34
Optical AO WFS Detector Developments at ESO Mark Downing, Johann Kolb, Norbert Hubin, Javier Reyes, Manfred Meyer European Southern Observatory ESO (http://www.eso.org) Martin Fryer, Paul Jorden, Andrew Payne, Andrew Pike, Rob Simpson, Paul Jerram, Jerome Pratlong e2v technologies ltd (http://www.e2v.com) Bart Dierickx, Arnaud Defernez, Benoit Dupont Caeleste, Antwerp, Belgium (http://www.caeleste.be) Jorge Romero University of Málaga (http://www.uma.es) Philippe Feautrier, Eric Stadler Institut de Planétologie et d’Astrophysique de Grenoble (http:// http://ipag.osug.fr/) Jean-Luc Gach, Philippe Balard, Christian Guillaume Laboratoire d'Astrophysique de Marseille LAM (http://www.lam.oamp.fr) 1 Downing Optical AO WFS 09 Oct 2013

Optical AO WFS Detector Developments at ESO

  • Upload
    cade

  • View
    28

  • Download
    0

Embed Size (px)

DESCRIPTION

Optical AO WFS Detector Developments at ESO. - PowerPoint PPT Presentation

Citation preview

Page 1: Optical AO WFS Detector Developments at ESO

Optical AO WFS Detector Developmentsat ESO

Mark Downing, Johann Kolb, Norbert Hubin, Javier Reyes, Manfred MeyerEuropean Southern Observatory ESO (http://www.eso.org)

Martin Fryer, Paul Jorden, Andrew Payne, Andrew Pike, Rob Simpson, Paul Jerram, Jerome Pratlong

e2v technologies ltd (http://www.e2v.com)

Bart Dierickx, Arnaud Defernez, Benoit DupontCaeleste, Antwerp, Belgium (http://www.caeleste.be)

Jorge RomeroUniversity of Málaga (http://www.uma.es)

Philippe Feautrier, Eric Stadler Institut de Planétologie et d’Astrophysique de Grenoble (http:// http://ipag.osug.fr/)

Jean-Luc Gach, Philippe Balard, Christian GuillaumeLaboratoire d'Astrophysique de Marseille LAM (http://www.lam.oamp.fr)

1Downing Optical AO WFS 09 Oct 2013

Page 2: Optical AO WFS Detector Developments at ESO

Outline

• L3Vision CCD220 – developed by e2v on behalf of ESO/OPTICON– Deployment of AONGC Cameras on VLT AO instruments– Test Result Summary

1. Trades made with Deep Depletion CCD220

2. Improvements of the HV Clock Design

3. SCTE

• Next challenge → LGSD/NGSD – Large CMOS Visible AO WFS Imager for the ELT to sample the spot

elongation of Laser Guide Stars– Specifications– Wavefront Sensor Architecture and Design– First results

2Downing Optical AO WFS 09 Oct 2013

Page 3: Optical AO WFS Detector Developments at ESO

e2v L3Vision CCD220

09 Oct 2013 Downing Optical AO WFS 3

StoreArea

Image Area

240x12024□µm

StoreArea

Image Area

240x12024□µm

OP 1

OP 2 GainRegisters

OP 3

OP 4 GainRegisters

OP 8GainRegisters

OP 7

OP 6GainRegisters

OP 5

e2v CCD220: 240x240 24 µm pixels Split frame transfer CCD 8 L3Vision EMCCD outputs < 0.1 e- RoN at 1,500 fps Integral Peltier for cooling to -50ºC

Metal Buttressed2Φ 10 Mhz Clocks

for fast image to store transfer rates.

Store slanted to allow room for multiple

outputs.8 L3Vision Gain

Registers/OutputsEach 15Mpix./s.

