104
On Fishburn Numbers Permutation Patterns, 29. 6. 2017 ıt Jel´ ınek Computer Science Institute, Charles University in Prague

On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

On Fishburn NumbersPermutation Patterns, 29. 6. 2017

Vıt JelınekComputer Science Institute, Charles University in Prague

Page 2: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

The Plan

Fishburn-enumerated objects

Generating functions, asymptotics, congruences

The Catalan connection

Page 3: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Part I

Fishburn-Enumerated Objects

Page 4: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Interval Orders

Definition (Fishburn, 1970)

A partially ordered set (P,≺) is an interval order if we can assignto every x ∈ P a (closed, bounded) interval Ix , such that thefollowing holds:

x ≺ y ⇐⇒ max(Ix) < min(Iy ).

The multiset {Ix ; x ∈ P} is an interval representation of P.

an interval order

Page 5: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Interval Orders

Definition (Fishburn, 1970)

A partially ordered set (P,≺) is an interval order if we can assignto every x ∈ P a (closed, bounded) interval Ix , such that thefollowing holds:

x ≺ y ⇐⇒ max(Ix) < min(Iy ).

The multiset {Ix ; x ∈ P} is an interval representation of P.

[1, 2] [1, 1]

[2, 5][3, 3]

[4, 5]

an interval order1 2 3 4 5

interval representation

Page 6: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Interval Orders

Definition (Fishburn, 1970)

A partially ordered set (P,≺) is an interval order if we can assignto every x ∈ P a (closed, bounded) interval Ix , such that thefollowing holds:

x ≺ y ⇐⇒ max(Ix) < min(Iy ).

The multiset {Ix ; x ∈ P} is an interval representation of P.

not an interval order:

“2+2”

Page 7: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Interval Orders

Definition (Fishburn; 1970)

A partially ordered set (P,≺) is an interval order if we can assignto every x ∈ P a (closed, bounded) interval Ix , such that thefollowing holds:

x ≺ y ⇐⇒ max(Ix) < min(Iy ).

The multiset {Ix ; x ∈ P} is an interval representation of P.

Theorem (Fishburn)

A poset is an interval order iff it avoids 2+2 as induced subposet.

Definition

Let fn be the number of (unlabeled) interval orders with nelements. These are known as Fishburn numbers (A022493).

Page 8: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Interval Orders

Definition (Fishburn; 1970)

A partially ordered set (P,≺) is an interval order if we can assignto every x ∈ P a (closed, bounded) interval Ix , such that thefollowing holds:

x ≺ y ⇐⇒ max(Ix) < min(Iy ).

The multiset {Ix ; x ∈ P} is an interval representation of P.

Theorem (Fishburn)

A poset is an interval order iff it avoids 2+2 as induced subposet.

Definition

Let fn be the number of (unlabeled) interval orders with nelements. These are known as Fishburn numbers (A022493).

Page 9: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Fishburn Matrices

Definition

A Fishburn matrix is a square matrix M = (mi ,j)di ,j=1 of nonegative

integers such that

M is upper-triangular (i.e., mi ,j = 0 whenever i > j), and

every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.A matrix is primitive if all its entries are 0 or 1.

3 12

21

1 11

11

1

Page 10: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Fishburn Matrices

Definition

A Fishburn matrix is a square matrix M = (mi ,j)di ,j=1 of nonegative

integers such that

M is upper-triangular (i.e., mi ,j = 0 whenever i > j), and

every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.

A matrix is primitive if all its entries are 0 or 1.

3 12

21

1 11

11

1

Page 11: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Fishburn Matrices

Definition

A Fishburn matrix is a square matrix M = (mi ,j)di ,j=1 of nonegative

integers such that

M is upper-triangular (i.e., mi ,j = 0 whenever i > j), and

every row and every column of M has a nonzero entry.

The weight of a matrix is the sum of its entries.A matrix is primitive if all its entries are 0 or 1.

3 12

21

1 11

11

1

Page 12: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes–Parviainen, 2010)

There are fn Fishburn matrices of weight n.

12

1

3

1

1

2

3

4

1 2 3 4

{[1, 1], [1, 2],[1, 2], [1, 2],

[2, 4], [2, 4],

[3, 3], [4, 4]}

[2, 4] [2, 4]

[1, 1] [1, 2] [1, 2] [1, 2]

[3, 3]

[4, 4]

Theorem

Fishburn matrices of weight n, with first row of weight k and lastcolumn of weight ` correspond to interval orders of size n, with kminimal and ` maximal elements.

Page 13: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes–Parviainen, 2010)

There are fn Fishburn matrices of weight n.

