23
Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2010, Article ID 385824, 22 pages doi:10.1155/2010/385824 Research Article On Reverses of Some Inequalities in n-Inner Product Spaces Renu Chugh and Sushma Lather Department of Mathematics, Maharshi D University, Rohtak 124001, India Correspondence should be addressed to Renu Chugh, [email protected] Received 1 February 2010; Revised 2 June 2010; Accepted 31 July 2010 Academic Editor: Irena Lasiecka Copyright q 2010 R. Chugh and S. Lather. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman Type inequalities in n-inner product spaces. The results obtained generalize the results of Dragomir2003–2005 in n-inner product spaces. Also we provide some applications for determinantal integral inequalities. 1. Introduction In 1964, G¨ ahler 1 introduced the concept of 2-norm and 2-inner product spaces as generalization of norm and inner product spaces. A systematic presentation of the results related to the theory of 2-inner product spaces can be found in the book in 2, 3 and in list of references in it. Generalization of 2-inner product space for n 2 was developed by Misiak 4 in 1989. Gunawan and Mashadi 5 in 2001 introduced the concept of n-normed linear spaces. Gunawan 6 obtained Cauchy-Bunyakovsky inequality in these spaces. Cho et al. 7 extended parallelogram law and proved Hlwaka’s type inequality in n-inner product spaces. In this paper by, using same ideas of 813 we establish some results regarding new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman Type inequalities in n-inner product spaces and we also provide some applications for determinantal integral inequalities. 2. Preliminaries Definition 2.1 see 4. Assume that n is a positive integer and X is a vector space over the field K R of real numbers or the field K C of complex numbers, such that dim X n and ·, ·|·,..., · n1 is a K valued function defined on X × X ×···× X n1 such that:

On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

Hindawi Publishing CorporationInternational Journal of Mathematics and Mathematical SciencesVolume 2010, Article ID 385824, 22 pagesdoi:10.1155/2010/385824

Research ArticleOn Reverses of Some Inequalities inn-Inner Product Spaces

Renu Chugh and Sushma Lather

Department of Mathematics, Maharshi D University, Rohtak 124001, India

Correspondence should be addressed to Renu Chugh, [email protected]

Received 1 February 2010; Revised 2 June 2010; Accepted 31 July 2010

Academic Editor: Irena Lasiecka

Copyright q 2010 R. Chugh and S. Lather. This is an open access article distributed under theCreative Commons Attribution License, which permits unrestricted use, distribution, andreproduction in any medium, provided the original work is properly cited.

We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle andBoas-Bellman Type inequalities in n-inner product spaces. The results obtained generalize theresults of Dragomir(2003–2005) in n-inner product spaces. Also we provide some applications fordeterminantal integral inequalities.

1. Introduction

In 1964, Gahler [1] introduced the concept of 2-norm and 2-inner product spaces asgeneralization of norm and inner product spaces. A systematic presentation of the resultsrelated to the theory of 2-inner product spaces can be found in the book in [2, 3] and in list ofreferences in it. Generalization of 2-inner product space for n ≥ 2 was developed by Misiak[4] in 1989. Gunawan and Mashadi [5] in 2001 introduced the concept of n-normed linearspaces. Gunawan [6] obtained Cauchy-Bunyakovsky inequality in these spaces. Cho et al.[7] extended parallelogram law and proved Hlwaka’s type inequality in n-inner productspaces. In this paper by, using same ideas of [8–13] we establish some results regardingnew reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-BellmanType inequalities in n-inner product spaces and we also provide some applications fordeterminantal integral inequalities.

2. Preliminaries

Definition 2.1 (see [4]). Assume that n is a positive integer and X is a vector space over thefieldK = R of real numbers or the fieldK = C of complex numbers, such that dim X ≥ n and〈·, · | ·, . . . , ·

︸︷︷︸

n−1

〉 is a K valued function defined on X ×X × · · · ×X︸ ︷︷ ︸

n+1

such that:

Page 2: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

2 International Journal of Mathematics and Mathematical Sciences

(nI1) 〈x1, x1 | x2, . . . , xn〉 ≥ 0, for any x1, x2, . . . , xn ∈ X and 〈x1, x1 | x2, . . . , xn〉 = 0 ifand only if x1, x2, . . . , xn are linearly dependent vectors;

(nI2) 〈a, b | x1, . . . , xn−1〉 = 〈a, b | π(x1), . . . , π(xn−1)〉, for any a, b, x1, x2, . . . , xn−1 ∈ X andfor any bijections π : {x1, x2, . . . , xn−1} → {x1, x2, . . . , xn−1};

(nI3) If n > 1, then 〈x1, x1 | x2, . . . , xn〉 = 〈x2, x2 | x1, x3, . . . , xn〉, for any x1, x2, . . . , xn ∈ X;

(nI4) 〈a, b | x1, . . . , xn−1〉 = 〈b, a | x1, . . . , xn−1〉(nI5) 〈αa, b | x1, . . . , xn−1〉 = α〈a, b | x1, . . . , xn−1〉, for any a, b, x1, . . . , xn−1 ∈ X and any

scalar α ∈ R;

(nI6) 〈a + a1, b | x1, . . . , xn−1〉 = 〈a, b | x1, . . . , xn−1〉 + 〈a1, b | x1, . . . , xn−1〉, for anya, b, a1, x1, . . . , xn−1 ∈ X.

