Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

Embed Size (px)

Citation preview

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    1/16

    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give

    notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in

    a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art.99(1) European Patent Convention).

    Printed by Jouve, 75001 PARIS (FR)

    Europäisches Patentamt

    European Patent Office

    Office européen des brevets

    (19)

       E   P

       1   0   3   1   9   7   0   B   1

    *EP001031970B1*(11) EP 1 031 970 B1

    (12) EUROPEAN PATENT SPECIFICATION

    (45) Date of publication and mentionof the grant of the patent:

    12.10.2005 Bulletin 2005/41

    (21) Application number: 00301412.3

    (22) Date of filing: 23.02.2000

    (51) Int Cl.7: G11B 7/007, G11B 7/095,

    G11B 7/09, G11B 11/105

    (54) Optical disk mediumhaving features forradial tiltdetectionandapparatusformeasuringradialtilt

    Optische Platte mit Merkmalen zur Radialneigungserfassung, und Vorrichtung zum Messen einer Radialneigung

    Disque optique avec des caractéristiques pour détecter une inclinaison radiale, et appareil pour 

    mesurer une inclinaison radiale

    (84) Designated Contracting States:DE FR GB

    (30)  Priority: 24.02.1999 US 256791

    (43) Date of publication of application:30.08.2000 Bulletin 2000/35

    (73)  Proprietor: Hewlett-Packard Company,A Delaware Corporation

    CA 94304 (US)

    (72)  Inventor: Prikryl, IvanLoveland, CO 80537 (US)

    (74)  Representative: Carpmaels & Ransford43 Bloomsbury Square

    London WC1A 2RA (GB)

    (56) References cited:EP-A- 0 099 576 EP-A- 0 886 266

    US-A- 4 866 688 US-A- 5 859 820

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    2/16

    EP 1 031 970 B1

    2

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    Description

    FIELD OF INVENTION

    [0001]   Thisinvention relates generally to optical disks

    and more specifically to an optical disk that includes

    physical features suitable for use in detecting radial tilt

    of the disk relative to an ideal plane.

    BACKGROUND OF THE INVENTION

    [0002]   Optical disks, for example, compact disks

    (CD), require precise focusing of an optical beam onto

    a data surface. One or more light beams (typically from

    a laser diode), illuminate one or more spots on the disk,

    and are reflected back into an optical head. In addition

    to information about recorded data, the reflected light

    beamsgenerally mayalsocarry informationabout track-

    ing error (how well a beam is centered on a data track),

    and focus error (how well a beam is focused onto the

    data surface). Typically, the data surface of an opticaldisk is protected by a transparent substrate on the side

    that is illuminated by the laser. In general, whenever an

    illuminating beam must pass through the substrate to

    reach thedata surface, disk tilt degrades the focus qual-

    ity of the illuminating beam. Typically, for the data den-

    sities involved in CD media, tilt detection and compen-

    sation are not required. However, for higher data densi-

    ties, forexample,for DigitalVersatileDisks (DVD), radial

    tiltdetection and compensationmay be necessary. Note

    that tilt may have a radial component and a tangential

    component, but the radial component is typically much

    larger (and therefore of more concern) than the tangen-

    tial component.[0003]   Some optical disk drives use a separate light

    beam for radial tilt measurement. See, for example, U.

    S. Patent Numbers 5,657,303 and 5,699,340. In order 

    to simplify the optical head, there is a need for a radial

    tilt measurement system that uses the same light beam

    that is used for reading the data. However, the tilt infor-

    mation should not interfere withthe resulting datasignal.

    One approach to providing radial tilt information in the

    data reading beam is used by the Advanced Storage

    Magneto Optic (ASMO) format. ASMO media is prefor-

    matted with permanent (embossed) headers. Each

    header starts with tilt measurement marks, formed into

    the walls of a groove defining a track. The tilt measure-ment information does not interfere with the data be-

    cause data and headers do not coexist at the same

    place on the disk. However, rewritable DVD media do

    not use permanent headers. There is a need for radial

    tilt detection features, in optical media that do not use

    permanent headers, that will not interfere with the opti-

    cal data signal. Another approach is to provide multiple

    tracking error signals. See, for example, U.S. Patent

    5,808,985. There is need for radial tilt detection without

    requiring any modification to conventional optical

    heads.

    SUMMARY OF THE INVENTION

    [0004]   An optical disc medium in accordance with the

    invention has a recording thin film structure (data sur-

    face) with grooves and lands behind a transparent sub-

    strate. Periodically, along radial lines, radial tilt meas-

    urement features are provided in the data surface,

    wherein the height of the grooves and lands arechanged, preferably over a short circumferential length.

