21
Op#mizing Pulsed Eddy Current Probes for Inspec#on of CP140 Aurora LapJoints D.M. BuF, P.R. Underhill and T.W. Krause Royal Military College of Canada Kingston, ON [email protected] NDT in Canada 2015 Conference

Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Embed Size (px)

Citation preview

Page 1: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Op#mizing  Pulsed  Eddy  Current  Probes  for  Inspec#on  of  CP-­‐140  

Aurora  Lap-­‐Joints  

•  D.M.  BuF,  P.R.  Underhill  and  T.W.  Krause  •  Royal  Military  College  of  Canada  •  Kingston,  ON  •  [email protected]  

NDT in Canada 2015 Conference

NDT in Canada 2015 Conference, June 15-17, 2015, Edmonton, AB (Canada) - www.ndt.net/app.NDTCanada2015

Page 2: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Agenda  

• Background • Probe Design and Alignment • Sample Descriptions • Analysis and Results • Discussion • Conclusions

NDT in Canada 2015 Conference

Page 3: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Background  

NDT in Canada 2015 Conference

Figure  1:    CP-­‐140  Aurora  AircraS.      

 http://www.airforce-technology.com/projects/cp-140-aurora-maritime-surveillance-aircraft/cp-140-aurora-maritime-surveillance-aircraft5.html

 

Page 4: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Probe  Design  

NDT in Canada 2015 Conference

Figure  2:    Image  of  5  mm  (grey),  6  mm  (blue)  and  8  mm  (red)  ferrite  core  diameter  probe  configura#ons.  

5 mm Ferrite Core

6 mm Ferrite Core

8 mm Ferrite Core

Page 5: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Probe  Design  

NDT in Canada 2015 Conference

Figure  3:    Detailed  probe  specifica#ons.  

Parameter   Probe  1   Probe  2   Probe  3   Probe  4  

Driving  Coil  Inner  Diameter  

5  mm   6  mm   8  mm   8  mm  

Average  Differen#al  Pair  Spacing  

12.2  mm   13.7  mm   16  mm   14.7  mm  

#  of  Turns  (Pick-­‐up  Coils)  

350   400   400   400  

Driving  Coil  Resistance    

20.7Ω   14.0Ω   18.1Ω   15.1Ω  

Page 6: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Probe  Alignment  

NDT in Canada 2015 Conference

[5]

Figure  4:    Probe  with  alignment  guide  and  sample  [1].    

D ≈ 7 mm

Page 7: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Probe  Alignment  

NDT in Canada 2015 Conference

Pick-up Coil

Pick-up Core

Bottom Layer

Crack

Top Layer

Ferrous Fastener

Pick-up Coil

Driving Coil

Driver Core

Image Courtesy of V. K. Babbar

Figure  5:    COMSOL  model  of  currents  encircling  ferrous  fastener.  

Page 8: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

P-­‐3  Orion  Sample  Descrip#on  

NDT in Canada 2015 Conference

12

3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR depot in Jacksonville,

Florida and is shown in Figure 7 and Figure 8. The sample is based on the structure of

the Lockheed P-3 Orion, which has the same airframe as the CP-140 Aurora used by the

Royal Canadian Air Force (RCAF). The overall dimensions of the sample are 54 cm x

28 cm x 3 cm with two sections of aluminum plate 2.8 mm thick. The plates are joined

together by a row of ferrous fasteners in a lap-joint where the two plates partially overlap

as shown in Figure 7 and Figure 8. Each fastener has a length of 15 mm with a head

diameter of 7.0 mm and a shaft diameter of 4.5 mm [12]. The electrical conductivity of

the fasteners is 3.57 x 106 S/m with a relative magnetic permeability of 66 [3].

Figure 7: NAVAIR sample with notches, view from top

Figure 8: NAVAIR sample with view of fastener

Ferrous Fastener

Lap-Joint Edge

12

3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR depot in Jacksonville,

Florida and is shown in Figure 7 and Figure 8. The sample is based on the structure of

the Lockheed P-3 Orion, which has the same airframe as the CP-140 Aurora used by the

Royal Canadian Air Force (RCAF). The overall dimensions of the sample are 54 cm x

28 cm x 3 cm with two sections of aluminum plate 2.8 mm thick. The plates are joined

together by a row of ferrous fasteners in a lap-joint where the two plates partially overlap

as shown in Figure 7 and Figure 8. Each fastener has a length of 15 mm with a head

diameter of 7.0 mm and a shaft diameter of 4.5 mm [12]. The electrical conductivity of

the fasteners is 3.57 x 106 S/m with a relative magnetic permeability of 66 [3].

Figure 7: NAVAIR sample with notches, view from top

Figure 8: NAVAIR sample with view of fastener

Ferrous Fastener

Lap-Joint Edge

Figure  6:    P-­‐3  Orion  sample  with  notches,  view  from  top  and  side.  

