44
On S-Noetherian rings Jung Wook Lim ([email protected]) Introduction Some results An extension to noncommutative rings On S -Noetherian rings Jung Wook Lim Department of Mathematics Kyungpook National University Daegu, Republic of Korea The 50th Symposium on Ring Theory and Representation Theory University of Yamanashi, Kofu Japan october 8, 2017 Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea On S-Noetherian rings

On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

  • Upload
    others

  • View
    17

  • Download
    2

Embed Size (px)

Citation preview

Page 1: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

On S-Noetherian rings

Jung Wook Lim

Department of MathematicsKyungpook National University

Daegu, Republic of Korea

The 50th Symposium onRing Theory and Representation Theory

University of Yamanashi, KofuJapan

october 8, 2017

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 2: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

S-Noetherian ring and S-Noetherian module

Definition (2002, Anderson-Dumitrescu)

Let R be a commutative ring with identity, S a multiplicativesubset of R and M an R-module.

(1) An ideal I of R is S-finite if there exist an s ∈ S and a finitelygenerated ideal J of R such that sI ⊆ J ⊆ I .

(2) R is an S-Noetherian ring if each ideal of R is S-finite.

(3) M is S-finite if there exist an s ∈ S and a finitely generatedR-submodule F of M such that sM ⊆ F .

(4) M is S-Noetherian if each submodule of M is S-finite.

I If S consists of units of R, then the notion of S-Noetherianrings (resp., S-Noetherian modules) is precisely the same asthat of Noetherian rings (resp., Noetherian modules).

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 3: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

S-Noetherian ring and S-Noetherian module

Definition (2002, Anderson-Dumitrescu)

Let R be a commutative ring with identity, S a multiplicativesubset of R and M an R-module.

(1) An ideal I of R is S-finite if there exist an s ∈ S and a finitelygenerated ideal J of R such that sI ⊆ J ⊆ I .

(2) R is an S-Noetherian ring if each ideal of R is S-finite.

(3) M is S-finite if there exist an s ∈ S and a finitely generatedR-submodule F of M such that sM ⊆ F .

(4) M is S-Noetherian if each submodule of M is S-finite.

I If S consists of units of R, then the notion of S-Noetherianrings (resp., S-Noetherian modules) is precisely the same asthat of Noetherian rings (resp., Noetherian modules).

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 4: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

S-Noetherian ring and S-Noetherian module

Definition (2002, Anderson-Dumitrescu)

Let R be a commutative ring with identity, S a multiplicativesubset of R and M an R-module.

(1) An ideal I of R is S-finite if there exist an s ∈ S and a finitelygenerated ideal J of R such that sI ⊆ J ⊆ I .

(2) R is an S-Noetherian ring if each ideal of R is S-finite.

(3) M is S-finite if there exist an s ∈ S and a finitely generatedR-submodule F of M such that sM ⊆ F .

(4) M is S-Noetherian if each submodule of M is S-finite.

I If S consists of units of R, then the notion of S-Noetherianrings (resp., S-Noetherian modules) is precisely the same asthat of Noetherian rings (resp., Noetherian modules).

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 5: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

S-Noetherian ring and S-Noetherian module

Definition (2002, Anderson-Dumitrescu)

Let R be a commutative ring with identity, S a multiplicativesubset of R and M an R-module.

(1) An ideal I of R is S-finite if there exist an s ∈ S and a finitelygenerated ideal J of R such that sI ⊆ J ⊆ I .

(2) R is an S-Noetherian ring if each ideal of R is S-finite.

(3) M is S-finite if there exist an s ∈ S and a finitely generatedR-submodule F of M such that sM ⊆ F .

(4) M is S-Noetherian if each submodule of M is S-finite.

I If S consists of units of R, then the notion of S-Noetherianrings (resp., S-Noetherian modules) is precisely the same asthat of Noetherian rings (resp., Noetherian modules).

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 6: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Almost finitely generatedness

Definition (1995, Anderson-Kwak-Zafrullah)

Let D be an integral domain with quotient field K and I a nonzeroideal of D[X ].