Page 4: Optical AO WFS Detector Developments at ESO

Deployment of AONGC WFS Cameras

09 Oct 2013 4Downing Optical AO WFS

HAWKI

SPHERE

ERIS

MUSE

Page 5: Optical AO WFS Detector Developments at ESO

CCD220 Impressive (Measured) Test Results

09 Oct 2013 Downing Optical AO WFS 5

Requirement Measured SpecificationFrame Rate: > 1,500 fps >1,200 fps

Read noise at gain of 300 < 0.2 e- < 1.0 e-

Image Area Full Well: > 160 ke- > 5,000 e-Cosmetics: # of traps, bright/dark defects

0 < 25

Dark Current: 1200fps & -40ºC 100fps & -50ºC

< 0.02 e-/pix/frame< 0.05 e-/pix/frame

< 0.04 e-/pix/frame

Key goal specs are met Deep Depletion (highly sought after for better red response) is working as good

as the standard silicon devices.

Next Steps:• Increase frame rate to 2,500 fps to extend use to E-ELT XAO (Extreme AO).

• Test shuttered device CCD219 for pulsed laser guide star applications.

Page 6: Optical AO WFS Detector Developments at ESO

Trades made with Deep Depletion Device

• Deep Depletion enabled devices to be built out of thicker silicon (40µm) for better red response;– Highly sought after for applications using Natural Guide Stars.

09 Oct 2013 Downing Optical AO WFS 6

75% improvement

Page 7: Optical AO WFS Detector Developments at ESO

• Deep Depletion enabled devices to be built out of thicker silicon (40µm) for better red response;– Highly sought after for applications using Natural Guide Stars.

• During charge integration if the image area is simply run into inversion for lowest dark current like the Std Si device then obtain very poor PSF.

09 Oct 2013 Downing Optical AO WFS 7

• Has an additional “p” well implant for EMCCD to work.

• A minimum bias is required to “punch-through” (depletion to extend beyond) this “p” well.

Trades made with Deep Depletion Device

Std Si

Deep Depletion

Page 8: Optical AO WFS Detector Developments at ESO

Very High Level

• Deep Depletion enabled devices to be built out of thicker silicon (40µm) for better red response;– Highly sought after for applications using Natural Guide Stars.

• During charge integration if the image area is simply run into inversion for lowest dark current like the Std Si device then obtain very poor PSF.

• Solution is to use Tri-Level clocking to obtain the best trade between PSF and Dark Current.– Low Level that takes the device into inversion for low dark current.– High Level just right for good frame transfer and low Clock Induced Charge.– Very High Level for integrating charge to tune the PSF.

09 Oct 2013 Downing Optical AO WFS 8

Frame Transfer

Integration

-8V

-0.5V

Image Area Clock

Low Level

High Level

Trades made with Deep Depletion Device

Page 9: Optical AO WFS Detector Developments at ESO

Adjust Very High Level to Tune PSF

09 Oct 2013 Downing Optical AO WFS 9

Min.

Goal

-8 -4 0 4 8 12 160.01.02.03.04.05.06.07.08.0

PSF Vs Integration Voltage

Integration Voltage

PSF

FWH

M (p

ixel

s)

VInteg=-8V VInteg=-4V VInteg=0V VInteg=4V VInteg=8V VInteg=12V

Min.Goal

Min met at > 2V.

Goal met at > 8V.

Page 10: Optical AO WFS Detector Developments at ESO

and trade with CIC and Dark Current

• As expected CIC does not increase with integration voltage. • Once out of inversion, dark current does not increase further

with integration voltage.– thanks to “Intrinsic dithering” – uses the fact that after inversion holes

that have migrated into Si/SiO2 I/F have long release time constant.

• Goal Dark Current and PSF specs are met at 8V.

09 Oct 2013 Downing Optical AO WFS 10

1200fps 100fps

Page 11: Optical AO WFS Detector Developments at ESO

Improvement to Design of HV Clock

• Design → LC resonant circuit– switch, transformer, and capacitor (includes that of the CCD phases);– tune to resonate at pixel (switch) frequency;– simple, low power dissipation.

• First implementation:– levels stabilized by simply correction for the integrated difference between

peak and reference level.– Problem is that it does not respond quickly to transients/disturbances.

