31
Page 1 H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06 Optical theorem in optics: derived from conservation of energy in Quantum Mechanics: derived from conservation of probability ¾ tot = s!1 4¼ s ImA(s;t = 0)

Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

  • Upload
    others

  • View
    11

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 1H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Optical theoremin optics: derived from conservation of energyin Quantum Mechanics: derived from conservation of probability

¾tot=

s!14¼

sImA(s; t = 0)

Page 2: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 2H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Regge trajectories

Amplitude for exchange of meson with mass M and     spin J:

plot mesons  as function of mass and spindefine trajectory

➔ expand trajectory:

Ames(s; t) » Aj(t)Pj(cosµt)

» Pj(cosµt)

t¡M2

s!1» sJ

®(t)

®(t) = ®(0)+ ®0(t)

Page 3: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

3H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Factorization of Hard Diffraction

Factorization in hard diffraction (J. Collins Phys.Rev.D57:3051­3056,1998, Erratum­

ibid.D61:019902,2000):

diffractive pdfs behave similar to usual pdfsno assumptions on Regge factorization

collinear factorizationDGLAP evolutionfor Q2 sufficiently large, while                        are fixeduse full machinery of NLO DGLAP evolution...

d¾ =X

i

Zd»f

(D)i (»; xIP ; t;¹)d¾̂i+non¡ leading power of Q

xBj ; xIP ; t

Page 4: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

4H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffractive PDFs

FD(4)2 (¯;Q2; xIP ; t) =

X

i

Z 1

¯

dz

zCi³¯z

´fDi (z; xIP ; t;Q

2);

fDi (z; xIP ; t;Q2) =

fIP=p(xIP ; t) ¢ fIPi (z;Q2)

Page 5: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

5H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffractive dijet production 

use diffractive pdfs, obtained from F2Dpredict cross section in diffractive DIS

➔ x section is described

Page 6: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

6H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffractive Factorization is broken 

use diffractive pdfs also for photo production dijetspredicted cross section ~ factor 2 too largesimilar effect seen in proton­proton collisions

➔ factorization is broken

Page 7: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

7H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Understanding diffraction

simplest model for Pomeron: 2 gluon system

Page 8: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

8H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

2 gluon exchange: qq diagram

Calculate Born diagram: scattering on a quark...

M = ¹v(k +Q)°¹=k

k2(igs°¯T )

=k ¡ =u¡ =l

(k ¡ u¡ l)2(igs°®T ) ¢ v(u¡ k)

¢ ¡i

(l + u)2g¯¯0

¡i

l2g®®0¹v(p)(igs°¯0T )

=p¡ =u¡ =l

(p¡ u¡ l)2(igs°®0T )v(p¡ u)

Levin Wusthoff, PRD 50 4306 91994)

Page 9: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

9H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

2­gluon exchange: qq diagrams

also crossed diagrams need to be included, but not all contribute ...

Levin Wusthoff, PRD 50 4306 91994)

Page 10: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

10H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffractive quark­antiquark production (transv.)

perform calculation for 

using approximations for small     

1/k4 dependence, squared of gluon density

d¾T

dM2dtdk2 jt=0=

X

f

e2f®em¼2®2s

12

1

M4

(1¡ 2k 2

M2 )q1¡ 4k 2

M2

£IT (Q

2;M2; k2)¤2

IT = ¡Z

dl2

l2FG(xIP ; l2)

24M2 ¡Q2

M2 +Q2+

l2 + k 2

M2 (Q2 ¡M2)q

(l2 + k 2M2 (Q2 ¡M2))2 + 4k4 Q

2

M2

35

IT =

·4Q2M4

k2(M2 +Q2)3+ bt

@

@k2

¸xIPG(xIP ; k2

Q2 +M2

M2)

°¤p! q¹qp

l

Bartels, Lotter Wusthoff, hep­ph/9602363

Page 11: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

11H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffractive quark­antiquark production (long.)

perform calculation for 

using approximations for small     

1/k4 dependence, squared of gluon density, when usung IL2

°¤p! q¹qp

l

Bartels, Lotter Wusthoff, hep­ph/9602363

d¾L

dM2dtdk2 jt=0=

X

f

e2f®em¼

2®2s3

4

Q2M2

k2

M2

1q1¡ 4k 2

M2

£IL(Q

2;M2; k2)¤2

IL(Q2;M2; k2) = ¡

Zdl2

l2FG(xIP ; l2)

24 Q2

(M2 +Q2)¡ k2 Q2

M2

q(l2 + k 2

M2 (Q2 ¡M2))2 + 4k4 Q2

M2

35

IL =

·Q2M2(Q2 ¡M2)

k2(M2 +Q2)3+ bl

@

@k2

¸xIPG(xIP ; k2

Q2 +M2

M2):

higher twist ... 

Page 12: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

12H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Energy dependence of diffractive qq

strong energy dependence due to squared gluon densitytest for different gluon densities x section comparison:

¾qq » 46pb

¾resIP » 1100pb

jung hep­ph/9809373

0:1 < y < 0:7

5 < Q2 < 80

xIP < 0:05

pjetst > 2GeV

Bartels, Lotter Wusthoff, hep­ph/9602363

Page 13: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

13H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Azimuthal angle in diffractive qq

azimuthal dependence is different compared to boson­gluon fusion process:

2gluon: jets are perpendicular to scattering planeBGF: jets are in the scattering plane

Bartels, Lotter Wusthoff, hep­ph/9602363

Page 14: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

14H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

2 gluon exchange: qqg final states

many more diagrams contributecalculations for different final state configurations exist:

➔       small, gluon has large pt➔       large, gluon has small pt

calculations are very trickyBUT not a real NLO calculation exists, including the virtual corrections to

Bartels, Jung, Wusthoff, EPJC 11 (1999) 111

°p! q¹qg + p

mq¹q

mq¹q

q¹q

Page 15: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

15H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Contributions to F2D

different contributions to different regions of phase spaceNOTE: long contribution can be larger than transverse... 

