10
UDK 62(05)=862=20=30 CODEN STJSAO ISSN 0562-1887 Uredništvo i uprava (Head and Editorial Office): Berislavićeva 6/I, 10000 Zagreb, Republic of Croatia; Telefon/telefaks +385 (0)1 487 24 97, www.hsbis.hr; E-pošta: [email protected] Osnivač i izdavač (Founder and Publisher): Hrvatski strojarski i brodograđevni inženjerski savez (Croatian Union of Mechanical Engineers and Naval Architects) Glavni urednik (Editor-in-Chief): Bernard FRANKOVIĆ Uredništvo časopisa Strojarstvo, Berislavićeva 6/I, HR-10000 Zagreb, telefon/telefaks +385 (0) 1 487 24 97 E-pošta: [email protected] Urednici rubrika (Contributing Editors): Zvonko BENČIĆ, Žarko BURIĆ, Bernard FRANKOVIĆ, Želimir ORŠANIĆ i/and Igor SUTLOVIĆ Urednički odbor (Editorial Board): Antun GALOVIĆ (Zagreb), Vladimir MEDICA (Rijeka), Ivica VEŽA (Split) i/and Marija Živić (Slavonski Brod) Međunarodno uredničko vijeće (International Editorial Board): Vatroslav GRUBIŠIĆ (Fraunhoffer Institut - Darmstadt, Njemačka), Janez GRUM (Fakulteta za strojništvo, Univerza v Ljubaljani), Zygmunt HADUCH SUSKI (Uni- versidad de Monterrey - Monterrey, Meksiko), Branko KATALINIĆ (Technische Uni- versität - Wien, Austrija), Jurij KROPE (Fakalteta za kemijo in kemijsko tehnologijo, Univerza v Mariboru, Slovenija), Elso KULJANIĆ (University of Udine - Udine, Italija, & Tehnički fakultet - Rijeka, Hrvatska), Stanisław LEGUTKO (Politechnika Mechanicznej, Poznańska Instytut Technologii - Poznań, Poljska), Damir PE- ČORNIK (Technische Hochschule Mannheim, Njemačka), Adolf ŠOSTAR (Tehniška fakulteta - Maribor, Slovenija) i/and Roman WIELGOSZ (Politechnika Krakowska - Kraków, Poljska) Savjet časopisa (Journal Council): Akademija tehničkih znanosti (Stanko TONKOVIĆ); Brodogradilište 3. maj - Ri- jeka (Edi KUČAN); Brodogradilište Uljanik - Pula (Renato FONOVIĆ); Centar za transfer tehnologija, Zagreb (Mladen ŠERCER); Đuro Đaković Holding d.d. Slavonski Brod (Zdravko STIPETIĆ); Energetski Institut Hrvoje Požar Zagreb (Goran GRANIĆ); Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu - Split (Boženko BILIĆ, Željko DOMAZET, Tomislav KILIĆ); Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu - Zagreb (Tonko ĆURKO, Ivan JURAGA, Milan KOSTELAC, Nikola RUŽINSKI, Želimir SLADOLJEV, Dragutin TABORŠAK); Hrvatska komora inženjera strojarstva (Luka ČARAPOVIĆ); Hrvat- ski registar brodova - Split (Nenad VULIĆ); Hrvatski strojarski i brodograđevni inženjerski savez - Zagreb (Bernard FRANKOVIĆ, Ante KRSTULOVIĆ); Insti- tut Končar Zagreb (Stjepan CAR); INAS-Zagreb - Zagreb (Branimir MILČIĆ); Institut Ruđer Bošković - Zagreb (Dražen VIKIĆ TOPIĆ); Strojarski