38
One Function of Two Random Variables

One Function of Two Random Variables

Embed Size (px)

DESCRIPTION

One Function of Two Random Variables X and Y : Two random variables g(x,y): a function We form a new random variable Z as Given the joint p.d.f how does one obtain the p.d.f of Z ? A receiver output signal usually consists of the desired signal buried in noise the above formulation in that case reduces to Z = X + Y. Practical Viewpoint

Citation preview

Page 1: One Function of Two Random Variables

One Function of Two Random Variables

Page 2: One Function of Two Random Variables

One Function of Two Random Variables

X and Y : Two random variables

g(x,y): a function

We form a new random variable Z as

Given the joint p.d.f how does one obtain the p.d.f of Z ?

A receiver output signal usually consists of the desired signal buried in noise the above formulation in that case reduces to Z = X + Y.

).,( YXgZ

),,( yxf XY ),(zfZ

Practical Viewpoint

Page 3: One Function of Two Random Variables

We have:

Where in the XY plane represents the region where . need not be simply connected

First find the region for every z, Then evaluate the integral there.

zDyx XY

zZ

dxdyyxf

DYXPzYXgPzZPzF

, ,),(

),(),()()(

X

Y

zD

zD

zD zyxg ),(

)(zFZ

zD

zD

Page 4: One Function of Two Random Variables

Z = X + Y. Find

Integrating over all horizontal strips(like the one in figure) along the x-axis We can find by differentiating directly.

yzx

x

y

Example

,),()(

y

yz

x XYZ dxdyyxfzYXPzF

).(zfZ

)(zFZ)(zfZ

Page 5: One Function of Two Random Variables

Suppose

Then

Using the above,

Recall - Leibnitz Differentiation Rule

)(

)( .),()(

zb

zadxzxhzH

)(

)( .),(),()(),()()( zb

zadx

zzxhzzah

dzzdazzbh

dzzdb

dzzdH

( , )( ) ( , ) ( , ) 0

( , ) .

z y z yXY

Z XY XY

XY

f x yf z f x y dx dy f z y y dyz z

f z y y dy

Page 6: One Function of Two Random Variables

Example – Alternate Method of Integration

,),()(

x

xz

y XYZ dxdyyxfzF

.),(

),( )()(

x XY

x

xz

y XYZ

Z

dxxzxf

dxdyyxfzdz

zdFzf

)()(),( yfxfyxf YXXY

.)()()()()(

x YXy YXZ dxxzfxfdyyfyzfzf

xzy

x

y

If X and Y are independent, then

This integral is the standard convolution of the functions and expressed in two different ways.

)(zf X )(zfY

Page 7: One Function of Two Random Variables

If two r.vs are independent, then the density of their sum equals the convolution of their density functions. As a special case, suppose that

- for

- for

then using the figure we can determine the new limits for

Example – Conclusion

yzx

x

y

)0,(z

),0( z

0)( xf X 0x0)( yfY ,0y

.zD

Page 8: One Function of Two Random Variables

In that case

or

On the other hand, by considering vertical strips first, we get

or

if X and Y are independent random variables.

z

y

yz

x XYZ dxdyyxfzF

0

0 ),()(

.0,0,0,),( ),()(

0

0

0 zzdyyyzfdydxyxf

zzf

z

XYz

y

yz

x XYZ

,0,0

,0,)()(),()(

0

0 zzdxxzfxfdxxzxfzf

z

y YXz

x XYZ

z

x

xz

y XYZ dydxyxfzF

0

0 ),()(

Example – Conclusion

Page 9: One Function of Two Random Variables

X and Y are independent exponential r.vs with common parameter ,

let Z = X + Y. Determine

Example

),()( ),()( yUeyfxUexf yY

xX

).( )( 2

0

2

0

)(2 zUezdxedxeezf zzzz xzxZ

).(zfZ

Solution

Page 10: One Function of Two Random Variables

This example shows that care should be taken in using the convolution formula for r.vs with finite range.

X and Y are independent uniform r.vs in the common interval (0,1).

let Z = X + Y. Determine

Clearly,

There are two cases of z for which the shaded areas are quite different in shape and they should be considered separately.