Page 9: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

P-­‐3  Orion  Sample  Descrip#on  

NDT in Canada 2015 Conference

NAVAIR  Sample  Crack  Summary Fastener Size  mm (in) Orienta#on

1 3.30  (0.130) 135°

2 1.90  (0.075) 270°

3 1.78  (0.070) 225°

4 0.89  (0.035) 90°

5 5.46  (0.210) 45°

6 3.30/0.89  (0.130/0.035) 90°/315°

7 2.03  (0.080) 270°

9 1.52  (0.060) 225°

10 2.79  (0.110) 135°

11 0.89  (0.035) 90°

12 5.46/3.30  (0.215/0.130) 45°/225°

13 1.52  (0.060) 270°

14 5.08  (0.200) 315°

19 2.79  (0.110) 225°

21 0.89/2.79  (0.035/0.110) 45°

Figure  7:    P-­‐3  Orion  sample  notch  characteris#cs.    

37

Figure 19: NAVAIR sample with notches, view from top.

Figure 20: NAVAIR sample with view of fastener.

The NAVAIR sample has electric discharge machined (EDM) notches located in 15 of the fastener

bore holes, and eight with no notches (8, 15, 16, 17, 18, 20, 22 and 23). Each notch is cut at a 45°

angle to the edge of the bore hole, giving the notch a 1:1 aspect ratio. The notch orientations are

based on the schematic shown in Figure 21. This sample contains fasteners with notches in the top

layer, bottom layer, and three that contain top and bottom layer notches. The notch lengths and

orientations are located in Table 4, where NN stands for no notch.

Figure 21: View from top. Notch orientation diagram.

A 135°

B 90°

E 270°

F 315°

C 45°

D 225°

0° 180°

Top Edge of Sample

Page 10: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

CP-­‐140  Sample  Descrip#on  

NDT in Canada 2015 Conference

Figure  8:    Photo  of  sec#on  of  CP-­‐140-­‐TT-­‐1B  test  sample.  

Page 11: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Differen#al  Pick-­‐up  Coil  Response  

NDT in Canada 2015 Conference

Figure  9:    Raw  PEC  differen#al  pick-­‐up  coil  response  showing  the  front  and  back  end  transient  response  and  signal  gate.  

Signal  Gate  

Time  (ms  x  10-­‐2)  

Amplitu

de  (V

)  

Back  End  

Front  End  

Square Pulse Input

Transient Response

Faraday’s Law

Page 12: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Principal  Components  Analysis  

NDT in Canada 2015 Conference

0

1

2

0 0.05 0.10 0.15 0.20

Experimental DataVector 1Vectors 1, 2 and 3

file: e:\research\nsercdata.epfile: e:\research\nsercdata.ep

Time [ms]

Volta

ge [V

]

-0.2

-0.1

0

0.1

0.2

0 0.05 0.10 0.15 0.20file: e:\research\nsercvectors.epfile: e:\research\nsercvectors.ep

S3

S1

S2

Time [ms]

Eige

nvec

tors

[V]

Figure  10:    PEC  original  signal  with  first  eigenvector  reproduc#on  and  eigenvectors  1-­‐3  reproduc#on.    Insert  shows  the  three  eigenvectors  used  for  the  reproduc#on.  

V1

V2

V3

Page 13: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Principal  Components  Analysis  

NDT in Canada 2015 Conference

Figure  11:    3-­‐D  view  of  P-­‐3  Orion  data  PCA  scores  S2,  3  &  4.      

68

Figure 51: 3-D view of NAVAIR data PCA scores S2, 3 & 4.

In order to better distinguish between notches and blanks, the Mahalanobis Distance is calculated

for each fastener. It is apparent from Figure 51 that PCA scores S2, S3 and S4 could be used to

calculate the MD, as they appear to provide good separation for some fasteners with notches.

However, five scores (S1-S5) are used to calculate the MD as some information is also located in S1

and S5 as discussed earlier in Section 5.8.2. Using scores S1-S5 increases crack detection and lowers

false call rates. The MD is then compared to the threshold, calculated using equation 2.50. The

threshold calculated for this experiment was 4.2 at 99% confidence and 3.5 for 95% confidence.

There are no units associated with the MD, as it is a relative measure of distance from the centroid

of the cluster of blanks, in terms of standard deviations. The MD was plotted for each fastener and

the plot is shown in Figure 52, along with the decision thresholds, while results of this test are

shown in Table 13. It is worth noting that the MD associated with fasteners 5 and 14 corresponds to

the biggest second layer notches, at 5.46 mm and 5.08 mm, respectively. As the notches decrease in

size, so does the MD as indicated by MD values for fasteners 4 and 11. This indicates that there is a

correlation of MD with notch size, which will be investigated further in Section 5.8.5.