(1) I is almost finitely generated if there exist f1, . . . , fm ∈ I withdegfi > 0 and s ∈ D \ {0} such that sI ⊆ (f1, . . . , fm).

(2) D[X ] is almost Noetherian if each nonzero ideal I of D[X ]with IK [X ] 6= K [X ] is almost finitely generated.

(3) D is agreeable if for each fractional ideal F of D[X ] withF ⊆ K [X ], there exists an s ∈ D \ {0} with sF ⊆ D[X ].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 7: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Almost finitely generatedness

Definition (1995, Anderson-Kwak-Zafrullah)

Let D be an integral domain with quotient field K and I a nonzeroideal of D[X ].

(1) I is almost finitely generated if there exist f1, . . . , fm ∈ I withdegfi > 0 and s ∈ D \ {0} such that sI ⊆ (f1, . . . , fm).

(2) D[X ] is almost Noetherian if each nonzero ideal I of D[X ]with IK [X ] 6= K [X ] is almost finitely generated.

(3) D is agreeable if for each fractional ideal F of D[X ] withF ⊆ K [X ], there exists an s ∈ D \ {0} with sF ⊆ D[X ].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 8: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Almost finitely generatedness

Definition (1995, Anderson-Kwak-Zafrullah)

Let D be an integral domain with quotient field K and I a nonzeroideal of D[X ].

(1) I is almost finitely generated if there exist f1, . . . , fm ∈ I withdegfi > 0 and s ∈ D \ {0} such that sI ⊆ (f1, . . . , fm).

(2) D[X ] is almost Noetherian if each nonzero ideal I of D[X ]with IK [X ] 6= K [X ] is almost finitely generated.

(3) D is agreeable if for each fractional ideal F of D[X ] withF ⊆ K [X ], there exists an s ∈ D \ {0} with sF ⊆ D[X ].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 9: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Almost finitely generatedness

Definition (1995, Anderson-Kwak-Zafrullah)

Let D be an integral domain with quotient field K and I a nonzeroideal of D[X ].

(1) I is almost finitely generated if there exist f1, . . . , fm ∈ I withdegfi > 0 and s ∈ D \ {0} such that sI ⊆ (f1, . . . , fm).

(2) D[X ] is almost Noetherian if each nonzero ideal I of D[X ]with IK [X ] 6= K [X ] is almost finitely generated.

(3) D is agreeable if for each fractional ideal F of D[X ] withF ⊆ K [X ], there exists an s ∈ D \ {0} with sF ⊆ D[X ].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 10: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Basic properties

Proposition (2002, Anderson-Dumitrescu)

Let R be a commutative ring, S a multiplicative subset of R andM an R-module. Then the following assertions hold.

(1) R is S-Noetherian if and only if every prime ideal of R(disjoint from S) is S-finite.

(2) If R is an S-Noetherian ring and M is an S-finite R-module,then M is an S-Noetherian R-module.

(3) If T is both an S-Noetherian ring containing R and anS-finite R-module, then R is an S-Noetherian ring.

Proposition (2002, Anderson-Dumitrescu)

Let R ⊆ T be a ring extension such that IT ∩ R = I for each idealI of R and S a multiplicative subset of R. If T is S-Noetherian,then so is R.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 11: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Basic properties

Proposition (2002, Anderson-Dumitrescu)

Let R be a commutative ring, S a multiplicative subset of R andM an R-module. Then the following assertions hold.

(1) R is S-Noetherian if and only if every prime ideal of R(disjoint from S) is S-finite.

(2) If R is an S-Noetherian ring and M is an S-finite R-module,then M is an S-Noetherian R-module.

(3) If T is both an S-Noetherian ring containing R and anS-finite R-module, then R is an S-Noetherian ring.

Proposition (2002, Anderson-Dumitrescu)

Let R ⊆ T be a ring extension such that IT ∩ R = I for each idealI of R and S a multiplicative subset of R. If T is S-Noetherian,then so is R.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 12: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Basic properties

Proposition (2002, Anderson-Dumitrescu)

Let R be a commutative ring, S a multiplicative subset of R andM an R-module. Then the following assertions hold.

