76
On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics, Statistics and Actuarial Science University of Kent Castro-Urdiales, October 2007 On Modular Invariants of Finite Groups – p. 1/?

On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

On Modular Invariants of FiniteGroupsPeter Fleischmann

Institute of Mathematics, Statistics and Actuarial Science

University of Kent

Castro-Urdiales, October 2007

On Modular Invariants of Finite Groups – p. 1/??

Page 2: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Notation

G finite group

V a finite dimensionalKG - module,

V ∗ dual module with basisx1, · · · , xn,

A = Sym(V ∗) ∼= K[x1, · · · , xn], polynomial ring;

AG := {a ∈ A | g(a) = a, ∀g ∈ G}, (N0 − graded)

ring of polynomial invariants.

On Modular Invariants of Finite Groups – p. 2/??

Page 3: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Notation

G finite group

V a finite dimensionalKG - module,

V ∗ dual module with basisx1, · · · , xn,

A = Sym(V ∗) ∼= K[x1, · · · , xn], polynomial ring;

AG := {a ∈ A | g(a) = a, ∀g ∈ G}, (N0 − graded)

ring of polynomial invariants.

Example:G := Σn, symmetric group, acting onV ∼= V ∗ = ⊕n

i=1Kxi;

(natural representation)

AG = K[e1, · · · , en], symmetric polynomials:generated byelementary symmetric functionse1, · · · , en.

On Modular Invariants of Finite Groups – p. 2/??

Page 4: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Research Problem

I. Constructive Complexityof AG

On Modular Invariants of Finite Groups – p. 3/??

Page 5: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Research Problem

I. Constructive Complexityof AG

fundamental systems of invariantsdegree bounds for generators

On Modular Invariants of Finite Groups – p. 4/??

Page 6: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Research Problem

I. Constructive Complexityof AG

fundamental systems of invariantsdegree bounds for generators

II. Structural complexityof AG

On Modular Invariants of Finite Groups – p. 5/??

Page 7: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Research Problem

I. Constructive Complexityof AG

fundamental systems of invariantsdegree bounds for generators

II. Structural complexityof AG

distance ofAG from being a polynomial ring

cohomological co - dimension:depth(AG)

On Modular Invariants of Finite Groups – p. 6/??

Page 8: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Research Problem

I. Constructive Complexityof AG

fundamental systems of invariantsdegree bounds for generators

II. Structural complexityof AG

distance ofAG from being a polynomial ring

cohomological co - dimension:depth(AG)

As in representation theory:

char K 6 | |G| ⇐⇒ : non − modular case;

char K | |G| ⇐⇒ : modular case.

On Modular Invariants of Finite Groups – p. 7/??

Page 9: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Definition : (Degree bounds, Noether - number)

β(AG) := min{k | AG generated in degree ≤ k}

On Modular Invariants of Finite Groups – p. 8/??

Page 10: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Definition : (Degree bounds, Noether - number)

β(AG) := min{k | AG generated in degree ≤ k}

Theorem (Emmy Noether (1916)): Ifchar K = 0, then

β(AG) ≤ |G|; (Noether bound)

On Modular Invariants of Finite Groups – p. 8/??

Page 11: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Definition : (Degree bounds, Noether - number)

β(AG) := min{k | AG generated in degree ≤ k}

Theorem (Emmy Noether (1916)): Ifchar K = 0, then

β(AG) ≤ |G|; (Noether bound)

- Noether’s proofsdo not workfor char K 6 | |G| in general.

- the Noether bounddoes not holdif char K divides|G|.- Generalization tochar K 6 | |G|(Fl. (2000), Fogarty/Benson, (2001)).

On Modular Invariants of Finite Groups – p. 8/??

Page 12: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

On Modular Invariants of Finite Groups – p. 9/??

Page 13: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

How far away isAG from being a polynomial ring in general?

On Modular Invariants of Finite Groups – p. 9/??

Page 14: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

How far away isAG from being a polynomial ring in general?

Noether normalisation : AG f.g. module overF ≤ AG

(poly ring, gen’d by homogeneous system of parameters)

On Modular Invariants of Finite Groups – p. 9/??

Page 15: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

How far away isAG from being a polynomial ring in general?

Noether normalisation : AG f.g. module overF ≤ AG

(poly ring, gen’d by homogeneous system of parameters)

AG Cohen - Macaulay (CM) : ⇐⇒ FAG free.

