30
October 2012 Operational Amplifiers Electronics: Experimental techniques in the photon sciences Georg Wirth Institut für Laser Physik

Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

  • Upload
    lycong

  • View
    244

  • Download
    7

Embed Size (px)

Citation preview

Page 1: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

October 2012

Operational Amplifiers

Electronics:

Experimental techniques in the photon sciences

Georg Wirth

Institut für Laser Physik

Page 2: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 2

Outline

Basics

• Complex impedance & the low pass-filter

• The decibel scale and Bode plots

Introduction

General characteristics

• Basic operation

• The ideal op-amp

The Concept of Feedback

• Basic idea of feedback

• The noninverting and inverting amplifier

Circuit Examples

• Summing and differential amplifier

• Integrator and Differentiator

• Nonlinear applications

Real op-amps

• Frequency Response and Slew Rate

• Input Offset Voltage and Bias Current

Grounding problems

Page 3: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Sinusoidal signals

Georg Wirth, Institut für Laser-Physik 3

CjZ

dt

duCi

1)(

RZ

iRu

)(LjZ

dt

diLu

)(

)exp()(

)(

)exp(ˆ)(

)exp(ˆ)(

iZti

tuZ

tjiti

tjutu

impedance

current

voltage

t

u(t), i(t)

2

Re

Im

• Capacities have to be charged first to have a certain voltage

• Voltage drop over ohmic resistor is proportional to current

2

Re

Im

• Current change through coil induces voltage drop

Re

Im

Complex impedance

Page 4: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

• decibels (dB) measure the power (intensity) ratio on a logarithmic scale → transfer functions of consecutive elements can be “added”, e.g. gain of two amplifiers

Georg Wirth, Institut für Laser-Physik 4

A

E

A

E

u

u

u

uG 102

2

10 log20log10

The decibel scale

• In electronics, the power of a signal is usually proportional to the squared field amplitude (e.g. P = u2 / R for an ohmic resistor)

A

E

P

PG 10log10

dB -20 -3 0 3 10 20 30

power 1/100 1/2 1 2 10 100 1000

amplitude 1/10 1/√2 1 √2 √10 10 √1000

• Suffix indicates fixed reference → absolute quantity

– dBV → relative to 1 V (0 dBV = 1 V, 20 dBV = 10 V)

– dBm → relative to 1 mW (0 dBm = 1 mW, 30 dBm = 1W)

– dBc → power ratio to carrier (e.g. for sideband modulation)

Page 5: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 5

• Many physical systems show low-pass characteristic, i.e. they linearly transmit a signal with a certain time delay (PT1 element in controller theory)

• Exponential step response characteristic

EuAu

Ru

R

Cj

1i

RCtutu

R

u

dt

duCiit

tuu

A

AARC

E

with

is for

else step signal input

)/exp()(

000

:0

0:

0

0

0t

uE(t), uA(t)

The low-pass filter

• The complex transfer function H(jω) relates the output uA(t) to the input uE(t) signal via a

(magnitude) and a phase shift

• translate linear DE into frequency space via Laplace- / Fourier-transformation, transfer function is a fraction of polynomials

• poles and zero characterize transfer function (→ control theory)

0

02

0

arctan)(arctan)(

1

)/(1

1)()(

1

1

/1

/1)(

jH

RCjHG

RCjCjR

Cj

u

ujH

Ziu

ZZiu

E

A

CA

CRE

phase

with gain

functiontransfer

law sohm'

Page 6: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 6

Bode plots

• Characterize transfer function by plotting magnitude (in dB) and phase on a log. frequency scale

• Polynomials appear as straight lines, poles and zeros can be seen as “kinks”

-3dB at cut-off

- π/4

DC gain

-20 dB / decade

4/)1arctan(

2

1

1

arctan)(

1

)/(1

1)(

0

0

02

0

phase

output

off-cut

phase

with gain

EA

CR

uu

RCZZ

RCG

Page 7: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 7

→ Why not use a transistor?