fakultet Slavonski Brod Sveučilišta J.J. Strossmayer Osijek - Slavonski Brod (Dražan Ko- zak); Sveučilište J.J. Strossmayer Osijek - Slavonski Brod (Ivan SAMARDŽIĆ); Šumarski fakultet Sveučilišta u Zagrebu - Zagreb (Stjepan RISOVIĆ); Tehnički fakultet Sveučilišta u Rijeci - Rijeka (Vladimir MEDICA) i/and Uredništvo časo- pisa Strojarstvo - Zagreb (Ivica LIBRIĆ) Lektori (Linguistic Advisers): Leopoldina-Veronika BANAŠ, Betty BONETTI i/and Zdravko VNUČEC Korektori (Proofreaders): Anka GLAVAN, Sanja HEBERLING-DRAGIČEVIĆ, Zdenka HERCEGOVAC, Anita HEROLD, Mira HORVATEK-MRŠIĆ, Mario ŠLOSAR, Elisa VELČIĆ i/and Zdravko VNUČEC Mjeriteljski pregled (Measuring survey): Zdravko VNUČEC Tehnički urednik (Technical Editor): Igor SUTLOVIĆ Časopis izlazi dvomjesečno (Journal published bimonthly) Računalni slog i prijelom (Computer typesetting and screen break): Fintrade&tours d.o.o. - Brestovice 50, HR - 51215 Kastav Tisak (Print): Fintrade&tours d.o.o. - Brestovice 50, HR - 51215 Kastav Uređenje zaključeno (Preparation ended): 2011-10-31. Časopis za teoriju i praksu u strojarstvu = Journal for Theory and Application in Mechanical Engineering = Журнал для машиностроителъной теории и практики = Zeitschrift zur Theorie und Praxis des Maschinenwesens Godište (Volume) 53 ZX470/1539-1546 Zagreb, studeni-prosinac (November-December) 2011. Broj (Number) 6 Stranica (Page) 425-498 Abecedni popis autora i suradnika koji su, osim stalnih suradnika, sudjelovali u formiranju ovog broja - autori članaka i prikaza tiskani su kurzivom. (An alphabetical list of the authors and contibutors who, beside the permanent contributors, have participated in forming this issue - the authors of the papers and reviews are printed in italics): ARSOVSKI, Slavko; BENČIĆ, Zvonko; BILANDŽIJA, Nikola; BOŠNJAKOVIĆ, Branko; CAR, Tihomir; ČOLIĆ, Mirsad; ČARIJA, Zoran; ČEKADA, Miha; ČURČIĆ, Srećko; DIMITRIJEVIĆ, Dragana; ĐORĐEVIĆ, Milosav; FRANKOVIĆ, Bernard; GALOVIĆ, Antun; GLAŽAR, Vladimir; IVANČAN, Stjepan; KANJEVAC, Katarina; KLARIĆ, Mario; KLARIN, Branko; KROPE, Jurij; KOKIĆ ARSIĆ, Aleksandra; KUZLE, Igor; LAMBIĆ, Miroslav; LEGUTKO, Stanisław; LENIĆ, Kristian; MALINA, Jadranka; MEDICA, Vladimir; MILOVANOVIĆ, Slavko; MUMILOVIĆ, Adil; NOVAK, Peter; PAVLOVIĆ, Aleksandar; PAVLOVIĆ, Milan; PRVULOVIĆ, Slavica; PEČORNIK, Damir; PANJAN, Petar; PANDŽIĆ, Hrvoje; PRELEC, Zmagoslav; RADIĆ, Nikola; RAĐENOVIĆ, Anfica; REPČIĆ, Nedžad; SITO Stjepan; SMOLJAN, Božo; STANIŠA, Branko; ŠTRKALJ, Anita; TOLMAC, Dragiša i/and TONJEC, Anton. Mikrofilmovi ili preslike svih originalnih radova objavljenih u časopisu