12

11

1

2

3

4

1 2 3 4

[2, 4], [2, 4],

[3, 3], [4, 4]}

[2, 4] [2, 4]

[1, 1]

[3, 3]

[4, 4]

{[1, 1], [1, 2],[1, 2], [1, 2],

[1, 2] [1, 2] [1, 2]

3

Theorem

Fishburn matrices of weight n, with first row of weight k and lastcolumn of weight ` correspond to interval orders of size n, with kminimal and ` maximal elements.

Page 14: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

From Matrices to Interval Orders

Theorem (Fishburn, 1970’s; Dukes–Parviainen, 2010)

There are fn Fishburn matrices of weight n.

12

11

1

2

3

4

1 2 3 4

[2, 4], [2, 4],

[3, 3], [4, 4]}

[2, 4] [2, 4]

[1, 1]

[3, 3]

[4, 4]

{[1, 1], [1, 2],[1, 2], [1, 2],

[1, 2] [1, 2] [1, 2]

3

Theorem

Fishburn matrices of weight n, with first row of weight k and lastcolumn of weight ` correspond to interval orders of size n, with kminimal and ` maximal elements.

Page 15: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

More Fishburn Objects: Avoiders of Vincular Patterns

P :

Q:

=

=

Theorem (Bousquet-Melou–Claesson–Dukes–Kitaev, 2009;Parviainen, 2009)

|Avn(P)| = |Avn(Q)| = fn.

Page 16: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Part II

Generating Functions, Asymptotics, Congruences

Page 17: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

The Generating Function

Notation

For n ≥ 0, the notation (a; q)n denotes the product(1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

Theorem (Zagier, 2001; Bousquet-Melou et al., 2009)

∞∑n=1

fnxn =

∞∑k=1

k∏j=1

(1− (1− x)j

)=∞∑k=1

(1− x ; 1− x)k .

Page 18: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

The Generating Function

Notation

For n ≥ 0, the notation (a; q)n denotes the product(1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

Theorem (Zagier, 2001; Bousquet-Melou et al., 2009)

∞∑n=1

fnxn =

∞∑k=1

k∏j=1

(1− (1− x)j

)=∞∑k=1

(1− x ; 1− x)k .

Page 19: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

Page 20: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

Page 21: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

Page 22: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

Page 23: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

1 1

1

1 1

1

1

1

1

P (x, y) = y xy xy 2 x2y+ + + + . . .

Page 24: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

Observation

F (x , y) = P( x1−x ,

y1−y ).

Goal: show that P(x , y) =∑∞

n=1

(1

1+y ; 11+x

)n

and therefore

F (x , y) =∑∞

n=1 (1−y ; 1−x)n andF (x , x) =

∑∞n=1 (1−x ; 1−x)n.

Page 25: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

recall: fn . . . number of Fishburn matrices of weight nfk,` . . . number of Fishburn matrices of weight k + `, with lastcolumn of weight ` (k ≥ 0, ` ≥ 1)F (x , y) =

∑k,` fk,`x

ky ` (hence F (x , x) =∑

n≥1 fnxn)

pk,` . . . number of primitive Fishburn matrices of weight k + `,with last column of weight `P(x , y) =

∑k,` pk,`x

ky `

Observation

F (x , y) = P( x1−x ,

y1−y ).

Goal: show that P(x , y) =∑∞

n=1

(1

1+y ; 11+x

)n

and therefore

F (x , y) =∑∞

n=1 (1−y ; 1−x)n andF (x , x) =

∑∞n=1 (1−x ; 1−x)n.

Page 26: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

1

Page 27: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

?1

11

11 1

11

11

11 1

1

1

?????

Page 28: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

??

??1

11

11 1

11

11

11 1

1

1

?

??

Page 29: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

1

??

1

Page 30: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

‘copied’1-entry

1

??

1

1

Page 31: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

‘copied’1-entry

‘ignored’1-entry1

?

1

1

Page 32: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

‘copied’1-entry

‘ignored’1-entry1

?

1

1

33 = 27 possibilities, 1 of them is ‘bad’.In terms of gen. functions: xky ` → yxk(x + y + xy)` − yxky `.Hence: P(x , y) = y + yP(x , x + y + xy)− yP(x , y),

i.e., P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy).

Page 33: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

‘copied’1-entry

‘ignored’1-entry1

?

1

1

33 = 27 possibilities, 1 of them is ‘bad’.In terms of gen. functions: xky ` → yxk(x + y + xy)` − yxky `.Hence: P(x , y) = y + yP(x , x + y + xy)− yP(x , y),

i.e., P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy).

Page 34: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

‘copied’1-entry

‘ignored’1-entry1

?

1

1

33 = 27 possibilities, 1 of them is ‘bad’.In terms of gen. functions: xky ` → yxk(x + y + xy)` − yxky `.Hence: P(x , y) = y + yP(x , x + y + xy)− yP(x , y),

i.e., P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy).

Page 35: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Deriving the Generating Function

Idea: extend a primitive Fishburn matrix by adding a column.