Advantages of op-amps

• Versatility - operation only determined by external surrounding circuit

• No bias current needed to determine operation point

• High input impedance, low output impedance

• High intrinsic gain

• Very linear and precise amplification over broad voltage an frequency range

Disadvantages

• higher noise due to multiple amplifier stages

• lower cut-off-frequency than single-stage transistor amplifiers

• Strong feedback over multiple amplifier stages causes non-linear distortions

Pros and Cons of op-amps

+

Basic idea:

Use integrated circuit (black box – internal realization unknown) as a modular device to manipulate signals, so that behavior of the circuit is purely characterized by external elements.

CERDIP / PDIP (dual-inline-package)

TO-99 (transistor- single-outline)

SOIC-8 (small-outline-integrated-circuit)

circuit symbol

Page 8: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 8

Basic operation and wiring

Typical pin assignment

• inverting (-) and noninverting (+) input (2,3)

• voltage difference uD = u+ - u- between inputs is amplified linearly by factor A0 (open-loop-gain) to output uA = A0∙( u+ - u- ) (6)

• every potential is measured relatively to ground potential (usually GND or 0V)

• two connections (4,7) for power supply V ± (usually

±15V)

• no separate ground connection, output ground reference by uA = 0 for u+ - u- = 0 (for ideal op-amp)

• usually two extra pins for external offset compensation (8,1)

+

V+

V- =

= + -

- +

2

3

7 8

1

6

4

u

u

Du

AuDu

Au

10 V

-10 V

-100 µV 100 µV

A0 = 105

linear saturation saturation

Page 9: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 9

The ideal op-amp

Parameter Symbol Ideal Real (OP27)

Input Impedance Differential-Mode

zD ∞ 4 MΩ || ≤ 1 pF

Input Impedance Common-Mode

z+ , z- ∞ 2 GΩ || ≤ 1 pF

Input Bias Current

i+ , i- 0 ±15 nA

Input Offset Voltage

u0 0 30 µV

Output Impedance

zA 0 70 Ω

Unity Gain Bandwidth

f (A0 = -3 dB) ∞ 8 MHz

Open-Loop-Gain A0 = duA/duD ∞ 106 = 120 dB

Common-Mode Rejection Ratio

A0 /

duA/d(u+ + u-) ∞ 106 = 120 dB

Slew rate max(duA/dt) ∞ 2.8 V/µs

+

~

u

u

Au

Dz

z

z

Az

i

virtual GND

real GND

i

Du

Page 10: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 10

Basic idea of feedback

Problem

• open-loop-gain A0 too high, input voltage range of ≤100 µV to small

• amplification A not adjustable

• gain A0 determined by device (and hence differs between various devices), instabilities

• feed factor kF of output signal back into input

• signal experiences certain amplification / attenuation and phase shift while passing the loop, effect determined by phase difference at inputs

plant ±

controller

input error

feedback

output

Solution op-amp

Consequences

• reduced gain, but improved linearity, frequency response, bandwidth and stability

• more negative feedback results in less dependency on device parameters

• in general, feedback can be frequency-dependant (equalizers and filters) or amplitude-dependant (logarithmic amplifiers or multipliers)

The “golden rules” concerning op-amps

1. The output attempts to do whatever is necessary to make the voltage difference between the inputs zero (infinite open-loop-gain).

2. The inputs draws no current (infinite input impedance).

Page 11: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 11

The noninverting amplifier

• realize controller by voltage divider R2-R1 , rising output voltage hinders input difference u+-u-

uuuR

RR

Au

uR

RRuuAu

R

R

R

RRA

RR

R

Au

uA

uRR

RuAuuAu

uRR

Ru

A

E

A

AEA

A

0

1

21

0

1

210

1

2

1

21

1

21

1

0

21

100

21

1

1

)(

1

1

)()(

circuit-short virtual

feedback from

Amp-OP ideal

gain-loop-closed

signal output

feedback negative

• because generally A0 >> A, the input voltage difference tends

to zero (virtual short-circuit) (complies with 1st golden rule)

• high input impedance (1012Ω), low output impedance (101Ω)

• for R2 → 0 and R1 → ∞ the closed-loop-gain A → 1, op-amp works as buffer (voltage follower)

