95
NASA Contractor Report 198362 4- 93 Off-Design Computer Code for Calculating the Aerodynamic Performance of Axial-Flow Fans and Compressors User's Manual James E Schmidt NYMA, Inc. Brook Park, Ohio (NASA-CR-198362) OFF-DESIGN N96-12502 COluiQUTER CODE FOR CALCULATING THE AERODYNAHIC PERFORMANCE OF AXIAL-FLOW FANS AND COWRESSORS Unclas Final Report <NYMA) 93 p 63/07 00605,a7 July 1995 Prepared for Lewis Research Center Under Contract NAS3-27186 National Aeronautics and Space Administration

Off-Design Computer Code for Calculating the Aerodynamic ...An off-design axial-flow compressor code is presented and available from COSMIC for predicting the aerodynamic performance

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

  • NASA Contractor Report 198362

    4- 93

    Off-Design Computer Code for Calculating the Aerodynamic Performance of Axial-Flow Fans and Compressors User's Manual

    James E Schmidt NYMA, Inc. Brook Park, Ohio

    (NASA-CR-198362) OFF-DESIGN N96-12502

    COluiQUTER CODE FOR CALCULATING THE AERODYNAHIC PERFORMANCE OF AXIAL-FLOW FANS AND COWRESSORS Unclas Final Report

  • TABLE OF CONTENTS

    Page .

    summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    2.0 Off-Design Compressor Calculation Procedure

    3.0 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 General Input . . . . . . . . . . . . . . . . . . . . . . 5

    4.0 Aerodynamic Flow Solution . . . . . . . . . . . . . . . . . . 9

    1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . 4

    3.2 Calculation Station and Blade Row Input . . . . . . . . . . 6

    4.1 Flow Loss and Deviation Prediction Models . . . . . . . . . 9 5.0 Exit Calculation Routine . . . . . . . . . . . . . . . . . . . 11 6.0 Controlling Recalculation Main Routine . . . . . . . . . . . . 12 7.0 User Example Compressor Case . . . . . . . . . . . . . . . . 13 8.0 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 15 9.0 References . . . . . . . . . . . . . . . . . . . . . . . . . 16 Appendix

    ASymbols . . . . . . . . . . . . . . . . . . . . . . . . . . 17 B Input Parameters for Off-Design Compressor Code . . . . . . . . 18 Tables

    1 Example Input Data Set (no Stator Resets) . . . . . . . . . . 32 2 Example Output Data Set (no Stator Resets) . . . . . . . . . 36 3 Example Output Data Set (with Stator Resets) . . . . . . . . 64

    iii

  • SUMMARY

    An off-design axial-flow compressor code is presented and is available from

    COSMIC for predicting the aerodynamic performance maps of fans and com- pressors. Steady axisymmetric flow is assumed and the aerodynamic solution

    reduces to solving the two-dimensional flow field in the meridional plane. A

    streamline curvature method is used for calculating this flow-field outside the

    blade rows. This code allows for bleed flows and the first five stators can be reset

    for each rotational speed; capabiIities which are necessary for large multi-stage

    compressors. The accuracy of the off-design performance predictions depend

    upon the validity of the flow loss and deviation correlation models. These em-

    pirical correlations for the flow loss and deviation are used to model the real flow

    effects and the off-design code will compute through small reverse flow regions.

    The input to this off-design code is fully described and a user’s example

    case for a two-stage fan is included with complete input and output data sets.

    Also, a-comparison of the off-design code predictions with experimental data is

    included which genedy shows good agreement.

    1

  • 1.0 INTRODUCTION

    If a reliable off-design axial compressor code is available for predicting the

    performance maps of compressor designs, costly and time consuming testing can

    be kept to a minimum. In addition, reliable flow property prediction at off-design

    speeds can be used as a good starting point for full three dimensional flow anal- yses to reduce their long computing times. off-design compressor performance,

    which is the performance of a compressor at flow conditions and rotational speeds

    other than the design point is an important aspect of compressor design. A good

    design for a multistage axial compressor requires an adequate part-speed per-

    formance with s&cient part-speed stall margin and determination of required

    starting bleed flows along with any guide w e or stator resets needed to better

    match the stages (Ref. 1). The off-design flow analysis is different from the

    compressor design analysis in that the compressor blade geometry is now &ed

    and the off-design requirement is to determine the compressor performance for

    a range--of speeds and weight flows i.e. to determine the compressor map.

    This off-design, two-dimensional, axial compressor code was originally de-

    veloped by James Crouse as an analysis code to be used in tandem with his

    compressor design code (Ref. 2). This off-design code has never been published

    and many modifications to the original code have been made over the last 12

    years. In order to successfully use this off-design code, the compressor design

    code must first be used to generate the necessary blade geometry block of data

    that is part of the required input to the off-design code. Actually, the general

    design procedure is to first produce a preliminary initial blade design with the

    compressor design code. In cases where the compressor blade design is obtained from an old design or an outside source, the compressor design code must be used

    to duplicate the blade design and obtain the necessary input to the off-design

    code.

    Steady, axisymmetric, two-dimensional flow in the meridional plane is as-

  • sumed and the equations of motion as developed in reference 1 are only applica-

    ble for calculation stations outside the blade rows, Also, empirical correlations

    for the flow losses and deviation angle are used to model real flow effects and

    the off-design code will compute through small reverse flow regions.

    The blade geometry desaiption is essentially the same as that for the com-

    pressor design code (Ref. 2) and the aerodynamic solution uses a streamline

    curvature method for calculating the flow at stations outside the blade rows.

    The aerodynamic calculation structure for the off-design code is set up such

    that the aerodynamic flow field and selected streamlines are recalculated for

    each new rotational speed with the flow rate increased to the choke condition,

    and then decreased to the s t d condition. In addition, this code has the capa-

    bility to include bleed flows as well as reset adjustments for the first five stators.

    The purpose of this report was not intended to give a detailed description of

    the development of the off-design code but to give the user a manual for properly

    using this code.