1

11

11 1

11

11

11 1

11

‘moved’1-entry

‘copied’1-entry

‘ignored’1-entry1

?

1

1

33 = 27 possibilities, 1 of them is ‘bad’.In terms of gen. functions: xky ` → yxk(x + y + xy)` − yxky `.Hence: P(x , y) = y + yP(x , x + y + xy)− yP(x , y),

i.e., P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy).

Page 36: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Solving the Functional Equation

Recall: P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy)

Note: the substitution y 7→ x + y + xy is equivalent to(1 + y) 7→ (1 + y)(1 + x).

P(x , y) =

(1 − 1

1 + y

)+

(1 − 1

1 + y

)P(x , x + y + xy)

=

(1 − 1

1 + y

)+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)+

+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)(1 − 1

(1 + y)(1 + x)2

)+ · · ·

=∑n≥1

(1

1 + y;

1

1 + x

)n

.

Hence: F (x , y) =∑

n≥1 (1 − y ; 1 − x)n, and F (x) =∑

n≥1 (1 − x ; 1 − x)n.

Page 37: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Solving the Functional Equation

Recall: P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy)

Note: the substitution y 7→ x + y + xy is equivalent to(1 + y) 7→ (1 + y)(1 + x).

P(x , y) =

(1 − 1

1 + y

)+

(1 − 1

1 + y

)P(x , x + y + xy)

=

(1 − 1

1 + y

)+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)+

+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)(1 − 1

(1 + y)(1 + x)2

)+ · · ·

=∑n≥1

(1

1 + y;

1

1 + x

)n

.

Hence: F (x , y) =∑

n≥1 (1 − y ; 1 − x)n, and F (x) =∑

n≥1 (1 − x ; 1 − x)n.

Page 38: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Solving the Functional Equation

Recall: P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy)

Note: the substitution y 7→ x + y + xy is equivalent to(1 + y) 7→ (1 + y)(1 + x).

P(x , y) =

(1 − 1

1 + y

)+

(1 − 1

1 + y

)P(x , x + y + xy)

=

(1 − 1

1 + y

)+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)+

+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)(1 − 1

(1 + y)(1 + x)2

)+ · · ·

=∑n≥1

(1

1 + y;

1

1 + x

)n

.

Hence: F (x , y) =∑

n≥1 (1 − y ; 1 − x)n, and F (x) =∑

n≥1 (1 − x ; 1 − x)n.

Page 39: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Solving the Functional Equation

Recall: P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy)

Note: the substitution y 7→ x + y + xy is equivalent to(1 + y) 7→ (1 + y)(1 + x).

P(x , y) =

(1 − 1

1 + y

)+

(1 − 1

1 + y

)P(x , x + y + xy)

=

(1 − 1

1 + y

)+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)+

+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)(1 − 1

(1 + y)(1 + x)2

)+ · · ·

=∑n≥1

(1

1 + y;

1

1 + x

)n

.

Hence: F (x , y) =∑

n≥1 (1 − y ; 1 − x)n, and F (x) =∑

n≥1 (1 − x ; 1 − x)n.

Page 40: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Solving the Functional Equation

Recall: P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy)

Note: the substitution y 7→ x + y + xy is equivalent to(1 + y) 7→ (1 + y)(1 + x).

P(x , y) =

(1 − 1

1 + y

)+

(1 − 1

1 + y

)P(x , x + y + xy)

=

(1 − 1

1 + y

)+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)+

+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)(1 − 1

(1 + y)(1 + x)2

)+ · · ·

=∑n≥1

(1

1 + y;

1

1 + x

)n

.

Hence: F (x , y) =∑

n≥1 (1 − y ; 1 − x)n, and F (x) =∑

n≥1 (1 − x ; 1 − x)n.

Page 41: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Solving the Functional Equation

Recall: P(x , y) =(

1− 11+y

)+(

1− 11+y

)P(x , x + y + xy)

Note: the substitution y 7→ x + y + xy is equivalent to(1 + y) 7→ (1 + y)(1 + x).

P(x , y) =

(1 − 1

1 + y

)+

(1 − 1

1 + y

)P(x , x + y + xy)

=

(1 − 1

1 + y

)+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)+

+

(1 − 1

1 + y

)(1 − 1

(1 + y)(1 + x)

)(1 − 1

(1 + y)(1 + x)2

)+ · · ·

=∑n≥1

(1

1 + y;

1

1 + x

)n

.

Hence: F (x , y) =∑

n≥1 (1 − y ; 1 − x)n, and F (x) =∑

n≥1 (1 − x ; 1 − x)n.

Page 42: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Asymptotics

Theorem (Zagier, 2001)

fn = n!(

6π2

)n√n(α + O

(1n

))with α = 12

√3

π5/2 eπ2/12.