+

– Eu

Au

u

2R

1R

u

+

– Eu

EA uu

u

u

Page 12: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 12

The inverting amplifier

• connect input signal uE to lower end of feedback voltage divider R2-R1

• assume input voltage uE = 1V , but no output uA = 0V

– since noninverting input is connected to GND u+ = 0V, op-amp sees high input unbalance

– this forces the output uA to go negative, until both input are on GND u+ = u- = 0V

+ Eu

Au

u

u

)(2 z

)(1 z

1i

2i

)()(

)(

)()(

)()(0

0

0

1

1

2

01021

2

2

0

1

0

21

21

0

21

zdi

duz

z

z

AzAzz

z

u

uA

zuA

zu

A

zuzu

z

uu

z

uu

i

Auu

iii

E

EE

E

A

EAA

A

DADE

AD

impedance input

gain loop closed

impedance amp-op high

gain loop open

rule junction skirchhoff'

• frequency-dependant (but linear) feedback provides active filters, integrators, differentiators

• non-linear feedback allows to build amplitude-dependant devices, i.e. exponential or logarithmic amplifiers

Page 13: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 13

The summing amplifier

Problem

• summing currents is easy, but since all potentials are grounded, how to add potentials?

Solution

• take inverting amplifier and add currents in feedback loop

• assume that high input impedance i- = 0 and virtual GND u+ ≈ u- = 0

+ 1u

Au

u

u

1R

1i

Fi

2R

nR

FR

2u

2i

ni

nF

A

n

n

nFA

F

A

n

n

Fn

uuuR

Ru

RRRR

R

u

R

u

R

uRu

R

u

R

u

R

u

R

u

iiii

21

21

2

2

1

1

2

2

1

1

210

gain-loop-closed

inputs equal assume

rule junction skirchhoff'

Page 14: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 14

The differential amplifier

Problem

• measure voltage drop over some impedance, what if none of both connections has GND contact?

Solution

• use features from both inverting and noninverting amplifier

+

2uAu

u

u

1R

NR

1u2R

PR

2

2

11

1

1

11

2

2

1

1

0

uRR

RRu

R

Ruu

R

uu

R

uuii

RR

Ruuu

P

NNA

N

AN

P

P

insert

rule junction skirchhoff'

circuit-short virtual

21

1

21 uuR

RuRRRR N

ANP and if

Caution

• assume RN = α · R1 and thereby the closed-loop-gain A = - α, resistors have tolerance Δα

• different input impedances require source with low output impedance

• better results with instrumentation amplifier

differ valuesresistor if error, CMRR

)1(

)( uud

duA A

Page 15: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 15

The integrator – frequency response

• use inverting amplifier with RC-high-pass C2-R1 filter in feedback

• strong negative feedback for high frequencies (respectively weak feedback for low frequencies) results in low-pass-characteristic

232

22

1

3

1

2

232

223322211

)(1

1

)(

)()(

)(1

)1(||)()()(

CRRj

CRj

R

R

z

zA

CRRj

CRjRRRCzRz

gain loop closed

and use

+ Eu

Au

u

u

2C

1R

1i

2i

R2

R3

i3

)()(

)(

)2(2)(

)2(

1

2

1)(

)0(

321

32

2322

2

223

2

3

22

2

2

223

2

3

11

1

3

RRR

RRAA

CRRR

RRRRAA

CRRRRAA

R

RAA

DC

DC

limitupper

off-cutupper

off-cutlower

limitlower

• missing feedback at ω = 0 makes circuit instable, insertion of bypass R3 limits feedback at low frequencies

• attenuation (|A| < 1) at high frequencies can be avoided by insertion of R2

)(log A

log

DCA

A

1 20

dB/dec 20

R3

R2

integrating range

Page 16: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 16

The integrator – operating method

+ Eu

Au

u

u

2C

1R

1i

2i

R2

R3

i3

3

22

1

321

232

22

1

3

1

2

)(

0

)(1

1

)(

)()(

R

u

dt

uudC

R

u

iii

CRRj

CRj

R

R

z

zA

ARAE

rule junction

skirchhoff'

gain loop closed

Approximations

• for frequencies far above lower limit ω >> ω1 , current i3 = uA / R3 can be neglected (shortened by C2)