On Modular Invariants of Finite Groups – p. 9/??

Page 16: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

How far away isAG from being a polynomial ring in general?

Noether normalisation : AG f.g. module overF ≤ AG

(poly ring, gen’d by homogeneous system of parameters)

AG Cohen - Macaulay (CM) : ⇐⇒ FAG free.

Theorem : (Eagon - Hochster):If |G| ∈ K∗, thenAG is Cohen - Macaulay ring.

On Modular Invariants of Finite Groups – p. 9/??

Page 17: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

How far away isAG from being a polynomial ring in general?

Noether normalisation : AG f.g. module overF ≤ AG

(poly ring, gen’d by homogeneous system of parameters)

AG Cohen - Macaulay (CM) : ⇐⇒ FAG free.

Theorem : (Eagon - Hochster):If |G| ∈ K∗, thenAG is Cohen - Macaulay ring.

Falsein the modular case

On Modular Invariants of Finite Groups – p. 9/??

Page 18: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Structural Aspects

How far away isAG from being a polynomial ring in general?

Noether normalisation : AG f.g. module overF ≤ AG

(poly ring, gen’d by homogeneous system of parameters)

AG Cohen - Macaulay (CM) : ⇐⇒ FAG free.

Theorem : (Eagon - Hochster):If |G| ∈ K∗, thenAG is Cohen - Macaulay ring.

Falsein the modular case

Example:AG := Fp[Vreg]Z/p, p ≥ 5.

On Modular Invariants of Finite Groups – p. 9/??

Page 19: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Modular Obstructions

Transfer map

tG1 : A → AG : a →∑

g∈G

g(a).

Surjective in the non-modular case, but

tG1 (A) � AG proper ideal

in themodularcase.

On Modular Invariants of Finite Groups – p. 10/??

Page 20: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Modular Obstructions

Transfer map

tG1 : A → AG : a →∑

g∈G

g(a).

Surjective in the non-modular case, but

tG1 (A) � AG proper ideal

in themodularcase.

Combinatorics to reduce degrees of generators eg.:

x1 . . . xm =(−1)m

m!

I⊆{1,...,m}

(−1)|I|(∑

i∈I

xi)m

(needed form = 1, . . . , |G|, sofails in modular case).On Modular Invariants of Finite Groups – p. 10/??

Page 21: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Modular counter example to Noether bound:

On Modular Invariants of Finite Groups – p. 11/??

Page 22: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Modular counter example to Noether bound:

G = Σ2 = 〈g〉, A := F2[x1, . . . , xk, y1, . . . , yk]

On Modular Invariants of Finite Groups – p. 11/??

Page 23: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Modular counter example to Noether bound:

G = Σ2 = 〈g〉, A := F2[x1, . . . , xk, y1, . . . , yk]

g : xi 7→ yi, ∀i = 1, . . . , k.

On Modular Invariants of Finite Groups – p. 11/??

Page 24: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Modular counter example to Noether bound:

G = Σ2 = 〈g〉, A := F2[x1, . . . , xk, y1, . . . , yk]

g : xi 7→ yi, ∀i = 1, . . . , k.

X := (x1 . . . xk)+ := x1 . . . xk + y1 . . . yk;

On Modular Invariants of Finite Groups – p. 11/??

Page 25: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Modular counter example to Noether bound:

G = Σ2 = 〈g〉, A := F2[x1, . . . , xk, y1, . . . , yk]

g : xi 7→ yi, ∀i = 1, . . . , k.

X := (x1 . . . xk)+ := x1 . . . xk + y1 . . . yk;

indecomposable inAG, henceβ(AG) ≥ k 7→ ∞.

On Modular Invariants of Finite Groups – p. 11/??

Page 26: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Constructive Aspects

Modular counter example to Noether bound:

G = Σ2 = 〈g〉, A := F2[x1, . . . , xk, y1, . . . , yk]

g : xi 7→ yi, ∀i = 1, . . . , k.

X := (x1 . . . xk)+ := x1 . . . xk + y1 . . . yk;

indecomposable inAG, henceβ(AG) ≥ k 7→ ∞.

butX = (x2 . . . xk)+x1 + (x1x3 · · · xk)

+y2 − (x3 · · · xk)+x1y2,

is a decomposition inHilbert ideal AG,+ · A / A.