Then 〈·, · | ·, . . . , ·︸︷︷︸

n−1

〉 is called the n-inner product and (X, 〈·, · | ·, . . . , ·︸︷︷︸

n−1

〉) is called the n-prehilbert

space. If n = 1, then Definition 2.1 reduces to the ordinary inner product. In any given n-innerproduct space (X · 〈·, · | ·, ·, . . . , ·〉),we can define a function ‖·, ·, . . . , ·‖ onXn = X ×X × · · · ×X

︸ ︷︷ ︸

n-timesas

‖x1, x2, . . . , xn‖ =√

〈x1, x1 | x2, . . . , xn〉 (2.1)

for any x1, x2, . . . , xn ∈ X. It is easy to see that this function satisfies the following conditions:

(nN1) ‖x1, x2, . . . , xn‖ ≥ 0 and ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearlydependent,

(nN2) ‖x1, x2, . . . , xn‖ is invariant under any permutation,

(nN3) ‖x1, x2, . . . , axn‖ = |a|‖x1, x2, . . . , xn‖, for any a ∈ K,

(nN4) ‖x1, x2, . . . , xn − 1, y + z‖ ≤ ‖x1, x2, . . . , xn−1, y‖ + ‖x1, x2, . . . , xn−1, z‖.

A function ‖·, ·, . . . , ·‖ defined on Xn and satisfying the above conditions is called an n-norm on X and the pair (X, ‖·, . . . , ·‖) is called n-normed linear space. Whenever an n-innerproduct space (X, 〈·, · | ·, ·, . . . , ·〉) is given, we consider it as an n-normed space (X, ‖·, ·, . . . , ·‖)with the n-norm defined by (2.1).

Let (H; 〈·, ·〉) be an inner product space over the real or complex number fieldK. Thefollowing inequality is known as Cauchy-Schwarz’s inequality:

x, y⟩∣

∣2 ≤ ‖x‖2∥∥y∥∥2, x, y ∈ H, (2.2)

where ‖z‖2 = 〈z, z〉, z ∈ H. The equality occurs in (2.2) if and only if x and y are linearlydependent.

In [8], Dragomir obtained the following reverse of Cauchy-Schwarz’s inequality:

0 ≤ ‖x‖2∥∥y∥∥2 − ∣∣⟨x, y⟩∣∣2 ≤ 14|A − a|2∥∥y∥∥4, (2.3)

Page 3: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 3

provided x, y ∈ H and a,A ∈ K are so that either

Re⟨

Ay − x, x − ay⟩ ≥ 0, (2.4)

or, equivalently

∥x − a +A

2, y

∥≤ 1

2|A − a|∥∥y∥∥, (2.5)

holds. The constant 1/4 is best possible in (2.3) in the sense that it cannot be replaced by asmaller quantity.

If x, y, A, a satisfy either (2.4) or (2.5), then the following reverse of Cauchy-Schwarz’s inequality also holds:

‖x‖∥∥y∥∥ ≤ 12·Re[

A⟨

x, y⟩

+ a⟨

x, y⟩]

[Re(aA)]1/2≤ 1

2· |A| + |a|[Re(aA)]1/2

x, y⟩∣

∣ (2.6)

provided that, the complex numbers a and A satisfy the condition Re(aA) > 0. In bothinequalities in (2.6), the constant 1/2 is best possible.

The following reverse of the triangle inequality in inner product space was alsoobtained by Dragomir [9]

Let (H; 〈·, ·〉) be an inner product space overK and x, y ∈ H, M ≥ m > 0 such thateither Re〈Ay − x, x − ay〉 ≥ 0 or, equivalently ‖x − (a +A)/2, y‖ ≤ 1/2|A − a|‖y‖, holds.

0 ≤ ‖x‖ + ∥∥y∥∥ − ∥∥x + y∥

∥ ≤√M − √

m√mM

Re⟨

x, y⟩

(2.7)

holds.Gunawan [6] generalized the Cauchy-Bunyakovsky-Schwarz inequality (shortly, the

CBS inequality) for inner product space to n-inner product space and obtained the following:

x, y | z2, . . . , zn⟩∣

∣2 ≤ 〈x, x | z2, . . . , zn〉

y, y | z2, . . . , zn⟩

. (2.8)

Moreover, the equality holds if and only if x, y, z2, . . . , zn are linearly dependent. In termsof the n-norms, the (CBS)-inequality (2.8) can be written as

x, y | z2, . . . , zn⟩∣

∣2 ≤ ‖x, z2, . . . , zn‖2

∥y, z2, . . . , zn∥

∥2. (2.9)

The equality holds if and only if x, y, z2, . . . , zn are linearly dependent.

3. Main Results

The aim of the present paper is to generalize the above mentioned results of Dragomir [8, 9],that is, reverses of CBS inequality, Triangle inequality and Boas-bellman type inequalities ininner product space to n-inner product spaces.

Page 4: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

4 International Journal of Mathematics and Mathematical Sciences

3.1. Reverses of the CBS Inequality

Theorem 3.1. Let A, a ∈ K(K = C,R) and x, y, z2, . . . , zn ∈ X, where (X, 〈·, · | ·, . . . , ·〉) isn-inner product space over K. If

Re(⟨

Ay − x, x − ay | z2, . . . , zn⟩) ≥ 0. (3.1)

or, equivalently,

∥x − a +A

2y, z2, . . . , zn

∥≤ 1

2|A − a|∥∥y, z2, . . . , zn

∥. (3.2)

holds, then one has

0 ≤ ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − ∣∣⟨x, y | z2, . . . , zn

⟩∣

∣2 ≤ 1

4|A − a|2∥∥y, z2, . . . , zn

∥4. (3.3)

The constant 1/4 in (3.3) cannot be replaced by a smaller constant.

Proof. Using (nI2)–(nI6), we get

z2, z2 | x ± y, . . . , zn⟩

=⟨

x ± y, x ± y | z2, . . . , zn⟩

= 〈x, x | z2, . . . , zn〉 +⟨

y, y | z2, . . . , zn⟩ ± 2Re

x, y | z2, . . . , zn⟩

,(3.4)

Re⟨

x, y | z2, . . . , zn⟩

=14[⟨

z2, z2 | x + y, . . . , zn⟩ − ⟨z2, z2 | x − y, . . . , zn

⟩]

.(3.5)

Considering the vectors x, u, U, z2, . . . , zn ∈ X and using (3.5) and (nN1–nN6), we have

Re〈U − x, x − u | z2, . . . , zn〉

=14[〈z2, z2 | U − u, . . . , zn〉 − 〈z2, z2 | −2x +U + u, . . . , zn〉]

=14

[

〈U − u,U − u | z2, . . . , zn〉 − 4⟨

x − u +U

2, x − u +U

2| z2, . . . , zn

⟩]

=14‖U − u, z2, . . . , zn‖2 −

∥x − u +U

2, z2, . . . , zn

2

.