• for frequencies far beneath upper limit ω << ω2, impedance of C2-R2 is dominated by condensator, so the voltage change duR2/dt over R2 can be neglected

)0()(1

)(0021

2

1

A

t

EAAE utdtu

CRtu

dt

duC

R

u

• integration constant uA(0) = Q0 / C is determined by initial condensator charge and capacity

• input bias current i- and input offset voltage u0 result in additional condensator current u0 / R + i-,

which changes output voltage by

i

R

u

Cdt

duA 0

2

1

• i- = 1 µA results with C = 1 µF in a change of 1 V per second (offset compensation)

Page 17: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 17

The differentiator – frequency response

• swap condensator and resistor in integrator

• RC-low-pass filter R2-C1 delivers in high negative feedback for low frequencies, resulting in a

high-pass characteristic

+ Eu

Au

u

u

1C

2R

2iR1

i1

11

12

1

2

22

1

11

1

11

1)(

)()(

)(11

)(

CRj

CRj

z

zA

RzCj

CRj

CjRz

gain loop closed

and use

)(log A

log

A

1 20

dB/dec 20

R1

differentiating range

• at high frequencies ω, missing feedback makes

circuit unstable

• HF noise is strongly amplified, circuit tends to oscillate due to phase delay of op-amp and feedback

• gain limiting at high frequencies can be achieved by insertion of R1

1

2

1

2

121

22

1

2

1

2

2

11

)(

1

2

1)(

11)(

0)0(

R

RAA

CRRRAA

CRRA

AA DC

limitupper

off-cutupper

off-cutlower

limitlower

Page 18: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 18

The differentiator – operating method

+ Eu

Au

u

u

1C

2R

2iR1

i1

2

11

21

11

12

1

2

)(

0

1)(

)()(

R

u

dt

uudC

ii

CRj

CRj

z

zA

ARE

rule junction

skirchhoff'

gain loop closed

Approximation

• for frequencies far beneath upper limit ω << ω2, impedance of R1-C1 is dominated by condensator, so the voltage change duR1/dt over R1 can be neglected

• differentiator is bias-stable, optional roll-off-condensator in feedback can reduce bandwidth (bandpass)

• capacitive input impedance draws current from source, problems possible at high frequencies

dt

duCRtu

R

u

dt

duC E

AAE 12

2

1 )(0

Page 19: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 19

The logarithmic amplifier

Problem

• measured signal has large dynamic range

Idea

• instead of linear characteristic curve iR = uR / R

of a resistor, use exponential I-U-dependency of semiconductors

• use collector current iC of a bipolar transistor

CSCTBETBECECSC iiuuuuuTii lnexp),(

iCS reverse leakage current

uT = kT/e thermal voltage

+ 0EuAu

R

Ci

C

B

E

0)(for

, since

E

CS

ETA

ECBEA

uRi

uuu

Ruiuu

ln

• no error due to collector-base-current iCB, since uCB = 0, but temperature drift

• with appropriate transistor and op-amp with low bias-current, usually nine decades available

• swap resistor and transistor: exponential amplifier

• multiply / divide signals by taking logarithm, add / subtract, take exponential value

Page 20: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 20

The comparator

Problem

• device for comparison of two signals, which decides if voltage is below / above some threshold

Solution

• use op-amp without feedback to compare voltages (comparator)

• because of high open-loop-gain, circuit is sensitive to small voltage differences uD and switches between saturated values -uAmax and uAmax