On Modular Invariants of Finite Groups – p. 11/??

Page 27: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Relative Noether Bound

Theorem (Fl., Knop, Sezer, (indep.)):

If H ≤ G, |G| ∈ K∗, or H E G with [G : H] ∈ K∗, then

β(AG) ≤ β(AH) · [G : H].

On Modular Invariants of Finite Groups – p. 12/??

Page 28: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Relative Noether Bound

Theorem (Fl., Knop, Sezer, (indep.)):

If H ≤ G, |G| ∈ K∗, or H E G with [G : H] ∈ K∗, then

β(AG) ≤ β(AH) · [G : H].

Sketch of proof:G := ]ni:=1giH;

rel. transfer map : tGH : AH → AG, a 7→n

i=1

gi(a).

On Modular Invariants of Finite Groups – p. 13/??

Page 29: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Relative Noether Bound

Theorem (Fl., Knop, Sezer, (indep.)):

If H ≤ G, |G| ∈ K∗, or H E G with [G : H] ∈ K∗, then

β(AG) ≤ β(AH) · [G : H].

Sketch of proof:G := ]ni:=1giH;

rel. transfer map : tGH : AH → AG, a 7→n

i=1

gi(a).

Let b1, b2, · · · , bn ∈ AH . For fixedi:

n∏

j=1

( gi(bj) − gj(bj) ) = 0.

On Modular Invariants of Finite Groups – p. 14/??

Page 30: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Relative Noether Bound

Theorem (Fl., Knop, Sezer, (indep.)):

If H ≤ G, |G| ∈ K∗, or H E G with [G : H] ∈ K∗, then

β(AG) ≤ β(AH) · [G : H].

Sketch of proof:∏n

j=1 ( gi(bj) − gj(bj) ) = 0.

(Expansion and sum overi = 1, · · · , n ):

On Modular Invariants of Finite Groups – p. 15/??

Page 31: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Relative Noether Bound

Theorem (Fl., Knop, Sezer, (indep.)):

If H ≤ G, |G| ∈ K∗, or H E G with [G : H] ∈ K∗, then

β(AG) ≤ β(AH) · [G : H].

Sketch of proof:∏n

j=1 ( gi(bj) − gj(bj) ) = 0.

(Expansion and sum overi = 1, · · · , n ):

tGH(bb1 · · · bn) =

I<{1,2,···,n}

(−1)n−|I|+1 [∏

` 6∈I

g`(b`)] · tGH(b ·∏

j∈I

bj),

a reduction in Hilbert - idealAG,+A.

On Modular Invariants of Finite Groups – p. 16/??

Page 32: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Relative Noether Bound

Theorem (Fl., Knop, Sezer, (indep.)):

If H ≤ G, |G| ∈ K∗, or H E G with [G : H] ∈ K∗, then

β(AG) ≤ β(AH) · [G : H].

Sketch of proof:∏n

j=1 ( gi(bj) − gj(bj) ) = 0.

(Expansion and sum overi = 1, · · · , n ):

tGH(bb1 · · · bn) =

I<{1,2,···,n}

(−1)n−|I|+1 [∏

` 6∈I

g`(b`)] · tGH(b ·∏

j∈I

bj),

a reduction in Hilbert - idealAG,+A.

Application oftG1 or tGH yields decomposition inAG.

On Modular Invariants of Finite Groups – p. 17/??

Page 33: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Known modular degree bounds

n := dim(V );

n(|G| − 1) + |G|n2n−1+1 · n2n−1+1, (Derksen - Kemper)

qn−1q−1

· (nq − n − 1), (Karaguezian - Symonds),

hereq = |K|.

For permutation representationsG ≤ Σn:

β(AG) ≤(

n

2

)

. (M Goebel 1996).

On Modular Invariants of Finite Groups – p. 18/??

Page 34: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Degree bound conjectures

1 If p 6 | [G : H], thenβ(AG) ≤ β(AH) · [G : H](i.e. H E G not needed).

On Modular Invariants of Finite Groups – p. 19/??

Page 35: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Degree bound conjectures

1 If p 6 | [G : H], thenβ(AG) ≤ β(AH) · [G : H](i.e. H E G not needed).

2 Noether - bound forHilbert ideal (Derksen/Kemper):

β(A+,G · A) ≤ |G|.