(1) R is S-Noetherian if and only if every prime ideal of R(disjoint from S) is S-finite.

(2) If R is an S-Noetherian ring and M is an S-finite R-module,then M is an S-Noetherian R-module.

(3) If T is both an S-Noetherian ring containing R and anS-finite R-module, then R is an S-Noetherian ring.

Proposition (2002, Anderson-Dumitrescu)

Let R ⊆ T be a ring extension such that IT ∩ R = I for each idealI of R and S a multiplicative subset of R. If T is S-Noetherian,then so is R.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 13: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Basic properties

Proposition (2002, Anderson-Dumitrescu)

Let R be a commutative ring, S a multiplicative subset of R andM an R-module. Then the following assertions hold.

(1) R is S-Noetherian if and only if every prime ideal of R(disjoint from S) is S-finite.

(2) If R is an S-Noetherian ring and M is an S-finite R-module,then M is an S-Noetherian R-module.

(3) If T is both an S-Noetherian ring containing R and anS-finite R-module, then R is an S-Noetherian ring.

Proposition (2002, Anderson-Dumitrescu)

Let R ⊆ T be a ring extension such that IT ∩ R = I for each idealI of R and S a multiplicative subset of R. If T is S-Noetherian,then so is R.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 14: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Basic properties

Proposition (2002, Anderson-Dumitrescu)

Let R be a commutative ring, S a multiplicative subset of R andM an R-module. Then the following assertions hold.

(1) R is S-Noetherian if and only if every prime ideal of R(disjoint from S) is S-finite.

(2) If R is an S-Noetherian ring and M is an S-finite R-module,then M is an S-Noetherian R-module.

(3) If T is both an S-Noetherian ring containing R and anS-finite R-module, then R is an S-Noetherian ring.

Proposition (2002, Anderson-Dumitrescu)

Let R ⊆ T be a ring extension such that IT ∩ R = I for each idealI of R and S a multiplicative subset of R. If T is S-Noetherian,then so is R.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 15: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Amalgamation

Definition

Let f : A→ B be a ring homomorphism and J an ideal of B. Thesubring A ./f J of A× B is defined as follows:

A ./f J = {(a, f (a) + j) | a ∈ A and j ∈ J}.

We call the ring A ./f J the amalgamation of A with B along Jwith respect to f .

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 16: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Amalgamation

Definition

Let f : A→ B be a ring homomorphism and J an ideal of B. Thesubring A ./f J of A× B is defined as follows:

A ./f J = {(a, f (a) + j) | a ∈ A and j ∈ J}.

We call the ring A ./f J the amalgamation of A with B along Jwith respect to f .

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 17: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Amalgamation

Definition

Let f : A→ B be a ring homomorphism and J an ideal of B. Thesubring A ./f J of A× B is defined as follows:

A ./f J = {(a, f (a) + j) | a ∈ A and j ∈ J}.

We call the ring A ./f J the amalgamation of A with B along Jwith respect to f .

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 18: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Amalgamation (Continued)

In fact, A ./f J is the pullback f̂ ×B/J

π of f̂ and π, where

π : B → B/J is the canonical projection and f̂ = π ◦ f :

A ./f J = f̂ ×B/J

πpA−−−−→ A

pB

y f̂

yB

π−−−−→ B/J.

Also, the map ı : A→ A ./f J given by a 7−→ (a, f (a)) for alla ∈ A is the natural embedding.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 19: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Amalgamation (Continued)

In fact, A ./f J is the pullback f̂ ×B/J

π of f̂ and π, where

π : B → B/J is the canonical projection and f̂ = π ◦ f :

A ./f J = f̂ ×B/J

πpA−−−−→ A

pB

y f̂

yB

π−−−−→ B/J.

Also, the map ı : A→ A ./f J given by a 7−→ (a, f (a)) for alla ∈ A is the natural embedding.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 20: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Main result

For a multiplicative subset S of A, put S ′ := {(s, f (s)) | s ∈ S}.Clearly, S ′ and f (S) are multiplicative subsets of A ./f J and B,respectively.