How to deduce the formula numerically:

Compute fn for n . 1000 (easy, since we know the GF)

Observe fn ≈ cnn! for a constant c. Wanted: the value of c .

Idea: define rn = fn+1

nfn. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from6π2 = 0.60792710 . . . .

Page 43: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Asymptotics

Theorem (Zagier, 2001)

fn = n!(

6π2

)n√n(α + O

(1n

))with α = 12

√3

π5/2 eπ2/12.

How to deduce the formula numerically:

Compute fn for n . 1000 (easy, since we know the GF)

Observe fn ≈ cnn! for a constant c. Wanted: the value of c .

Idea: define rn = fn+1

nfn. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from6π2 = 0.60792710 . . . .

Page 44: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Asymptotics

Theorem (Zagier, 2001)

fn = n!(

6π2

)n√n(α + O

(1n

))with α = 12

√3

π5/2 eπ2/12.

How to deduce the formula numerically:

Compute fn for n . 1000 (easy, since we know the GF)

Observe fn ≈ cnn! for a constant c. Wanted: the value of c .

Idea: define rn = fn+1

nfn. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from6π2 = 0.60792710 . . . .

Page 45: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Asymptotics

Theorem (Zagier, 2001)

fn = n!(

6π2

)n√n(α + O

(1n

))with α = 12

√3

π5/2 eπ2/12.

How to deduce the formula numerically:

Compute fn for n . 1000 (easy, since we know the GF)

Observe fn ≈ cnn! for a constant c. Wanted: the value of c .

Idea: define rn = fn+1

nfn. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from6π2 = 0.60792710 . . . .

Page 46: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Asymptotics

Theorem (Zagier, 2001)

fn = n!(

6π2

)n√n(α + O

(1n

))with α = 12

√3

π5/2 eπ2/12.

How to deduce the formula numerically:

Compute fn for n . 1000 (easy, since we know the GF)

Observe fn ≈ cnn! for a constant c. Wanted: the value of c .

Idea: define rn = fn+1

nfn. Then limn→∞ rn = c .

Problem: r1000 = 0.60823163 . . . is still far from6π2 = 0.60792710 . . . .

Page 47: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn?

For a sequence (an)n∈N, let ∆(an) be the sequence(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then|t1000 − 6

π2 | < 10−180, suggesting that 6π2 is the limit of tn,

and therefore also of rn.

Page 48: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn?

For a sequence (an)n∈N, let ∆(an) be the sequence(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then|t1000 − 6

π2 | < 10−180, suggesting that 6π2 is the limit of tn,

and therefore also of rn.

Page 49: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn?

For a sequence (an)n∈N, let ∆(an) be the sequence(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then|t1000 − 6

π2 | < 10−180, suggesting that 6π2 is the limit of tn,

and therefore also of rn.

Page 50: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn?

For a sequence (an)n∈N, let ∆(an) be the sequence(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then|t1000 − 6

π2 | < 10−180, suggesting that 6π2 is the limit of tn,

and therefore also of rn.

Page 51: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn?

For a sequence (an)n∈N, let ∆(an) be the sequence(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then|t1000 − 6

π2 | < 10−180, suggesting that 6π2 is the limit of tn,

and therefore also of rn.

Page 52: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Towards the Limit

Problem: how to estimate the limit of rn = fn+1

nfn?

For a sequence (an)n∈N, let ∆(an) be the sequence(an+1 − an)n∈N (“the difference of (an)”).

Observe: for fixed d ∈ Z \ {0}, ∆(nd) = dnd−1 + O(nd−2).

Suppose rn = c + α1n + α2

n2 + · · · for some constants αi .

Then nrn = cn + α1 + α2n + · · · and ∆(nrn) = c + O( 1

n2 ).

More generally, for fixed k ∈ N, ∆(k)(nk rn/k!) = c + O( 1nk+1 ).

Set k = 100 and define (tn)n∈N = ∆(k)(nk rn/k!). Then|t1000 − 6

π2 | < 10−180, suggesting that 6π2 is the limit of tn,

and therefore also of rn.

Page 53: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Sequence of fn mod 5, for n = 0, . . . , 99:

1, 1, 2, 0, 0, 3, 2, 4, 0, 0, 3, 4, 3, 0, 0, 0, 2, 4, 0, 0, 3, 1, 2, 0, 0,

2, 1, 2, 0, 0, 4, 3, 1, 0, 0, 0, 3, 1, 0, 0, 2, 2, 4, 0, 0, 0, 3, 1, 0, 0,

1, 4, 3, 0, 0, 1, 1, 2, 0, 0, 0, 3, 1, 0, 0, 0, 3, 1, 0, 0, 3, 2, 4, 0, 0,

4, 0, 0, 0, 0, 3, 2, 4, 0, 0, 3, 1, 2, 0, 0, 4, 4, 3, 0, 0, 3, 4, 3, 0, 0

apparently, f5k+3 ≡ f5k+4 ≡ 0 and f5k+2 ≡ 2f5k+1 mod 5.