-0.8

-0.6

-0.4

-0.2

0

0.2

S2

-0.04-0.020

0.020.04

S3

-0.01

0.01

0.03

S4

No-notch

0.89 mm notch

MD

Page 14: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Differen#al  Pick-­‐up  Coil  Spacing  

NDT in Canada 2015 Conference

1   2   3   4   5   6   7   9   10   11   12   13   14   19   21  

Probe  3  (8  mm)   96%   88%   56%   52%   100%   64%   60%   36%   40%   56%   100%   84%   100%   32%   40%  

Probe  4  (8  mm)   100%   100%   100%   84%   100%   100%   76%   100%   100%   84%   100%   100%   100%   100%   100%  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  %  Detec=o

n  

Fastener  #  

Detec=on  Results  8  mm  Probes  

Figure  12:    Side-­‐by-­‐side  comparison  of  notch  detec#on  results  for  Probes  3  &  4.  

Page 15: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Drive  Coil  Core  Diameter  

NDT in Canada 2015 Conference

Figure  13:    Side-­‐by-­‐side  comparison  of  crack  detec#on  results  for  Probes  1,  2  &  4.  

1   2   3   4   5   6   7   9   10   11   12   13   14   19   21  

5  mm  Ferrite  Core   100%   100%   92%   76%   100%   96%   88%   44%   100%   60%   100%   60%   100%   100%   96%  

6  mm  Ferrite  Core   100%   100%   100%   72%   100%   100%   68%   84%   100%   84%   100%   80%   100%   100%   100%  

8  mm  Ferrite  Core   100%   100%   100%   84%   100%   100%   76%   100%   100%   84%   100%   100%   100%   100%   100%  

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  

100%  %  Detec=o

n  

Fastener  #  

Combined  Detec=on  Results  for  5mm,  6mm  and  8  mm  Probes  

Page 16: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

DAQ  System  Noise  Reduc#on  

NDT in Canada 2015 Conference

Figure  14:    Comparison  of  eigenvectors  resul#ng    from  measurements  taken  with  Darlington  Pair  and  OP  Amp  circuit  boards.      

   

-­‐7.00E-­‐01  

-­‐6.00E-­‐01  

-­‐5.00E-­‐01  

-­‐4.00E-­‐01  

-­‐3.00E-­‐01  

-­‐2.00E-­‐01  

-­‐1.00E-­‐01  

0.00E+00  

1.00E-­‐01  

2.00E-­‐01  

3.00E-­‐01  

1   31   61   91  

Scaled

 Amplitu

de  

(arbitrary  un

its)  

Time  (ms  x  10-­‐2)  

Eigenvectors  1-­‐5  (OP  Amp)  

Vec  1  

Vec  2  

Vec  3  

Vec  4  

Vec  5  

-­‐4.00E-­‐01  

-­‐3.00E-­‐01  

-­‐2.00E-­‐01  

-­‐1.00E-­‐01  

0.00E+00  

1.00E-­‐01  

2.00E-­‐01  

3.00E-­‐01  

4.00E-­‐01  

5.00E-­‐01  

1   31   61   91  

Scaled

 Amplitu

de  

(arbitrary  un

its)  

Time  (ms  x  10-­‐2)  

Eigenvectors  1-­‐5  (Darlington  Pair)  

Vec  1  

Vec  2  

Vec  3  

Vec  4  

Vec  5  

Page 17: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Improved  Detec#on  Results  

NDT in Canada 2015 Conference

0  

2  

4  

6  

8  

10  

12  

14  

16  

18  

20  

0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23  

Mah

alan

obis  Distance  

(arbitrary  un

its)  

Fastener  #  

MD  6mm  Probe  (OP  Amp  Board)  

Figure  15:    Mahalanobis  Distance  versus  fastener  #  for  measurements  taken  with  improved  circuit  board.    

   

MD Threshold

Page 18: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Improved  Detec#on  Results  

NDT in Canada 2015 Conference

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  

100%  

Drive  Coil  Diameter  

%  Detec=o

n  Detec=on  Results  for  CP-­‐140  Sample  

5  mm  

6  mm  

8  mm  

Figure  16:    Overall  notch  detec#on  results  for  CP-­‐140  sample  with  7.5  mm  fastener  head  diameter.  

   

Page 19: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Discussion  of  Improved  Results  

NDT in Canada 2015 Conference

Figure  17:    Finite  element  model  showing  flux  penetra#on  through  a  ferrous  fastener  ac#ng  as  a  flux  conduit  [7].  

   

8

Figure 3: Front view of a solved 3D finite element half-model showing flux penetration through the ferrous fastener (CDDP Probe design) [25].

