24
OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF GRIDSHELLS MODELED USING ELASTICA Makoto Ohsaki (Kyoto University) Kazuya Seki (Azusa Sekkei) Yuji Miyazu (Hiroshima University) 1

OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF GRIDSHELLSMODELED USING ELASTICA

Makoto Ohsaki (Kyoto University)Kazuya Seki (Azusa Sekkei)

Yuji Miyazu (Hiroshima University)

1

Page 2: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

Background2

Gridshell Structure

Planar grid Gridshell

Forced disp.

Bending moment of member and interaction at joints may be large.

Hinge joint

Doubly curved latticed shell by bending planar grid

Page 3: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

3

Purpose of study

Define target shape by elastica

- Shape of gridshell with small interaction force at joints

- Add hinge-slot joints to further reduce reactionforce

Page 4: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

4

Assembly of elastica

Gridshell with elastica⇒ No interaction force between crossing members

elasticaForced disp.

Distorted shape

Forced disp.

Page 5: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

5

Definition of elastica

)()( sEIsM

sss

)()(

s : Arc-length parameterφ(s) : Deflection angleM(s) : Bending momentEI : Bending stiffnessκ(s) : Curvature

Forced disp.

Buckled shape of a rods

φ(s)

No explicit solution(expression using elliptic function)

Page 6: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

6

Definition of elastica

)()( sEIsM

sss

)()(

Forced disp.

Buckled shape of a rods

φ(s)

Minimize 2( )EI s ds

: penalty parameter related to length of barIgnore axial and shear deformation

Length-constrained minimum energy curve (spline, trajectory)

Page 7: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

Step2 : Incrementally computeφ(s), z(s) and M(s) as

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

z

x

0

0.5

1

1.5

2

z

0

0.5

1

1.5

2

z

i = 0

7Incremental computation of elastica shape

ii

ii sEIM

1

1 1 1 1

( , ) ( cos , sin )

i i

i i i i i i

x zx s z s

ii zPMM 0

i = 20

i = 40

i = 50

M0

M0

P

P

PM0

M20=2.42

M50=0

M40=0.92

E(s) Target shape

Step1 : φ(0)=x(0)=z(0)=0 , M(0)=M0Assign M0, P, and material constants

is

Page 8: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

z

x

0

0.5

1

1.5

2

z

0

0.5

1

1.5

2

z

i = 0

8

i = 20

i = 40

i = 50

M0

M0

P

P

PM0

M20=2.42

M50=0

M40=0.92

E(s) Target shape

Step3 : Let k=i+1 and go to Step2Stop if Mi = 0

Step4 : Compute length L anddisp. U from

n

n

i i xLUsL ,2)(

Incremental computation of elastica shape

Page 9: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

9

Joint types

XZ

Hinge + slot

XZ

Rotation around z axis

Rotation around z axis+

Translation in x direction

Hinge

DOFs

Page 10: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

10

Example of elastica

0

1

2

0 1 2 3 4 5 6 7 8 9

z [m

]

x-y [m]

Length: L=10 m, Forced disp.: U=0.5m

Material: steel: Young’s modulus = 205 GPa, Poisson’s ratio = 0.3

Width: 0.06 m, Thickness: 0.015 m, P=369 N,M0=720 Nm

Page 11: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

11

Interaction force at joints

w

vu (slot)

Local coordinates

Cu: u-directional shear forceCv: v-directional shear forceCw: axial force

Hinge

Page 12: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

12

Gridshell consisting of elastica

XZ

Small interaction force at joints

Page 13: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

13

XZ

Forced disp.: U=0.50m

1.0m

10.0m

Initial planar grid for optimization

Elastica located diagonally between supports

Target shape = elastica

Page 14: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

14

XZ

Type 1: uniform cross section

60mm15mm

500mm

Initial planar grid for optimization

Type 2: large section between supports

10020

500

Large section

5010

500

Small section

Page 15: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

15

Shape of diagonal members

Type 1 Type 2

0

1

2

0 1 2 3 4 5 6 7 8 9

red: elastica, green: Type 1, blue: Type 2.

Page 16: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

Type 2 Type 1

Joint type Hinge HingeCu mean 1.162 2.890Cv mean 1.948 4.288Cw mean 0.678 0.833Cu max 5.669 16.17Cv max 5.885 16.40Cw max 2.253 4.802

16

Interaction force at joints

Elastica shape for large diagonal member⇒ reduction of interaction force at joint

w

v

u (slot)

Local coordinate

Cu:u-directional shear force

Cv:v-directional shear force

Cw: axial force

(unit: kN)

Page 17: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

17

Optimization problem

・Design variable x: locations of hinge-slot joints・Objective function: deviation of diagonal curve from target elastica

2

1

219

1))(()(

izij

jijz xceF xminimize

Optimize locations of several hinge+slot joints⇒ Reduction of interaction force with limited construction cost

・Optimization method: Simulated annealing (SA)

ez: z coordinate of target elasticacz: z coordinate of nodes along diagonal members

Page 18: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

Simulated annealing (SA)18

termination condition

Initial setting

Find neighborhood solutions

termination

Acceptance decision

m=nm<n

n : Specified number of steps

Assign number hinge-slots and optimize their locations

Case 1: Objective function is reduced → Accept

Case 2: Objective function is increased → Accept with probability defined as

Acceptance criteria of best neighborhood solution

scaleTdiff

expnumber random a

Page 19: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

19

Optimal solution

Type 1 Type 2Joint type All hinge All slot Optimal All hinge All slot OptimalCu mean 2.890 1.765 2.116 1.162 0.674 0.894Cv neam 4.288 3.962 4.031 1.948 1.588 1.732Cw mean 0.833 0.963 0.957 0.678 0.537 0.554

(unit: kN)

Four hinge+slot jointsin 1/4 region

Page 20: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

20

Optimal solution

Type 1 Type 2Joint type All hinge All slot Optimal All hinge All slot OptimalCu mean 2.890 1.765 2.116 1.162 0.674 0.894Cv neam 4.288 3.962 4.031 1.948 1.588 1.732Cw mean 0.833 0.963 0.957 0.678 0.537 0.554

(unit: kN)

• Drastic reduction of interaction force by optimizinglocations of Hinge+Slots.

• Reduction by several Hinge+Slots is equivalentto results of Hinge+Slots at all joints.

• Type 2 has smaller force than Type 1.

Page 21: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

Small-scale model21

Page 22: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

22

Hinge joint Hinge-slot joint

900mm

applying displacement of 20mm

Small-scale model

Page 23: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

23

Hinge joints

Hinge –slots joints

Small-scale model

Page 24: OPTIMIZATION OF LOCATIONS OF SLOT CONNECTIONS OF ... · 20 Optimalsolution Type1 Type2 Joint type Allhinge Allslot Optimal Allhinge Allslot Optimal Cu mean 2.890 1.765 2.116 1.162

24

Conclusions

Joint forces of a gridshell can be reduced by designing the target shape of beam as an elastic.• Elastica can maintain equilibrium shape

without any force from the perpendicularly connected beams.

Joint forces can be reduced by assigning Hinge+Slot joints.

Number of Hinge+Slot joints can be reduced by minimizing the deviation of the shape of curved beam from the target shape of elastica.