Sequence of fn mod 7, for n = 0, . . . , 99:

1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3,

2, 1, 0, 0, 6, 0, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1,

0, 0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6,

3, 0, 1, 3, 0, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5

apparently, f7k+6 ≡ 0 and f7k+2 + f7k+3 ≡ 0 mod 7.

Page 54: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Sequence of fn mod 5, for n = 0, . . . , 99:

1, 1, 2, 0, 0, 3, 2, 4, 0, 0, 3, 4, 3, 0, 0, 0, 2, 4, 0, 0, 3, 1, 2, 0, 0,

2, 1, 2, 0, 0, 4, 3, 1, 0, 0, 0, 3, 1, 0, 0, 2, 2, 4, 0, 0, 0, 3, 1, 0, 0,

1, 4, 3, 0, 0, 1, 1, 2, 0, 0, 0, 3, 1, 0, 0, 0, 3, 1, 0, 0, 3, 2, 4, 0, 0,

4, 0, 0, 0, 0, 3, 2, 4, 0, 0, 3, 1, 2, 0, 0, 4, 4, 3, 0, 0, 3, 4, 3, 0, 0

apparently, f5k+3 ≡ f5k+4 ≡ 0 and f5k+2 ≡ 2f5k+1 mod 5.

Sequence of fn mod 7, for n = 0, . . . , 99:

1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3,

2, 1, 0, 0, 6, 0, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1,

0, 0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6,

3, 0, 1, 3, 0, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5

apparently, f7k+6 ≡ 0 and f7k+2 + f7k+3 ≡ 0 mod 7.

Page 55: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Sequence of fn mod 5, for n = 0, . . . , 99:

1, 1, 2, 0, 0, 3, 2, 4, 0, 0, 3, 4, 3, 0, 0, 0, 2, 4, 0, 0, 3, 1, 2, 0, 0,

2, 1, 2, 0, 0, 4, 3, 1, 0, 0, 0, 3, 1, 0, 0, 2, 2, 4, 0, 0, 0, 3, 1, 0, 0,

1, 4, 3, 0, 0, 1, 1, 2, 0, 0, 0, 3, 1, 0, 0, 0, 3, 1, 0, 0, 3, 2, 4, 0, 0,

4, 0, 0, 0, 0, 3, 2, 4, 0, 0, 3, 1, 2, 0, 0, 4, 4, 3, 0, 0, 3, 4, 3, 0, 0

apparently, f5k+3 ≡ f5k+4 ≡ 0 and f5k+2 ≡ 2f5k+1 mod 5.

Sequence of fn mod 7, for n = 0, . . . , 99:

1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3,

2, 1, 0, 0, 6, 0, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1,

0, 0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6,

3, 0, 1, 3, 0, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5

apparently, f7k+6 ≡ 0 and f7k+2 + f7k+3 ≡ 0 mod 7.

Page 56: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Sequence of fn mod 5, for n = 0, . . . , 99:

1, 1, 2, 0, 0, 3, 2, 4, 0, 0, 3, 4, 3, 0, 0, 0, 2, 4, 0, 0, 3, 1, 2, 0, 0,

2, 1, 2, 0, 0, 4, 3, 1, 0, 0, 0, 3, 1, 0, 0, 2, 2, 4, 0, 0, 0, 3, 1, 0, 0,

1, 4, 3, 0, 0, 1, 1, 2, 0, 0, 0, 3, 1, 0, 0, 0, 3, 1, 0, 0, 3, 2, 4, 0, 0,

4, 0, 0, 0, 0, 3, 2, 4, 0, 0, 3, 1, 2, 0, 0, 4, 4, 3, 0, 0, 3, 4, 3, 0, 0

apparently, f5k+3 ≡ f5k+4 ≡ 0 and f5k+2 ≡ 2f5k+1 mod 5.

Sequence of fn mod 7, for n = 0, . . . , 99:

1, 1, 2, 5, 1, 4, 0, 6, 1, 6, 1, 3, 5, 0, 0, 1, 1, 6, 4, 2, 0, 0, 3, 4, 3,

2, 1, 0, 0, 6, 0, 0, 0, 0, 0, 1, 4, 5, 2, 6, 3, 0, 0, 6, 5, 2, 6, 3, 0, 1,

0, 0, 0, 0, 0, 0, 0, 2, 1, 6, 4, 2, 0, 4, 4, 2, 5, 1, 4, 0, 0, 1, 5, 2, 6,

3, 0, 1, 3, 0, 0, 0, 0, 0, 1, 5, 2, 5, 1, 4, 0, 6, 0, 3, 4, 5, 6, 0, 1, 5

apparently, f7k+6 ≡ 0 and f7k+2 + f7k+3 ≡ 0 mod 7.