    A user’s example case for a two-stage fan is included to demonstrate the necessary input required to run this off-design code as well as the resulting

    output produced by this code. A comparison of the off-design code performance

    predictions with experimental data for this two- stage fan is made with and

    without stator resets.

    3

  • 2.0 OFF-DESIGN CALCULATION PROCEDURE

    Similar to the compressor design code (Ref. 2) the off-design code is sep- arated into three main regions of calculation: the input and setup, the aero-

    dynamic flow solution and exit calculation routines. In addition, a reset or recalculation routine is included for a recalculation of the flow field and stream-

    lines as the flow is increased toward the choke point and decreased toward the

    stall condition. This general procedure is repeated for each desired rotational speed.

    For the input and setup routine the input data are read and interpreted

    and the streamlines are located on the basis of annulus area. For the flow field

    solution phase the equations of motion are satisiied in the meridional (r-z) plane

    at calculation stations along the compressor flow path (see Figure 1). At the

    stations, the equations of motion and overall flow continuity are satisfied using a

    streamline curvature method of solution. The exit calculation routine makes the

    f2m.I ciilculations and prints the output. First the mass averaged parameters for

    the individual and cumulative compressor blade rows are calculated and printed

    and then the detailed tabulated local dues (tip to hub) of the aerodynamic

    and blading parameters for each calculation stations are computed and printed.

    A recalculation phase or controlling main routine is used to recalculate the flow

    field and streamlines as the inlet flow rate is increased toward the choke point

    and decreased toward the s t d condition. This procedure is repeated for each desired compressor rotational speed.

    r \ x r ~ o f ~

    F@UR L -'GalcuiatiW, stations in m m r flow pah

    4

  • 3.0 INPUT DATA

    The basic meridional ( r , z ) computational plane is shown in Figure 1 for

    a typical compressor configuration. As indicated in Figure 1 the calculation

    stations are located at the blade-row leading and trailing edges and at other

    annular locations needed for proper determination of the streamlines. The input data are divided into two categories of input: general input data and calculation

    station and blade row input data. All the input parameters and options as well as

    the input data format are described in Appendix B. The mathematical symbols

    used for defining these input parameters are given in Appendix A. Except for a

    few modifications the general input data for the off-design code are similar to

    the general input data for the design code (Ref. 2).

    3.1 General Input Data

    The input data consist of the following information:

    1). N-ber of desired compressor speeds.

    2). Normalized range for the choke region.

    3). Normalized step increment for the choke region.

    4). Normalized range for the stall region.

    5). Normalized step increment for the stall region.

    6). Fkaction of desired rotation speeds.

    7). Stator reset angle for first 5 stators.

    8). Number of streamlines.

    9). Number of blade rows.

    10). Number of annular stations.

    11). Compressor rotational speed.

    12). Inlet flow rate.

    13). Desired compressor pressure ratio.

    14). Gas molecular weight.

    15). Co&cients for Cp as a Hth-degree polynomial function of temperature.

    5

  • 16). Upstream values of total temperature, total pressure, and inlet tangential

    velocity for each streamline.

    17). Streamtube m a s flow fractions between streamlines.

    18). Sets of points to define tip and hub casing contours.

    19). Sets of blade element profile loss parameters that are tabulated as func-

    tions of blade element loading parameter (D Factor) and fraction of passage

    height.

    Except for the above first seven input data items the remaining list of the

    general input data is identical to the general input data for the design code

    (Ref. 2). Therefore, once the design code is run most of the general input data

    for the off-design code axe already known.

    3.2 Calculation Station and Blade Row Input

    The input data for the annulus CalcuIation stations and blade rows are read

    in ordq from annulus inlet to outlet. The calculation stations and blade row

    input consist of the following information:

    I. Type of calculation station: annular, rotor or stator.

    If annular - only one line. 1). The tip and hub axial locations.

    2). The tip and hub blockage displacement thickness.

    3). The cumulative bleed fraction of inlet flow

    If rotor - h t line. 1). The tip and hub stacking-point axial locations.

    2). The inlet tip and hub blockage displacement thicknesses.

    3). The cumulative bleed fraction of inlet flow.

    If rotor - second line. 1). Number of streamlines (maximum of 11).

    2). Loss set number (maximum of 9).

    6

  • 3). Blade d&tion index.

    4). Option parameter for part span shroud (IDAMP = 0 for no damper).

    5) . The cumulative bleed factor of inlet flow.

    6). Number of blades.

    7). The outlet tip and hub blockage displacement thicknesses.

    8). The angle of stacking axis tilt (degrees) or lean in circumferential direction

    ( r , 6 plane). 9). The estimated cumulative stage adiabatic efficiency for the first iteration.

    10). Desired cumulative energy addition factor through particular rotor to total

    energy addition of compressor. The last rotor must have CRENGY = 1.0

    to meet the input total pressure ratio.

    If stator - first line. 1). The tip and hub stacking-point axial location.

    2). The inlet tip and hub blockage displacement thicknesses.

    3). The cumulative bleed fraction of inlet flow.

    If stator - second line. 1). Number of streamlines (maximum of 11).

    2). Loss set number (maximum of 9).

    3). Blade deibition index.

    4). Option parameter for part span shroud (IDAMP = 0 for no damper).

    5). The cumulative bleed &action of inlet flow.

    6). Number of blades.

    7). The outlet tip and hub blockage displacement thicknesses.

    If IDAMP > 0, then the following information line needs to be included after the second line of the rotor or stator input.

    1). Radial location of the leading edge or the part-span shroud.

    2). Slope angle of the damper centerline in the meridional view.

    7

  • 3). Chord length of mid-span shroud.

    4). Maximum thickness-to-chord ratio of damper.

    5). Leading edge to chord ratio of a part-span shroud.

    6). Tkailing edge to chord ratio of a part-span shroud.

    The basic blade row geometry block of information is included after the

    second line of the rotor or stator blade row input. This basic blade row geometry

    data is automatically obtained using an option in the compressor design code

    (Ref. 1). Again, as previously stated, the order and format for all of the off-

    design input is shown in Appendix B along with a complete description of the

    input parameters.