Example

Solution

).(zfZ

20 zYXZ

Page 11: One Function of Two Random Variables

x

y

yzx

10 )( zax

y

yzx

21 )( zb

Example – Continued

.10 ,2

)(

1 )(

2

0

0

0

zz

dyyz

dxdyzF

z

y

z

y

yz

xZ

.21 ,2

)2(1

)1(1

1 1

1)(

2

1

1z

1

1

1

zz

dyyz

dxdy

zZPzF

y

zy yzx

Z

Page 12: One Function of Two Random Variables

So, we obtain

By direct convolution of and we obtain the same result. In fact, for

.21,2,10)()(

zzzz

dzzdFzf Z

Z

)(xf X ),( yfY

10 z

Example – Continued

)(xfY

x1

)( xzf X

xz

)()( xfxzf YX

xz1z

10 z

. 1 )()()(

0 zdxdxxfxzfzf

z

YXZ

Page 13: One Function of Two Random Variables

)(xfY

x1

)( xzf X

x

)()( xfxzf YX

x11z z 1z

21 z

)(zfZ

z20 1

and for

Example – Continued

21 z .2 1 )(1

1 zdxzf

zZ

)(zfZThis figure shows which agrees with the convolution of two rectangular waveforms as well.

Page 14: One Function of Two Random Variables

Let Determine its p.d.f

and hence

If X and Y are independent,

which represents the convolution of with

Example

Solution

.YXZ

),( )(

y

yz

x XYZ dxdyyxfzYXPzF

( )( ) ( , ) ( , ) .z y

ZZ XY XYy x

dF zf z f x y dx dy f y z y dydz z

)( zf X ).(zfY

y

x

zyx zyx

y

).(zfZ

)()()()()( zfzfdyyfyzfzf YXYXZ

Page 15: One Function of Two Random Variables

Suppose

For

and for

After differentiation, this gives

0

0 ),( )(

y

yz

x XYZ dxdyyxfzF

0 ),( )(

zy

yz

x XYZ dxdyyxfzF

.0 ,0)( and ,0 ,0)( yyfxxf YX

,0z

,0z

.0,),(

,0,),()(

0

zdyyyzf

zdyyyzfzf

z XY

XYZ

y

x

yzx

z

y

xyzx

zz

Example – a special case

Page 16: One Function of Two Random Variables

Given Z = X / Y, obtain its density function.

- if - if Since by the partition theorem, we have

and hence by the mutually exclusive property of the later two events

Example

Solution

zYX /YzX ,0YYzX .0Y

zYX / 0 YA

__

,A A

. 0,0,

0,/0,/ /

YYzXPYYzXP

YzYXPYzYXPzYXP

AzYXAzYX

AAzYXzYX

)/()/(

)()/( /

Page 17: One Function of Two Random Variables

Integrating over these two regions, we get

Differentiation with respect to z gives

y

x

yzx

y

xyzx

Example – Continued

.),( ),( )(0

0

y yzx XYy

yz

x XYZ dxdyyxfdxdyyxfzF

. ,),(||

),()(),()(

0

0

zdyyyzfy

dyyyzfydyyyzyfzf

XY

XYXYZ

0, YYzXP 0, YYzXP

Page 18: One Function of Two Random Variables

If X and Y are nonnegative random variables, then the area of integration reduces to that shown in this figure:

y

x

yzx

Example – Continued

0

0 ),( )(

y

yz

x XYZ dxdyyxfzF

otherwise.,0,0,),( )(

0 zdyyyzfyzf XY

Z

This gives

or

Page 19: One Function of Two Random Variables

X and Y are jointly normal random variables with zero mean so that

Show that the ratio Z = X / Y has a Cauchy density function centered at

Using

and the fact that we obtain

Example

Solution

.12

1),(22

2

2121

2

22

)1(21

221

yrxyxr

XY er

yxf

./ 21 r

,1)(

122)(

221

20

0

2/

221

20

2

rzdyye

rzf y

Z

),,(),( yxfyxf XYXY

. ,),(||

),()(),()(

0

0

zdyyyzfy

dyyyzfydyyyzyfzf

XY

XYXYZ

Page 20: One Function of Two Random Variables

where

Thus

which represents a Cauchy r.v centered at

Integrating the above from to z, we obtain the corresponding distribution function to be