..... higher twist larger than leading twist 

Golec­Biernat, Wusthoff PRD 60 114023 (1999) 

Page 16: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

16H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffractive Dijets and 2gluon approx.

dijets:

0:1 < y < 0:7

4 < Q2 < 80

xIP < 0:05

pjetst > 4GeV

Page 17: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 17H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffraction and hard scattering factorization

soft                        

hard                                  IP

➔ hard perturbative 2gluon exchange

➔ hard jet close to rapidity gap

➔ NOT included in DGLAP

IP

➔ diffraction is in initial condition➔ start Q2 evolution from Q0➔ DGLAP of F2

D3 etc...

Page 18: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 18H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Towards understanding of diffraction

Cutting rules (AGK) extended to QCDRelate diffraction, saturation and multiple scatterings All from the same amplitude, but different factors:

+1 Diffraction­ 4 Saturation+2 Multiple Interactions

Extended now also to pp !!!!further work needed ... 

➔ HERA is the place to understand MI !!!!          

➔ Towards the description of “everything” !!!!!

Bartels, Kowalski, Sabio­Vera

Page 19: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 19H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Toy Model for AGKAbramovsky Gribov Kanchely cutting rules (Sov.J.Nucl.Phys. 18, 308 (1974))

AGK formulated before QCD... no treatment of color ...where is relation of diffraction – multiple scatterings – saturation coming from ?single parton exchange:

2­parton exchange:

Page 20: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 20H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Saturation ­ non­linear evolution

f(x; k2) = f0(x; k2)

Page 21: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 21H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Saturation ­ non­linear evolution

f(x; k2) = f0(x; k2) +K1 ­ f

Page 22: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 22H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Saturation ­ non­linear evolution

f(x; k2) = f0(x; k2) +K1 ­ f ¡ 1

R2K2 ­ f2

evolution equation including recombination effects:

GribovLevinRyskin equation (Phys.Rep. 100 1(1983))

BalitskyKovchegov equation (NPB 463, 99 (1996), PRD 60 (1999) 034008, D62 (2000) 074018)

Page 23: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 23H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Parton saturation

number of gluons in long. phase space             :   

occupation area:                              nr of gluons x (trans size)2

saturation starts when:

define saturation scale:

dx=x

xg(x; ¹2)dx=x= xg(x; ¹2)d logx

xg(x; ¹2)1

¹2

®s(¹2)

¹2xg(x; ¹2) ¸ ¼R2

Q2s(x) »

®s(Q2s)xg(x;Q

2s)

¼R2

Page 24: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 24H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Saturation scales

saturation scale depends on size of gluon density:

➔ large gluon ... large Qs

➔ small gluon ... small Qs

Q2s(x) »

®s(Q2s)xg(x;Q

2s)

¼R2J. Collins, ...M. Lublinsky in HERA­LHC proceedings 2006

Page 25: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 25H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Geometric Scaling

remember F2(x,Q2)strong scaling violations visible

Stasto et al PRL 86 (2001) 596

Page 26: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 26H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Geometric Scaling

Define new variable:

scaling observed form small x<0.01dependence on saturation scale

¿(x) =Q2

Q2s(x)

Stasto et al PRL 86 (2001) 596

Page 27: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 27H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Diffraction Saturation Multiple Interactions

Proton AntiProton

Multiple Parton Interactions

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Outgoing Parton

Outgoing Parton

from R. Field

What is the underlying event (UE), multiple parton interactions (MI)?➔ Everything, except the LO process we're currently interested in

parton showersadditional remnant – remnant interactions

✗ NOT pile­up events (luminosity dependent) 

Page 28: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 28H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Underlying event – Multiple Interaction

p?min ! 01=p4?min

Basic partonic perturbative cross section

➔ diverges faster than                 as                         and exceeds eventually total inelastic (non­diffractive) cross section

¾hard(p2?min) =

Z

p2?min

d¾hard(p2?)dp2?

dp2?

Page 29: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 29H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Underlying event – Multiple Interaction

¾hard(p2?min) =

Z

p2?min

d¾hard(p2?)dp2?

dp2?

hni = ¾hard(p?min)¾nd

p?min ! 01=p4?min

Basic partonic perturbative cross section

➔ diverges faster than                 as                         and exceeds eventually total inelastic (non­diffractive) cross section, resulting in more than 1 interaction per event (multiple interactions, MI).

➔ Average number of interactions per event is given by:

It depends how soft interactions are treated, BUT also on the 

parton densities and factorization scheme !!!!!!!! 

Page 30: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

Page 30H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Multiple Interactions at HERAJ. Turnau, L Lönnblad, HERA­LHC workshop 2006

multiple interactions also in DIS forward jets at large Q2 ?

forward jet production

Page 31: Optical theorem - DESYjung/qcd_collider_physics_2005/lecture14.pdf · Page 1 H. Jung, QCD & Collider Physics, Lecture 14 WS 05/06 Optical theorem in optics: derived from conservation

31H. Jung, QCD & Collider Physics, Lecture 14  WS 05/06

Understanding diffraction