• in saturation no virtual short-circuit between inputs, i.e. u+ ≠ u-

Du

Au

saturation saturation

maxAu

maxAu

+

uu

Du

Au

uuu

uuuu

A

A

Afor

for

max

max

• useful for regeneration of digital signals or as trigger

• special devices for fast applications

Du

Au

t

Page 21: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 21

The noninverting Schmitt trigger

Problem

• comparator has no well-defined output for small input signals uD ≈ 0

• different switching values for high and low state desired

Solution

• use positive feedback to create hysteresis for switching

min

432

214,

max

432

214on,

ArefoffE

ArefE

uuRRR

RRRu

uuRRR

RRRu

point switchinglower

point switchingupper

+

refuAu

u

u

1R

2R

Eu3R

4R

AEref uuRR

Ruu

RR

Ru

21

2

43

4 input

• assume high positive input uE, so that output is uAmax

• with falling input voltage uE, output uA remains unchanged until u+ = u- = 0

Eu

Au

maxAu

minAu

off,Eu on,Eu

Du

Au

t

on,Eu

off,Eu

Page 22: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 22

The real op-amp

• differential open-loop-gain A0 = duA/duD is usually not infinite -> error in approx. A0 = ∞

• even with shortened inputs u+ - u- = 0, op-amp amplifies common-mode voltage u+ + u-,

usually expressed by ratio of differential open-loop-gain A0 to duA/d(u+ + u-) -> common-mode rejection ratio

• finite input impedance draws current from source, common-mode input impedance (input to GND) usually negligible, effect compensated if adjusted

• nonzero output impedance negligible, since decrease of output uA by output load is

compensated by feedback

• transistors as well as resistors produce noise, which is amplified towards the output

Parameter Symbol Ideal Real (OP27)

Input Impedance Differential-Mode

zD ∞ 4 MΩ || ≤ 1 pF

Input Impedance Common-Mode

z+ , z- ∞ 2 GΩ || ≤ 1 pF

Input Bias Current

i+ , i- 0 ±15 nA

Input Offset Voltage

u0 0 30 µV

Output Impedance

zA 0 70 Ω

Unity Gain Bandwidth

f (A0=-3 dB) ∞ 8 MHz

Open-Loop-Gain A0 = duA/duD ∞ 106 = 120 dB

Common-Mode Rejection Ratio

A0 /

duA/d(u+ + u-) ∞ 106 = 120 dB

Slew rate max(duA/dt) ∞ 2.8 V/µs

Page 23: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 23

Real op-amps - frequency response

• real op-amps are multi-stage transistor-amplifiers

• every single stage represents a low-pass filter with a particular cut-off-frequency ω, that

reduces the gain by -20 db per decade and adds a certain phase shift of maximal φ = π/2

(subsequent stages usually have increasing bandwidths)

• if A0(ω) is open-loop-gain, and |kF| ≤ 1 is feedback

factor, requirement for oscillation is (negative input adds phase shift φ = π)

• to prevent oscillation at ωC, feedback factor has to be maximal kF ≤ 1 / A0(ωC) (signal gain in one loop

passage must be smaller than one)

,...2,0arg

11)()(

0

0

0

Ak

AkAk

F

F

F

If an op-amp is not internally frequency-compensated (and by that not unity-gain stable), external frequency compensation or minimal closed-loop-gain is necessary.

)(log 0 A

log

1 2 3

-20 dB/dec

-60 dB/dec

0

2

23

ωC

A0(ωC) -40 dB/dec

Page 24: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 24

Comparison OP27 – OP37

OP27 (unity-gain stable)

OP37 (not unity-gain stable)

Page 25: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 25

Bandwidth

• frequency-compensated op amps can be regarded as 1st order low-pass

iiDC CR

i

AA

1

1

0)(1

)(

Eu

Au2R

1R

+

– iR

iC

frequency off-cut loop-closed

gain loop-closed (DC)

for

for

insert

DCF

F

FE

A

Ak

RR

R

kA

ωAi

ωA

i

AA

AAk

A

RR

R

Au

uA

11

21

1

11

1

1

0

0

0

1

21

1

0

1

)()(1)(

)()(1

)(

)(

1)(

• for frequencies ω >> ω1 above cut-off, open-

loop gain is approximately

• usually ADC is in the range of 120 dB, but cut-off frequency very low ω1 / 2 π = 10 Hz

• use closed-loop gain from noninverting amplifier with feedback factor kF = R1 / (R1 +R2)

to calculate new frequency response

bandwidth) gain-(unity

product-bandwidth-gain DC

DC

A

AiA

1

10 )()(

log

1

ADC

ω1´

A = 1 / kF

log( A0(ω) )

log( A(ω) )