Example – Continued

.12

1)(

2221

21

2

220

rzzrz

,)1()/(

/1)( 221

221

22

221

rrzrzfZ

./ 21 r

.1

arctan121)(

21

12

rrzzFZ

Page 21: One Function of Two Random Variables

Obtain

We have

But, represents the area of a circle with radius and hence

This gives after repeated differentiation

.),()(22

22

zYX XYZ dxdyyxfzYXPzF

.22 YXZ ).(zfZ

Example

Solution

zYX 22 ,z

.),()(

2

2

z

zy

yz

yzx XYZ dxdyyxfzF

. ),(),(2

1)(

22

2

z

zy XYXYZ dyyyzfyyzfyz

zf

x

y

zzYX 22

z

z

Page 22: One Function of Two Random Variables

Result - If X and Y are independent zero mean Gaussian r.vs with common variance then is an exponential r.vs with parameter

X and Y are independent normal r.vs with zero Mean and common variance

Determine for

Direct substitution with gives

where we have used the substitution

)(zfZ .22 YXZ

.2

21 ,0r2

2 2 2

22

/ 2 ( ) / 22 22 2 0

/ 2 /2 / 22 2 0

1 1 1( ) 2 22

cos 1 ( ),2cos

zz zz y yZ y z

zz

ef z e dy dyz y z y

e z d e U zz

.sinzy

,2 22 YX .2 2

.z

Example

Solution

Page 23: One Function of Two Random Variables

Let Find

This corresponds to a circle with radius Thus

If X and Y are independent Gaussian as in the previous example,

.22 YXZ ).(zfZ

.z

Example

Solution

. ),(),()(

2222

22

z

z XYXYZ dyyyzfyyzfyz

zzf

.),()(

22

22

z

zy

yz

yzx XYZ dxdyyxfzF

),( coscos2

122

12)(

2222

222222

2/2

/2

0

2/2

0 22

2/2

0

2/)(222

zUezdzzez

dyyz

ezdyeyz

zzf

zz

zzz yyzZ

Rayleigh distribution

(*)

Page 24: One Function of Two Random Variables

If where X and Y are real, independent normal r.vs with zero mean and equal variance, then the r.v has a Rayleigh density.

W is said to be a complex Gaussian r.v with zero mean, whose real and imaginary parts are independent r.vs.

As we saw its magnitude has Rayleigh distribution.

What about its phase

Example – Conclusion

,iYXW

22 YXW

?tan 1

YX

Page 25: One Function of Two Random Variables

Let

U has a Cauchy distribution with

As a result

The magnitude and phase of a zero mean complex Gaussian r.v has Rayleigh and uniform distributions respectively. We will show later, these two derived r.vs are also independent of each

other!

Example – Conclusion

tan / ,U X Y

. ,1

/1)( 2

uu

ufU

. otherwise,0

,2/2/,/11tan

/1)sec/1(

1)(tan|/|

1)( 22

Ufdud

f

Page 26: One Function of Two Random Variables

What if X and Y have nonzero means and respectively?

Since

Example

X Y

,2

1),(222 2/])()[(

2

YX yx

XY eyxf

Solution

2 2cos , sin , , cos , sin ,X Y X Yx z y z

,2

2

2

)(

202

2/)(

/23

/2

/)cos(/2

/2

/)cos(2

2/)(

/2

/2

/)cos(/)cos(2

2/)(

222

22222

22222

zIze

dedeze

deezezf

z

zzz

zzz

Z

0

cos2

0

)cos(0

121)( dedeI

substituting this into (*), and letting

we get

where

Rician p.d.f.

the modified Bessel function of the first kind and zeroth order

Page 27: One Function of Two Random Variables

Application

Fading multipath situation where there is

- a dominant constant component (mean)

- a zero mean Gaussian r.v.

The constant component may be the line of sight signal and the zero mean Gaussian r.v part could be due to random multipath components adding up incoherently (see diagram below). The envelope of such a signal is said to have a Rician p.d.f.

Line of sight signal (constant)

a

Multipath/Gaussian noise

Page 28: One Function of Two Random Variables

Determine

nonlinear operators special cases of the more general order statistics. We can arrange any n-tuple such that:

Example

Solution

).,min( ),,max( YXWYXZ ).(zfZ

, )()2()1( nXXX

, , , , min 21)1( nXXXX

. , , ,max 21)( nn XXXX

, , , , 21 nXXX

Page 29: One Function of Two Random Variables

represent r.vs, The function that takes on the value in each possible

sequence is known as the k-th order statistic.

represent the set of order statistics among n random variables.

represents the range, and when n = 2, we have the max and min statistics.