Page 57: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is ai ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorialexplanation?

Page 58: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is ai ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorialexplanation?

Page 59: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is ai ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorialexplanation?

Page 60: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Congruences

Theorem (Andrews–Sellers, 2014)

For any prime p that is a quadratic nonresidue mod 24 there is ai ≥ 1 such that for every k ≥ 1, we have

fpk−1 ≡ fpk−2 ≡ · · · ≡ fpk−i ≡ 0 mod p.

Generalized to congruences modulo prime powers [Straub,2014].

Generalized to linear congruences, like f5k+2 ≡ 2f5k+1 mod 5or f11k+7 + 2f11n+3 ≡ 3f11k+4 mod 11 [Garvan, 2014].

Open problem

Does any of the congruence properties of fn have a combinatorialexplanation?

Page 61: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Part III

The Catalan Connection

Page 62: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths and Their Statistics

ret(D) . . . number of returns of D (i.e., down-steps reachingthe x-axis)

tail(D) . . . number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaille, 1997)

The statistics ret and tail have symmetric joint distribution on theset of Dyck paths of a given length.

Page 63: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths and Their Statistics

ret = 2

ret(D) . . . number of returns of D (i.e., down-steps reachingthe x-axis)

tail(D) . . . number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaille, 1997)

The statistics ret and tail have symmetric joint distribution on theset of Dyck paths of a given length.

Page 64: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths and Their Statistics

ret = 2tail = 3

ret(D) . . . number of returns of D (i.e., down-steps reachingthe x-axis)

tail(D) . . . number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaille, 1997)

The statistics ret and tail have symmetric joint distribution on theset of Dyck paths of a given length.

Page 65: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths and Their Statistics

ret = 2tail = 3

ret(D) . . . number of returns of D (i.e., down-steps reachingthe x-axis)

tail(D) . . . number of down steps following the last up-step.

Theorem (Kreweras, 1970; Vaille, 1997)

The statistics ret and tail have symmetric joint distribution on theset of Dyck paths of a given length.

Page 66: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

The Catalan–Fishburn Connection

Theorem (Kim–Roush, 1978; Disanto–Ferrari–Pinzani–Rinaldi,2010)

The (2+2,N)-free posets of size n, as well as the (2+2,3+1)-freeposets of size n are counted by Catalan numbers.

3+1 N

Page 67: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Catalan Classes of Fishburn Matrices

Definition

Let M = (mij) be a Fishburn matrix.

NE-pair . . . a pair of nonzero cells mij and mi ′j ′ such thati > i ′ and j < j ′.

SE-pair . . . a pair of nonzero cells mij and mi ′j ′ such thati < i ′, j < j ′ and i ′ ≤ j .

2

314

2 1

11

NE-pair

i

i ′

j j ′

2

314

2 1

11

SE-pair

i ′

i

j j ′

Page 68: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Catalan Classes of Fishburn Matrices

Definition

Let M = (mij) be a Fishburn matrix.

NE-pair . . . a pair of nonzero cells mij and mi ′j ′ such thati > i ′ and j < j ′.

SE-pair . . . a pair of nonzero cells mij and mi ′j ′ such thati < i ′, j < j ′ and i ′ ≤ j .

Definition

A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (orSE-pair, respectively).

Page 69: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Catalan Classes of Fishburn Matrices

Definition

Let M = (mij) be a Fishburn matrix.

NE-pair . . . a pair of nonzero cells mij and mi ′j ′ such thati > i ′ and j < j ′.

SE-pair . . . a pair of nonzero cells mij and mi ′j ′ such thati < i ′, j < j ′ and i ′ ≤ j .

Definition

A Fishburn matrix is NE-free (or SE-free) if it has no NE-pair (orSE-pair, respectively).

Theorem (Dukes–J.–Kubitzke, 2011; J., 2015)

(2+2,N)-free posets correspond to SE-free Fishburn matrices,(2+2,3+1)-free posets correspond to NE-free Fishburn matrices.

Page 70: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Statistics of Fishburn Matrices

Definition

Let M = (mij) be a k × k Fishburn matrix.

NE-extreme . . . a nonzero cell mij such that all the other cellsin rows 1, . . . , i and columns j , . . . , k are zeros.

SE-extreme . . . a nonzero diagonal cell mii such that all theother cells in row i are zeros.

ne(M), se(M), lc(M) . . . number of NE-extreme cells, numberof SE-extreme cells, weight of the last column of M,respectively.

23

4

21

1

1

NE-extremes SE-extremes

23

4

21

1

1

Page 71: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Statistics of Fishburn Matrices

Definition

Let M = (mij) be a k × k Fishburn matrix.

NE-extreme . . . a nonzero cell mij such that all the other cellsin rows 1, . . . , i and columns j , . . . , k are zeros.