• Both measurements and simulations prove that the resonance circuit is very sensitive to any changes in the load. The load (the CCD) changes during read out due to changes in clock (inter) capacitances.

09 Oct 2013 Downing Optical AO WFS 11

99,0

1T

snarT

1S

DNG

Fp001

31CpaC

DNG

1DreifitcerFR

3

26

74

8,5,12U

3

26

74

8,5,1

6U

f

f

~~~//

~~~//tesIH_V

tesOL_V

hctiws

Fp001

21C

VH2ihpRDCCDNG

Peak Detector

Peak Detector

ON OFF

~ 0V

20-50V

Tpixel

Page 12: Optical AO WFS Detector Developments at ESO

At Unity Gain: Flat field is very flat

09 Oct 2013 Downing Optical AO WFS 12

Page 13: Optical AO WFS Detector Developments at ESO

However at gain, flat field varies with readout

09 Oct 2013 Downing Optical AO WFS 13

• Oscilloscope shows the amplitude of the HV Clock varies during a frame read out and variation is proportional to illumination level.

Page 14: Optical AO WFS Detector Developments at ESO

Solution is to use full PID controller in the feedback loop

• A properly designed PID controller should respond quickest to disturbances.

09 Oct 2013 Downing Optical AO WFS 14

99,0

1T

snarT

1S

DNG

Fp001

31CpaC

DNG

1DreifitcerFR

3

26

74

8,5,12U

3

26

74

8,5,1

6U

f

f

~~~//

~~~//tesIH_V

tesOL_V

hctiws

Fp001

21C

VH2ihpRDCCDNG

Peak Detector

Peak Detector

PID

PID

Page 15: Optical AO WFS Detector Developments at ESO

Original design with step input

09 Oct 2013 Downing Optical AO WFS 15Time/mSecs 200uSecs/div

0 0.2 0.4 0.6 0.8

V

-4

-2

0

2

4

6

8

10

CupperI1

1p

1k

RupperI3 CupperF1

3.3n

1Meg

RupperF2 CupperF2

100p IC=0

X1

AD825_15V

15V

-15V

0

RupperI4

U1

TXFM_HV_Clock_Ver2

Vi_p

Vi_n

Vo_p

Vo_n

Vf et

0

Rpri

100kRnegsecdy

0

R1

Cnegsedy100n

ZVN4106F

Q1

24RFET

0 AC 1 0 Pulse(-1 5 0 1n 1n 28.166667n 83.333333n)

Vinput1

Inp

X6

AD825_15V

VLowerRect

4.7

RlowerOpAmpOut

ClowerI3

100p

ClowerI2

1p

Clower21n

10k

Rlower3 -2 Pulse(-2 -1 750u 990.09901n 990.09901n)V2

15

VlowerMinus

ClowerPlus

1u

15

VlowerPlus1

1Meg

RlowerF1

ClowerF2

3.3n IC=0

ClowerMinus1

1u

10k

RlowerI

0RlowerI2

15VlowerI

100

RlowerIf ilt1

Clowerf ilt11u

100k

RlowerI3

VlowerRf n

VlowerOpAmpOut

VUpperRectI

VupperRf n

VupperOpAmpOut

CupperI100p

25.5kRupperI2

10k

Rupperrf n4.7

RpriFiltOut

BAS70-04DUpper

BAS70-04DLower

C1415p

CpriFilter100n

Cupperrf n1n

102k

RupperI1

2 AC 1 0 Pulse(1 2 500u 990.09901n 990.09901n 500u 1m)

V4

VUpperRect

ClowerF3

100p

CupperI1

1p

1k

RupperI3 CupperF1

3.3n

1Meg

RupperF2 CupperF2

100p IC=0

X1

AD825_15V

15V

-15V

0

RupperI4

U1

TXFM_HV_Clock_Ver2

Vi_p

Vi_n

Vo_p