Theorem

Let f : A→ B be a ring homomorphism, J an ideal of B, S amultiplicative subset of A and S ′ := {(s, f (s)) | s ∈ S}.(1) If A is an S-Noetherian ring and B is an S-finite A-module

(with the A-module structure induced by f ), then A ./f J isan S ′-Noetherian ring.

(2) f (A) + J is an f (S)-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 21: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Main result

For a multiplicative subset S of A, put S ′ := {(s, f (s)) | s ∈ S}.Clearly, S ′ and f (S) are multiplicative subsets of A ./f J and B,respectively.

Theorem

Let f : A→ B be a ring homomorphism, J an ideal of B, S amultiplicative subset of A and S ′ := {(s, f (s)) | s ∈ S}.(1) If A is an S-Noetherian ring and B is an S-finite A-module

(with the A-module structure induced by f ), then A ./f J isan S ′-Noetherian ring.

(2) f (A) + J is an f (S)-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 22: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Main result

For a multiplicative subset S of A, put S ′ := {(s, f (s)) | s ∈ S}.Clearly, S ′ and f (S) are multiplicative subsets of A ./f J and B,respectively.

Theorem

Let f : A→ B be a ring homomorphism, J an ideal of B, S amultiplicative subset of A and S ′ := {(s, f (s)) | s ∈ S}.(1) If A is an S-Noetherian ring and B is an S-finite A-module

(with the A-module structure induced by f ), then A ./f J isan S ′-Noetherian ring.

(2) f (A) + J is an f (S)-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 23: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Main result

For a multiplicative subset S of A, put S ′ := {(s, f (s)) | s ∈ S}.Clearly, S ′ and f (S) are multiplicative subsets of A ./f J and B,respectively.

Theorem

Let f : A→ B be a ring homomorphism, J an ideal of B, S amultiplicative subset of A and S ′ := {(s, f (s)) | s ∈ S}.(1) If A is an S-Noetherian ring and B is an S-finite A-module

(with the A-module structure induced by f ), then A ./f J isan S ′-Noetherian ring.

(2) f (A) + J is an f (S)-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 24: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | theconstant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | theconstant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆E [[X1, . . . ,Xn]].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 25: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | theconstant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | theconstant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆E [[X1, . . . ,Xn]].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 26: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | theconstant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | theconstant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆E [[X1, . . . ,Xn]].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 27: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | theconstant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | theconstant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆E [[X1, . . . ,Xn]].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 28: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | theconstant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | theconstant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆E [[X1, . . . ,Xn]].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 29: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions

Basic setting

I D ⊆ E : an extension of commutative rings with identity;

I {X1, . . . ,Xn}: a set of indeterminates over E ;

I D + (X1, . . . ,Xn)E [X1, . . . ,Xn] := {f ∈ E [X1, . . . ,Xn] | theconstant term of f belongs to D}; and

I D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] := {f ∈ E [[X1, . . . ,Xn]] | theconstant term of f belongs to D}.

I D[X1, . . . ,Xn] ⊆ D + (X1, . . . ,Xn)E [X1, . . . ,Xn] ⊆E [X1, . . . ,Xn].

I D[[X1, . . . ,Xn]] ⊆ D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] ⊆E [[X1, . . . ,Xn]].

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 30: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Recall that a multiplicative subset S of a commutative ring R isanti-Archimedean if

⋂n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S ananti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 31: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Recall that a multiplicative subset S of a commutative ring R isanti-Archimedean if

⋂n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S ananti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 32: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Recall that a multiplicative subset S of a commutative ring R isanti-Archimedean if

⋂n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S ananti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 33: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Recall that a multiplicative subset S of a commutative ring R isanti-Archimedean if

⋂n∈N snR ∩ S 6= ∅ for every s ∈ S .