SE-extreme . . . a nonzero diagonal cell mii such that all theother cells in row i are zeros.

ne(M), se(M), lc(M) . . . number of NE-extreme cells, numberof SE-extreme cells, weight of the last column of M,respectively.

23

4

21

1

1

NE-extremes SE-extremes

23

4

21

1

1

Page 72: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Statistics of Fishburn Matrices

Definition

Let M = (mij) be a k × k Fishburn matrix.

NE-extreme . . . a nonzero cell mij such that all the other cellsin rows 1, . . . , i and columns j , . . . , k are zeros.

SE-extreme . . . a nonzero diagonal cell mii such that all theother cells in row i are zeros.

ne(M), se(M), lc(M) . . . number of NE-extreme cells, numberof SE-extreme cells, weight of the last column of M,respectively.

23

4

21

1

1

NE-extremes SE-extremes

23

4

21

1

1

Page 73: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 74: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 75: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 76: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

a

c

d

e f

b

g

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 77: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

21 112

a

c

d

e f

b

g

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 78: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

21 112

a

c

d

e f

b

g

ret = 2 = netail = 3 = lc

1

2

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 79: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

21 112

a

c

d

e f

b

g

ret = 2 = netail = 3 = lc

1

2

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 80: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,N)-free Posets ∼ SE-free Matrices

a

b

c d

g

f

e

21 112

a

c

d

e f

b

g

ret = 2 = netail = 3 = lc

1

2

Theorem

The above is a bijection from Dyck paths to SE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = ne(M) and tail(D) = lc(M).

In particular, ne(·) and lc(·) have symmetric joint distribution onSE-free Fishburn matrices.

Page 81: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 82: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 83: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

e

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 84: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

ea

cd

ef

b

g

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 85: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

ea

cd

ef

b

g

21 1

12

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 86: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

ea

cd

ef

b

g

21 1

1212

ret = 2 = setail = 3 = lc

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 87: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

ea

cd

ef

b

g

21 1

1212

ret = 2 = setail = 3 = lc

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 88: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Dyck Paths ∼ (2+2,3+1)-free Posets ∼ NE-free Matrices

a

b c

d

g

f

ea

cd

ef

b

g

21 1

1212

ret = 2 = setail = 3 = lc

Theorem

The above is a bijection from Dyck paths to NE-free Fishburnmatrices. A path D of length 2n maps to a matrix M of weigth nwith ret(D) = se(M) and tail(D) = lc(M).

In particular, se(·) and lc(·) have symmetric joint distribution onNE-free Fishburn matrices.

Page 89: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Summary

Fishburn matrices

NE-free SE-free

se↔lc ne↔lc

Page 90: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Summary

Fishburn matrices

NE-free SE-free

se↔lc ne↔lc

se↔ne↔ ↔

lc

Page 91: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics ne(·) and se(·) have symmetric jointdistribution on Fishburn matrices of weight n. This is witnessed byan involution that preserves the value of lc(·).

Theorem (J., 2015)

For every n, the two statistics ne(·) and lc(·) have symmetric jointdistribution on Fishburn matrices of weight n.

23

121

1 1

1

11

1

1 21

22

1 1 112

1 12

1 1

21

2

212

1

1

1

1

1

11

11

1

ne=3, lc=2, weight=5

ne=2, lc=3, weight=5

Page 92: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Symmetries of Fishburn Objects

Theorem (J., 2015)

For every n, the two statistics ne(·) and se(·) have symmetric jointdistribution on Fishburn matrices of weight n. This is witnessed byan involution that preserves the value of lc(·).

Theorem (J., 2015)

For every n, the two statistics ne(·) and lc(·) have symmetric jointdistribution on Fishburn matrices of weight n.

Open problem

Prove the second theorem bijectively.

Page 93: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Avoiders of

Conjecture

There is a bijection between Fishburn matrices and permutationsavoiding , which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minimaweight od first row lc(·) ne(·) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ ofthe matrix.

2

2

1

1

1

1

Conjecture

The statistics “number of RL-maxima” and “number ofRL-minima” have symmetric joint distribution over -avoiders ofa given size.

Page 94: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Avoiders of

Conjecture

There is a bijection between Fishburn matrices and permutationsavoiding , which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minimaweight od first row lc(·) ne(·) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ ofthe matrix.

2

2

1

1

1

1

Conjecture

The statistics “number of RL-maxima” and “number ofRL-minima” have symmetric joint distribution over -avoiders ofa given size.

Page 95: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Avoiders of

Conjecture

There is a bijection between Fishburn matrices and permutationsavoiding , which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minimaweight od first row lc(·) ne(·) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ ofthe matrix.

2

2

1

1

1

1

Conjecture

The statistics “number of RL-maxima” and “number ofRL-minima” have symmetric joint distribution over -avoiders ofa given size.