    For example, along the radial lines, the height of a

    groove (over a short length) may be raised to the height

    of a land and the height of a land (over a short length)

    may be reduced to the height of a groove. The optical

    disk medium is designed in conjunction with the optical

    system of the drive so that when the focused laser spot

    is centered on a groove, a tracking error signal (for ex-

    ample, radial push-pull signal) is zero even if the disk is

    radially tilted. If the focused laser spot is centered on an

    area having a height that is different than the height of 

    a groove, for example a land, the tracking error signal

    varies when the disk is radially tilted. As a result, whenthe focused laser spot passes over a tilt measurement

    feature, an abrupt step in the tracking error signal pro-

    videsa measure of themagnitudeanddirection of radial

    tilt.The abruptsteps are removed from thetrackingerror 

    signal by existing low-pass filtering. The tilt measure-

    ment features have negligible effect on the data signal,

    and negligible effect on filtered tracking error and focus

    error signals. No changes are required for the drive op-

    tical system. Theonly drive changerequired is addition-

    al signal processing of the trackingerror signal to detect

    abrupt steps.

    [0005]   Some proposed formats (for example,

    DVD-RAM) usea format calledsingle-spiralgroove andland recording, in which each spiral groove completes

    onerevolutionof thediskand then ends at thebeginning

    of a spiral land. Each spiral land completes one revolu-

    tion of the diskand then ends at the beginning of a spiral

    groove. Data is recorded on the grooves and on the

    lands. The method of using a change in the groove

    height to measure radial tilt is also applicable to single-

    spiral groove and land recording.

    BRIEF DESCRIPTION OF THE DRAWINGS

    [0006]

    Figure 1A is a block diagram side view of an exam-

    ple optical head and disk within an optical disk

    mechanism.

    Figure 1B is an expanded view of part of the disk of 

    figure 1A.

    Figure 1C is an expanded plan view of a detector 

    illustrated in figure 1A.

    Figure 2 is graph of a radial push-pull signal mag-

    1 2

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    3/16

    EP 1 031 970 B1

    3

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    nitude as a function of radial offset.

    Figure 3A is a plan view of an optical disk in accord-

    ancewith the invention, illustrating featuresused for 

    tilt detection.

    Figure 3B is an expanded view of part of the optical

    disk of figure 3A.

    Figure 4 is a graph of a tracking error signal as a

    function of time when using an optical disk in ac-

    cordance with the invention.

    Figure 5A is a plan view of an optical disk having an

    alternative track configuration.

    Figure 5B is an expanded view of part of the optical

    disk of figure 5A.

    DETAILED DESCRIPTION OF THE PREFERRED

    EMBODIMENT OF THE INVENTION

    [0007]   Figure 1A illustrates an optical disk system.

    The system in figure 1A depicts representative compo-

    nents in a manner suitable to illustrate the invention

    within the context of a drive, but the system of figure 1A

    may not accurately depict any actual optical disk sys-

    tem, and there are many variations and many different

    configurations. In figure 1A, a laser diode 100 emits co-

    herent but uncollimated light. The light passes through

    a collimation lens 102, is reflected from a partially-re-

    flecting mirror 104, passes through an aperture 106,

    through a focusing lens 108, and is focused onto a data

    surface within an optical disk 110. Light reflected fromthedata surface in thedisk110passes through partially-

    reflecting mirror 104, through a focusing lens 112, and

    is detected by a detector array 114. Some or all of the

    optical components (100, 102, 104, 106, 108, 112, and

    114) may be mounted into an assembly referred to as

    an optical head (reference 116). An electronic signal

    processing system 117 receives signals from the detec-

    torarray114and derives varioussignals, such as a data

    signal, a tracking error signal, and a focus error signal.

    [0008]   In figure 1A, dashed line 118 represents the

    optical axis or centerline of the optical system. In figure

    1A, angle   α is the angle between the optical axis and

    the plane of the illuminated area of the disk. Ideally, theplane of the area on the disk 110 that is illuminated by

    the focused laser spot is orthogonal to the optical axis

    118. That is, angle  α should be ninety degrees. Howev-

    er, the disk is notperfectlyflat,and is subject to dynamic

    forces, so that angle   α slightly varies from ninety de-

    grees during operation. This patent document is prima-

    rily concernedwith measurement of radial disk tilt,of the

    illuminated area of the disk, relative to the optical axis

    of an optical head. In particular, disk 110 includes phys-

    icalfeaturesthat enable measurement of disktilt without

    requiring a separate light beam, with negligible effect on

    thedata signal, andwithout requiring changes to thede-

    sign of the optical head.