    8

  • 4.0 AERODYNAMIC FLOW SOLUTION

    The aerodynamic flow solution determines the velocity diagrams and fluid

    state properties on the calculated streamlines at the annular and blade row inlet

    and exit stations. The flow solution results from an inner and outer iteration

    scheme. For the outer loop iteration the calculated variables are the stagna-

    tion temperature and pressure, the tangential component of velocity, and the

    streamline location, slope, and curvature, The inner loop iteration is the span-

    wise flow calcdation, solving continuity and radial equilibrium at each station,

    where the axial velocity distribution is calculated as the outer loop variables are

    held fixed and then the streamline location is reset. The o v e d procedure is

    station marching from inlet to outlet with streamline parameters fixed and a

    maximum of 20 cycles to converge to a solution.

    4.1 Flow Loss and Deviation Prediction Models

    Accuracy of the off-design performance predictions depends upon the valid-

    ity of the flow loss and deviation correlation models. The total loss coefficient

    is defined as:

    - (P0f)Z -Po; W =

    Po: -P1 In this code the losses consist of two additive components: shock losses and

    all other losses (considered as a proflle loss). The shock loss is assumed to be

    approximately equal to the computed normal shock loss divided by the square

    of the inlet relative Mach number. The proflle loss coefficient is given by:

    - wp =F-F* where ga is the shock loss Coefficient.

    The profile loss is represented by a correlation parameter as a function of

    passage height and aerodynamic blade loading. The values for this loss parame

    ter correlation axe input in tabular form in the input data and axe usually called

    9

  • loss parameter data sets. The aerodynamic blade loading parameter (more com-

    monly called D-factor) is de&ed as:

    where Ve is the tangential flow velocity and u is the blade element solidity and the loss parameter in the input table is deiined as:

    Gp cos p; 2u (4)

    Loss parameter data sets determined from experimental data over many

    years are often stored in data banks for different types of compressors.

    In this off-design code a deviation subroutine is used to iterate for the

    blade row outlet flow angle and thus with fixed blade geometry determines the

    deviation angle. A correction to Carter's deviation angle nile (Ref. 1) due to

    changes in blade camber in the s t readhe direction was developed by James

    Cmuse in his original developrnent of the off-design code. This correlation for

    the deviation coetficient used in the iteration for the outlet blade flow angle is

    given by:

    C, = (0.219 + 7(0.051085 + 0.0889157)) x (1.620 + ~(0.72365 - 0.278717) + qi[-1.415 + ~(1.85240 - 0.75964-/) + qi(0.352 - 7(0.810816 - 0.4044ey))]}2"

    where: 7 is the blade setting angle (rad.), c is the chord, and 4 is the ratio of front to total cambc; of each blade element.

    These loss and deviation coacient correlations are the primary unknown factors in the off- design code. Generally, the off-design code predictions com-

    pare quite well with experimental data for fans and lightly to moderately loaded

    10

  • multi-stage compressors. However, for highly-loaded, large multistage compres-

    sors very large reset guide vane and stator adjustments are needed to match the

    stages, especially at low wheel speeds. These large reset adjustments greatly

    increase the pressure losses and deviation angles in these front stators and guide

    vane. Therefore, the loss and deviation correlations need to be improved for

    highly-loaded, large, multistage compressors.

    5.0 EXIT CALCULATION ROUTINE

    After the iterated solution for the aerodynamic flow field is obtained the

    off-design code calculates and prints the overall mass-averaged parameters for the individual and cumulative compressor blade rows. In addition, the detailed tabulated local values (tip to hub) of the aerodynamic and blading parameters

    for each calculation station are computed and printed.

    11

  • 6.0 CONTROLLING RECALCULATION MAIN ROUTINE

    The first flow field and performance calculation for this off-design code is

    the design point case and the results should compare very well with the results

    for the design code (Ref. 2). Then, the step-choke increment is used to calculate

    an increased flow rate and the flow field with new streamlines are recalculated.

    This process is repeated until the input range-choke value is reached and all the

    performance calculations on the choke side are completed. A word of caution is needed at this point because if too large a value for the input range-choke is

    used, the code will try to calculate a very hard choke condition which may cause

    a divide by almost zero and other numerical difficulties. After the choke-side

    calculation is completed, the off-design code then uses the step-stall increment

    to reduce the flow rate from the design value and the flow field with new stream-

    lines are calculated. This process on the stall side is repeated until the desired

    input range-stall value is reached. Again, caution is needed because if too large

    a value'-for the input range-stall is used, the code will try to calculate a stall

    condition with very high D-factors (Eq. 3) resulting in severe numerical diffi-

    culties which can stop the code. Now, all the flow-field overall and blade row

    performance calculations have been obtained for one complete speedline (100

    percent or fraction of speed of 1.0). This same general procedure is repeated for

    additional speedlines except that instead of marching away from design point

    values the controlling main routine calculates a reduced flow rate and rotational

    speed for each additional desired input fraction of speed. Speedlines greater

    than 100 percent or fraction of speed greater than 1.0 can also be calculated.

    12

  • 7.0 USER EXAMPLE COMPRESSOR CASE

    A user’s example case for a two-stage fan (Ref. 3) shows the necessary

    detailed input data set needed to run this off-design code (see Table 1). This

    twestage fan example case is the same example case that was used for the

    compressor design code (Ref. 2). In addition, the off-design output prediction

    results for this example case with and without stator resets are shown in Table 2

    and Table 3, respectively. A comparison of the off-design predictions is generally

    in good agreement with the experimental data (see Fig. 2), especially for the 70

    percent speed case.

    This compressor off-design computer code (written in Fortran) dong with the example input case can be obtained from COSMIC, 112 Barrow Hall, Uni- versity of Georgia, 30601. The COSMIC program number is LEW-16176.

    13

  • LOW-ASPECT RATIO TWO STAGE FAN(67) off-design cal.(no reset) off-design cal.(with reset) - - - .