Vo_n

Vf et

0

Rpri

100kRnegsecdy

0

R1

Cnegsedy100n

ZVN4106F

Q1

24RFET

0 AC 1 0 Pulse(-1 5 0 1n 1n 28.166667n 83.333333n)

Vinput1

Inp

X6

AD825_15V

VLowerRect

4.7

RlowerOpAmpOut

ClowerI3

100p

ClowerI2

1p

Clower21n

10k

Rlower3 -2 Pulse(-2 -1 750u 990.09901n 990.09901n)V2

15

VlowerMinus

ClowerPlus

1u

15

VlowerPlus1

1Meg

RlowerF1

ClowerF2

3.3n IC=0

ClowerMinus1

1u

10k

RlowerI

0RlowerI2

15VlowerI

100

RlowerIf ilt1

Clowerf ilt11u

100k

RlowerI3

VlowerRf n

VlowerOpAmpOut

VUpperRectI

VupperRf n

VupperOpAmpOut

CupperI100p

25.5kRupperI2

10k

Rupperrf n4.7

RpriFiltOut

BAS70-04DUpper

BAS70-04DLower

C1415p

CpriFilter100n

Cupperrf n1n

102k

RupperI1

2 AC 1 0 Pulse(1 2 500u 990.09901n 990.09901n 500u 1m)

V4

VUpperRect

ClowerF3

100p

Page 16: Optical AO WFS Detector Developments at ESO

Optimised design with step input

09 Oct 2013 Downing Optical AO WFS 16Time/mSecs 200uSecs/div

0 0.2 0.4 0.6 0.8 1

V

-2

0

2

4

6

8

10

12

CupperIntF4

300p IC=0

CupperDerF2

300p

U1

TXFM_HV_Clock_Ver2

Vi_p

Vi_n

Vo_p

Vo_n

Vf et

0

Rpri

100kRnegsecdy

0

R1

Cnegsedy100n

ZVN4106F

Q1

24RFET

0 AC 1 0 Pulse(-1 5 0 1n 1n 28.166667n 83.333333n)

Vinput1

Inp

X6

AD825_15V

VLowerRect

4.7

RlowerOpAmpOut

ClowerI3

100p

ClowerI2

1u

Clower21n

10k

Rlower3 -2 Pulse(-2 -1 1.5m 500n 500n)V2

15

VlowerMinus

ClowerPlus

1u

15

VlowerPlus1

10k

RlowerF1

ClowerF2

100p IC=0

ClowerMinus1

1u

8.2k

RlowerI

0RlowerI2

15VlowerI

100

RlowerIf ilt1

Clowerf ilt11u

100k

RlowerI3

VlowerRf n

VlowerOpAmpOut

10k

RsumI3

Vderiv

-15V

-15V15V

15V

15V

X5

AD825_15V

10k

RInvF

10k

RupperPI

1k

RupperPF

X2

AD825_15V

X3

AD825_15V

VUpperRectI

VupperRf nVupperOpAmpOut

CupperI100p

25.5kRupperI2

100

Rupperrf n4.7

RpriFilt

CupperDerF1

10n

Out

BAS70-04DUpper

BAS70-04DLower

C1415p

10k

RupperDerF1

CpriFilter100n

Cupperrf n1n

5k

RupperDerI

102k

RupperI1

2 AC 1 0 Pulse(1 2 300u 1u 1u 92u 600u)

V4

VUpperRect

10Meg

RsumI1

10k

RsumF

X4

AD825_15V

10k

RInv I

15V

-15V

-15V

10Meg

RsumI2Vprop

10k

RupperIntI11Meg

RupperIntF2 CupperIntF3

1p

X1

AD825_15V

15V

-15V

Vinteg

ClowerF3

33p

CupperIntF1

1u IC=0

CupperIntF4

300p IC=0

CupperDerF2

300p

U1

TXFM_HV_Clock_Ver2

Vi_p

Vi_n

Vo_p

Vo_n

Vf et

0

Rpri

100kRnegsecdy

0

R1

Cnegsedy100n

ZVN4106F

Q1

24RFET

0 AC 1 0 Pulse(-1 5 0 1n 1n 28.166667n 83.333333n)

Vinput1

Inp

X6

AD825_15V

VLowerRect

4.7

RlowerOpAmpOut

ClowerI3

100p

ClowerI2

1u

Clower21n

10k

Rlower3 -2 Pulse(-2 -1 1.5m 500n 500n)V2

15

VlowerMinus

ClowerPlus

1u

15

VlowerPlus1

10k