    [0009]   Figure 1B illustrates an expanded cross-sec-

    tion view of the optical disk 110. In figure 1B, disk 110

    includes a substrate 120. Grooves are formed onto one

    surface of the substrate 120. The grooved surface is

    coated with a recording thin film structure to form a data

    surface, and covered by a protective layer 122. Binarydata are encoded as marks of contrasting reflectance,

    or by pits and lands that affect reflectance by changing

    the phase of the reflected light. The light reflecting data

    surface comprises grooves 124 and lands 126. In figure

    1B, the definition of a "groove" is as seen on the surface

    of the substrate where the recording thin film structure

    is formed. That is, as seen by the optical head, a

    "groove" is closer to the optical head than a land. In the

    following discussion, a groove is referred to as having

    a depth, in the sense that a groove is physically formed

    into a surface of a substrate and a land represents the

    original surface of the substrate.The focused laser spot

    on anoptical disk typicallyhas a central area of relativelyhigh intensity, andseveral side lobe ringshaving a much

    lower intensity. The central area of high intensity has an

    overall diameter sufficiently large such that when the

    center of the spot is centered on a groove, some light

    falls onto each adjacent land. Accordingly, in figure 1B,

    light ray 128 is depicted as being on the optical axis of 

    a focused beam directed onto the center of a groove,

    and light rays130 at the outer edges of the focused spot

    aredepictedas being directedonto thecenters of lands.

    In the following discussion, data is assumed to reside

    on the surface of grooves, but in general, data may re-

    side on lands, or on both lands and grooves. Figure 1B

    illustrates a single sided medium. The invention isequally applicable to double sided media, in which ef-

    fectively twosubstrates arebonded at thedatasurfaces.

    [0010]   Figure 1C illustrates a plan view (orthogonal to

    the orientation depicted in figure 1A) of the detector ar-

    ray 114. The light received at the surface of the detector 

    array is not uniform, but instead comprises interference

    patterns, resulting in an intensity distribution. Ideally,

    when the focused laser spot is centered on a track

    (groove or land), the interferencepatternon thedetector 

    array 114 is symmetrical. In figure 1C, array 114 is di-

    vided into four quadrants. Typically, a data signal is ob-

    tained as the sum of the signals from each of four de-

    tector quadrants (A+B+C+D). If the focused laser spotis not centered on a groove, more of the reflected light

    may come from an adjacent land. As a result, the inten-

    sity distribution on the detector array may become

    asymmetrical, so that one half of the sensor array (for 

    example, quadrants A and B), may receive a different

    light intensity distribution than the other half. A differen-

    tial signal such as (A+B)-(C+D) is used to measure the

    degree to which the focused laser spot is radially offset

    from the center of a track (groove or land). This tracking

    error signal is commonly called the Radial Push-Pull

    (RPP) signal. In systems incorporating the present in-

    3 4

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    4/16

    EP 1 031 970 B1

    4

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    vention, a radial push-pull tracking error signal is used

    to additionally provide a measurement of radial tilt.

    [0011]   Figure 2 illustrates the magnitude of RPP as a

    function of radial offset of the center of the laser spot

    from the center of a groove, for one particular system.

    Line S1 represents the magnitude of RPP with no disk

    tilt. Line S2 represents the magnitude of RPP with a ra-

    dial tilt of +12 milliradians (α = π/2 + 0.012 radians). LineS3 represents the magnitude of RPP with a radial tilt of 

    - 12 milliradians (α =   π/2 - 0.012 radians). The system

    generating the RPP signal illustrated in figure 2 has a

    track pitch of 0.76 micrometers, so that when the fo-

    cused laser spot is offset by 0.38 micrometers, the spot

    is centered on a land (reference 202). RPPas a function

    of radial offset in figure 2 has characteristics that are

    unique to the present invention. In particular, the system

    generating the RPP signal illustrated in figure 2 has

    been designed so that RPP is insensitive to radial tilt

    when the focused laser spot is centered on a groove

    (reference 200). That is, when the focused laser spot is

    centered on a groove, RPP is zero even if the opticaldisk is tilted. However, as illustrated in figure 2, when

    the focused laser spot is centered on a land (reference

    202), RPP varies with tilt. In a system inaccordance with

    the invention, the height of grooves is occasionally

    changed, thereby providing a measurable step in RPP

    if the disk is tilted, even if the spot is centered, without

    affecting the data signal.

    [0012]   When the focused laser spot is centered in a

    groove, and when the disk is not tilted, the spot on the

    recording thin film structure is symmetrical on the

    groove, the reflected light is centeredin theaperture(fig-

    ure 1A, 106), and the reflected light is centered on the

    detector array (figure 1A, 114). When the disk is tilted,the disk substrate 120 causes the focused laser spot to

    become asymmetrical on the groove due to an aberra-

    tion called coma. Theasymmetryof the focused spot on

    the data surface introduces an asymmetry of light dis-

    tribution within the aperture, and asymmetry of light dis-

    tribution on the detector array.

    [0013]   In addition, even without coma, radial disk tilt

    causes the entire reflected light pattern to shift within

    the aperture, causing one side of the reflected beam to

    be vignetted by the aperture. Coma and vignetting each

    change the intensity distribution on the detector array,

    and the changes can add or cancel. The present inven-

    tion utilizes the fact that the vignetting effects and comaeffects can mutually compensate or magnify each other 

    in the RPP signal. As will described below, the net ef-

    fects of coma and vignetting on RPP may be made to

    cancel, when the focused spot is centered on a groove,

    by a proper selection of groove parameters.