Example - continued

nXXX , , , 21

)(kX )(kx nxxx , , , 21

)1()( XXR n

(1) (2) ( )( , , , )nX X X

Page 30: One Function of Two Random Variables

Since we have

since and form a partition.

Example - continued

x

yzx yx

zX

YX

),( )( YXzXPa

x

y

zY

YX yx

zy

),( )( YXzYPb

x

y

),( zz

)(c

,,,,

),max(YXYYXX

YXZ

,,,

,,),max()(YXzYPYXzXP

YXzYYXzXPzYXPzFZ

)( YX )( YX

Page 31: One Function of Two Random Variables

From the rightmost figure,

If X and Y are independent, then

and hence

Similarly

Thus

).,(,)( zzFzYzXPzF XYZ

Example - continued

)()()( zFzFzF YXZ

).()()()()( zFzfzfzFzf YXYXZ

.,,,

),min(YXXYXY

YXW

. ,,),min()( YXwXYXwYPwYXPwFW

Page 32: One Function of Two Random Variables

x

yyx

wy

(a)

x

y

yx wx

(b)

x

y

),( ww

(c)

Example - continued

, ),()()( ,11)(

wwFwFwFwYwXPwWPwF

XYYX

W

Page 33: One Function of Two Random Variables

X and Y are independent exponential r.vs with common parameter .

Determine for

We have and hence

But and so that

Thus min ( X, Y ) is also exponential with parameter 2.

Example

Solution

).,min( YXW )(wfW

)()()()( )( wFwFwFwFwF YXYXW

).()()()()()( )( wfwFwFwfwfwfwf YXYXYXW

,)( )( wYX ewfwf ,1)( )( w

YX ewFwF

).(2)1(22 )( 2 wUeeeewf wwwwW

Page 34: One Function of Two Random Variables

X and Y are independent exponential r.vs with common parameter .

Define Determine

Example

Solution

. ),max(/),min( YXYXZ ).(zfZ

.,/,,/

YXXYYXYX

Z

( ) / , / ,

, , .ZF z P Z z P X Y z X Y P Y X z X Y

P X Yz X Y P Y Xz X Y

We solve it by partitioning the whole space.

Since X and Y are both positive random variables in this case, we have .10 z

Page 35: One Function of Two Random Variables

Example - continued

x

y

yx yzx

(a)

x

yyx

xzy

(b)

.),( ),( )(

0

z

0

0

0

x

y XY

yz

x XYZ dydxyxfdxdyyxfzF

. otherwise,0

,10,)1(

2

)1(22

),(),(

),( ),( )(

2

0 2

0

)1(2

0

)()(2

0

0

0

zz

dyuez

dyye

dyeey

dyyzyfyyzfy

dxxzxfxdyyyzfyzf

uyz

yzyyyz

XYXY

XYXYZ

)(zfZ

z1

2

Page 36: One Function of Two Random Variables

Let X and Y be independent Poisson random variables with parameters and respectively. Let Determine the p.m.f of Z.

Z takes integer values For any gives only a finite number of

options for X and Y. The event is the union of (n + 1) mutually exclusive

events given by

Example – Discrete Case

1 2.YXZ

Solution

nYXn , ,2 ,1 ,0

, ,kA X k Y n k

}{ nYX kA

Page 37: One Function of Two Random Variables

As a result

If X and Y are also independent, then

and hence

. ) ,(

,)()(

0

0

n

k

n

k

knYkXP

knYkXPnYXPnZP

Example – continued

)()( , knYPkXPknYkXP

. , ,2 ,1 ,0 ,!

)(

)!(!!

!)!(!

) ,()(

21)(

021

)(2

0

1

0

21

2121

nn

e

knkn

ne

kne

ke

knYkXPnZP

n

n

k

knkknn

k

k

n

k

Page 38: One Function of Two Random Variables

Thus Z represents a Poisson random variable with parameter

Sum of independent Poisson random variables is also a Poisson random variable whose parameter is the sum of the parameters of the original random variables.

Such a procedure for determining the p.m.f of functions of discrete random variables is somewhat tedious.

As we shall see, the joint characteristic function can be used in this context to solve problems of this type in an easier fashion.

Example – conclusion

.21