On Modular Invariants of Finite Groups – p. 19/??

Page 36: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Degree bound conjectures

1 If p 6 | [G : H], thenβ(AG) ≤ β(AH) · [G : H](i.e. H E G not needed).

2 Noether - bound forHilbert ideal (Derksen/Kemper):

β(A+,G · A) ≤ |G|.

3 General modular degree bound :

β(AG) ≤ max{|G|, Dim(A) · (|G| − 1)}.

On Modular Invariants of Finite Groups – p. 19/??

Page 37: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Degree bound conjectures

1 If p 6 | [G : H], thenβ(AG) ≤ β(AH) · [G : H](i.e. H E G not needed).

2 Noether - bound forHilbert ideal (Derksen/Kemper):

β(A+,G · A) ≤ |G|.

3 General modular degree bound :

β(AG) ≤ max{|G|, Dim(A) · (|G| − 1)}.

Conjecture 1 true, if[G : H]! ∈ K∗.Conjectures 2. and 3. have been proven forp - permutationrepresentations (Fl. 2000, Fl. - Lempken 1997).

On Modular Invariants of Finite Groups – p. 19/??

Page 38: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The 2p − 3 conjecture

Let char(K) = p > 3, g = (1 2 · · · p) ∈ Σp, G = 〈g〉 ∼= Z/p,acting onA := K[x1, · · · , xp],(i.e. A = Sym(Vreg) regular module).

Know:

β(AG) ≤ p(p − 1)

2.

On Modular Invariants of Finite Groups – p. 20/??

Page 39: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The 2p − 3 conjecture

Let char(K) = p > 3, g = (1 2 · · · p) ∈ Σp, G = 〈g〉 ∼= Z/p,acting onA := K[x1, · · · , xp],(i.e. A = Sym(Vreg) regular module).

Know:

β(AG) ≤ p(p − 1)

2.

However:

MAGMA - calculations forp = 5, 7, 11, 13 showed:

Sym(AG) generated in degrees≤ 2p − 3.

On Modular Invariants of Finite Groups – p. 21/??

Page 40: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The 2p − 3 conjecture

Let char(K) = p > 3, g = (1 2 · · · p) ∈ Σp, G = 〈g〉 ∼= Z/p,acting onA := K[x1, · · · , xp],(i.e. A = Sym(Vreg) regular module).

Know:

β(AG) ≤ p(p − 1)

2.

However:

MAGMA - calculations forp = 5, 7, 11, 13 showed:

Sym(AG) generated in degrees≤ 2p − 3.

Expansion of∏p−1

j=1 ( gi(bj)− bj ) and summation overgi ∈ G leads

to reduction of transferstG1 (b1b2 · · · bp−1) in Hilbert - ideal:

On Modular Invariants of Finite Groups – p. 22/??

Page 41: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The 2p − 3 theorem

Theorem I [P F., M Sezer, R J Shank, C F Woodcock, 2005]Forp > 3, G = 〈g〉 ∼= Z/p,A = Sym(Vreg) (regular module):

β(AG) = 2p − 3.

On Modular Invariants of Finite Groups – p. 23/??

Page 42: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The 2p − 3 theorem

Theorem I [P F., M Sezer, R J Shank, C F Woodcock, 2005]Forp > 3, G = 〈g〉 ∼= Z/p,A = Sym(Vreg) (regular module):

β(AG) = 2p − 3.

Together with earlier known results⇒Noether numbers (=exact degree bounds) for arbitrary finiteKG -modules:

On Modular Invariants of Finite Groups – p. 24/??

Page 43: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The 2p − 3 theorem

Theorem I [P F., M Sezer, R J Shank, C F Woodcock, 2005]Forp > 3, G = 〈g〉 ∼= Z/p,A = Sym(Vreg) (regular module):

β(AG) = 2p − 3.

Together with earlier known results⇒Noether numbers (=exact degree bounds) for arbitrary finiteKG -modules:for exampleif W ∈ K[G]-mod with indec. summandVk | W ofdimensionk > 3,(e.g. ifW = Vk ⊕ · · · ⊕ Vk with diagonal action):

β(AG) = (p − 1)dim(WG) + p − 2.

On Modular Invariants of Finite Groups – p. 25/??