    [0014]   Many of the variables that affect asymmetry of 

    light on the detector array due to coma, and asymmetry

    of light distribution within the aperture, are mostly con-

    trolled by system requirements or industry standards.

    For example, in the system generating the offset re-

    sponse illustrated in figure 2, the laser wavelength (650

    nanometers), reflectance (0.2), track pitch (0.76 mi-

    crometers), and groove width (0.38 micrometers) are all

    selected to satisfy various system requirements or 

    standards. For the system generating the offset re-

    sponse illustrated in figure 2, the aperture is round, and

    truncates the disk illuminating beam (which has a gaus-

    sian distribution) fallingoutsidea boundary representing

    an intensity of 50% of the peak intensity at the center of the beam. However, one of the most important param-

    eters that affects light distribution of the reflected beam

    within theapertureand on thedetectorarray is thedepth

    of a groove relative to the surface of a land. Recall that

    thefocused spot is distributed over thewidthof a groove

    andonto theadjacent lands. Adjusting the groove depth

    causes the interference patterns on the detector array

    to change. For the system generating the offset re-

    sponse illustrated in figure 2, the depth of a groove (rel-

    ative to the surface of a land) was empirically adjusted

    to a depth of 52 nanometers, in an optical modelingpro-

    gram, so that the net effect of coma on RPP was can-

    celed by the net effect of vignetting by the aperture onRPP when the focused spot is centered on a groove. As

    a result, RPP is insensitive to radial tilt when thefocused

    laser spot is centered on a groove (figure 2, reference

    200) and has increased sensitivity to radial tilt when the

    focused spot is centered on a land (figure 2, reference

    202). Note that for data recording on a land instead of 

    a groove, it is possible to select the disk groove depth

    so that the RPP signal will be insensitive to radial tilt

    when the focused spot is centered on a land and will

    have increased sensitivity to radial tilt when the focused

    spot is centered on a groove. Alternatively, as will dis-

    cussed further below, for single-spiral groove and land

    systems, it may be preferable to select groove depth sothat the RPP signal is insensitive to radial tilt when the

    focused spot is centered between thecenterof a groove

    and the center of a land.

    [0015]   Figure 3A illustrates an optical disk 110 in ac-

    cordance with the invention. The optical disk 110 in-

    cludes an inner hole 300 for mounting. A data area ex-

    tends from an inner radius 302 to an outer radius 304.

    The data area may comprise one spiral grove (separat-

    ed by lands), multiple concentric circular grooves sepa-

    rated by lands, or other arrangements of grooves sep-

    arated by lands. Radial tilt measurement features are

    provided along multiple radial lines 306, within the data

    area, wherein the height of grooves and lands arechanged. For example, at a radius where there is nor-

    mally a groove, the recording thin film structure may be

    fabricated to have the height of a land, and at a radius

    where there is normally a land, the recording thin film

    structure may be fabricated to have the height of a

    groove. Figure 3A depicts three radial lines (306), but

    the number three is not a requirement. For some sys-

    tems, having the groove height step up and down fewer 

    than three times per revolution of the disk may be suffi-

    cient, and for other systems, more than three steps up

    and down per revolution of the disk may be preferable.

    5 6

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    5/16

    EP 1 031 970 B1

    5

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    Stepping the groove height to the height of a land and

    stepping land height to theheight of a groove is conven-

    ient for manufacturability, but from figure 2, it can be

    seen that other steps in groove height and land height

    are acceptable. The only requirement is that the chang-

    es in height result in a detectable step in theRPP signal.

    [0016]   Figure 3B illustrates an expanded view of the

    area alonga radial line 306where thegroovesand landshave steps in height. In figure 3B, cross-hatched areas

    depict surfaces on the recording thin film structure hav-

    ing the height defined as a land, and non-cross-hatched

    areasdepict surfaceson the recording thinfilm structure

    having a height defined as a groove. Accordingly, refer-

    ence number 308 designates grooves, and reference

    number 310 designates lands. Within a groove 308,

    along radialline 306, the height is changed to theheight

    of a land, as designated by reference number312. With-

    in a land, along radial line 306, the height is changed to

    the height of a groove, as designated by reference

    number 314.

    [0017]   Preferably, the circumferential length of thecentral part of area 312 is less than the shortest length

    that can be resolved by the optical system, in order to

    minimize any effect on the data signal by the tilt detec-

    tion feature. Writing and reading data is synchronized

    with a clock signal. A channel bit width is defined as a

    distance on the data surface determined by one data

    clock period times the circumferential velocity of the

    disk. For a disk using "8/16" modulation, the shortest

    mark that canbe resolved by theoptical system is about

    three times the channel bit width. For a 4.7 gigabyte

    DVD medium using "8/16" modulation, a channel bit

    width is 133 nanometers. For this case, the circumfer-

    entiallength of thecentral part of area 312maybe abouttwo channel bit widths, or about 266 nanometers.