Strojarstvo mogu se naručiti preko ovlaštenog posrednika (Microfilms or hard copies of all published original papers in the journal Strojarstvo, can be ordered through our representative): Bowker A & I Publishing, 245 West 17 th Street, New York, NY 10011, Tel. 212/337-0174, USA. Uredništvo sve radove prihvaća i provjerava u najboljoj namjeri, ali ne odgovara za autorske sadržaje priloga u cjelini ili u bilo kojem dijelu, kao niti za eventualne autorske pravne povrede. Editors accept and check the works with the best of intentions. Thay have, however, no responsibility for the contents of the work given by the author, either in whole or in part nor for any possible legal violation of authors’ rights. Časopis većim dijelom sufinancira Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske - Zagreb. Evidentiran je u javnim glasilima Ministarstva informiranja Republike Hrvatske pod brojem 523-90-2 od 6. srpnja 1990. godine. Strojarstvo izlazi u pravilu u šest brojeva godišnje • Godišnja pretplata (za 2011.): 300 kn za pravne osobe iz Hrvatske (pojedini broj 50 kn); 120 kn za privatne osobne pretplatnike iz Hrvatske (pojedini broj 20 kn); 50 EUR za dostavu u Bosni i Hercegovini, Makedoniju i Sloveniju; 75 EUR za dostavu u ostale europske države; 100 EUR za dostavu u neeuropske države • Pretplatu prima: Uredništvo časopisa Strojarstvo, za tuzemstvo na žiro-račun u Zagrebačkoj banci, d.d., Zagreb, broj 2360000-1101563353, a za inozemstvo na devizni račun: Zagrebačka banka d.d. 2500-3229718 • Rukopise ne vraćamo. As a rule Strojarstvo is published 6 times annualy • Annual subscription (for 2011): for registered persons (abroad) 100 EUR, for private persons 50 EUR; an additional 25 EUR for air or registered mail • Subscriptions are to be addressed in favour of Editorial office of Journal Strojarstvo, with bank account No. 2500-3229718 in Zagrebačka banka d.d., Zagreb, Croatia • Manuscripts are not returned. Časopis Strojarstvo prenose sljedeći sekundarni izvori odnosno baze podataka (Journal Strojarstvo is referred through the following secondary sources and date bases): Chemical Abstracts, Current Contents: Engineering, Technology & Applied Sciences, Engineering Index Monthly, Metal Abstracts, Corrosion Abstracts, C A D - C A M Abstracts, Environment Abstracts, Fluidex, Mechanical Engineering Abstracts, Aluminium Industry Abstracts, VINITI, World Textile Abstracts. Naklada 1000 primjeraka/Printed in 1000 copies. Oglasi (Advertisements): Ekonerg (Hrvatska) II Siemens 426 HSBIS - radionica 454 HSBIS - seminari 468 Weishaupt (Hrvatska) III Viessmann (Hrvatska) IV

Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

UDK 62(05)=862=20=30 CODEN STJSAO ISSN 0562-1887

Uredništvo i uprava (Head and Editorial Office): Berislavićeva 6/I, 10000 Zagreb, Republic of Croatia; Telefon/telefaks +385 (0)1 487 24 97, www.hsbis.hr; E-pošta: [email protected]č i izdavač (Founder and Publisher):Hrvatski strojarski i brodograđevni inženjerski savez (Croatian Union of Mechanical Engineers and Naval Architects) Glavni urednik (Editor-in-Chief): Bernard FRANKOVIĆ Uredništvo časopisa Strojarstvo, Berislavićeva 6/I, HR-10000 Zagreb, telefon/telefaks +385 (0) 1 487 24 97 E-pošta: [email protected] rubrika (Contributing Editors): Zvonko BENČIĆ, Žarko BURIĆ, Bernard FRANKOVIĆ, Želimir ORŠANIĆ i/andIgor SUTLOVIĆUrednički odbor (Editorial Board):Antun GALOVIĆ (Zagreb), Vladimir MEDICA (Rijeka), Ivica VEŽA (Split) i/and Marija Živić (Slavonski Brod)Međunarodno uredničko vijeće (International Editorial Board):Vatroslav GRUBIŠIĆ (Fraunhoffer Institut - Darmstadt, Njemačka), Janez GRUM (Fakulteta za strojništvo, Univerza v Ljubaljani), Zygmunt HADUCH SUSKI (Uni-versidad de Monterrey - Monterrey, Meksiko), Branko KATALINIĆ (Technische Uni-versität - Wien, Austrija), Jurij Krope (Fakalteta za kemijo in kemijsko tehnologijo, Univerza v Mariboru, Slovenija), Elso KULJANIĆ (University of Udine - Udine, Italija, & Tehnički fakultet - Rijeka, Hrvatska), Stanisław LEGUTKO (Politechnika Mechanicznej, Poznańska Instytut Technologii - Poznań, Poljska), Damir pe-ČORNIK (Technische Hochschule Mannheim, Njemačka), Adolf ŠOSTAR (Tehniška fakulteta - Maribor, Slovenija) i/and Roman WIELGOSZ (Politechnika Krakowska - Kraków, Poljska)Savjet časopisa (Journal Council):Akademija tehničkih znanosti (Stanko TONKOVIĆ); Brodogradilište 3. maj - Ri-jeka (Edi KUČAN); Brodogradilište Uljanik - Pula (Renato FONOVIĆ); Centar za transfer tehnologija, Zagreb (Mladen ŠERCER); Đuro Đaković Holding d.d. Slavonski Brod (Zdravko STIPETIĆ); Energetski Institut Hrvoje Požar Zagreb (Goran GRANIĆ); Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu - Split (Boženko BILIĆ, Željko DOMAZET, Tomislav KILIĆ); Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu - Zagreb (Tonko ĆURKO, Ivan JURAGA, Milan KOSTELAC, Nikola RUŽINSKI, Želimir SLADOLJEV, Dragutin TABORŠAK); Hrvatska komora inženjera strojarstva (Luka ČARAPOVIĆ); Hrvat-ski registar brodova - Split (Nenad VULIĆ); Hrvatski strojarski i brodograđevni inženjerski savez - Zagreb (Bernard FRANKOVIĆ, Ante KRSTULOVIĆ); Insti-tut Končar Zagreb (Stjepan CAR); INAS-Zagreb - Zagreb (Branimir MILČIĆ); Institut Ruđer Bošković - Zagreb (Dražen VIKIĆ TOPIĆ); Strojarski fakultet Slavonski Brod Sveučilišta J.J. Strossmayer Osijek - Slavonski Brod (Dražan Ko-zak); Sveučilište J.J. Strossmayer Osijek - Slavonski Brod (Ivan SAMARDŽIĆ); Šumarski fakultet Sveučilišta u Zagrebu - Zagreb (Stjepan RISOVIĆ); Tehnički fakultet Sveučilišta u Rijeci - Rijeka (Vladimir MEDICA) i/and Uredništvo časo-pisa Strojarstvo - Zagreb (Ivica LIBRIĆ) Lektori (Linguistic Advisers):Leopoldina-Veronika BANAŠ, Betty BONETTI i/and Zdravko VNUČECKorektori (Proofreaders):Anka GLAVAN, Sanja HEBERLING-DRAGIČEVIĆ, Zdenka HERCEGOVAC, Anita HEROLD, Mira HORVATEK-MRŠIĆ, Mario ŠLOSAR, Elisa VELČIĆ i/and Zdravko VNUČECMjeriteljski pregled (Measuring survey): Zdravko VNUČECTehnički urednik (Technical Editor): Igor SUTLOVIĆČasopis izlazi dvomjesečno (Journal published bimonthly) Računalni slog i prijelom (Computer typesetting and screen break): Fintrade&tours d.o.o. - Brestovice 50, HR - 51215 Kastav Tisak (Print): Fintrade&tours d.o.o. - Brestovice 50, HR - 51215 KastavUređenje zaključeno (Preparation ended): 2011-10-31.

Časopis za teoriju i praksu u strojarstvu = Journal for Theory and Application in Mechanical Engineering = Журнал для машиностроителъной теории и практики = Zeitschrift zur Theorie und Praxis des Maschinenwesens

Godište (Volume) 53ZX470/1539-1546 Zagreb, studeni-prosinac (November-December) 2011.