Page 44: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

The Noether Numbers forZ/p

Theorem II [P F., M Sezer, R J Shank, C F Woodcock, 2005]Let W be arbitrary finiteKG - module without trivial summands,i.e. A = Sym(W ), Vk := indecomposable of dimensionk. Then

(A) If Vk | W for k > 3, then

β(AG) = (p − 1)dim(WG) + p − 2.

(B) If W ∼= mV2 + `V3, ` > 0, then

β(AG) = (p − 1)dim(WG) + 1.

(C) If W ∼= mV2, then

β(AG) = (p − 1)dim(WG).

On Modular Invariants of Finite Groups – p. 26/??

Page 45: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Localisations

joint work with G Kemper (Munich) and C F Woodcock (Kent)

On Modular Invariants of Finite Groups – p. 27/??

Page 46: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Localisations

joint work with G Kemper (Munich) and C F Woodcock (Kent)

Noether bound forinvariant field in arbitrary characteristic i.e.

Quot(AG) = Quot(AG≤|G|).

On Modular Invariants of Finite Groups – p. 27/??

Page 47: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Localisations

joint work with G Kemper (Munich) and C F Woodcock (Kent)

Noether bound forinvariant field in arbitrary characteristic i.e.

Quot(AG) = Quot(AG≤|G|).

For arbitraryG, ∃ 0 6= c := tG1 (f) in degree≤ |G|such that

β(AGc ) ≤ 2|G| − 1,

If deg(c) = 1, thenβ(AGc ) ≤ |G|.

On Modular Invariants of Finite Groups – p. 27/??

Page 48: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

let B ≤ AG be a sub algebra.

On Modular Invariants of Finite Groups – p. 28/??

Page 49: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

let B ≤ AG be a sub algebra.

Definition : The set

C(B,AG) := {c ∈ AG | cAG ⊆ B}

is called theconductor of AG into B.

On Modular Invariants of Finite Groups – p. 28/??

Page 50: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

let B ≤ AG be a sub algebra.

Definition : The set

C(B,AG) := {c ∈ AG | cAG ⊆ B}

is called theconductor of AG into B.

C(B,AG) is largest ideal ofAG which lies inB.

On Modular Invariants of Finite Groups – p. 28/??

Page 51: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

let B ≤ AG be a sub algebra.

Definition : The set

C(B,AG) := {c ∈ AG | cAG ⊆ B}

is called theconductor of AG into B.

C(B,AG) is largest ideal ofAG which lies inB.

Lemma : The following are equivalent:i) C(B,AG) 6= 0.ii) Quot(B) = Quot(AG) andAG is integral overB.

On Modular Invariants of Finite Groups – p. 28/??

Page 52: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

Pick "easy"constructible subalgebraB ≤ AG, such that∃ 0 6= c ∈ C(B,AG) (i.e. c ∈ B with cAG ≤ B.)

On Modular Invariants of Finite Groups – p. 29/??

Page 53: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

Pick "easy"constructible subalgebraB ≤ AG, such that∃ 0 6= c ∈ C(B,AG) (i.e. c ∈ B with cAG ≤ B.)

Calculate

cA ∩ B = cAG ∩ B = cAG = 〈f1, · · · , fs〉B

On Modular Invariants of Finite Groups – p. 29/??

Page 54: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Method to construct AG

Pick "easy"constructible subalgebraB ≤ AG, such that∃ 0 6= c ∈ C(B,AG) (i.e. c ∈ B with cAG ≤ B.)

Calculate

cA ∩ B = cAG ∩ B = cAG = 〈f1, · · · , fs〉B

If follows AG = B[f1/c, · · · , fs/c].

On Modular Invariants of Finite Groups – p. 29/??

Page 55: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Calculation of cA ∩ B

Let A = K[X1, · · · , Xn], B := K[b1, · · · , bm] ≤ A,

with polynomialsbj := bj(X), c := c(X) ∈ B.

On Modular Invariants of Finite Groups – p. 30/??

Page 56: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Calculation of cA ∩ B

Let A = K[X1, · · · , Xn], B := K[b1, · · · , bm] ≤ A,

with polynomialsbj := bj(X), c := c(X) ∈ B.

consider polynomial ringT := K[X1, ..., Xn, Y1, ..., Ym],with idealJ := (c, bj − Yj) E T ;

On Modular Invariants of Finite Groups – p. 30/??