    [0018]   Recall that the data signal is a sum (figure 1C,

     A+B+C+D) and recall that a focused laser spot centered

    on a groove overlaps onto the adjacent lands. The cir-

    cumferential length of the land segments (area 314) ad-

     jacent to the tilt detection features in the groove, and

    with changed land height, is selected to further reduce

    any effect on the data signal by the tilt detection fea-

    tures. Since the intensity of the laser spot is substantially

    lower over the lands relative to the center of the spot,

    the circumferential length of each area 314 needs to be

    greater thanthe circumferentiallength of eacharea312,

    such that the light reflected from two combined areas314 on adjacent lands can compensate for any pertur-

    bation introduced into the sum data signal by area 312

    on the groove. In the system illustrated in figure 3, the

    circumferential length of the central part of each area

    314 is about 5.5 channel bit widths.

    [0019]   Figure 4 illustrates a radial push-pull signal

    (RPP) 400 as a function of time when using an optical

    disk as illustrated in figures 3A and 3B. When a focused

    laser spot passes over an area 312 (figure 3) within a

    groove, a pulse (402, 404) in RPP indicates that thedisk

    is radially tilted. The magnitude and direction of the

    pulse in RPP provide a measure of the magnitude and

    direction of radial tilt. After detection of tilt signals (402,

    404), the RPP signal 400 may be low pass filtered to

    prevent the pulses from interfering with tracking offset

    control.

    [0020]   Optical disk systems commonly also derive a

    focus error signal from signals from the detector array

    (figure 1A, 114). However, the focus control, similarly asfor tracking offset control, is much lower frequency than

    the data information, so that low pass filtering for the

    focus control also removes anyhigh frequency steps re-

    sulting from the radial tilt measurement features (figure

    3B, areas 312 and 314).

    [0021]   The radial tilt measurement features do not af-

    fect data writing. That is, when data is written, the tilt

    measurement features may be ignored, and data may

    be written over the tilt measurement features.

    [0022]   In proposed single-spiral groove and land for-

    mats, for example DVD-RAM and ASMO, spiral tracks

    have a "switching point," at which thespiral track chang-

    es from a groove to a land or vice-versa. Figure 5A il-lustrates a single-spiral groove and landdisk500 having

    a spiral track 502. The switching point is along a radial

    line 504. Figure 5B provides additional detail of the

    switching point. In figure 5B, along radial line 504,

    groove 506 changes to a land 508, and land 510 chang-

    es to a groove 512. A disk as illustrated in figures 5A

    and 5B may be designed so that a tracking error signal

    is insensitive to tilt when the focused laser spot is cen-

    tered on a groove (or land). Referring to figure 2, if the

    disk is not tilted, switching from position 200 to position

    202does not result in a step in the trackingoffset signal.

    However, if thediskis tilted, theswitchingpoint then pro-

    vides a single abrupt step in the tracking error signal,once every revolution. For example, the tracking signal

    may exhibit a positive step when switching from a

    groove to a land, and then one revolution later the track-

    ing signal may exhibit a negative step when switching

    from a land to a groove, if the disk is radially tilted. Al-

    ternatively, it may be preferable to design the disk so

    that when the focused spot is centered on a groove, the

    tracking error signal change for radial tilt is the same

    magnitude as the magnitude change when the focused

    spot is centered on a land,butopposite in direction.That

    is, in figure 2, curves S2 and S3 may be shifted horizon-

    tally so that, for example, at position 200, curve S2 is

    above curve S1 and curve S3 is below curve S1, and atposition 202, curve S2 is below curve S1 and curve S3

    is above curve S1, with the magnitudes of the differenc-

    es equal. Then, an abrupt step in the tracking error sig-

    nal occurs when the focused spot transitions from a

    groove to a land, and vice-versa, and if there is no radial

    tilt, the steps are equal in magnitude but opposite in di-

    rection. However, when the disk is radially tilted, the

    steps have unequal magnitude.

    [0023]   The foregoing description of the present inven-

    tion has been presented for purposes of illustration and

    description. It is not intended to be exhaustive or to limit

    7 8

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    6/16

    EP 1 031 970 B1

    6

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    the invention to the precise form disclosed, and other 

    modifications and variations may be possible in light of 

    the above teachings. The embodiment was chosen and

    described in order to best explain the principles of the

    invention and its practical application to thereby enable

    others skilled in the art to best utilize the invention in

    various embodiments and various modifications as are

    suited to the particular use contemplated. It is intendedthat the appended claims be construed to include other 

    alternative embodiments of the invention except insofar 

    as limited by the prior art.

    Claims

    1.   An optical disk medium (110) comprising:

    a data surface, the data surface having at least

    onegroove (124, 308), each grooveat a groove

    height, and lands (126, 310) adjacent to each

    groove (124, 308), each land (126, 310) at aland height; characterised by:

    a plurality of first areas (312),along a radial

    line on the disk; each first area (312) being

    in a groove (124, 308), having a height that

    isdifferent than thegrooveheight, andhav-

    inga circumferential lengththat is less than

    a circumferenceof thediskat theradial dis-

    tance of the first area (312); and,

    a plurality of second areas (314), along the

    radial line, one second area (314) on each

    land (126, 310) adjacent to each first area

    (312), each second area (314) having aheight that is different than the land height.