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [X1, . . . ,Xn] and S ananti-Archimedean subset of D.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[X1, . . . ,Xn] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [X1, . . . ,Xn] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 34: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [[X1, . . . ,Xn]] and San anti-Archimedean subset of D consisting of nonzerodivisors.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[[X1, . . . ,Xn]] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 35: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [[X1, . . . ,Xn]] and San anti-Archimedean subset of D consisting of nonzerodivisors.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[[X1, . . . ,Xn]] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 36: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 1: Composite ring extensions(Continued)

Corollary

Let D ⊆ E be an extension of commutative rings, {X1, . . . ,Xn} aset of indeterminates over E , J an ideal of E [[X1, . . . ,Xn]] and San anti-Archimedean subset of D consisting of nonzerodivisors.

(1) If D is an S-Noetherian ring and E is an S-finite D-module,then D[[X1, . . . ,Xn]] + J is an S-Noetherian ring.

(2) In particular, D + (X1, . . . ,Xn)E [[X1, . . . ,Xn]] is anS-Noetherian ring.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 37: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 2: Nagata’s idealization

Let R be a commutative ring with identity and M a unitaryR-module. The idealization of M in R (or trivial extension of Rby M) is a commutative ring

R(+)M := {(r ,m) | r ∈ R and m ∈ M}

under the usual addition and the multiplication defined as(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for all(r1,m1), (r2,m2) ∈ R(+)M.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 38: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 2: Nagata’s idealization

Let R be a commutative ring with identity and M a unitaryR-module. The idealization of M in R (or trivial extension of Rby M) is a commutative ring

R(+)M := {(r ,m) | r ∈ R and m ∈ M}

under the usual addition and the multiplication defined as(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1) for all(r1,m1), (r2,m2) ∈ R(+)M.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 39: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 2: Nagata’s idealization (Continued)

Basic properties

Let R be a commutative ring with identity and M a unitaryR-module. If S is a multiplicative subset of R, then S(+)M is amultiplicative subset of R(+)M.

Theorem

Let R be a commutative ring with identity, M a unitary R-moduleand S a multiplicative subset of R. Then the following statementsare equivalent.

(1) R(+)M is an S(+)M-Noetherian ring.

(2) R is an S-Noetherian ring and M is S-finite.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 40: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 2: Nagata’s idealization (Continued)

Basic properties

Let R be a commutative ring with identity and M a unitaryR-module. If S is a multiplicative subset of R, then S(+)M is amultiplicative subset of R(+)M.

Theorem

Let R be a commutative ring with identity, M a unitary R-moduleand S a multiplicative subset of R. Then the following statementsare equivalent.

(1) R(+)M is an S(+)M-Noetherian ring.

(2) R is an S-Noetherian ring and M is S-finite.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 41: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Application 2: Nagata’s idealization (Continued)

Basic properties

Let R be a commutative ring with identity and M a unitaryR-module. If S is a multiplicative subset of R, then S(+)M is amultiplicative subset of R(+)M.

Theorem

Let R be a commutative ring with identity, M a unitary R-moduleand S a multiplicative subset of R. Then the following statementsare equivalent.

(1) R(+)M is an S(+)M-Noetherian ring.

(2) R is an S-Noetherian ring and M is S-finite.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 42: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

An extension to noncommutative rings

I Recently, we extended the notions of S-Noetherian rings andmodules to noncommutative rings (with Baeck and Lee).

I Among other things, we studied the matrix ring extension,the Ore extension, and the power series ring extension.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 43: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

An extension to noncommutative rings

I Recently, we extended the notions of S-Noetherian rings andmodules to noncommutative rings (with Baeck and Lee).

I Among other things, we studied the matrix ring extension,the Ore extension, and the power series ring extension.

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings

Page 44: On S-Noetherian rings - ring-theory-japan.com · S-Noetherian ring and -Noetherian module De nition (2002, Anderson-Dumitrescu) Let R be a commutative ring with identity, S a multiplicative

On S-Noetherian rings

Jung Wook Lim([email protected])

Introduction

Some results

An extension tononcommutative rings

Thank you for your attention!

Jung Wook Lim ([email protected]): Department of Mathematics Kyungpook National University Daegu, Republic of Korea

On S-Noetherian rings