RlowerF1

ClowerF2

100p IC=0

ClowerMinus1

1u

8.2k

RlowerI

0RlowerI2

15VlowerI

100

RlowerIf ilt1

Clowerf ilt11u

100k

RlowerI3

VlowerRf n

VlowerOpAmpOut

10k

RsumI3

Vderiv

-15V

-15V15V

15V

15V

X5

AD825_15V

10k

RInv F

10k

RupperPI

1k

RupperPF

X2

AD825_15V

X3

AD825_15V

VUpperRectI

VupperRf nVupperOpAmpOut

CupperI100p

25.5kRupperI2

100

Rupperrf n4.7

RpriFilt

CupperDerF1

10n

Out

BAS70-04DUpper

BAS70-04DLower

C1415p

10k

RupperDerF1

CpriFilter100n

Cupperrf n1n

5k

RupperDerI

102k

RupperI1

2 AC 1 0 Pulse(1 2 300u 1u 1u 92u 600u)

V4

VUpperRect

10Meg

RsumI1

10k

RsumF

X4

AD825_15V

10k

RInv I

15V

-15V

-15V

10Meg

RsumI2Vprop

10k

RupperIntI11Meg

RupperIntF2 CupperIntF3

1p

X1

AD825_15V

15V

-15V

Vinteg

ClowerF3

33p

CupperIntF1

1u IC=0

CupperIntF4

300p IC=0

CupperDerF2

300p

U1

TXFM_HV_Clock_Ver2

Vi_p

Vi_n

Vo_p

Vo_n

Vf et

0

Rpri

100kRnegsecdy

0

R1

Cnegsedy100n

ZVN4106F

Q1

24RFET

0 AC 1 0 Pulse(-1 5 0 1n 1n 28.166667n 83.333333n)

Vinput1

Inp

X6

AD825_15V

VLowerRect

4.7

RlowerOpAmpOut

ClowerI3

100p

ClowerI2

1u

Clower21n

10k

Rlower3 -2 Pulse(-2 -1 1.5m 500n 500n)V2

15

VlowerMinus

ClowerPlus

1u

15

VlowerPlus1

10k

RlowerF1

ClowerF2

100p IC=0

ClowerMinus1

1u

8.2k

RlowerI

0RlowerI2

15VlowerI

100

RlowerIf ilt1

Clowerf ilt11u

100k

RlowerI3

VlowerRf n

VlowerOpAmpOut

10k

RsumI3

Vderiv

-15V

-15V15V

15V

15V

X5

AD825_15V

10k

RInv F

10k

RupperPI

1k

RupperPF

X2

AD825_15V

X3

AD825_15V

VUpperRectI

VupperRf nVupperOpAmpOut

CupperI100p

25.5kRupperI2

100

Rupperrf n4.7

RpriFilt

CupperDerF1

10n

Out

BAS70-04DUpper

BAS70-04DLower

C1415p

10k

RupperDerF1

CpriFilter100n

Cupperrf n1n

5k

RupperDerI

102k

RupperI1

2 AC 1 0 Pulse(1 2 300u 1u 1u 92u 600u)

V4

VUpperRect

10Meg

RsumI1

10k

RsumF

X4

AD825_15V

10k

RInv I

15V

-15V

-15V

10Meg

RsumI2Vprop

10k

RupperIntI11Meg

RupperIntF2 CupperIntF3

1p

X1

AD825_15V

15V

-15V

Vinteg

ClowerF3

33p

CupperIntF1

1u IC=0

Page 17: Optical AO WFS Detector Developments at ESO

“Proof of the Pudding”

09 Oct 2013 Downing Optical AO WFS 17

AfterwardsBefore

Page 18: Optical AO WFS Detector Developments at ESO

520 gain elements

Outputs

60 register elements

Store section

SCTE - Long Tail of Residual Charge

09 Oct 2013 Downing Optical AO WFS 18

By reverse clocking the serial register able to get all charge in a single pixel

Page 19: Optical AO WFS Detector Developments at ESO

SCTE - Long Tail of Residual Charge

• SCTE gets worse with higher gain and signal thus need to operate at lowest gain for the application.