    2.   The optical disk (110) of claim 1, wherein the height

    of each first area (312) is the land height and the

    height of each second area (314) is the groove

    height.

    3.   The optical disk (110) of claim 1, wherein the data

    surface is adapted to receive data marks, the data

    marks having a specified shortest data mark length,

    and wherein each first area (312) has a circumfer-

    ential length that is less than the specified shortest

    data mark length.

    4.   A disk system comprising:

    an optical disk (110) having:

    a data surface, the data surface having at

    least one groove (124, 308) each groove

    at a groove height, and lands (126, 310)

    adjacent to each groove (124, 308), each

    land (126, 310) at a land height;

    an optical system (116), including a light source

    (100) and an optical detector array (114),

    wherein light from the light source is focused

    onto the data surface of the optical disk and

    light reflected from the data surface is directed

    onto the optical detector array, and wherein a

    plurality of signals are generated by the detec-

    tor array; characterised by:

    theoptical disk (110)further havinga radial

    tilt measurement area (312, 314) compris-

    ing a plurality of first areas (312) along a

    radial line on the disk, each first area (312)

    being in a groove (124, 308), and having a

    height that is different than the groove

    height; and a plurality of second areas

    (314) along theradial line,one second area

    (314) on each land (126, 310) adjacent to

    each first area (312), each second area

    (314) having a height that is different than

    theland height; and thedisk system further comprising:

    an electronics system (117),deriving a

    tracking error signal (figure 2, S1; fig-

    ure 4, 400) from the plurality of signals

    from the detector array;

    wherein when light is reflected from the radial

    tilt measurement area (312, 314) on the data sur-

    face onto the detector array, and when the disk is

    locally radially tilted, a detectable magnitude

    change occurs in the tracking error signal (figure 2,

    S2, S3; figure 4, 402, 404); andthe electronics system measuring radial tilt

    from the detectable magnitude change in the track-

    ing error signal.

    5.   The disk system of claim 4, further comprising:

    an optical aperture (106), wherein light reflect-

    ed from the data surface passes through the

    optical aperture before being directed onto the

    detector array.

    6.   The disk system of claim 5, wherein the height of 

    each first area (312) is the land height and theheight of each second area (314) is the groove

    height.

    7.   A method of measuring radial tilt of an optical disk

    (110) as claimed in any of claims 1-6, the method

    comprising the following steps:

    detecting light reflected from the optical disk;

    deriving a trackingerrorsignal (figure 2, S1; fig-

    ure 4, 400) from the detected reflected light;

    and,

    9 10

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    7/16

    EP 1 031 970 B1

    7

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    detectingan abruptstep in themagnitude of the

    tracking error signal (figure 2, S2, S3; figure 4,

    402, 404), the magnitude of the abrupt step in-

    dicating a magnitude of radial tilt.

    Patentansprüche

    1.   Ein Optische-Platte-Medium (110) mit folgenden

    Merkmalen:

    einer Datenoberfläche, wobei die Datenober-

    fläche zumindest eine Rille (124, 308), wobei

    sich jede Rille in einer Rillenhöhe befindet, und

    Stege (126, 310) benachbart zu jeder Rille

    (124, 308), wobei sich jeder Steg (126, 310) in

    einer Steghöhe befindet, aufweist; gekenn-

    zeichnet durch:

    eine Mehrzahl erster Bereiche (312) ent-

    lang einer Radiallinie auf der Platte; wobeisich jeder erste Bereich (312) in einer Rille

    (124, 308) befindet, eine Höhe aufweist,

    die sich von der Rillenhöhe unterscheidet,

    und eine Umfangslänge aufweist, die klei-

    ner ist als ein Umfang der Platte in der Ra-

    dialentfernung des ersten Bereichs (312);

    und

    eine Mehrzahl zweiter Bereiche (314) ent-

    lang der Radiallinie, wobei sich ein zweiter 

    Bereich (314) auf jedem Steg (126, 310)

    benachbart zu jedem ersten Bereich (312)

    befindet, wobei jeder zweite Bereich (314)eine Höhe aufweist, die sich von der Steg-

    höhe unterscheidet.

    2.   Die optische Platte (110) gemäß Anspruch 1, bei

    der die Höhe jedes ersten Bereichs (312) die Steg-

    höhe ist und die Höhe jedes zweiten Bereichs(314)

    die Rillenhöhe ist.