Page 57: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Calculation of cA ∩ B

Let A = K[X1, · · · , Xn], B := K[b1, · · · , bm] ≤ A,

with polynomialsbj := bj(X), c := c(X) ∈ B.

consider polynomial ringT := K[X1, ..., Xn, Y1, ..., Ym],with idealJ := (c, bj − Yj) E T ;

form the"elimination ideal " :

E := J ∩ K[Y] = (χ1(Y), · · · , χ`(Y)),

which can be computed, using Groebner bases, withoutknowingAG.

On Modular Invariants of Finite Groups – p. 30/??

Page 58: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Calculation of cA ∩ B

Let A = K[X1, · · · , Xn], B := K[b1, · · · , bm] ≤ A,

with polynomialsbj := bj(X), c := c(X) ∈ B.

consider polynomial ringT := K[X1, ..., Xn, Y1, ..., Ym],with idealJ := (c, bj − Yj) E T ;

form the"elimination ideal " :

E := J ∩ K[Y] = (χ1(Y), · · · , χ`(Y)),

which can be computed, using Groebner bases, withoutknowingAG.

SubstitutionYj 7→ bj gives

cAG = cA ∩ B = (χ1(b1, · · · , bm), · · · , χ`(b1, · · · , bm)).

On Modular Invariants of Finite Groups – p. 30/??

Page 59: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Use of Diagonal-invariants ofΣn

Let |G| = n, V ∈ KG − mod of dimensionk;V↓1

↑G := KG ⊗K V , the reduced - inducedmodule.

On Modular Invariants of Finite Groups – p. 31/??

Page 60: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Use of Diagonal-invariants ofΣn

Let |G| = n, V ∈ KG − mod of dimensionk;V↓1

↑G := KG ⊗K V , the reduced - inducedmodule.

There is canonicalKG -epimorphism

V↓1↑G → V, g ⊗ v 7→ g(v)

which extends toG - equivariant epimorphism of rings:(called theNoether - homomorphism):

ν : B := Sym(V↓1↑G) → A := Sym(V ).

ν(BG) ≤ AG

On Modular Invariants of Finite Groups – p. 31/??

Page 61: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Use of Diagonal-invariants ofΣn

B = Sym(V↓1↑G) ∼= Sym(V ⊕n) ∼=

K[X11, ..., Xk1, ..., X1n, ..., Xkn]

G - action onB factors through the Cayley - homomorphismG ↪→ ΣG

∼= Σn andΣn - action onB defined by

σ(Xij) := Xiσ(j) diagonal action.

On Modular Invariants of Finite Groups – p. 32/??

Page 62: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Use of Diagonal-invariants ofΣn

B = Sym(V↓1↑G) ∼= Sym(V ⊕n) ∼=

K[X11, ..., Xk1, ..., X1n, ..., Xkn]

G - action onB factors through the Cayley - homomorphismG ↪→ ΣG

∼= Σn andΣn - action onB defined by

σ(Xij) := Xiσ(j) diagonal action.

BΣn =: ring of (k - fold) “vector invariants " of Σn.

On Modular Invariants of Finite Groups – p. 32/??

Page 63: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Use of Diagonal-invariants ofΣn

B = Sym(V↓1↑G) ∼= Sym(V ⊕n) ∼=

K[X11, ..., Xk1, ..., X1n, ..., Xkn]

G - action onB factors through the Cayley - homomorphismG ↪→ ΣG

∼= Σn andΣn - action onB defined by

σ(Xij) := Xiσ(j) diagonal action.

BΣn =: ring of (k - fold) “vector invariants " of Σn.

Noether - homomorphismyields:

N := ν(BΣn) ≤ AG

with equalityif char(K) 6 | |G|.

On Modular Invariants of Finite Groups – p. 32/??

Page 64: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Vector Invariants of Σn

Theorem (H Weyl, D Richman)If p = char(K) > n, then

β(BΣn) = n.

On Modular Invariants of Finite Groups – p. 33/??

Page 65: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Vector Invariants of Σn

Theorem (H Weyl, D Richman)If p = char(K) > n, then

β(BΣn) = n.

This isfalsefor char(K) = p ≤ n.

however

On Modular Invariants of Finite Groups – p. 33/??

Page 66: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Vector Invariants of Σn

Theorem (H Weyl, D Richman)If p = char(K) > n, then

β(BΣn) = n.