    2.8

    2.6

    2.4

    2.2 0

    .w CI,

    2 2.0 d) k a * 1.8

    pc

    1.6

    1.4

    1.2

    1 .o

    I I

    I I I I

    ; I I

    ..... f - ........... I: > ....... I I I I

    30 40 50 60 70 80

    Flow, (lbdsec)

    Figure 2 - Comparison of the off-design code perfomance predictions with experimental data for a low-aspect-ratio two-stage fan with and without stator reset.

    14

  • 8.0 ACKNOWLEDGEMENT

    The original version of this off-design code was developed by James Crouse

    while he was an employee of NASA. Even after he left NASA James Crouse

    has provided several corrections and additions as well a5 many suggestions to improve this code and his valuable help is greatly appreciated.

    15

  • 9.0 REFERENCES

    1. Johnson, I.A., and Bullock, R.O. eds., “Aerodynamic Design of Axial-Flow Compressors”, NASA SP-36, 1965.

    2. Crow, J.E., “Computer Program for Aerodynamic and Blading Design of Multi- Stage Axial-Flow Compressors”, NASA TP-1946,1981.

    3. Urasek, D.C., Gorrell, W.T., and Cunnam, W.S., “Performance of Two- Stage Fan Having Low-Aspect Ratio, First-Stage Rotor Blading”, NASA TP-1493, 1979.

    16

  • APPENDIX A

    Symbols

    A C

    C,

    D I i J K k L M m

    P PO

    R

    S TO t

    U V W

    f

    z

    annulus area, ft2 blade chord, in. specific heat function for constant pressure, ft/seca OR empirical correlation for the deviation angle coefficient blade element diffusion factor integer station index incidence angle, deg. integer streamline index ineger loss set index curvature in curvilinear cc-ordinate system distance along chord l i e , in. Mach number streamline direction in meridional plane, in. static pressure, lb/ft2 stagnation pressure, lb/ft2; input values; lb/i2 gas constant for air, ft-lb/slug O R radius from axis of rotation, in. blade element path distance, in. stagnation temperature, O R static temperature, O R ; also, blade element thickness, in. local blade velocity, ft/sec. velocity, filsec. weight flow, ft/sec. axial distance, in.

    0

    P

    Y 6 B 4 IC

    P Q

    i3 ws - rj,

    Subscripts: I i le m

    0

    t t e B 1 2

    Superscripts: ( Y

    angle of streamline with reference to axial direction, deg. flow angle relative to meridional direction, deg. blade setting angle, deg. deviation angle, deg. circumferential direction, rad ratio of front to total camber blade angle relative *, local conic co-ordinate ray, deg. local density, slugs/ft3 local blade solidity, ratio of chord to circumferential spacing total loss co&cient shock loss coefficient profile loss coefficient

    calculation station index ideal value, as by an isentropic process leading edge streamline dirction in meridional plane; also, maximurn blade thickness initial value transition point trailiig edge circumferential direction blade row inlet blade row outlet

    relative to rotor

    17

  • 18

    I

  • 19

  • 20

  • x E:

    .d 8

    &

    .e s

    -9 d

    3 M 9

    I 8

    - u la

    u

    3

    -8 s

    W

    d

    v m X E V

    + n m m X E V V +

    h

    v 3

    E V 4

    2 E

    d m X d V

    i- m m X d V V + m X d u Q + m X

    n

    N

    2 F

    x E

    v m X

    i2 n 3

    21

  • d m X d u +

    m m X

    n

    g u + N m X d V D

    .- + m X

    dl m X E E+

    I m X

    V I

    m X E E-c D

    I

    n m

    2 N

    *?

    @E +

    d m X

    E n I

    m X d E V

    I m X

    m

    N

    d

    I n

    !s @Is

    dl m X Fr V R + 0 m X F V V + m X Fr V D + m X

    N

    w m X

    E.3

    E3

    E.3

    n + m X

    m

    V + m X

    N

    E9 + m X

    22

  • -=?

    F 2

    * m X d

    - h v 3 F

    V n 8 V

    .r m X F V

    + m X E V V + m X E V

    +

    n 0

    N

    m m X

    23

  • 2 E

    .r m X E E

    I m X F

    I cn X E E

    I

    n m

    F1

    m

    .r m X

    F2 n I

    m m X p: E V

    I m X

    F1

    F2 m

    x E:

    x E:

    24

  • r 4 - I

    I . : P

    < P P <

    E i; 2

    t i e

    2 C

    P

    i c

    +

    6

    .e 8 4 0 .- 3 b a

    I

    2

    +a

    B d

    PI

    c3 Y

    n 0 0 4 W 0

    8 'S E

    E v

    "cr d d 0 d ca d

    d

    .-

    ... 4

    4

    .41

    -Ea V

    +a

    3

    Y

    v3 Y

    2s

  • I I I

    26

  • 5 s E!

    c E 7

    .- e 6 s

    d w E

    hi a h c

    .e f3 4

    e d

    27

  • ‘tt

    k 5:

    a 41 fi 9

    6

    7

    a Y

    a d 0 0

    w

    .- Y

    d 8

    -5

    gb z 3 d

    a

    0 Y

    bo E

    GI

    5 62

    ‘r

    E 2

    a 41 4 9 Pe P

    0

    a Y

    a d 0 0

    W

    .e Y d 8

    -5

    8 z

    P

    a

    0 Y

    bo E L=: -2

    w E 62

    28

  • h Y z. a

    m -- g

    -9 8

    CS P 8

    &

    Y

    4 LI

    Y 0 d

    3; n

    M W a

    3 T s m

    29

  • “i E: E

    s E B 3 e,

    a 63

    w

    0 .- Y E z 4 0 m

    a

    Y

    -2 d 8b z 3

    3

    2 n 3 W

    X H

    ‘11

    E E:

    “i

    E E:

    30

  • E

    I c C .. + .. l

    E

    c *

    i! d

    n a

    31

  • x :: x x x x x 9xx x x x x 2x88 x x 8 x x x x x x x x x 8 x x x x x x x x x o e C. o o o o o m m 0 0 0 0 o o o c o o o o o o o o o o o o o o o o o o o o o o

    0 0 0 0 m N I I 0 0 0 0 0 0 0 4 " " " " F F F " ~ " " C . ~ 7 ~ F " 0 . m m *

    . e - c w o . . . W ? ? m " ? ? . . ym'Dq * N O O m m o 1 1 m - 0 0 1 1 - w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    r l N rl I d N

    - B U P O D - e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w w w w w w w w w w w w w w w w ~ ~ ~ w ~ w g 3x2 zog 0 0 0 0 m o o 0 . . . . . . . . . . . . . . . . . . . .

