25
On Uncertain Seismic Wave Propagation Boris Jeremi´ c and Kallol Sett Department of Civil and Environmental Engineering University of California, Davis Stein Sture Symposium on Geomechanics EMI Conference, May 2008 Jeremi´ c and Sett Computational Geomechanics Group On Uncertain Seismic Wave Propagation

On Uncertain Seismic Wave Propagation - Boris …sokocalo.engr.ucdavis.edu/~jeremic/ · International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, No. 7,

  • Upload
    vunhu

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

On Uncertain Seismic Wave Propagation

Boris Jeremic and Kallol Sett

Department of Civil and Environmental EngineeringUniversity of California, Davis

Stein StureSymposium on Geomechanics

EMI Conference,May 2008

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Outline

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Personal and Otherwise

Personal Motivation

I Probabilistic fish countingI Stein Sture’s lectures, MGM projectI David Muir Wood’s bookI John Williams’ DEM sims., displacement vortexesI Kaspar Willam’s spec. topics course, comments at EM98I Kenneth Runesson’s explanations on bifurcationI Lev Kavvas’ probabilistic hydrology

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Personal and Otherwise

On UncertaintiesI Epistemic uncertainty - due to lack of knowledge

I Can be reduced bycollecting more data

I Mathematical tools not welldeveloped, trade-off withaleatory uncertainty

Hei

sen

ber

gp

rin

cip

le

un

cert

ain

tyA

leat

ory

un

cert

ain

tyE

pis

tem

ic

Det

erm

inis

tic

I Aleatory uncertainty - inherent variation of physical systemI Can not be reducedI Has highly developed mathematical tools

I Ergodicity – exchange ensemble average for time average?I Possibly yesI Issues up for discussion (soil, concrete, rock,

biomaterials...)

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Personal and Otherwise

Historical Overview

I Brownian motion, Langevin equation → PDF governed bysimple diffusion Eq. (Einstein 1905)

I With external forces → Fokker-Planck-Kolmogorov (FPK)for the PDF (Kolmogorov 1941)

I Approach for random forcing → relationship between theautocorrelation function and spectral density function(Wiener 1930)

I Approach for random coefficient → Functional integrationapproach (Hopf 1952), Averaged equation approach(Bharrucha-Reid 1968), Numerical approaches, MonteCarlo method

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Personal and Otherwise

Material Behavior Inherently Uncertainties

I Spatialvariability

I Point-wiseuncertainty,testingerror,transformationerror

(Mayne et al. (2000)

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Problem Setup

I Incr. 3D el–pl:

dσij/dt =

{Del

ijkl −Del

ijmnmmnnpqDelpqkl

nrsDelrstumtu − ξ∗r∗

}dεkl/dt

I phase density ρ of σ(x , t) varies in time according to acontinuity Liouville equation (Kubo 1963)

I Continuity equation written in ensemble average form (eg.cumulant expansion method (Kavvas and Karakas 1996))

I van Kampen’s Lemma (van Kampen 1976) →< ρ(σ, t) >= P(σ, t), ensemble average of phase density isthe probability density

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Eulerian–Lagrangian FPK Equation

∂P(σ(xt , t), t)∂t

= − ∂

∂σ

»fiη(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

fl+

Z t

0dτCov0

»∂η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t))

∂σ;

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ)

–ffP(σ(xt , t), t)

–+

∂2

∂σ2

»Z t

0dτCov0

»η(σ(xt , t), Del(xt), q(xt), r(xt), ε(xt , t));

η(σ(xt−τ , t − τ), Del(xt−τ ), q(xt−τ ), r(xt−τ ), ε(xt−τ , t − τ))

– ffP(σ(xt , t), t)

B. Jeremic, K. Sett, and M. L. Kavvas, "Probabilistic Elasto–Plasticity: Formulation in 1–D", Acta Geotechnica, Vol.2, No. 3, 2007, In press (published online in the Online First section)

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Euler–Lagrange FPK EquationI Advection-diffusion equation

∂P(σ, t)∂t

= − ∂

∂σ

[N(1)P(σ, t)− ∂

∂σ

{N(2)P(σ, t)

}]I Complete probabilistic description of responseI Solution PDF is second-order exact to covariance of time

(exact mean and variance)I It is deterministic equation in probability density spaceI It is linear PDE in probability density space → Simplifies

the numerical solution processI Template FPK diffusion–advection equation is applicable to

any material model → only the coefficients N(1) and N(2)

are different for different material modelsK. Sett, B. Jeremic and M.L. Kavvas, "The Role of Nonlinear Hardening/Softening in Probabilistic Elasto–Plasticity",International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 31, No. 7, pp. 953-975, 2007

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Probabilistic Yielding

I Weighted elastic and elastic–plastic Solution∂P(σ, t)/∂t = −∂

(Nw

(1)P(σ, t)− ∂(

Nw(2)P(σ, t)

)/∂σ

)/∂σ

I Weighted advection and diffusion coefficients are thenNw

(1,2)(σ) = (1− P[Σy ≤ σ])Nel(1) + P[Σy ≤ σ]Nel−pl

(1)(Black–Scholes optionspricing model ’73,Nobel Economics Prize ’97)

I Cumulative ProbabilityDensity function (CDF)of the yield function

0.00005 0.0001 0.00015Σy HMPaL

0.2

0.4

0.6

0.8

1F@SyD = P@Sy£ΣyD

(a)(b)

B. Jeremic and K. Sett. On Probabilistic Yielding of Materials. in print in Communications in Numerical Methods inEngineering, 2007.