Broj (Number) 6Stranica (Page) 425-498

Abecedni popis autora i suradnika koji su, osim stalnih suradnika, sudjelovali u formiranju ovog broja - autori članaka i prikaza tiskani su kurzivom. (An alphabetical list of the authors and contibutors who, beside the permanent contributors, have participated in forming this issue - the authors of the papers and reviews are printed in italics):ARSOVSKI, Slavko; BENČIĆ, Zvonko; BILANDŽIJA, Nikola; BOŠNJAKOVIĆ, Branko; CAR, Tihomir; ČOLIĆ, Mirsad; ČARIJA, Zoran; ČEKADA, Miha; ČURČIĆ, Srećko; DIMITRIJEVIĆ, Dragana; ĐORĐEVIĆ, Milosav; FRANKOVIĆ, Bernard; GALOVIĆ, Antun; GLAŽAR, Vladimir; IVANČAN, Stjepan; KANJEVAC, Katarina; KLARIĆ, Mario; KLARIN, Branko; KROPE, Jurij; KOKIĆ ARSIĆ, Aleksandra; KUZLE, Igor; LAMBIĆ, Miroslav; LEGUTKO, Stanisław; LENIĆ, Kristian; MALINA, Jadranka; MEDICA, Vladimir; MILOVANOVIĆ, Slavko; MUMILOVIĆ, Adil; NOVAK, Peter; PAVLOVIĆ, Aleksandar; PAVLOVIĆ, Milan; PRVULOVIĆ, Slavica; PEČORNIK, Damir; PANJAN, Petar; PANDŽIĆ, Hrvoje; PRELEC, Zmagoslav; RADIĆ, Nikola; RAĐENOVIĆ, Anfica; REPČIĆ, Nedžad; SITO Stjepan; SMOLJAN, Božo; STANIŠA, Branko; ŠTRKALJ, Anita; TOLMAC, Dragiša i/and TONJEC, Anton.

Mikrofilmovi ili preslike svih originalnih radova objavljenih u časopisu Strojarstvo mogu se naručiti preko ovlaštenog posrednika (Microfilms or hard copies of all published original papers in the journal Strojarstvo, can be ordered through our representative): Bowker A & I Publishing, 245 West 17th Street, New York, NY 10011, Tel. 212/337-0174, USA.

Uredništvo sve radove prihvaća i provjerava u najboljoj namjeri, ali ne odgovara za autorske sadržaje priloga u cjelini ili u bilo kojem dijelu, kao niti za eventualne autorske pravne povrede.Editors accept and check the works with the best of intentions. Thay have, however, no responsibility for the contents of the work given by the author, either in whole or in part nor for any possible legal violation of authors’ rights.

Časopis većim dijelom sufinancira Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske - Zagreb. Evidentiran je u javnim glasilima Ministarstva informiranja Republike Hrvatske pod brojem 523-90-2 od 6. srpnja 1990. godine.

Strojarstvo izlazi u pravilu u šest brojeva godišnje • Godišnja pretplata (za 2011.): 300 kn za pravne osobe iz Hrvatske (pojedini broj 50 kn); 120 kn za privatne osobne pretplatnike iz Hrvatske (pojedini broj 20 kn); 50 EUR za dostavu u Bosni i Hercegovini, Makedoniju i Sloveniju; 75 EUR za dostavu u ostale europske države; 100 EUR za dostavu u neeuropske države • Pretplatu prima: Uredništvo časopisa Strojarstvo, za tuzemstvo na žiro-račun u Zagrebačkoj banci, d.d., Zagreb, broj 2360000-1101563353, a za inozemstvo na devizni račun: Zagrebačka banka d.d. 2500-3229718 • Rukopise ne vraćamo.As a rule Strojarstvo is published 6 times annualy • Annual subscription (for 2011): for registered persons (abroad) 100 EUR, for private persons 50 EUR; an additional 25 EUR for air or registered mail • Subscriptions are to be addressed in favour of Editorial office of Journal Strojarstvo, with bank account No. 2500-3229718 in Zagrebačka banka d.d., Zagreb, Croatia • Manuscripts are not returned.