    3.   Die optische Platte (110) gemäß Anspruch 1, bei

    der die Datenoberfläche angepasst ist, um Daten-

    markierungen aufzunehmen, wobei die Datenmar-

    kierungen eine spezifizierte kürzeste Datenmarkie-

    rungslänge aufweisen, und bei der jeder erste Be-reich (312) eineUmfangslängeaufweist,die kleiner 

    ist als die spezifizierte kürzeste Datenmarkierungs-

    länge.

    4.   Ein Plattensystem mit folgenden Merkmalen:

    einer optischen Platte (110) mit folgendem

    Merkmal:

    einer Datenoberfläche, wobei die Daten-

    oberfläche zumindest eineRille (124, 308),

    wobei sich jede Rille in einer Rillenhöhe

    befindet, und Stege (126, 310) benachbart

    zu jeder Rille (124, 308), wobei sich jeder 

    Steg(126, 310) in einer Steghöhebefindet,

    aufweist;

    einem optischen System (116), das eine Licht-

    quelle (100) und ein optisches Detektorarray(114) umfasst, wobei Licht von der Lichtquelle

    auf die Datenoberfläche der optischen Platte

    fokussiertwirdund vonder Datenoberfläche re-

    flektiertes Licht auf das optische Detektorarray

    gerichtet wird,und wobei eine Mehrzahlvon Si-

    gnalen durch das Detektorarray erzeugt wird;

    gekennzeichnet durch:

    die optische Platte (110), die ferner einen

    Radialneigungsmessbereich (312, 314)

    aufweist, der eine Mehrzahl erster Berei-

    che (312) entlang einer Radiallinie auf der 

    Platte,wobei sich jeder erste Bereich (312)in einer Rille (124, 308) befindet und eine

    Höhe aufweist, die sich von der Rillenhöhe

    unterscheidet; und eine Mehrzahl zweiter 

    Bereiche (314) entlang der Radiallinie,wo-

    bei sich ein zweiter Bereich (314) auf je-

    dem Steg (126, 310) benachbart zu jedem

    ersten Bereich (312) befindet, wobei jeder 

    zweite Bereich (314) eine Höhe aufweist,

    die sich von der Steghöhe unterscheidet,

    aufweist; wobei das Plattensystem ferner 

    folgendes Merkmal aufweist:

    ein Elektroniksystem (117), das einVerfolgungsfehlersignal (Fig. 2, S1;

    Fig. 4, 400) aus der Mehrzahl von Si-

    gnalen aus dem Detektorarray herlei-

    tet;

    wobei, wenn Licht von dem Radialneigungs-

    messbereich (312, 314) auf die Datenoberfläche

    auf dem Detektorarray reflektiert wird und wenn die

    Platte lokal radial geneigt ist, eine erfassbare Be-

    tragsänderung in dem Verfolgungsfehlersignal (Fig.

    2, S2, S3; Fig. 4, 402, 404) auftritt; und

    das Elektroniksystem eine Radialneigung aus der 

    erfassbaren Betragsänderung in dem Verfolgungs-fehlersignal misst.

    5.   Das Plattensystem gemäß Anspruch 4, das ferner 

    folgendes Merkmal aufweist:

    eine optische Apertur (106), wobei von der Da-

    tenoberfläche reflektiertes Licht durch die opti-

    sche Apertur läuft,bevor es aufdas Detektorar-

    ray gerichtet wird.

    6.   Das Plattensystem gemäß Anspruch5, bei dem die

    11 12

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    8/16

    EP 1 031 970 B1

    8

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    Höhe jedes ersten Bereichs (312) die Steghöhe ist

    und die Höhe jedes zweiten Bereichs (314) die Ril-

    lenhöhe ist.

    7.   Ein Verfahren zum Messen einer Radialneigung ei-

    ner optischen Platte (110) gemäß einem der An-

    sprüche 1 bis 6, wobei das Verfahren die folgenden

    Schritte aufweist:

    Erfassen von von der optischen Platte reflek-

    tiertem Licht;

    Herleiten eines Verfolgungsfehlersignals (Fig.

    2, S1; Fig. 4, 400) aus dem erfassten reflektier-

    ten Licht; und

    Erfassen einer abrupten Stufe bei dem Betrag

    des Verfolgungsfehlersignals (Fig. 2, S2, S3;

    Fig. 4, 402, 404), wobei der Betrag der abrup-

    tenStufe einen Betrageiner Radialneigung an-

    zeigt.

    Revendications

    1.   Disque optique (110) comprenant :

    unesurfacede données, lasurface de données

    ayant au moins une rainure (124, 308), chaque

    rainure étant à une hauteur de rainure, et des

    plats (126, 310) adjacents à chaque rainure

    (124, 308), chaque plat (126, 310) étant à une

    hauteur de plat ; caractérisé par  :

    une pluralité de premières zones (312) le

    long d'une ligne radiale sur le disque ; cha-

    que première zone (312) étant dans une

    rainure (124, 308), ayant une hauteur qui

    est différente de la hauteur de rainure, et

    ayant une longueurcirconférentielle quiest

    inférieure à une circonférence du disque à

    la distance radiale de la première zone

    (312) ; et

    une pluralité de secondes zones (314), le

    long de la ligne radiale, une seconde zone

    (314) sur chaque plat (126, 310) adjacenteà chaque première zone (312), chaque se-

    conde zone (314) ayant une hauteur qui

    est différente de la hauteur de plat.