(3.6)

Therefore, Re〈U − x, x − u | z2, . . . , zn〉 ≥ 0 if and only if

∥x − u +U

2, z2, . . . , zn

∥≤ 1

2‖U − u, z2, . . . , zn‖. (3.7)

Page 5: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 5

Applying this to the vectors U = Ay and u = ay, we obtain that the (3.1) and (3.2) areequivalent. If we consider the real numbers

I1 = Re[(

A∥

∥y, z2, . . . , zn∥

∥2 − ⟨x, y | z2, . . . , zn

⟩)

×(⟨

x, y | z2, . . . , zn⟩ − a

∥y, z2, . . . , zn∥

∥2)]

,

I2 =∥

∥y, z2, . . . , zn∥

∥2 Re⟨

Ay − x, x − ay | z2, . . . , zn⟩

.

(3.8)

Then we obtain, by using properties of n-inner product space,

I1 =∥

∥y, z2, . . . , zn∥

∥2 Re[

A⟨

x, y | z2, . . . , zn⟩

+ a⟨

x, y | z2, . . . , zn⟩]

− ∣∣⟨x, y | z2, . . . , zn⟩∣

∣2 − ∥∥y, z2, . . . , zn

∥4 Re(Aa).

I2 =∥

∥y, z2, . . . , zn∥

∥2 Re[

A⟨

x, y | z2, . . . , zn⟩

+ a⟨

x, y | z2, . . . , zn⟩]

− ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − ∥∥y, z2, . . . , zn

∥4 Re(Aa)

(3.9)

which gives

I1 − I2 = ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − ∣∣⟨x, y | z2, . . . , zn

⟩∣

∣2, (3.10)

for any x, y, z2, . . . , zn ∈ X and a, A ∈ K. If (3.1) holds, then I2 ≥ 0 and thus I1 − I2 ≤ I1

=⇒ ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − ∣∣⟨x, y | z2, . . . , zn

⟩∣

∣2

≤ Re[(

A∥

∥y, z2, . . . , zn∥

∥2 − ⟨x, y | z2, . . . , zn

⟩)

×(⟨

x, y | z2, . . . , zn⟩ − a

∥y, z2, . . . , zn∥

∥2)]

.

(3.11)

Now using the elementary inequality Re(αβ) ≤ 1/4|α + β|2 for any α, β ∈ K (K = R, C), oneyields

Re[(

A∥

∥y, z2, . . . , zn∥

∥2 − ⟨x, y | z2, . . . , zn

⟩)(⟨

x, y | z2, . . . , zn⟩ − a

∥y, z2, . . . , zn∥

∥2)]

≤ 14|A − a|2∥∥y, z2, . . . , zn

∥4.

(3.12)

If we combine (3.11) and (3.12), we get the required inequality.

Page 6: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

6 International Journal of Mathematics and Mathematical Sciences

To prove the sharpness of the constant 1/4, assume that (3.3) holds with a constantC > 0, that is,

‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − ∣∣⟨x, y | z2, . . . , zn

⟩∣

∣2

≤ C|A − a|2∥∥y, z2, . . . , zn∥

∥4,

(3.13)

where x, y, z2, . . . , zn,A, and a satisfy the hypothesis of the theorem.Consider y ∈ X with ‖y, z2, . . . , zn‖ = 1, a /=A, m ∈ X with ‖m, z2, . . . , zn‖ = 1 and

〈y,m | z2, . . . , zn〉 = 0 and define

x =A + a

2y +

A − a

2m (3.14)

then we have

Re⟨

Ay − x, x − ay | z2, . . . , zn⟩

=|A − a|2

4Re⟨

y −m,y +m | z2, . . . , zn⟩

= 0 (3.15)

and then the condition (3.1) is fulfilled. From (3.13)we deduce

A + a

2y +

A − a

2m, z2, . . . , zn

∥−∣

A + a

2y +

A − a

2m,y | z2, . . . , zn

⟩∣

2

≤ C|A − a|2

(3.16)

and, since

A + a

2y +

A − a

2m, z2, . . . , zn

2

=∣

A + a

2

2

+∣

A − a

2

2

,

A + a

2y +

A − a

2m, y | z2, . . . , zn

⟩∣

2

=∣

A + a

2

2

.

(3.17)

By (3.16), we have

A − a

2

2

≤ C|A − a|2, (3.18)

for any A, a ∈ K with a/=A, which implies C ≥ 1/4. This completes the proof.

Page 7: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 7

Theorem 3.2. Assume that x, y, z2, . . . , zn, a and A are the same as in above Theorem 3.1. IfRe(aA) > 0, then one has

‖x, z2, . . . , zn‖∥

∥y, z2, . . . , zn∥

∥ ≤ 12

Re[(

A + a)⟨

x, y | z2, . . . , zn⟩]

[Re(aA)]1/2

≤ 12

|A + a|[Re(aA)]1/2

x, y | z2, . . . , zn⟩∣

∣.

(3.19)

The constant 1/2 is best possible in both inequalities in the sense that it cannot be replaced by a smallerconstant.

Proof. Define

I = Re⟨

Ay − x, x − ay | z2, . . . , zn⟩

= Re[

A⟨

x, y | z2, . . . , zn⟩

+ a⟨

x, y | z2, . . . , zn⟩]

− ‖x, z2, . . . , zn‖2 −∥

∥y, z2, . . . , zn∥

∥2 Re(Aa).

