21
Ohio University: A.V. Voinov, S.M. Grimes, C.R.Brune, T. Massey, B.M. Oginni, A.Schiller, Oslo University: M. Guttormsen, A.C. Larsen, S.Siem, N.U.H. Syed perimental study of level density and gamma-strengt functions at Edwards Laboratory, Ohio University

Ohio University: A.V. Voinov, S.M. Grimes, C.R.Brune, T. Massey, B.M. Oginni, A.Schiller, Oslo University: M. Guttormsen, A.C. Larsen, S.Siem, N.U.H. Syed

Embed Size (px)

Citation preview

Ohio University: A.V. Voinov, S.M. Grimes, C.R.Brune, T. Massey, B.M. Oginni, A.Schiller,

Oslo University: M. Guttormsen, A.C. Larsen, S.Siem, N.U.H. Syed

Experimental study of level density and gamma-strength functions at Edwards Laboratory, Ohio University

Excitation energy

Leve

l den

sity

Bn

Level density is knownfor most of the stable nuclei

Level density is unknown formost of the nuclei

Traditionally, for most of the nuclei, the level density is estimated on the basis of experimental information from low-lying discrete levels and neutron resonance spacing

4/54/1 )( 212

)(2exp()(

Ea

EaE

E

a, δ -parameters

σ = f(a, δ)

Nuclear level density

The level density from particle spectra of compound nuclear reactions

The concept:

dET

EETEEd

iiout

finC

*)()'()(~)(

The problem :

Make sure that the compound reaction mechanism dominates.

Possible solutions:

1. Select appropriate reactions (beam species, energies, targets).2. Measure the outgoing particles at backward angles3. Compare reactions with different targets and incoming species leading to the same final nuclei

Reactions with deuterons and He-3

3He 58Fe59Cod+ +

61Ni

np

α

60Ni60Co

57Fe

beamTarget

Si

Si

Si

SiSi

SiSi

Si

Si

Si

2m flight path

Scheme of experimental set-up for charge-particle spectra measurementsEdward’s Accelerator Lab, Ohio University

d, 3He

neutronsNE213

Flight path 8m

target

Swinger facilityat Edwards Lab. Ohio University

Experimental level densities measured at Edwards Lab. of Ohio University

Testing the technique with 27Al(d,n)28Si

0 2 4 6 8 10 12 14 16

10-2

10-1

100

101

102

Experiment, from 27Al(d,n)28Si reaction From counting of discrete levels

Leve

l densi

ty, 1

/MeV

Excitation energy, MeV

Level density of 28Si

Excitation energy, MeV

Leve

l den

sity

, 1/

MeV

55Mn(d,n)56Fe, Ed=7.5 MeV

0 2 4 6 8 10 12 14100

101

102

103

104

Leve

l den

sity

(M

eV -1

)

Excitation energy (MeV)

56Fe

Points are from our experiment, line – Fermi-gas model with parameters fromsystematics T.von Egidy, D.Bucurescu, Phys.Rev. C 72, 044311 (2005);

Points are from our experiment, red line is the Fermi-gas model with parameters found from the fit to discrete levels and neutron resonance spacing, black line is the Fermi-gas model fit to experimental points

65Cu(d,n)66Zn, Ed=7.5 MeV

0 2 4 6 8 10 12 14

100

101

102

103

104

105

Leve

l den

sity

, 1/M

eV

Excitation energy, MeV

Level density of 66Zn

56Ni, 60Ni, 60Cu, 60Co, 56Fe, 57Fe, 60Zn, 64Zn, 66Zn

0 2 4 6 8 10 12 14 16 18 20

101

102

103

104

105

106

107

108

Constant temperature model Fermi-gas (Bethe) model = HF-BCS Discrete levels

data points from 59Co(d,p)

Leve

l densi

ty (

MeV

-1 )

Excitation energy (MeV)

Level density of 60Co

Fermi-gas or constant temperature ?

6Li 55Mn59Cod+ +

61Ni

np

α

60Ni60Co

57Fe

Eex=33 MeV Eex=23 MeV

15 MeV 7.5 MeV

0 2 4 6 8 10 1210-1

100

101

102

0 2 4 6 8 10 12

0 2 4 6 8 10 1210-1

100

101

102

Cro

ss s

ectio

n (m

b/M

eV)

CT FG

Empire calculations

Proton energy (MeV)

protons from 6Li+55Mn

Proton energy (MeV)

Data pointsprotons from d+59Co

Main conclusions from experimental results :

1. The functional form of the level density especially at low excitation energies is more complicated than Fermi-gas simple model.

2. The constant temperature model seems to be valid for excitation energies far beyond the particle separation energy (at least for some nuclei)

0

E

E

DE

EEf

i

)( ~

)( )( abs

3

0 5 10 15 20

1E-4

1E-3

0.01

0.1

γγ – strength function in continuum – strength function in continuum

i

Exc

itat

ion

en

erg

yE

xcit

atio

n e

ner

gy

)( Ef

γ- Energy (MeV)

From (γ,n) reactions

Par

ticle

sep

arat

ion

thr

esho

ld

γγ-strength function of iron isotopes-strength function of iron isotopesLow energy upbend phenomenonLow energy upbend phenomenon

Eγ (MeV)

- 56Fe

- 57Fe

Phys.Rev.Lett. 93, 142504 (2004)

Method of two-step γ – cascades fromneutron capture reactions

Ground state

Bn

E1

E2

E1 +

E2

EγProblem: level density is needed !!!

Intensity

Intensity

Measurement of gamma-strength function at Edwards Lab. Of Ohio University

(p,2γ)(d,n) Produce the same product nucleus

1. We obtain a level density from neutron evaporation spectra.2. We obtain a γ-strength function from 2γ- spectra

Idea

The first candidate is 59Co(p,2γ) 60Ni reaction at Ep=1.9 MeV

The level density of 60Ni has already been measuredfrom 59Co(d,n) 60Ni reaction:

First results from 59Co(p,2γ)

9000 10000 11000 120000

100

200

300

400

Real peaks

E1+E2, keV

E2

2+

Single escape peaks

Cou

nts

60N

i

p+59

Co

--> 60

Ni+

0

1.33

MeV

p+59Co, 13 hours of measurements

E1

0 2 4 6 8 10 1210-10

10-9

10-8

10-7

10-6

0 2 4 6 8 10 1210-10

10-9

10-8

10-7

10-6

0 2 4 6 8 1010-10

10-9

10-8

10-7

10-6

fM1

fE1

fE1

+fM1

0 2 4 6 8 10

100

101

Casc

ade in

tensi

ty, perc

ents

/deca

y/M

eV

Gamma energy (MeV)

0 2 4 6 8 10 1210-10

10-9

10-8

10-7

10-6

0 2 4 6 8 10 1210-10

10-9

10-8

10-7

10-6

0 2 4 6 8 1010-10

10-9

10-8

10-7

10-6

fM1

fM1 f

E1

fE1

fE1

+fM1

fE1

+fM1

0 2 4 6 8 10

100

101

Casc

ade in

tensi

ty, perc

ents

/deca

y/M

eV

Gamma energy (MeV)

cascade spectrum

Conclusions

Level density:

• The total level density exhibit step structures new region of discrete levels. The interpolation between the density of discrete levels and neutron resonance spacing with simple models do not provide a good accuracy.

• The constant temperature model of level density is valid above the particle separation threshold, at least for some nuclei.

Gamma strength function

Gamma strength function can be studied with combination of (p,2g) and (d,n) reactions. The low energy enhancement is supported by results of these experiments for the 60Ni.