphate may lead to kidney disease/damage in about 0.1% of people taking supplements.

B.4.4 Evaluate the effectiveness of dietary supplements containing creatine phosphate in enhancing performance.

Page 26: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.4.5 Outline the relationship between the intensity of exercise, VO2 and the proportions of carbohydrate and fat

used in respiration.Intensity and Energy SourceThe following table, adapted from O'Neil (2001) [1], shows the relationship between exercise intensity (% of your Maximum Heart Rate) and the energy source (carbohydrate and fat).

Intensity % MHR

% Carbohydrate

% Fat

65 to 70 40 6070 to 75 50 5075 to 80 65 3580 to 85 80 2085 to 90 90 1090 to 95 95 5

100 100 0

Referenced MaterialO'NEIL, T. et al. (2001) Indoor Rowing Training Guide. Concept 2 Ltd, p. 27•MACKENZIE, B. (2001) Exercise Intensity and Energy Source [WWW] Available from: http://www.brianmac.co.uk/esource.htm [Accessed 13/3/2012]

Energy is primarily supplied from two sources:•Carbohydrates - in the form of glycogen stored in the muscles • Fat - stored around the body

During exercise, we use a combination of these energy sources. At a high intensity the main source of energy is carbohydrate and at a low intensity fat is the predominate source. As there is a limit to the amount of carbohydrate that can be stored in the muscles, high intensity work can only be sustained for short periods. We have large stores of fat so low intensity work can be maintained for long periods.

Page 27: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

Often during strenuous exercise, there is not enough oxygen for complete aerobic respiration and anaerobic respiration starts. This produces lactate and carbon dioxide, which causes the further dilation of the arterioles supplying the muscles and so the blood flow to them.Lactate is dangerous because it reduces the pH in cells and decreases the efficiency of the enzymes working inside them. It also causes fatigue and pain (stitch), so it is taken to the liver and converted back to glucose because it is too rich a source of energy to be excreted.

B.4.6 State that lactate produced by anaerobic cell respiration is passed to the liver and creates an oxygen debt.

Page 28: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.4.7 Outline how oxygen debt is repaid. The oxygen debt• Whenever lactate is produced by anaerobic respiration, an oxygen debt is

being built up. This debt is paid back at the end of the exercise by breathing more deeply than you would normally need to at rest.

• This oxygen is used to convert the lactate to glucose, the haemoglobin to oxyhaemoglobin, oxygenate the myoglobin and supply the higher metabolic rate caused by many organs working harder than usual.

• For lengthier exercise, oxygen supply must equal oxygen demand and so an athlete will be more successful the more the muscles are supplied with oxygen.

• To increase fitness, you need to train at about 70% of your hearts maximum heart rate for twenty minutes, three times a week. A more intense approach would get quicker results but four or five times a week is the maximum recommended frequency.

Page 29: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B5 – Fitness and training

Page 30: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.5.1 Define fitness. • Fitness is the physical condition of the body

that allows it to perform exercise of a particular type. - A.Allott – IB Study Guides Biology.

However ‘Fitness’ is specific to the type of activity – a swimmer may be very fit to swim but can’t run well as different muscle groups may have been developed and creatine and glycogen storages used.

Page 31: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.5.2 Discuss speed and stamina as measures of fitness.

• Speed is the rate at which a movement is performed. Speed depends mostly on fast muscle fibres – this is a useful measure in sports such as sprinting, javelin.

• Stamina is the ability to keep on exercising for a long time. It would be measured by seeing how long the athlete can continue for – this is a useful measure in X-country, rowing

Which measure should be used will depend on the sport.

Page 32: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.5.3 Distinguish between fast and slow muscle fibres.

There are two broad types of voluntary muscle fibers: slow twitch and fast twitch. Slow twitch fibers contract for long periods of time but with little force while fast twitch fibers contract quickly and powerfully but fatigue very rapidly.

Fast Twitch Slow twitch

Blood supply Moderate with some capillaries Excellent with lots of capillaries

Myoglobin Little present Large stores

Mitochondria Few present Many present

Cell respiration Many glycolysis enzymes to allow lots of anaerobic respiration.

Many oxidative enzymes to allow lots of aerobic respiration

Stamina Low High

Strength High Moderate

Presence encouraged by…

High intensity exercise Moderate intensity exercise

A.Allott – IB study guide - Biology – Oxford University Press 2007

Page 34: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B6 - Injuries

B.6.1 Discuss the need for warm-up routines.

• Here is a PE teachers view: http://www.brianmac.co.uk/warmup.htm

• However all evidence for the need to warm up is purely anecdotal and has not been scientifically demonstrated.

Page 35: Option B – Muscles Movement and Fitness. B1 - Muscles and movement B.1.1 State the roles of bones, ligaments, muscles, tendons and nerves in human movement

B.6.2 Describe injuries to muscles and joints, including sprains, torn muscles, torn ligaments, dislocation of joints

and intervertebral disc damage.

http://imaging.ubmmedica.com/shared/zone5/0811JMMCMMF1.jpg

http://www.healthhype.com/wp-content/uploads/Elbow-Dislocation.jpg

http://www.boneclinic.com.sg/wp-content/uploads/2011/06/Ankle-Sprain.jpg

http://www.ankleandfootnorthwest.com/images/Ankle%20sprain.jpg

http://www.doctortipster.com/wp-content/uploads/2011/03/herniated_disc.jpg