(3.20)

We know that, for a complex number α ∈ C, Re(α) = Re(α) and thus

Re[

A⟨

x, y | z2, . . . , zn⟩]

= Re[

A⟨

x, y | z2, . . . , zn⟩]

(3.21)

which implies

I = Re[(

A + a)⟨

x, y | z2, . . . , zn⟩]

− ‖x, z2, . . . , zn‖2 −∥

∥y, z2, . . . , zn∥

∥2 Re(Aa). (3.22)

Since x, y, z2, . . . , zn, a andA are assumed to satisfy the condition (3.1), by (3.22), we deduce

‖x, z2, . . . , zn‖2 +∥

∥y, z2, . . . , zn∥

∥2 Re(Aa) ≤ Re

[(

A + a)⟨

x, y | z2, . . . , zn⟩]

, (3.23)

which gives

1

[Re(aA)]1/2‖x, z2, . . . , zn‖2 + [Re(aA)]1/2

∥y, z2, . . . , zn∥

∥2

≤Re[(

A + a)⟨

x, y | z2, . . . , zn⟩]

[Re(aA)]1/2

(3.24)

since Re(Aa) > 0.

Page 8: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

8 International Journal of Mathematics and Mathematical Sciences

On the other hand, by the elementary inequality

αp2 +1αq2 ≥ 2pq (3.25)

for p, q ≥ 0 and α > 0, we have

2‖x, z2, . . . , zn‖∥

∥y, z2, . . . , zn∥

≤ 1

[Re(aA)]1/2‖x, z2, . . . , zn‖2 + [Re(aA)]1/2

∥y, z2, . . . , zn∥

∥2.

(3.26)

Using (3.24) and (3.26), we deduce the first inequality in (3.22). The last part is obvious bythe fact, for z ∈ C, |Re(z)| ≤ |z|.

To prove the sharpness of the constant 1/2 in the first inequality in (3.22), we assumethat (3.22) holds with a constant c > 0, that is,

‖x, z2, . . . , zn‖∥

∥y, z2, . . . , zn∥

∥ ≤ cRe[(

A + a)⟨

x, y | z2, . . . , zn⟩]

[Re(aA)]1/2(3.27)

provided x, y, z2, . . . , zn, a and A satisfy (2.1). If we take a = A = 1, y = x /= 0, thenobviously (2.1) holds and from (3.27), we obtain

‖x, z2, . . . , zn‖2 ≤ 2c‖x, z2, . . . , zn‖2 (3.28)

for any linearly independent vectors x, z2, . . . , zn ∈ X, which implies c ≥ 1/2. This completesthe proof.

When the constants involved are assumed to be positive, then we may state thefollowing result.

Corollary 3.3. LetM ≥ m > 0 and assume that, for x, y, z2, . . . , zn ∈ X, one has

Re⟨

My − x, x −my | z2, . . . , zn⟩ ≥ 0 (3.29)

or, equivalently,

∥x − M +m

2, z2, . . . , zn

∥≤ 1

2(M −m)

∥y, z2, . . . , zn∥

∥. (3.30)

Page 9: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 9

Then one has the following reverse of CBS inequality:

‖x, z2, . . . , zn‖∥

∥y, z2, . . . , zn∥

∥ ≤ 12M +m√mM

Re⟨

x, y | z2, . . . , zn⟩

≤ 12M +m√mM

x, y | z2, . . . , zn⟩∣

∣.

(3.31)

The constant 1/2 is sharp in (3.31).

Corollary 3.4. With the assumptions of the Theorem 3.2, one has

0 < ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − ∣∣⟨x, y | z2, . . . , zn

⟩∣

∣2

≤ 14|A − a|2Re(aA)

x, y | z2, . . . , zn⟩∣

∣2.

(3.32)

The constant 1/4 is best possible in (3.32).

Corollary 3.5. With the assumption of Corollary 3.3, one has

0 ≤ ‖x, z2, . . . , zn‖∥

∥y, z2, . . . , zn∥

∥ − ∣∣⟨x, y | z2, . . . , zn⟩∣

≤ ‖x, z2, . . . , zn‖∥

∥y, z2, . . . , zn∥

∥ − Re(⟨

x, y | z2, . . . , zn⟩)

≤ 12

(√M − √

m)2

√mM

Re(⟨

x, y | z2, . . . , zn⟩) ≤ 1

2

(√M − √

m)2

√mM

x, y | z2, . . . , zn⟩∣

∣,

(3.33)

0 ≤ ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥ − ∣∣⟨x, y | z2, . . . , zn⟩∣

∣2

≤ ‖x, z2, . . . , zn‖2∥

∥y, z2, . . . , zn∥

∥2 − [Re(⟨x, y | z2, . . . , zn

⟩)]2

≤ 14(M −m)2

mM

[

Re(⟨

x, y | z2, . . . , zn⟩)]2 ≤ 1

4(M −m)2

mM

x, y | z2, . . . , zn⟩∣

∣2.

(3.34)

The constant 1/2 in (3.33) and the constant 1/4 in (3.34) are best possible.

3.2. Reverse of the Triangle Inequality

Corollary 3.6. Assume x, y, z2, . . . , zn, m,M are the same as in Corollary 3.3 and Re〈x, y |z2, . . . , zn〉 ≥ 0. Then one has the following reverse of the triangle inequality:

0 ≤ ‖x, z2, . . . , zn‖ +∥

∥y, z2, . . . , zn∥

∥ − ∥∥x + y, z2, . . . , zn∥

≤√M − √

m

(mM)1/4

Re⟨

x, y | z2, . . . , zn⟩

.(3.35)

Page 10: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

10 International Journal of Mathematics and Mathematical Sciences

Proof. It is easy to see that

0 ≤ (‖x, z2, . . . , zn‖ +∥

∥y, z2, . . . , zn∥

)2 − ∥∥x + y, z2, . . . , zn∥

∥2

= 2[‖x, z2, . . . , zn‖

∥y, z2, . . . , zn∥

∥ − Re(⟨

x, y | z2, . . . , zn⟩)]

(3.36)

for any x, y, z2, . . . , zn ∈ X. If the assumption of Corollary 3.3 holds, then (3.33) is valid and,by (3.36), we deduce

0 ≤ (‖x, z2, . . . , zn‖ +∥

∥y, z2, . . . , zn∥

)2 − ∥∥x + y, z2, . . . , zn∥

∥2

(√M − √

m)2

√mM

Re(⟨

x, y | z2, . . . , zn⟩)

(3.37)

which gives

(‖x, z2, . . . , zn‖ +∥

∥y, z2, . . . , zn∥

)2

≤ ∥∥x + y, z2, . . . , zn∥

∥2 +

(√M − √

m)2

√mM

Re(⟨

x, y | z2, . . . , zn⟩)

.