Časopis Strojarstvo prenose sljedeći sekundarni izvori odnosno baze podataka (Journal Strojarstvo is referred through the following secondary sources and date bases): Chemical Abstracts, Current Contents: Engineering, Technology & Applied Sciences, Engineering Index Monthly, Metal Abstracts, Corrosion Abstracts, C A D - C A M Abstracts, Environment Abstracts, Fluidex, Mechanical Engineering Abstracts, Aluminium Industry Abstracts, VINITI, World Textile Abstracts.Naklada 1000 primjeraka/Printed in 1000 copies.Oglasi (Advertisements):Ekonerg (Hrvatska) II Siemens 426 HSBIS - radionica 454HSBIS - seminari 468 Weishaupt (Hrvatska) III Viessmann (Hrvatska) IV

Page 2: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

Sadržaj za 2011. = Contents for 2011. 495

Optimization of Integrated Steel Plant Recycling: Fine-Grain Remains and By-Products Synergy (1531) M. Gavrilovski, Ž. Kamberović, Mirjana Filipović, Marija Korać and N. Majinski 359Microchannel Cooling Systems Using Dielectric Fluids (1532) D. Lelea, I. Laza and L. Mihon 367Network Design for the Dismantling Centers of the End-of-Life Vehicles Under Uncertainties: A Case Study (1533) A. Pavlović, Danijela Tadić, S. Arsovski, Aleksandra Kokić and D. Jevtić 373The Influence of Gear Parameters on the Surface Durability of Gear Flanks (1534) Z. Sajfert, M. Ristivojević, B. Rosić, D. Radović and Ž. Adamović 383Structural Optimization of Turbine Generator Foundation with Frequency Constraint (1535) Goranka Štimac, S. Braut and R. Žigulić 389Application of the SMED Method as an Important Tool for Production Improvement (1536) M. Perinić, S. Maričić and E. Gržinić 399Critical Success Factors in Quality Management Systems (1537) Marija Šiško-Kuliš and D. Grubišić 405Implementation of CAD/CAM System in Virtual Simulation of Automated Turning Center (1538) N. Vitulić, Z. Jurković and M. Perinić 415Editor’s note B. Franković 427

Mehanical Properties of Al- (Nb, Mo, Ta, W) Thin Films (1539) T. Car, N. Radić, M. Čekada, P. Panjan and A. Tonejc 429A Thermal Analysis of Crane Brakes with Two Shoes (1540) M. Čolić, N. Repčić and A. Muminović 435The Impact of CE Marking on the Competitiveness of Enterprises (1541) Katarina Kanjevac Milovanović, S. Arsovski, Aleksandra Kokić Arsić, A. Pavlović and S. Ćurčić 445Feasibility Assessment of a Wind Power Plant with Insufficient Local Wind date Using Cascade- -Correlating Neural Networks (1542) I. Kuzle, M. Klarić and H. Pandžić 455Use Anode Dust for Removal Cr(VI) i Ni(II) Ions from Aqueous Solutions - Comparison of Adsorption Isotherms (1543) Anita Štrkalj, Ankica Rađenović and Jadranka Malina 463Material Flows Within an End-of-Life Vehicle Recycling System – A Periodical Analysis of Generated Quantities (1544) M. Đorđević, A. Pavlović, S. Arsovski, M. Pavlović and D. Jevtić 469Experimental and Theoretical Study of Energy Characteristics of a Rotating Cylinder (1545) D. Tolmac, Slavica Prvulović, M. Lambić, M. Pavlović and Dragana Dimitrijević 477Construction of the Drilling Mechanism as a Factor of Vegetable Sowing Quality (1546) S. Ivančan, S. Sito and N. Bilandžija 485

Igor Kuzle
Highlight
Page 3: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

Strojarstvo 53 (6) 455-462 (2011) I. KUZLE et. al., Feasibility Assessment of a Wind Power... 455Feasibility Assessment of a Wind Power... 455 455

CODEN STJSAO ISSN 0562-1887 ZX470/1542 UDK 621.224 (075.8):621.65 (075.8)