• To keep gain low, need to optimize for low read out noise at unity gain.

09 Oct 2013 Downing Optical AO WFS 19

Lower range expanded

Gain x 400VROL=-5V

L3Vision has long tail of

residual charge

Page 20: Optical AO WFS Detector Developments at ESO

The need for good SCTE• With Shack Hartmann WFS, if SCTE does not vary much with signal

then it is simply an offset in the centroid that can be subtracted.

09 Oct 2013 Downing Optical AO WFS 20

Sub-aperture

• However, with pyramid WFS, SCTE appears as cross-talk into neighboring sub-apertures → spec. is < 1%.

Page 21: Optical AO WFS Detector Developments at ESO

Gain 400; SCTE Vs Serial Clock Low Level

• SCTE < 1% is only met when VROL = -7V; i.e. when serial register is clocked into inversion.

• Fortunately, Clock Induced Charge does not increase significantly.

• Tells us something about where the charge is being trapped – Si-SiO2 I/F

Strategy Followed: • Set up output amplifier biasing

and serial register to maximize CIC and dark current as this guarantees that all charge is being detected.

09 Oct 2013 Downing Optical AO WFS

Amp 0 Amp 5

VROL=-4V

VROL=-5V

VROL=-6V

VROL=-7V

Best Amp Least Best Amp

21

Page 22: Optical AO WFS Detector Developments at ESO

Gain 400: SCTE < 1% for all amplifiers with VROL=-7V

09 Oct 2013 Downing Optical AO WFS 22

Amp 0 Amp 4

Amp 1 Amp 5

Amp 2 Amp 6

Amp 3 Amp 7

Page 23: Optical AO WFS Detector Developments at ESO

Outline

• L3Vision CCD220 – developed by e2v on behalf of ESO/OPTICON– Deployment of AONGC Cameras on VLT AO instruments– Test Result Summary

1. Trades made with Deep Depletion CCD220

2. Improvements of the HV Clock Design

3. SCTE

• Next challenge → LGSD/NGSD – Large CMOS Visible AO WFS for the ELT to sample the spot

elongation of Laser Guide Stars– Specifications– Wavefront Sensor Architecture and Design– First results

23Downing Optical AO WFS 09 Oct 2013

Page 24: Optical AO WFS Detector Developments at ESO

Block Diagram of Full Size Device; LGSD

Highly integrated– All analog processing on-chip:

• correlated double sampling (CDS),• programmable gain of x1/2/4/8 on the fly,• 9/10 bit single slope ADCs,• total effective 12 bit data conversion

– 20 top + 20 bottom rows processed in parallel to slow the read out per pixel (34µs) and beat down the noise.

– Fast LVDS serial interface to outside world• simple digital interface;• power consumption similar to high speed

drivers to transport analog signals off-chip;• better guarantee of achieving and

maintaining low noise performance.

Downing Optical AO WFS 24

84x84 Sub-apertureseach 20x20 pixels

Pre-Amp & Gain of x1/2/4/8

20x1760 single slope ADCs

Multiplexer/serializer

Y-addressing

ControlLogic

Y-addressing

ControlLogic

Pre-amp & Gain of x1/2/4/8

20 x1760 single slope ADCs

44 LVDS Serial Links

44 LVDS Serial Links

Multiplexer/serializerControlLogic

ControlLogic

1760x1680pixels

Natural Guide Star Detector (NGSD) pioneering scaled down demonstrator ~ ¼ of full size → non-stitched