(3.38)

Taking square root in (3.38), we have

‖x, z2, . . . , zn‖ +∥

∥y, z2, . . . , zn∥

√∥

∥x + y, z2, . . . , zn∥

∥2 +

(√M − √

m)2

√mM

Re(⟨

x, y | z2, . . . , zn⟩)

≤ ∥∥x + y, z2, . . . , zn∥

∥ +

√M − √

m

(mM)1/4

Re⟨

x, y | z2, . . . , zn⟩

.

(3.39)

From where we deduce the desire inequality (3.35). This completes the proof.

Let (X, 〈·, · | ·, . . .〉) be a n-inner product space over real or complex number field K.If (ei)1<i<m are linearly independent vector in the n-inner product space X, and, for givenz2, . . . , zn ∈ X, 〈ei, ej | z2, . . . , zn〉 = δij for all i, j ∈ {1, 2, . . . , m} where δij is the Kronecker

Page 11: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 11

delta,then the following inequality is the Bessel’s inequality for z2, . . . , zn orthonormal family(ei)1<i<m in n-inner product space (X, 〈·, · | ·, . . .〉):

m∑

i=1

|〈x, ei | z2, . . . , zn〉|2 ≤ ‖x, z2, . . . , zn‖2 for any x ∈ X. (3.40)

Theorem 3.7. Let x1, x2, . . . , xm, z2, . . . , zn ∈ X and α1, . . . , αm ∈ K. then one has

m∑

i=1

αixi, z2, . . . , zn

2

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

|αi|2m∑

i=1

‖xi, z2, . . . , zn‖2,(

m∑

i=1

|αi|2a)1/a( m

i=1

‖xi, z2, . . . , zn‖2b)1/b

, where a > 1,1a+1b= 1,

m∑

i=1

|αi|2max1≤i≤m

‖xi, z2, . . . , zn‖2

+

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i /= j≤m

{∣

∣αiαj

} ∑

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣,

(

m∑

i=1

|αi|c)2

−(

m∑

i=1

|αi|2c)⎤

1/c

×(∑

1≤i /= j≤m∣

xi, xj | z2, . . . , zn⟩∣

∣d)1/d

, where c > 1,1c+1d

= 1,⎡

(

m∑

i=1

|αi|)2

−m∑

i=1

|αi|2⎤

⎦ max1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣.

(3.41)

Proof. We observe that

m∑

i=1

αixi, z2, . . . , zn

2

=

m∑

i=1

αixi,m∑

j=1

αjxj , | z2, . . . , zn⟩

=m∑

i=1

m∑

j=1

αiαj

xi, xj | z2, . . . , zn⟩

=

m∑

i=1

m∑

j=1

αiαj

xi, xj | z2, . . . , zn⟩

≤m∑

i=1

m∑

j=1

|αi|∣

∣αj

xi, xj | z2, . . . , zn⟩∣

=m∑

i=1

|αi|2‖xi, z2, . . . , zn‖2 +∑

1≤i /= j≤m|αi|∣

∣αj

xi, xj | z2, . . . , zn⟩∣

∣.

(3.42)

Page 12: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

12 International Journal of Mathematics and Mathematical Sciences

Using Holder’s inequality, we may write that

m∑

i=1

|αi|2‖xi, z2, . . . , zn‖2

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

|αi|2m∑

i=1

‖xi, z2, . . . , zn‖2,

(

m∑

i=1

|αi|2a)1/a( m

i=1

‖xi, z2, . . . , zn‖2b)1/b

, where a > 1,1a+1b= 1,

m∑

i=1

|αi|2max1≤i≤m

‖xi, z2, . . . , zn‖2.

(3.43)

By Holder’s inequality for double sum, we also have

1≤i /= j≤m|αi|∣

∣αj

xi, xj | z2, . . . , zn⟩∣

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i /= j≤m

∣αiαj

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣,

1≤i /= j≤m|αi|c∣

∣αj

∣c

1/c

×⎛

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣d

1/d

, where c > 1,1c+1d

= 1,

1≤i /= j≤m|αi|∣

∣αj

∣ max1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

=

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i /= j≤m

{∣

∣αiαj

} ∑

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣,

(

m∑

i=1

|αi|c)2

−(

m∑

i=1

|αi|2c)⎤

1/c

×⎛

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣d

1/d

, where c > 1,1c+1d

= 1,

(

m∑

i=1

|αi|)2

−m∑

i=1

|αi|2⎤

⎦ max1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣.

(3.44)

Using (3.43) and (3.44) in (3.42), we may deduce the desired result.

Page 13: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 13

Corollary 3.8. With the assumption in above Theorem 3.7, one has

m∑

i=1

αixi, z2, . . . , zn

2

≤n∑

i=1

|αi|2

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max1≤i≤n

‖xi, z2, . . . , zn‖2 +

[(

n∑

i=1|αi|2)2

−∑ni=1 |αi|4

]1/2

∑ni=1 |αi|2

×⎛

1≤i /= j≤n

(

xi, xj | z2, . . . , zn)∣

∣2

1/2

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

≤m∑

i=1

|αi|2⎧

⎪⎨

⎪⎩

max1≤i≤m

‖xi, z2, . . . , zn‖2 +⎛

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣2

1/2⎫

⎪⎬

⎪⎭

.