    (0 v) m m m m o o - *;;id o o o o o o o o o o o o o o o o o o o o o o y L D m v ) v ) L D m m Y ) m v ) y m m v ) m m L D L D m m m

    G: x ? : 0 0 0 - N O N 0 m C. 2 II N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    O W L D O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 e

    - t m w ? ? y ecr-? . . m m ~ e I -4

    . . . . . . . . . . . . . . . . . . . . O O O O O C o o o o o c o o o o o c

    m r l o m - 4 my"? W W W N O O O ~ ~ O O O O O O O O O ~ O O O O ~ ~ ~ ~ ~ ~ ~ ~ ~ m m m m m ~ ~ m m n w y 1 1 o O O O O O O O O O O O O O ~ O O O ~ O O ~ ~ ~ ~ ~ ~ ~ ~

    o m mo I I O O ?

    ~ m m Y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . . m m r( rl 4 II II 4 4 4 4 II. e 4 4 4 4 4 4 4 4 4 II. 4 4 4 . . I -

    0 0 0 0 0 0 0 0 0 0

    0 0 - 0 0 0 0 0 0 0

    r ( c w o m - rl m w I d s 4 ..I ..I

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    ::xs 8x2 P l t Z -4:- ? ? ? ? . .

    a o o o o o o m 0 0 ? N ? -!?? N N ? ? m e i n o m - N - ~ I I

    8 4 - 4 , -

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 orlo 0 0 0 D O D O

    c m o o m m O N W ~ O W ? . . q ? ? : I 4 . I - 8 -

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O o O O O O O n O O O O O 0 0 0 0 0 0 0 0 0 1 0 0 0

    I I I I - N O ~ ~ - I I ~ W N N ????-!?????-!?? r( - N r l -..In - N

    32

  • 0

    0 Y

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 D O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8:: 2:: 8x x x EX 85: P O P P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x x gg 80" x x 0 0 . . 9 9 9 9 9 9 9 9 33 9 9 9 9 9 9 9 9 39

    33

  • k B H

    I

    rl

    ZI P

    34

  • op U

    t Lt Lt 0 U e U

    I

    rI

    35

  • Ln 6 Y 8 2 0 0 0 0 0 0 0 0 0 0 4 - N G + - , T W P ( D ~ ~

    ddddoOd00r l 2 Ln

    I

    E 3 U O - m r l

    m N W

    Y Y m

    B m 0 C 4

    P a m

    i! I

    I a I!

    0 5 m 0

    3 0 4

    a

    Y

    0

    3 b

    E P 3 + F

    u a

    v

    m n

    I

    P

    a 4 4 Y

    r l o

    B

    P P

    0 Y

    rl .4 4

    0

    +

    4 m m a m m 9 5 9 5 5 0

    n 4

    I

    n

    36

  • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 ’ “c.““”””””

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0

    W W ~ W W W W W ~ ~ ~ . . . . . . . . .

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    D O O O O O O O O O O

    n y “ y “ y y y y y m . .

    ~ o o m m m m m m o r - o m n m m w w w o ~ ~ ~ d * 0 0 0 0 0 d r l . 4

    0 0 9 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ?

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    O O D O O O O O O O O ? 4 - ? 4 4 4 4 4 4 4 ?

    m n o o o o o o o n ~ m ~ o w w w w w m m o . 4 ” * 0 0 0 0 0 0 0 ~

    0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ?

    zgzxx88zzzx ? ? ? ? ? ? ? ? ? ? ? 0 0 0 0 0 0 0 0 0 0 0

    O O O O O O O O O O D

    O O O O O O O O O O O ~ O D O O O O ~ ~ q ~ o d d d d d d o o o o d ~ m - s m w r w m ~

    N

    i m 8 m

    0 “ m “ 4 0

    L

    37

  • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O w w ~ w w ~ w w w w ~ d d d d d d d d d d d

    .. I 0 0 0 0 0 0 0 0 0 0 0 ~

    d d d d d d d d d d d u

    o o o o o o o o o o o m 0 0 0 0 0 0 0 0 0 0 0 Y m m n n n m n n n n m m

    W O O ~ O N ~ M ~ O C . " m w " n N N " * m r l 0 0 0 0 0 0 0 0 0 0 0 O N N N N N N N N N -

    d d d d d d d d d d d

    0 0 0 0 0 0 0 0 0 0 0

    9 - * * 9 1 * * * * 1 P P P P P x P x P P P d d d d d d d d d d d

    0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ?

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    M N C I ~ Y I W C ~ ~ O d d d d d d d d d d d

    r(

    .4

    m .I

    m rl

    m 4

    m .*

    38

  • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 . . .

    m m w - e m 4 - i mnold w n n

    0 0 0 , , I

    . . .

    0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 9 9 9

    N O 4 - O N w w w 0 1 - 0

    Y Y U : 0 0 0 , , I

    mm(D * e m A i - m m d Y Y Y 0 0 0 , , I

    0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 9 9 9

    ( D W W * e m .-I-- m m d

    Y Y Y 0 0 0

    m - m w w c 0 I O m In*-

    0 0 0 ???

    d N O

    E 3

    f

    4

    TI P

    I

    B

    .A

    .A

    .A

    4J

    0 9 a u

    w 0

    P) a s I

    3 8 C - Q

    u 4 u m Y

    4 B

    a

    d d d d d d d d d d d D

    i e Y O .C ?< Y

    . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0

    o n m m w m m ~ m ~ o m m m - w e 4 w o n m 4 4 d N N N O O O l l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    39

  • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    d d d d d d d d

    O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    O O O O O O O O

    q q o o o o o q . . . . .