Recent work performed by Horan [26] addressed the issue of PEC inspection for stress corrosion

cracking (SCC), through carbon fiber reinforced polymer (CFRP). The conductivity for CFRP is

essentially zero. Cracks emanated from around ferrous fasteners, and travelled span wise, fastener to

fastener, in the inner wing spar of the CF-188. The inner wing spar consists of a layer of 7.5 - 20

mm (0.3 - 0.8 inch) thick CFRP, where the spar is attached underneath, using ferrous and non-

ferrous fasteners. SCC in the inner wing spar occurs between fasteners, which are located

approximately 25 mm apart. Horan [26] [27] successfully detected cracks at large lift-off using coil-

based probes, which utilized a central driving coil wound around a ferrite core, and Giant Magneto-

resistive (GMR) sensors. GMR and coil sensor signals were analyzed using PCA.

1.3.3 PEC Signal Analysis

The response signals in PEC techniques provide information about the presence of potential

defects. Three commonly used methods of characterizing signals are shown below in Figure 4: time-

to-peak, peak amplitude and zero-crossing time [28]. Time-to-peak amplitude has provided defect

depth information in multi-layered structures [12]. He et al. [18] conducted experiments using

differential coils and Hall probes, showing that the peak amplitude of the response signal yields

information about the defect volume and that the zero crossing time yields information about the

Ferrite Core

Driving Coil

Ferrous Fastener

Pick-Up Coil

Conducting Plates

Crack

•  More  flux  induces  larger  currents  in  the  surrounding  structure  

•  New  electrical  system  produces  a  higher  signal-­‐to-­‐noise  ra#o  

Page 20: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

Conclusions  

•  Notch  detec#on  improved  as  pick-­‐up  coil  spacing  was  reduced    

•  Notch  detec#on  improved  with  increasing  drive  coil  diameter  

•  100%  of  notches  in  the  P-­‐3  Orion  sample  could  be  detected  with  improved  electronics  

•  Improved  detec#on  results  were  further  validated  using  CP-­‐140  sample    

NDT in Canada 2015 Conference

Page 21: Op#mizing)Pulsed)Eddy)Current …3)Orion)Sample)Descrip#on) NDT in Canada 2015 Conference 12 3.3 NAVAIR Sample Description This sample was acquired for testing purposes from the NAVAIR

References  [1]          C.  A.  StoF,  P.  R.  Underhill  and  T.  W.  Krause,  “Pulsed  Eddy  Current  Detec#on  of  Cracks  in  Mul#layer  Aluminum  Lap  Joints,”  IEEE  Sensors  Journal,  vol.  15,  pp.  956-­‐962,  2015.    [2]          D.  R.  Desjardins,  G.  Vallieres,  P.  P.  Whalen  and  T.  W.  Krause,  “Advances  in  Transient  (Pulsed)  Eddy  Current  for  Inspec#on  of  Mul#-­‐Layered  Aluminum  Structures  in  the  Presence  of  Ferrous  Fasteners,”  Review  of  Progress  in  Quan#ta#ve  Nondestruc#ve  Evalua#on,  vol.  31,  American  Ins#tute  of  Physics,  2012.  [3]            C.  A.  StoF,  “Pulsed  Eddy  Current  Inspec#on  of  Second  Layer  Wing  Structure,”  MASc.  thesis,  Dept.  of  Chem.  &  Chem.  Eng.,  RMC,  ON,  2014.  [4]          J.  Larn,  J.  D.  Carroll  and  P.  E.  Green,  “Analyzing  Mul#variate  Data,”  Pacific  Grove:  Brooks/Cole,  2003,  pp.  4,  83-­‐123,  264-­‐275.    [5]          P.  Horan,  P.  Underhill  and  T.  W.  Krause,  "Pulsed  Eddy  Current  Detec#on  of  Cracks  in  F/A-­‐18  Inner  Wing  Spar  Without  Wing  Skin  Removal  Using  Modified  Principal  Components  Analysis,"  NDT&E  Interna#onal,  vol.  55,  pp.  21-­‐27,  2013.    [6]            V.  K.  Babbar,  P.  R.  Underhill,  C.  StoF  and  T.  W.  Krause,  "Finite  Element  Modeling  of  Second  Layer  Crack  Detec#on  in  AircraS  Bolt  Holes  with  Ferrous  Fasteners  Present,”  NDT&E  Interna#onal,  vol.  65,  pp.  64-­‐71,  2014.  [7]            V.  K.  Babbar,  P.  P.  Whalen  and  T.  W.  Krause,  "Pulsed  Eddy  Current  Probe  Development  to  Detect  Inner  Layer  Cracks  near  Ferrous  Fasteners  Using  COMSOL  Modeling  SoSware,”  COMSOL  Conference,  Boston,  2012.    

   

NDT in Canada 2015 Conference