This isfalsefor char(K) = p ≤ n.

however

Theorem (Fl.,Kemper,Woodcock, 2005)

β(Quot(BΣn)) = n.

On Modular Invariants of Finite Groups – p. 33/??

Page 67: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Vector Invariants of Σn

Recent progress onBΣn:

Fl. (1997):

β(BΣn) ≤ max{n, k · (n − 1)}with equality ifn = ps andchar K = p.

E Briand (2004):

Classification of whenBΣn is generated by the elementarymultisymmetrics.

F Vaccarino (2005), D Rydh (2006):

Minimal sets of generators forBΣn.

On Modular Invariants of Finite Groups – p. 34/??

Page 68: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

N in the modular case

Recall: N = ν(BΣn) ≤ AG.

On Modular Invariants of Finite Groups – p. 35/??

Page 69: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

N in the modular case

Recall: N = ν(BΣn) ≤ AG.

Theorem (Fl.,Kemper,Woodcock (2004))

β(N ) ≤ max{|G|,Dim(AG) · (|G| − 1)}.

AG = pr√N is purely inseparable overN

0 6= tG1 (A) ≤ C(N , AG) := {c ∈ AG | cAG ⊆ N} ≤ N ,in particular

Quot(N ) = Quot(AG);

∀ 0 6= c ∈ tG1 (A):

AG = c−1(cA ∩N ).

On Modular Invariants of Finite Groups – p. 35/??

Page 70: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Back to structural aspects

Question: How close isAG to being CM ?

Measured bydepth(AG) =

On Modular Invariants of Finite Groups – p. 36/??

Page 71: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Back to structural aspects

Question: How close isAG to being CM ?

Measured bydepth(AG) =

length of maximal regular sequence inAG;

cohomological co - dimension as module overparameter subalgebraF :

proj.dim FAG + depth(AG) = Dim(AG)

(Auslander-Buchsbaum-formula)

On Modular Invariants of Finite Groups – p. 37/??

Page 72: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Back to structural aspects

Question: How close isAG to being CM ?

Measured bydepth(AG) =

length of maximal regular sequence inAG;

cohomological co - dimension as module overparameter subalgebraF :

proj.dim FAG + depth(AG) = Dim(AG)

(Auslander-Buchsbaum-formula)

depth(AG) = Dim(AG) ⇐⇒ AG CM.

On Modular Invariants of Finite Groups – p. 38/??

Page 73: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Depth and Grade

For idealI E AG: grade(I, AG) :=

length of maximal regular sequence insideI.

On Modular Invariants of Finite Groups – p. 39/??

Page 74: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Depth and Grade

For idealI E AG: grade(I, AG) :=

length of maximal regular sequence insideI.

Theorem (Fl., Shank 2000)Let P ≤ G a Sylowp - group,V P theP - fix point space

with corresponding (prime) idealI E A = Sym(V ∗).

Then fori := I ∩ AG ∈ Spec(AG):

depth AG = grade(i, AG) + dim V P .

On Modular Invariants of Finite Groups – p. 39/??

Page 75: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Connection to group cohomology

(joint work with G Kemper and RJ Shank)

Let h := height ofi = codim V P and

c := min {k > 0 | Hk(G,A) 6= 0}=: cohomological connectivity

Theorem 1

depth(AG) ≥ min{dim V P + c + 1, dim V }.equality, if i · α = 0 for some0 6= α ∈ Hc(G,A).

call AG flat , if equality holds here.

On Modular Invariants of Finite Groups – p. 40/??

Page 76: On Modular Invariants of Finite Groupscongreso.us.es/dsym/Presentations/Castro_Fleischmann.pdf · On Modular Invariants of Finite Groups Peter Fleischmann Institute of Mathematics,

Criterion for flatness

P ∈ Sylp(G); c := min {k > 0 | Hk(G,A) 6= 0}

If ∃α ∈ Hc(G,A) such that1. α 6= 0;

2. resG→Q(α) = 0, ∀Q < P ;

thenAG is flat.

Theorem (Fl.+J Elmer, (2007)):

Let G = Z2 × Z2 andchar(K) = 2.Then for every non-projective indecomposableK[G]-moduleV

the ringSym(V )G is flat.

On Modular Invariants of Finite Groups – p. 41/??