(3.45)

The first inequality follows by taking the third branch in the first curly bracket with the second branchin the second curly bracket for c = d = 2. The second inequality in (3.45) follows by the fact that

(

m∑

i=1

|αi|2)2

−m∑

i=1

|αi|4⎤

1/2

≤m∑

i=1

|αi|2. (3.46)

By applying the following Cauchy-Bunyakovsky-Schwarz inequality:

(

m∑

i=1

ai

)2

≤ mm∑

i=1

ai2, ai ∈ R+, 1 ≤ i ≤ m. (3.47)

one may write that

(

m∑

i=1

|αi|c)2

−m∑

i=1

|αi|2c ≤ (m − 1)m∑

i=1

|αi|2c, (m ≥ 1), (3.48)

(

m∑

i=1

|αi|)2

−m∑

i=1

|αi|2 ≤ (m − 1)m∑

i=1

|αi|2, (m ≥ 1). (3.49)

It is obvious that

max1≤i /= j≤m

{∣

∣αiαj

} ≤ max1≤i≤m

|αi|2. (3.50)

Page 14: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

14 International Journal of Mathematics and Mathematical Sciences

Corollary 3.9. With the assumption in above Theorem 3.7, one has

m∑

i=1

αixi, z2, . . . , zn

2

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

|αi|2m∑

i=1

‖xi, z2, . . . , zn‖2,(

m∑

i=1

|αi|2a)1/a( m

i=1

‖xi, z2, . . . , zn‖2b)1/b

, where a > 1,1a+1b= 1,

m∑

i=1

|αi|2max1≤i≤m

‖xi, z2, . . . , zn‖2

+

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

|αi|2∑

1≤i≤m|〈xi, xi | z2, . . . , zn〉|,

(m−1)1/c(

m∑

i=1

|αi|2c)1/c⎛

1≤i /= j≤m

xi, xj | z2, . . . , zn⟩∣

∣d

1/d

, where c > 1,1c+1d

= 1,

(m − 1)m∑

i=1

|αi|2max1≤i≤m

‖xi, z2, . . . , zn‖2.(3.51)

The proof is obvious by Theorem 3.7 on applying (3.48)–(3.50).

Theorem 3.10. Let x, y1, . . . , ym, z2, . . . , zn be vectors of an n-inner product space (X, 〈·, · | ·, . . .〉)and α1, α2, . . . , αn ∈ K(K = R,C). Then

m∑

i=1

αi

x, yi | z2, . . . , zn⟩

2

≤ ‖x, z2, . . . , zn‖2

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

|αi|2m∑

i=1

∥yi, z2, . . . , zn∥

∥2,

(

m∑

i=1

|αi|2a)1/a( m

i=1

∥yi, z2, . . . , zn∥

∥2b

)1/b

, where a > 1,1a+1b= 1,

m∑

i=1

|αi|2max1≤i≤m

∥yi, z2, . . . , zn∥

∥2

+ ‖x, z2, . . . , zn‖2

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i /= j≤m

{∣

∣αiαj

} ∑

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣,

(

m∑

i=1

|αi|c)2

−(

m∑

i=1

|αi|2c)⎤

1/c⎛

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣d

1/d

,

(

m∑

i=1

|αi|)2

−(

m∑

i=1

|αi|2)⎤

m∑

i=1

|αi|2max1≤i≤m

‖xi, z2, . . . , zn‖2.

(3.52)

Page 15: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 15

Proof. Since

m∑

i=1

αi

x, yi | z2, . . . , zn⟩

=⟨

x,∑

αiyi | z2, . . . , zn⟩

(3.53)

and by Schwarz’s inequality in n-inner product spaces,

m∑

i=1

αi

x, yi | z2, . . . , zn⟩

2

≤ ‖x, z2, . . . , zn‖2∥

m∑

i=1

αiyi, z2, . . . , zn

2

. (3.54)

Using αi = αi, zi = yi (i = 1, 2, . . . , n) in the Theorem 3.7, we get the desired inequality(3.52).

Corollary 3.11. With the assumptions in Theorem 3.10, the following holds:

m∑

i=1

αi

x, yi | z2, . . . , zn⟩

2

≤ ‖x, z2, . . . , zn‖2

×

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

i=1

|αi|2⎧

⎪⎨

⎪⎩

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣2

1/2⎫

⎪⎬

⎪⎭

,

max1≤i≤m

|αi|2⎧

m∑

i=1

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

,

(

m∑

i=1

|αi|2p)1/p

×

⎪⎨

⎪⎩

(

m∑

i=1

∥yi, z2, . . . , zn∥

∥2q

)1/q

+ (m − 1)

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣q

1/q⎫

⎪⎬

⎪⎭

,

m∑

i=1

|αi|2{

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 + (m − 1) max

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

}

.

(3.55)

Page 16: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

16 International Journal of Mathematics and Mathematical Sciences

3.3. Some Boas-Bellman Type Inequalities in n-Inner Product Spaces

If we put αi = 〈x, yi | z2, . . . , zn〉 (i = 1, 2, . . . , m), in the first inequality of (3.55)

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)2

≤ ‖x, z2, . . . , zn‖2m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

×

⎪⎨

⎪⎩

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣2

1/2⎫

⎪⎬

⎪⎭

(3.56)

which is equivalent to the following Boass-Bellman type inequality for n-inner products:

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

≤ ‖x, z2, . . . , zn‖2⎧

⎪⎨

⎪⎩

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣2

1/2⎫

⎪⎬

⎪⎭

.

(3.57)

Now, if we take αi = 〈x, yi | z2, . . . , zn〉 (i = 1, 2, . . . , m), in second inequality of (3.55), we have

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)2

≤ ‖x, z2, . . . , zn‖2max1≤i≤m

x, yi | z2, . . . , zn⟩∣

∣2

×⎧

m∑

i=1

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

.