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Transformation of a Bi–Linear (von Mises) Response

0 0.0108 0.0216 0.0324 0.0432 0.0540

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

Stre

ss (

MPa

)

Strain (%)

Mode

DeterministicSolutionStd. Deviations

Mean

linear elastic – linear hardening plastic von MisesJeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Spectral Stochastic Elastic–Plastic FEM

I Minimizing norm of error of finite representation usingGalerkin technique (Ghanem and Spanos 2003):

N∑n=1

Kmndni +N∑

n=1

P∑j=0

dnj

M∑k=1

CijkK ′mnk = 〈Fmψi [{ξr}]〉

Kmn =

∫D

BnDBmdV K ′mnk =

∫D

Bn√λkhkBmdV

Cijk =⟨ξk (θ)ψi [{ξr}]ψj [{ξr}]

⟩Fm =

∫DφNmdV

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Constitutive and Finite Element Levels

Inside SEPFEM

I Explicit stochastic elastic–plastic finite elementcomputations

I FPK probabilistic constitutive integration at Gaussintegration points

I Increase in (stochastic) dimensions (KL and PC) of theproblem (parallelism)

I Development of the probabilistic elastic–plastic stiffnesstensor

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Seismic Wave Propagation through Stochastic Soil

I Soil as 12.5 m deep 1–D soil column (von Mises Material)I Properties (including testing uncertainty) obtained through

random field modeling of CPT qT〈qT 〉 = 4.99 MPa; Var [qT ] = 25.67 MPa2;Cor. Length [qT ] = 0.61 m; Testing Error = 2.78 MPa2

I qT was transformed to obtain G: G/(1− ν) = 2.9qT

I Assumed transformation uncertainty = 5%〈G〉 = 11.57MPa; Var [G] = 142.32MPa2

Cor. Length [G] = 0.61m

I Input motions: modified 1938 Imperial Valley

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Random Field Parameters from Site DataI Maximum likelihood estimates

Typical CPT qT

Finite Scale

Fractal

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

“Uniform” CPT Site Data

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Surface Displacement Time History

0.5 1 1.5 2

−20

20

−10

10

Dis

plac

emen

t (m

m)

Time (s)

0.5 1 1.5 2

2

4

6

8

Dis

plac

emen

t (m

m)

Time (s)

Deterministic/Mean Standard Deviation

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Mean ± Standard Deviation

0.5 1 1.52

−30

30

−20

−10

10

20

Time (s)

Displacement (mm)

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

PDF of Surface Displacement Time History

I PDF at the finiteelement nodes can beobtained using, e.g.,Edgeworth expansion(Ghanem and Spanos2003)

I Numerous applications,especially where extremestatistics are critical

−0.03−0.015

0.0150.03

0

150

300

450

Displacement (m)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.00

Prob

abili

ty D

ensi

ty o

f D

ispl

acem

ent

Time (s)

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Most Probable Solution

−0.01 0.01 0.02 0.03 0.04 0.05

20

40

60

80

100

Displacement (m)

PDF

Mode = 0.02 m

At t = 1.1 sec

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Tails of PDF

−0.01 0.01 0.02 0.03 0.04 0.05

20

40

60

80

100

Displacement (m)

PDF

P[0.010 < Displacement < 0.012] = 0.01654

At t = 1.1 sec

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Probability of Exceedance

0.01 0.02 0.03 0.04 0.05

0.2

0.4

0.6

0.8

1

Displacement (m)

CD

F

Probability that displacement exceeds 0.025 m = 1 − 0.825 = 0.175

At t = 1.1 sec

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Seismic Wave Propagation Through Uncertain Soils

Derivative ApplicationsI Performance based engineering

I Reliability index (β)I Probability of failure (pf )

Value of Load or Resistance

PD

F

Resistance

MeanModeLoad

PD

F

Margin

µMarginfp

Marginβσ

Margin = Reistance − Load

I Financial risk analysisI Sensitivity analysis

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Summary

I Work on probabilistic elasto–plasticity as continuation ofwork with Stein Sture at CU Bolder

I Getting older, supposed to have more answers, in fact Ihave more questions

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation

Thank you Stein!

Jeremic and Sett Computational Geomechanics Group

On Uncertain Seismic Wave Propagation