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o q q o o q q o o o d d o o d d o o d d d

    d d d ~ ~ o m d m m w a r m o n w a r n m a n

    m m m c w w n - ? 1 o N O h n l W n b C W l m N W C m d N N d O d

    ddddddddood

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    d d d d d d d d d d d

    m m m n w c w r m m - s n m m n m m n u d m ~ - d w n l w o u 7 o n n n l . a n n w r n n d N d

    0 0 0 0 0 0 0 0 0 0 0 11111111911

    0 0 0 0 0 0 0 0 0 0 0 . o o o o o o o o o o o * 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o m o o o o o o o o o o o u d d d d d d d d d d d ~

    8 Tt m n o w - m ~ o o o m Y

    O m r C d C m I N m n I I O O - N ~ S 7 c O m W O Y O ~ O ~ O O O - M - N m 0 0 0 0 0 0 0 0 0 0 0

    dddddddddddU

    0 0 0 0 0 0 0 0 gj g g g g g g z g 8 d d d d d d d d 0 0 0 0 0 0 0 0

    I 8 k m 2 I

    +

    I :: 4 a“ W

    A 1 a m A

    W 0

    ti a5 0-a d M -

    40

  • a ^. a . * Y o o o o o o o o o o o 4 . u s . + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    E?: 2 X g g g z x g g g g g !a: 2 0 0 0 0 0 0 0 0 0 0 0

    f ;: i: o o o o o o o o o o d d 5: Y 5:

    m u . u 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? O ? ? ? 9 ? ? ? ? ? ? ?

    E 1.

    m

    0 0 0 0 0 0 0 0 0 0 0 0 Z g I S E O X X g X E U g Z g g E B g g X P X f ;;;;;;;;;;;e x x g g g g x g s g g 2 * *?* .s .s* - .syV m d d o d d d d d d o d I o o o o o o o o o o o w 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 0 8 o o o o o o o o o o o m n n m y n n y y ~ y y n 0 0 0 0 0 0 0 0 0 0 0 .

    r n o m w ~ o w m m o C N C ~ . ~ C I O W N ~ m o w n m d m c - n n o C F t - ~ C C W W W W W

    0 0 0 0 0 0 0 0 0 0 0

    O O C O C C I W N C O O N W O m W m d O m N N N d d O I O O C W W " ~ ~ d d 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0

    o m c n m m ~ n c d o m ~ w o m w m d ~ m n N N - F U O ~ O ~ C W ~ 4 d d d d 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0

    . . . . .

    ? ? ? ? ? ? ? = ? ? ? ?

    ? ? ? ? ? ? ? ? ? ? ?

    ? ? ? ? ? ? ? ? ? ? ? Y E -4.4

    d N m W n W l o m O d d d

    a El; Y Y .

    9 Y

    d

    41

  • 0 0 0

    9 A

    m a n n m o n d o n m C o w m A o m n o w w O d N W o O W m 1 0 0 0 0 N O C O m C A W m

    0 0 0 0 0 0 0 0 0 0 0

    o n n a n w w w c c m . . . . . . . . . . .

    ddddddddddd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 n n a a n n n n n n n d d d d d d d d d d d m c r o ~ o w n m ~ m O O 1 O W d N m m N m o n c - t n ~ c m o w m n m m r r n n w c c r - 0 0 0 0 0 0 0 0 0 0 0

    d d d d d d d d d d d n w m r 4 - n m w F o - m n m . l m l - w n n r W w c m m m 0 A N " I 0 0 0 0 0 0 ~ ~ ~ A ~ 0 0 0 0 0 0 0 0 0 0 0

    d d d d d d d d d d d

    U

    Y

    Y

    L s P 3 m m 4

    .I A

    i Y

    m Y

    +

    42

  • P 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 .

    drlr l r l *ddddrlr l

    0 0 0 ~ 0 0 0 0 0 0 0 . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I O I O O O I

    0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . .

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    O O O O O O O O O O O

    nnnyInnYInann . . . . . . . . . .

    d d d d d d d d d d d

    I Y

    Y

    U d

    I I m 4

    In d

    8 I Y

    Y

    3

    I Y

    Y

    U d

    m

    I I m 4

    W rl

    i

    4

    Y

    m Y

    I u Y

    U 4

    m

    I I m 4

    e

    8 Y

    m Y

    I u Y

    U

    i I m 4

    m rl

    B Y

    m Y

    B 4

    '.

    In e 9

    Q,

    In 9

    0

    0

    m Y

    0 :: e

    I Y

    Y

    2

    1 E m

    m 4

    8 Y

    m Y

    43

  • 0 O

    9 0

    - I n * 9 :

    m Y

    a e .. Y Y

    u

    0 . O . 0 0

    0 N

    3 Y

    I- 0 2s I: 4% 9 a c 0 x - .*.IT(

    a .*

    I

    n

    44

  • 0 . - *

    m *

    m .

    e.

    45

  • o ~ ~ ~ ~ - ~ n n n n n n n n n n n I - n n n n n n n n n n n n n n n o n 1 N N N N N N w w w w w w w w w w w ~ o o o o o o m m m m m m m m 1 m m n w w w w w w w w w w w w w w w w w

    . . . . . . . . . . . . . . . . . .

    O - ~ ~ - - - n n n n n n n n n n n r a n n a n n n n n o n n n n n n o m N N N N N N w w w w w w w w w w w ~ o o o o o o m m m m m 1 m m m 1 m n w w w w w w w w w w w w w w w w w

    . . . . . . . . . . . . . . . . . .

    46

  • 41

  • e4 . . . . * . ** . * . . . . * .