(3.58)

By taking the square root in

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)

≤ ‖x, z2, . . . , zn‖max1≤i≤m

x, yi | z2, . . . , zn⟩∣

×⎧

m∑

i=1

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

1/2

(3.59)

Page 17: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 17

for any x, y1, . . . , ym, z2, . . . , zn be vectors of an n-inner product space (X, 〈·, · | ·, . . .〉).If we assume that (ei)1≤i≤m is an orthonormal family in X with respect to the vectorz2, . . . , zn, (ei, ej | z2, . . . , zn) = δij for all i, j ∈ {1, . . . , m} then by (3.57) we deduce Bessel’sinequality

∑mi=1 |〈x, ei | z2, . . . , zn〉|2 ≤ ‖x, z2, . . . , zn‖2, and (3.59) implies

m∑

i=1

|〈x, ei | z2, . . . , zn〉|2 ≤√m‖x, z2, . . . , zn‖max

1≤i≤m|〈x, ei | z2, . . . , zn〉|2. (3.60)

For the third inequality in (3.55) αi = 〈x, yi | z2, . . . , zn〉 (i = 1, 2, . . . , m), we have

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)2

≤ ‖x, z2, . . . , zn‖2(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2p

)1/p

×

⎪⎨

⎪⎩

(

m∑

i=1

∥yi, z2, . . . , zn∥

∥2q

)1/q

+ (m − 1)

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣q

1/q⎫

⎪⎬

⎪⎭

(3.61)

for p > 1, (1/p) + (1/q) = 1. Taking the square root in this inequality, we get

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)

≤ ‖x, z2, . . . , zn‖(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2p

)1/2p

×

⎪⎨

⎪⎩

(

m∑

i=1

∥yi, z2, . . . , zn∥

∥2q

)1/q

+ (m − 1)

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣q

1/q⎫

⎪⎬

⎪⎭

1/2

.

(3.62)

For any x, y1, . . . , ym, z2, . . . , zn ∈ X, and p > 1, with (1/p) + (1/q) = 1, then the aboveinequality (3.62) becomes, for an orthonormal family with respect to the vector z2, . . . , zn,

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)

≤ m1/q‖x, z2, . . . , zn‖(

m∑

i=1

|〈x, ei | z2, . . . , zn〉|2p)1/2p

. (3.63)

Page 18: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

18 International Journal of Mathematics and Mathematical Sciences

We take αi = 〈x, yi | z2, . . . , zn〉 (i = 1, 2, . . . , m), in the last inequality of (3.55)

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)2

≤ ‖x, z2, . . . , zn‖2m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

×{

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 + (m − 1) max

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

}

(3.64)

which implies

(

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

)

≤ ‖x, z2, . . . , zn‖2{

max1<i<m

∥yi, z2, . . . , zn∥

∥2 + (m − 1) max

1<i /= j<m

yi, yj | z2, . . . , zn⟩∣

}

(3.65)

for any x, y1, . . . , ym, z2, . . . , zn ∈ X.

4. Applications for Integral Inequalities

Let (Ω,Σ, μ) be a measure space consisting of a set Ω, a σ-algebra Σ of subsets of Ω and acountably additive measure μ on Σ with values in R ∪ {∞}. Denote by L2ρ(Ω) the Hilbertspace of all real-valued functions f defined on Ω that are n-ρ-integrable on Ω, that is,∫

Ω ρ(s)|f(s)|ndμ(s) < ∞where ρ : Ω → [0,∞) is a measurable function on Ω.We can introduce the following n-inner product on L2ρ(Ω):

f, g | h2, . . . , hn

ρ =1n!

Ω

Ω· · ·∫

Ω︸ ︷︷ ︸

n-times

ρ(s1)ρ(s2) · · · ρ(sn)

×

f(s1) f(s2) . . . f(sn)h2(s1) h2(s2) . . . h2(sn)

... . . ....

hn(s1) hn(s2) . . . hn(sn)

×

g(s1) g(s2) . . . g(sn)h2(s1) h2(s2) . . . h2(sn)

... . . ....

hn(s1) hn(s2) . . . hn(sn)

dμ(s1)dμ(s2) · · ·dμ(sn),

(4.1)

Page 19: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 19

where by∣

f(s1) f(s2) . . . f(sn)h2(s1) h2(s2) . . . h2(sn)

...hn(s1)

. . .hn(s2) . . .

...hn(sn)

(4.2)

we denote the determinant of matrix

f(s1) f(s2) · · · · · · f(sn)h2(s1) h2(s2) · · · · · · h2(sn)

...... · · · · · · ...

hn(s1) hn(s2) · · · · · · hn(sn)

. (4.3)

Generating the n-norm on L2ρ(Ω) is expressed by∥

∥f, h2, . . . , hn

p

=

1n!

Ω

Ω· · ·∫

Ω︸ ︷︷ ︸

n−times

ρ(s1)ρ(s2) · · · ρ(sn)

×

f(s1) f(s2) · · · · · · f(sn)h2(s1) h2(s2) · · · · · · h2(sn)

...... · · · · · · ...

hn(s1) hn(s2) · · · · · · hn(sn)

2

dμ(s1)dμ(s2) · · ·dμ(sn)

1/2

.

(4.4)

A simple calculation with integrals shows that

f, g | h2, . . . , hn

ρ =

Ωρfgdμ

Ωρfh2dμ · · · · · ·

Ωρfhndμ

Ωρfh2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρghndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

, (4.5)

∥f, h2, . . . , hn

p =

Ωρf2dμ

Ωρfh2dμ · · · · · ·

Ωρfhndμ

Ωρfh2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρghndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

, (4.6)

where, for simplicity, instead of∫

Ω ρ(s)f(s)g(s)dμ(s), we have written∫

Ω ρfgdμ.