09 Oct 2013

Page 25: Optical AO WFS Detector Developments at ESO

Specifications of the LGSD (NGSD)Physical characteristics

Pixel array (Refn pixels - 40 columns)

1760x1680 (880x840 pixels in NGSD) - 5x6cm requiring stitched design (>> max. reticle 25.5x32.5mm)

TechnologyThinned backside illuminated CMOS 0.18µm – TowerJazz APD3; 6 metal layers

Silicon High resistivity 1000 ohm-cm → targeting thickness of 12µm

Pixel pitch 24µm

Pixel topology4T pinned photodiode pixel with low noise threshold transistors; slit wafer run more speculative ultra low threshold → 1e- goal

Array architecture84x84 time coherent “sub arrays” of 20x20 (8x8 NGSD) pixels - LGSD image area size of 4x4cm

ShutterRolling shutter in chunks of 20 rows → synchronous temporal detection within a sub-aperture.

25Downing Optical AO WFS 09 Oct 2013

Page 26: Optical AO WFS Detector Developments at ESO

Specifications of the LGSD (NGSD)Read out

Number of rows read in parallel 40 (20 in NGSD) rows in parallel

Number of ADC’s 40x1760 (20x880 in NGSD) at 9/10 bits

Number of parallel LVDS channels 88 (22 in NGSD)

Serial LVDS channel bit rate 210 Mb/s baseline, up to 420 Mb/s (desired)

Frame rate 700 fps up to 1000 fps with degraded performance2 to 3 Gpixel/s = 20 to 30 Gb/s over 88 parallel LVDS channels

Power dissipation < 5W , (NGSD 0.5W) including the 88 LVDS drivers

Actual LVDS driver dissipation per channel 6.0mW at maximum data rate; 4.5 mW in sub-LVDS

26Downing Optical AO WFS 09 Oct 2013

Page 27: Optical AO WFS Detector Developments at ESO

Specifications of the LGSD/NGSDPerformance

Pixel full well QFW > 4000 e-

Linearity to full well < 5%

Read noise including ADC < 3.0 e-RMS

Image lag < 2 %

Dark Current < 0.5 e-/pixel/frame

QE > 90% at 589nm; optimized for the red → BackSide Illumination (BSI)

Point Spread Function < 0.8 pixel FWHM

Cosmetics < 0.1% bad pixels

27Downing Optical AO WFS 09 Oct 2013

Already verified in

Technology Demonstrator

Page 28: Optical AO WFS Detector Developments at ESO

Video Chain – single slope ADC

09 Oct 2013 Downing Optical AO WFS 28

comparator output

Gray code

rampoffset

0 512

Latch code

videoreset

signaltransfer

reset

• Single slope ADC chosen for robustness, excellent low noise and linearity (DNL).