Page 96: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Avoiders of

Conjecture

There is a bijection between Fishburn matrices and permutationsavoiding , which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minimaweight od first row lc(·) ne(·) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ ofthe matrix.

2

2

1

1

1

1

Conjecture

The statistics “number of RL-maxima” and “number ofRL-minima” have symmetric joint distribution over -avoiders ofa given size.

Page 97: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Avoiders of

Conjecture

There is a bijection between Fishburn matrices and permutationsavoiding , which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minimaweight od first row lc(·) ne(·) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ ofthe matrix.

2

2

1

1

1

1

Conjecture

The statistics “number of RL-maxima” and “number ofRL-minima” have symmetric joint distribution over -avoiders ofa given size.

Page 98: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Avoiders of

Conjecture

There is a bijection between Fishburn matrices and permutationsavoiding , which transforms the statistics as follows:

LR-maxima RL-minima RL-maxima LR-minimaweight od first row lc(·) ne(·) # of nonzero diagonal cells

Moreover, inverse permutation is mapped to the ‘diagonal flip’ ofthe matrix.

Conjecture

The statistics “number of RL-maxima” and “number ofRL-minima” have symmetric joint distribution over -avoiders ofa given size.

Page 99: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix)of large size look like? Can you generate it efficiently?

Theorem (Drmota, 2011; Brightwell–Keller, 2011)

The probability that a random Fishburn matrix of weight n isprimitive tends to e−π

2/6 ∼ 0.193 as n→∞.

Page 100: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

Open Problem: Typical Properties of Fishburn Objects

Open problem

What does a uniformly random interval order (or Fishburn matrix)of large size look like? Can you generate it efficiently?

Theorem (Drmota, 2011; Brightwell–Keller, 2011)

The probability that a random Fishburn matrix of weight n isprimitive tends to e−π

2/6 ∼ 0.193 as n→∞.

Page 101: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

The End

Thank you for your attention!

Page 102: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

References I

G. E. Andrews and J. A. Sellers.

Congruences for the Fishburn numbers.Journal of Number Theory, 161:298–310, 2016.

G. Brightwell and M. T. Keller.

Asymptotic enumeration of labelled interval orders.arXiv:1111.6766, 2011.

M. Bousquet-Melou, A. Claesson, M. Dukes, and S. Kitaev.

(2+2)-free posets, ascent sequences and pattern avoiding permutations.J. Comb. Theory Ser. A, 117(7):884–909, 2010.

F. Disanto, L. Ferrari, R. Pinzani, and S. Rinaldi.

Catalan pairs: A relational-theoretic approach to Catalan numbers.Adv. Appl. Math., 45(4):505–517, 2010.

M. Dukes, V. Jelınek, and M. Kubitzke.

Composition matrices, (2 + 2)-free posets and their specializations.Electronic J. Combin., 18(1)(P44), 2011.

M. Dukes and R. Parviainen.

Ascent sequences and upper triangular matrices containing non-negative integers.Electronic J. Combin., 17(R53), 2010.

P. C. Fishburn.

Intransitive indifference with unequal indifference intervals.Journal of Mathematical Psychology, 7(1):144–149, 1970.

P. C. Fishburn.

Interval orders and interval graphs: A study of partially ordered sets.John Wiley & Sons, 1985.

Page 103: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

References II

F. G. Garvan.

Congruences and relations for r -Fishburn numbers.J. Comb. Theory A, 134:147–165, 2015.

V. Jelınek.

Counting general and self-dual interval orders.J. Comb. Theory A, 119(3):599–614, 2012.

V. Jelınek.

Catalan pairs and Fishburn triples.Adv. Appl. Math., 70:1–31, 2015.

K.H. Kim and F.W. Roush.

Enumeration of isomorphism classes of semiorders.Journal of Combinatorics, Information & System Sciences, 3:58–61, 1978.

G. Kreweras.

Sur les eventails de segments.Cahiers du Bureau universitaire de recherche operationnelle. Serie Recherche, 15:3–41, 1970.

R. Parviainen.

Wilf classification of bi-vincular permutation patterns.arXiv:0910.5103, 2009.

A. Straub.

Congruences for Fishburn numbers modulo prime powers.Int. J. Number Theory, 11(5):1679–1690, 2015.

J. Vaille.

Une bijection explicative de plusieurs proprietes remarquables des ponts.Europ. J. Combinatorics, 18:117–124, 1997.

Page 104: On Fishburn Numbers - Permutation Patterns 2017 · On Fishburn Numbers Permutation Patterns, 29. 6. 2017 V t Jel nek Computer Science Institute, Charles University in Prague

References III

D. Zagier.

Vassiliev invariants and a strange identity related to the Dedekind eta-function.Topology, 40(5):945–960, 2001.