    2.   Disque optique (110) selon la revendication 1, dans

    lequel la hauteur de chaque première zone (312)

    est la hauteur de plat et la hauteur de chaque se-

    conde zone (314) est la hauteur de rainure.

    3.   Disque optique (110) selon la revendication 1, dans

    lequel la surface de données est adaptée pour re-

    cevoir des marques de données, les marques de

    données ayant une longueur de marque de don-

    nées la plus courtespécifiée,et dans lequel chaque

    premièrezone(312) a une longueurcirconférentiel-

    le quiest inférieure à la longueurde marquede don-

    nées la plus courte spécifiée.

    4.   Système de disque comprenant :

    un disque optique (110) ayant :

    unesurfacede données,la surface de don-

    nées ayant au moins une rainure (124,

    308), chaque rainure étant à une hauteur 

    de rainure, et des plats (126, 310) adja-

    cents à chaque rainure (124, 308), chaque

    plat (126, 310) étant à unehauteur de plat ;

    un systèmeoptique (116),comprenant une

    source de lumière (100) et un réseau de

    détecteurs optiques (114), dans lequel lalumière provenant de la source de lumière

    est focalisée sur la surface de données du

    disque optique et la lumière réfléchie par 

    la surface de données est dirigée sur le ré-

    seau de détecteurs optiques, et dans le-

    quel une pluralité de signaux sont générés

    par le réseau de détecteurs ; caractérisé

    par  :

    le disque optique (110) ayant en outre

    une zone de mesure d'inclinaison ra-

    diale (312, 314) comprenant une plu-

    ralité de premières zones (312) le longd'une ligne radiale sur le disque, cha-

    que première zone (312) étant dans

    une rainure (124, 308) et ayant une

    hauteur quiest différentede la hauteur 

    de rainure ; et une pluralité de secon-

    des zones (314) le long de la ligne ra-

    diale, une seconde zone (314) sur 

    chaque plat (126, 310) adjacente à

    chaque première zone (312), chaque

    seconde zone (314) ayantune hauteur 

    quiest différentede la hauteur de plat ;

    et le système de disque comprenant

    en outre :

    un système électronique (117),

    dérivant un signal d'erreur de

    poursuite (figure 2, S1 ; figure 4,

    400) de la pluralité de signaux du

    réseau de détecteurs ;

    dans lequel, lorsque la lumière est réfléchie

    depuis la zonede mesure d'inclinaison radiale(312,

    314) sur la surface de données vers le réseau de

    détecteurs, et lorsque le disque est localement in-

    13 14

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    9/16

    EP 1 031 970 B1

    9

    10 

    15 

    20 

    25 

    30 

    35 

    40 

    45 

    50 

    55 

    cliné radialement,un changement d'intensitédétec-

    table se produit dans le signal d'erreur de poursuite

    (figure 2, S2, S3 ; figure 4, 402, 404) ; et

    le système électronique mesurant une incli-

    naison radiale à partir du changement d'intensité

    détectable dans le signal d'erreur de poursuite.

    5.   Système de disque selon la revendication 4, com-prenant en outre :

    une ouverture optique (106), dans laquelle la

    lumière réfléchie par la surface de données

    passe à travers l'ouverture optique avant d'être

    dirigée sur le réseau de détecteurs.

    6.   Système de disque selon la revendication 5, dans

    lequel la hauteur de chaque première zone (312)

    est la hauteur de plat et la hauteur de chaque se-

    conde zone (314) est la hauteur de rainure.

    7.   Procédé pour mesurer une inclinaison radiale d'undisque optique (110), tel que revendiqué dans l'une

    quelconque des revendications 1 à 6, le procédé

    comprenant les étapes suivantes :

    détecter la lumière réfléchie par le disque

    optique ;

    dériver un signal d'erreur de poursuite (figure

    2, S1 ; figure 4, 400) de la lumière réfléchie

    détectée ; et

    détecter une marche abrupte dans l'intensité

    du signal d'erreur de poursuite (figure 2, S2,S3 ; figure 4, 402, 404), l'importance de la mar-

    che abrupte indiquant une importance de l'in-

    clinaison radiale.

    15 16

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    10/16

    EP 1 031 970 B1

    10

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    11/16

    EP 1 031 970 B1

    11

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    12/16

    EP 1 031 970 B1

    12

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    13/16

    EP 1 031 970 B1

    13

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    14/16

    EP 1 031 970 B1

    14

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    15/16

    EP 1 031 970 B1

    15

  • 8/13/2019 Optical disk medium having features for radial tilt detection and apparatus for measuring radial tilt

    16/16

    EP 1 031 970 B1