• Good compromise between speed, precision, power consumption, and area occupied

Columnbus

1

VRST VSF

reset

p-Si

2

transfer4

n+p+

3

select4T pixel

Ramp

x1 x2 x4 x8

-+

Pre-AmpComparator

Gray Code9/10

D Q

Clk-

+

A

Copy

LVDS Out

110MHz DDRSync

Parallel to Serial

D Q

Clk

Double Register

B

SNPPD

Page 29: Optical AO WFS Detector Developments at ESO

LGSD Tentative Stitching Plan

29Downing Optical AO WFS 09 Oct 2013

22x42sub-

apertures

5.28mm

Yadd

ress

ing Yaddressing

10.56mm

11 LVDS&

8800 column ADCs

Cor

ner

Cor

ner

Corner

Corner

8800 column ADCs

&11 LVDS

20.16mm

10.08mm

Reticle View

Cor

ner

Yadd

ress

ing

22x42sub-

apertures

11 LVDS&

8800 column ADCs

22x42sub-

apertures

11 LVDS &

8800 column ADCs

22x42sub-

apertures

11 LVDS &

8800 column ADCs

22x42sub-

apertures

Cor

ner

Yaddressing

Yadd

ress

ing Yaddressing

Corner

8800 column ADCs

&11 LVDS

8800 column ADCs

&11 LVDS

8800 column ADCs

&11 LVDS

8800 column ADCs

&11 LVDS

Corner

10.56mm 10.56mm 10.56mm10.56mm

11 LVDS &

8800 column ADCs

20.16mm

20.16mm22x42sub-

apertures

22x42sub-

apertures

22x42sub-

apertures

22x42sub-

apertures

Page 30: Optical AO WFS Detector Developments at ESO

NGSD anticipates scaling to LGSD

30Downing Optical AO WFS 09 Oct 2013

5.28mm

Yadd

ress

ing Yaddressing

22x42sub-

apertures

10.56mm

11 LVDS&

8800 column ADCs

Cor

ner

Cor

ner

Corner

Corner

8800 column ADCs

&11 LVDS

20.16mm

10.08mm

Reticle View

Cor

ner

Yadd

ress

ing

22x42sub-

apertures

11 LVDS&

8800 column ADCs

11 LVDS &

8800 column ADCs

11 LVDS &

8800 column ADCs

Cor

ner

Yaddressing

Yadd

ress

ing

22x42sub-

apertures

22x42sub-

apertures

Yaddressing

Corner

8800 column ADCs

&11 LVDS

8800 column ADCs

&11 LVDS

8800 column ADCs

&11 LVDS

8800 column ADCs

&11 LVDS

Corner

10.56mm 10.56mm 10.56mm10.56mm

11 LVDS &

8800 column ADCs

20.16mm

20.16mm

22x42sub-

apertures

22x42sub-

apertures

22x42sub-

apertures

22x42sub-

apertures

22x42sub-

apertures

Page 31: Optical AO WFS Detector Developments at ESO

Read out

09 Oct 2013 Downing Optical AO WFS 31

88x42 Sub-AperturesSouth Half-Array

Center line88x42 Sub-AperturesNorth Half-Array

reset, select & transfer

20 sets of row select lines per SA

20x20 pixels per SA 4T 24um

pixel

20 lines per column of

pixel

Sub- aperture

row addresses(1 of 42)

Ran

dom

add

ress

Con

trol

Sub- aperture

row addresses(1 of 42)

Ran

dom

add

ress

Con

trol

Timing, clocks and

biasesADC Gray Code BUS

ADC Ramp

20 rows of column bias & pre-amp with gain of x1/2/4/8 settable SA by SA

20 rows of comparators (35,200)

20 rows of Registers A

LRC40 Checksum Calculator

Parallel to serial LVDS Outputs

110MHz Clock DDR

Sync

Copy

Gain

20 rows of Registers B

DQDQ

Page 32: Optical AO WFS Detector Developments at ESO

Summary

CCD220:• Both Std Si and Deep Depletion variants of the CCD220 are

working extremely well, production run of cameras is nearing completion, and our instrument project managers are now very happy.

LGSD/NGSD:• ESO has formed a good partnership with e2v and Caeleste.• The design of the NGSD is complete and in fabrication.• Extensive simulations have confirmed correct operation and

performance.• Devices will be available in the coming months for testing

Downing Optical AO WFS 3209 Oct 2013

Page 33: Optical AO WFS Detector Developments at ESO

Thank You

This work has been "partially funded by the OPTICON-JRA2 project of the European Commission FP6 and FP7 program, under Grant Agreement number 226604"

33Downing Optical AO WFS 09 Oct 2013

Page 34: Optical AO WFS Detector Developments at ESO

TVP – optimises pixel deisgnOptimize the pixel design to find best trade between image lag, linearity, gain, and noise (white and 1/f) by testing:• pixel variants with different transfer gate

and transistor geometries;• different threshold voltages of the nmos

transistors; • extra implants to improve image lag.

34Downing Optical AO WFS 09 Oct 2013

1

VRST

Columnbus

VSF

reset

p-Si

23

transfer4

n+p+

select

transfer gate

reset

select

Pinned photodiode

p implant

p+ implant