Page 20: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

20 International Journal of Mathematics and Mathematical Sciences

Proposition 4.1. Let f, g1, . . . , gm, h2, . . . , hn ∈ L2ρ(Ω), where ρ : Ω → [0,∞) a measure functionis on Ω. Then one has

m∑

i=1

Ωρfgidμ

Ωρfh2dμ · · · · · ·

Ωρfhndμ

Ωρgih2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρgihndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

2

Ωρf2dμ

Ωρfh2dμ · · · · · ·

Ωρfhndμ

Ωρfh2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρfhndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

×

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

Ωρgi

2dμ

Ωρgih2dμ · · · · · ·

Ωρgihndμ

Ωρgih2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρgihndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

+

1≤i /= j≤m

Ωρgjgidμ

Ωρgjh2dμ · · · · · ·

Ωρgjhndμ

Ωρgih2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρgihndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

2⎞

1/2

.

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

Proof. Applying the n-inner product and n-norm defined in (4.1) and (4.4), and using (4.5)and (4.6) in (3.57)

m∑

i=1

x, yi | z2, . . . , zn⟩∣

∣2

≤ ‖x, z2, . . . , zn‖2

×

⎪⎨

⎪⎩

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 +

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

∣2

1/2⎫

⎪⎬

⎪⎭

,

(4.8)

we get the required proof of the proposition.

Page 21: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

International Journal of Mathematics and Mathematical Sciences 21

Proposition 4.2. Let f, g1, . . . , gm, h2, . . . , hn ∈ L2ρ(Ω), where ρ:Ω → [0,∞) a measure functionis on Ω. Then one has

m∑

i=1

Ωρfgidμ

Ωρfh2dμ · · · · · ·

Ωρfhndμ

Ωρgih2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρgihndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

2

Ωρf2dμ

Ωρfh2dμ · · · · · ·

Ωρfhndμ

Ωρfh2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρfhndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

×

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1≤i≤m

Ωρgi

2dμ

Ωρgih2dμ · · · · · ·

Ωρgihndμ

Ωρgih2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρgihndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

+(m − 1) max1≤i /= j≤m

Ωρgjgidμ

Ωρgjh2dμ · · · · · ·

Ωρgjhndμ

Ωρgih2dμ

Ωρh2

2dμ · · · · · ·∫

Ωρh2hndμ

...... · · · · · · ...

Ωρgihndμ

Ωρh2hndμ · · · · · ·

Ωρhn

2dμ

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(4.9)

Proof. By (3.65),

(∑∣

x, yi | z2, . . . , zn⟩∣

∣2)

≤ ‖x, z2, . . . , zn‖2

×{

max1≤i≤m

∥yi, z2, . . . , zn∥

∥2 + (m − 1) max

1≤i /= j≤m

yi, yj | z2, . . . , zn⟩∣

}

,

(4.10)

and using (4.1) and (4.4), we get the proof of the proposition.

Page 22: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

22 International Journal of Mathematics and Mathematical Sciences

Acknowledgment

The authors would like to thank the Editor-in-Chief and referees for their valuablesuggestions.

References

[1] S. Gahler, “Unter Suchungen Uber Veralla gemeinerte m-etrische Raume I,” MathematischeNachrichten, vol. 40, pp. 165–189, 1969.

[2] R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science, Hauppauge, NY, USA,2001.

[3] Y. J. Cho, P. C. S. Lin, S. S. Kim, and A. Misiak, Theory of 2-Inner Product Spaces, Nova Science,Huntington, NY, USA, 2001.

[4] A. Misiak, “n-inner product spaces,” Mathematische Nachrichten, vol. 140, pp. 299–319, 1989.[5] H. Gunawan and M. Mashadi, “On n-normed spaces,” International Journal of Mathematics and

Mathematical Sciences, vol. 27, no. 10, pp. 631–639, 2001.[6] H. Gunawan, “On n-inner products, n-norms, and the Cauchy-Schwarz inequality,” Scientiae

Mathematicae Japonicae, vol. 55, no. 1, pp. 53–60, 2002.[7] Y. J. Cho, M. Matic, and J. Pecaric, “Inequalities of Hlawka’s type in n-inner product spaces,” Korean

Mathematical Society, vol. 17, no. 4, pp. 583–592, 2002.[8] S. S. Dragomir, “A counterpart of Schwarz’s inequality in inner product spaces,” RGMIA Research

Report Collection, vol. 6, supplement 18, 2003.[9] S. S. Dragomir, “A generalization of the Cassels and Greub-Reinboldt inequalities in inner product

spaces,” Nonlinear Analysis Forum, vol. 8, no. 2, pp. 169–178, 2003.[10] S. S. Dragomir, “New reverses of Schwarz, triangle and Bessel inequalities in inner product spaces,”

The Australian Journal of Mathematical Analysis and Applications, vol. 1, no. 1, pp. 1–18, 2004.[11] S. S. Dragomir, “Refinements of Buzano’s and Kurepa’s inequalities in inner product spaces,” Facta

Universitatis. Series: Mathematics and Informatics, no. 20, pp. 65–73, 2005.[12] S. S. Dragomir, “Reverses of Schwarz, triangle and Bessel inequalities in inner product spaces,” Journal

of Inequalities in Pure and Applied Mathematics, vol. 5, no. 3, article 76, 18 pages, 2004.[13] S. S. Dragomir, “Some companions of the Gruss inequality in inner product spaces,” Journal of

Inequalities in Pure and Applied Mathematics, vol. 4, no. 5, article 87, 10 pages, 2003.

Page 23: On Reverses of Some Inequalities in n-Inner Product Spaces · 2019. 7. 31. · We present some new reverses of Cauchy-Bunyakovsky-Schwarz inequality, and Triangle and Boas-Bellman

Submit your manuscripts athttp://www.hindawi.com

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttp://www.hindawi.com

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttp://www.hindawi.com

Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

Stochastic AnalysisInternational Journal of