    48

  • m -

    W - I u 0 0 0 0 0 9 0 0 0 0 0 u Lj;; 0 0 0 0 0 0 0 0 0 0 0 f $$I d d d d d d d d d d d i

    - ~ - o o o o o o o o o

    x 0 4 . . . . . . a u - m m m m m m m m m

    I I I I 1 , I I I

    a u . O O O O O O O O O 4 0 E o o o o o o ~ q q

    49

  • m m m

    N N N - 0 0

    no'" . . m m m

    50

  • m

    I

    51

  • fi 9 3 Y

    m

    Y a

    W 0

    53

  • 54

  • 4

    5 f LI 6 Y

    w

    4

    i

    I s Y

    w

    Y

    rl

    a

    W 5

    d f

    m rl

    -rl

    N 4

    3,; o o o o o o o o o o c s g l g 0 0 0 0 0 0 0 0 0 0 0 y y y y y y o o o y y m - v 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 .- C O d m n c C n C N m d m a w m m ~ m m ~ n - 4 0 6 W . i 4 o y y y y q y ? q y Y w m . . o N n w w ~ m m m ~ m m m ~ . . . Yn- N N N N N N N N N N N

    m w m n m o w m n c m o o m l - w n w w m r l

    0 0 0 0 0 0 0

    d d d 4 q 4 4 . . . . . .

    . . . . . . . . . . . N N N N N N N N N O m

    w

    55

  • A

    +,

    t f I t U d

    I

    Ps

    56

  • I . a - I 5 %8 I u - a

    I a -

    N

    i P w 0

    Y

    r( Y

    0

    9 4

    5 .,4

    3

    d d

    9 m U

    I I c n u 0

    mw m m 0 0 d o

    5

    sp d o m u 8

    a d a m 0 0 S U

    % % - 0 W L )

    - 0

    m a Y U PZ

    m o m u B E

    m m m w

    57

  • 58

  • N

    m Q Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ? ? ? ? ? ? u

    rl

    u

    Y

    d Y

    0

    m f m -4

    Y

    oc

    u 0

    I

    59

  • 60

  • N W O N 0 W

    d N N “ 0 0

    m o l . .

    I

    I

    I 3 Y

    m

    Y m

    I

    w 0

    m t b

    61

  • m rl

    P I m

    r N

    e' .d

    a U

    Y

    B jj h I: W

    62

  • 63

  • Y 0 w

    a Y

    a

    I

    m * & % Z Z a m m o o u a n o 0 w a m o c

    0 0

    7

    9 0

    rl

    E

    2 0 Y

    w

    +

    a 9

    0

    I

    e

    a 4 a* 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 :$ F ! N C I ? Y W C ? m C . . Y O

    000000dOd.. E 3 m -

    t;

    4 3,- 0 0 0 0 0 0 0 0 0 0 S Y U 0 0 0 0 0 0 0 0 0 0 323 ~ ~ ~ 0 0 ~ 0 0 0 ~ i Y O . o o o d d o d d d o

    Y 0 4 Y Y r 1 a u m c s - 2 I a

    -I

    . . .IO

    64

  • m n o n n a n n o n w W N N d d - d - N N N

    0 0 0 0 0 0 0 0 0 0 0

    n w ~ w ~ w w w o ~ m

    9 9 9 9 9 9 9 9 9 9 9

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 w w w w w w w w w w ~ 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . .

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * n a n n n a n n n n 0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . .

    0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O D 0 0 0 0 0 0 0 0 0 0 0 ' ? W ' ? " ? ? ? ? 4 d o d d o d o o o o o

    0 b 0 0 0 0 0 0 0 0 0

    d d d d d d d d d d d

    0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m m o n n n n m n m ~

    0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 3 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0

    r ( ~ n ~ n w e m m o

    65

  • c 0 0 0 0 0 0 0 0 0 0 0

    4 o o o o o o o o o o o

    Y 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 0 m w w w w ~ ~ w ~ w w w w . . . . . . . . . . .

    i m o m m r - * m o o - : g E$$gx;ng$g; P d d d d d d d d d d d s

    I

    P P P P P P P S P Z P P S

    4

    SI 0 0 0 0 0 0 0 0 0 0 0 0 Y Y o o o o o o o o o o o m

    2 d d d d d o o d d d o Y *

    2 0 0 0 0 0 0 0 0 0 0 0

    Y O O O O O O d d O O O

    Y 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 0 a w . - . y y ? ? w w ? y ?

    2 0 0 0 0 0 0 0 0 0 0 0 9 ? ? ? ? ? ? ? ? ? ? ? 4 o o o o o o o o o o o

    Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    m m m m m m .A " " ..I .el "

    I I 9 I Y Y Y u u u- 0

    d m 0 u - 0 urn 0

    I 0 - 0

    d m o n e m e

    o m o 2: c" r l m o mc y1 mc c

    a - 0 u- 0 "5 ? "3 3

    o m 0 " * 0 a c 0)

    o m o

    mc A

    m a

    ?I% N 4 4 I X -

    4 " I

    -5 9 $ 2 7 x - ' $ 2 ' X I e* a a R * e e 3 3

    r P

    C

    I

    O O O O O O O O O O O g ? ? ? 9 ? ? ? ? ? ? ? Y ~ o : p Z o ~ s i ? 9 4 x 3 % rl

  • :: In 0

    W N

    s: 0

    - N

    0

    0

    m W n m

    0

    N N

    E Y

    n

    I Y rl

    rl

    -8 Y

    m

    4 il u 4 w 0

    m 2 u

    67

  • I

    8; x n d 3 m c m

    Id- " I

    21 6

    n o 0

    "4

    Y

    n d

    x 5;;

    o m U U s w m o o q 324 0 I"-

    n

    8 8 a I ( W

    m k W g a :: C W

    E d U C

    +

    68

  • Y g f 0 0 0 0 0 0 0 0 0 0 0 @E2 g g g g g g g g g g g m $ : 2 0 0 0 0 0 0 0 0 0 0 0 ;J; 0 0 0 0 0 0 0 0 0 0 0 99993999999

    2;; ., g g g g g g g g g g g a.3: -. m u 0 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9 9 9 9 9 0 0 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    Lj

    d e ?