Page 26: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 26

Slew Rate

• internal capacities and frequency compensation act as a low-pass, whose output for a unit-step input is a (more or less fast) exponential function

• output transistors and capacities need driving current from (previous) driving stage, whose output current is limited

• output change rate is limited to the slew rate SR = max(duA/dt)

• image sine-wave input signal

maxmax )(maxsin EA

EE uAdt

dutuu

• slew rate limits amplitude of undistorted sine-wave output swing above some critical frequency (power bandwidth)

Au

t

t

Au

amplitude-dependant distortion

frequency-dependant distortion

SRuE max

Page 27: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 27

Input offset voltage and bias current

Offset voltage

• output signal uA ≠ 0 even for no input signal u+ = u- = 0, due to unsymmetrical differential-

amplifier at input (usually several µV)

• amplified towards output

• can be compensated by potentiometer at extra pins

• problem is temperature drift of usually 1 µV/°C

+

10k V+

V- =

= + -

- +

2

3

7 8

1

6

4

Bias current

• input transistors need constant base- or gate-current for operation, which is delivered by power supply Bipolar 100 nA Darlington 1 nA FET 1 pA

• can be compensated by additional bias resistor RB

21

21

RR

RRRB

+ Eu

Au

2R

1R

BR

Page 28: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 28

Grounding problems

icon

icon

Ground loops

• RF-signal need shielding to avoid crosstalk → use coaxial cables as waveguides

• Problem: DC-signals need two wires, i.e. a clear voltage reference (usually GND)

→ shielding provides conductor loop between two grounded casings

• Time-varying stray fields from transformers induce voltages / currents in loop

→ a 10 µT stray field of a 50 Hz transformer induces ~100 mV in a 10 m2 conductor loop

~

casing 1 casing 2

Ground connections

• Conductive tracks have nonzero resistance, so flowing currents produce a voltage drop (ground shift) -> separate signal ground from consumer ground

• If possible, connect every device/component starlike to one common ground reference

Page 29: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 29

Avoiding ground loops

photo- diode

con- troller

AOM- driver

RF- amp

AOM

power- supply

optical table

optical table

switch- board

oscillo- scope

ADwin

1. Don’t use shielding as conductor, i.e. signal path

2. Isolate all casings from metal surfaces

3. Use separate power supplies

4. Power supplies don’t need a ground reference

5. Use digital / analog isolators (e.g. ADUM524x and AD210)

6. Measure signals differentially

7. No oscilloscopes at unbuffered / source signals

Page 30: Operational Amplifiers - uni-hamburg.dephoton.physnet.uni-hamburg.de/fileadmin/user_upload/GRK/Internal/... · Operational Amplifiers Electronics: Experimental techniques in the photon

Georg Wirth, Institut für Laser-Physik 30

References

Control theory

• G. v. Wichert, Grundlagen der Regelungstechnik (http://tams-www.informatik.uni-hamburg.de/lehre/2004ws/vorlesung/regelungstechnik/folien/Grundlagen%20der%20Regelungstechnik_02.pdf)

Electronics

• U. Tietze, C. Schenk, E. Gamm: Halbleiter – Schaltungstechnik, Springer, Berlin 2002

• P. Horowitz, W. Hill: The Art of Electronics, Cambridge University Press 1989

• T. Matsuyama: Vorlesungsskript Elektronik 1 und 2, Hamburg 2005

Op-amp circuits

• Ron Mancini: Op Amps for Everyone. Design Reference. 2 Auflage. Elsevier, Oxford 2003 (http://focus.ti.com/lit/an/slod006b/slod006b.pdf)

• Walter G. Jung: OP AMP Applications. Firmenschrift Analog Devices, Norwood 2002 (http://www.analog.com/library/analogDialogue/archives/39-05/Op_Amp_Applications.zip)

• Wikipedia (http://en.wikipedia.org/wiki/Operational_amplifier_applications)

Datasheets / Manufacturers

• http://www.datasheetcatalog.com

• ANALOG DEVICES (http://www.analog.com)

• Texas Instruments / Burr Brown / National Semiconductor (http://www.ti.com)