    Y

    u - 0 o m o r l m m c e

    2 - a

    44

    4

    69

  • P

    J % $ - . c u m o o m

    e m + o Y * S * 2 g s 9 44-

    a

    A

    m U (D

    (D Lc

    a

    Y

    B

    a a

    e + II u- 0 2 8 2 4% 9 me rl g - 4" d

    n 4 Y

    d d d d d d d d d d d

    d d d d d d d d d d d

    I

    m

    +

    70

  • 71

  • 0 0 c

    0

    N

    9 e a

    a +, Q

    t m rl

    d 1

    I

    m

    m Y m

    g 4 .. m Y m

    4

    P rl

    72

  • I

    4. rl.

    L

    c

    0 . d.

    m r

    m *

    e.

    w *

    Lo.

    1.

    -.IC

    N e

    r l .

    2 : * . * . ........... 0 . Y -rl. . 4 n C I - * w e

    73

  • 74

  • m .................

    75

  • B Y w . 0 . m m 2

    0

    0 - w

    9

    0

    B P m 2

    m 5 OI 0

    m 2 w

    B 0 4 1 0

    8

    m

    N rl 0

    4

    Y - 4

    a a

    a U

    I4 w 0

    B

    N r l W l - r l o o o o m 0 0 0 0 0 o o q o o d d O d d

    N W O W - 1 O O O N W O O d N O d N 0 0 0 0 0 0

    d d d d d d I , ,

    m m m o m W C N N N o N o + - 0 0 0 0 0

    d d d d d I , ,

    m m 0 0

    0

    r l m o m

    d d d d

    - 0 r l e 0011- 0 0 0 0

    m 0

    ? m ::

    m

    1 w 0 u

    1 D

    I

    Yr)

    76

  • E: P

    77

  • c 6 m .,, ” A N 0 0 0 0 0 0

    d d d 5 s

    I Y

    Y

    0 3 . - o o o o o o o o o o o w m a d d d d d d d d d d d %

    A r l D I 0 0 0 0 0 0 0 0 0 0 0

    Y

    m

    Y a

    8 n

    m a I v o o o o o o o o o o o Y m . a o o o o o o o o o o o

    Y 2 5 2 ; d d d d d d d d d d d

    - i .8 X X X X X X X X X X X 37; d d d d d d d d d d d -

    78

  • W

    Y

    C

    YI 0

    79

  • 4

    1 B 0 U

    W

    Y

    d

    ..I

    W 5

    5 m 4

    c

    m

    I u Y

    Y

    m z rl

    ?i ij m

    I E Y

    i5 x w

    m

    51

    t w - 0 0 0 0 0 0 0 0 0 0 0

    4 .- r l r l 0) 0 0 0 0 0 0 0 0 0 0 0 w m a ,Ea, d d d d d d d d d d d

    i

    e 4.

    80

  • bl 0 Y d #

    I

    m

    mY; m a 0 0 d U

    B m 4

    Y

    W 0

    81

  • 82

  • d

    d N C I I I m 0 0 d m W N N 0 0 8 m o m m n o o 0 0 0 0 0 0 0 0 ? ? u 1 Y ? ? ? w

    4

    83

  • I

    m

    84

  • m U

    8 Ir I( 0 U 6 U

    9

    I rl k Y

    I

    t 0

    P :: Po

    85

  • Y

    N

    Y

    i m a Y

    w

    rl

    Y

    i B a Y

    w

    Y

    4

    d

    0

    9 Po rl

    3 .s

    I

    c

    u u

    Y

    B rl

    Y

    s m a Y

    f n w

    0 P d

    86

  • N

    5 1

    I . 5 d

    I d ? > j 2%8

    0 O O o O O O O O O O e a 0 0 0 0 0 0 0 0 0 0 0 Y

    0 0 0 0 0 0 0 0 0 0 0 . . . . . . . . . . . u 0 0 0 0 0 0 0 0 0 0 0 0

    o o o o o o o o o o o m

    d

    r n m m o n " m 0 c c d 0 t - m ~ m d m n d w n m u ~ n m m d d ~ o o o m 4 n n n n w w w w w w n u . . . . . . . . . . . m 0 0 0 0 0 0 0 0 0 0 0 u 0

    s m

    Y 4

    87

  • I k 0

    I

    m

    88

  • I

    89

  • o m c c m d ~ c l 0 l l " O

    0 0 0 0 0 0 9 9 9 9 9 9

    91

  • REPORT DOCUMENTATION PAGE

    1. AGENCY USE ONLY (Leaveblank)

    Form Approved OM6 No. 0704-0188

    2. REPORT DATE 3. REPORTTYPE AND DATESCOVERED

    July 1995 Final Contractor Report 4. TITLE AND SUBTITLE

    Off-Design Computer Code for Calculating the Aerodynamic Performance of Axial-Flow Fans and Compressors User's Manual

    6. AUTHORtS)

    James E Schmidt I AND ADDRESS(ES)

    NYMA, Inc. 2001 Aerospace Parkway Brook Park, Ohio 44142

    5. FUNDING NUMBERS

    WU-538-03-11 C-NAS3-27186

    8. PERFORMING ORGANIZATION REPORT NUMBER

    E9764

    12a. DISTRIBUTtOWAVAILABLITY STATEMEM

    I 9. SPONSORIN~ONITORNG AGENCY NAME@) AND ADDRESS(ES) 10. SPONSORINWMONITORING

    AGENCY REPORT NUMBER

    12b. DISCRIBLITION CODE

    National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135-3191

    14. SUBJECTTERMS

    Off-design aerodynamic performance; Axial-Flow fans; Multi-stage axial compressors

    NASA CR-198362

    15. NUMBER OF PAGES

    94 15. pRcE CODE

    17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFlCAl'lON OF REPORT OFTHIS PAGE OFABSTRACT

    A05 20. LIMITATION OF ABSTRACT

    I I I Unclassified Unclassified UncIasdied I NSN 7540-01-2805500 Standard Form 298 (Rev. 2-89)

    Presorbed by ANSI Std. 23918 298-102