Original scientific papirThe introduction of incentive schemes for wind power plants throughout most European countries has sparked a substantial growth in interest from investors. In rushing to qualify for their part of the approved quotas, investors may not properly evaluate their investments, causing some of them to be economically unjustifiable. When assessing wind power plant feasibility, a key factor is the historic wind data. It is used as the basis for selecting the type, number and layout of the wind turbines. Unfortunately, historic wind data for a potential wind power plant location is often scarce, meaning investors do not have the data needed for making valid decisions on the quality of potential wind power plant projects. This paper describes a method for wind power plant output power estimation even if no historic wind data is available for the given location. A cascade correlation neural network is applied on wind characteristic measurements from remote locations. The results are verified by comparison of the predicted output power, obtained by using the proposed method, and already operational wind power plant with the actual values. A significant correlation exists between these two, confirming that the proposed method can be used as a robust tool for assessing the feasibility of potential wind power plant locations.

Ocjena isplativosti vjetroelektrane u slučaju nedovoljnih podataka o vjetru uporabom kaskadno-korelacijskih neuronskih mreža

Izvornoznanstveni članakUvođenje sustava poticaja za gradnju vjetroelektrana u većini europskih zemalja izazvalo je golem interes investitora. S obzirom na ograničene kvote, odnosno ukupno dopuštenu instaliranu snagu u vjetroelektranama, investitori često ne provode dovoljno detaljnu analizu investicije, što može imati za posljedicu donošenje pogrešnih odluka vezanih za odabir lokacije i instaliranu snagu buduće vjetroelektrane. Prilikom izrade studije isplativosti vjetroelektrane najvažniji ulazni podatak predstavljaju povijesni podaci vezani prvenstveno za brzinu i smjer vjetra. Na temelju tih se podataka odabire tip, broj i razmještaj vjetroagregata. Nažalost, tih podataka za veliki broj potencijalnih lokacija vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj rad opisuje metodu za predviđanje izlazne snage vjetroelektrane na lokaciji za koju ne postoje povijesni podaci. Naime, kaskadno-korelacijske neuronske mreže primjenjuju se na povijesne podatke koji postoje za obližnje lokacije, na temelju čega se dobivaju podaci o značajkama vjetra za razmatranu lokaciju. Rezultati su potvrđeni i analizirani usporedbom predviđene izlazne snage vjetroelektrane dobivene proračunom, s poznatim vrijednostima izlazne snage stvarne vjetroelektrane. Potvrđen je visoki stupanj korelacije, što potvrđuje da se iznesena metoda može koristiti kao alat za procjenu isplativosti potencijalnih lokacija vjetroelektrana.

Igor KuzlE1), Mario KlARIĆ2) and Hrvoje pANDžIĆ1)

1) Fakultet elektrotehnike i računarstva (Faculty of Electrical Engineering and Computing), Unska 3, HR-10000 Zagreb, Republic of Croatia

2) Dalekovod d.d. (Dalekovod Plc.), Marijana Čavića 4, HR-10000 Zagreb, Republic of Croatia

KeywordsCascade-correlating algorithm Neural networks Feasibility assessment Wind power plan

Ključne riječiKaskadno-korelacijski algoritam Neuronske mreže Ocjena isplativosti Vjetroelektrana

Received (primljeno): 2011-04-06 Accepted (prihvaćeno): 2011-09-30

Feasibility Assessment of a Wind Power Plant with Insufficient Local Wind Data Using Cascade-Correlating Neural Network

[email protected]

1. Introduction

Throughout the last two decades, wind power has been experiencing an extreme growth. In 2010, the worldwide installed wind power capacity broke the 200 GW barrier, with a growth rate of 27,8 %, as shown in Figure 1 [1]. China and the USA established themselves as the world’s leaders in installed wind power capacity, and reached 35 and 26 GW of installed wind capacity respectively. The

leading European country is Germany, with over 25 GW of wind power capacity installed [2].

The primary reason for such an enormous interest in wind power plants are the various incentive schemes.

Most schemes can be classified in one of the following [3]:

a fixed feed-in tariff scheme,• a feed-in premium scheme,• a quota scheme.•

Page 4: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

456 I. KUZLE et. al., Feasibility Assessment of a Wind Power... Strojarstvo 53 (6) 455-462 (2011)

Symbols/Oznake

cp - level of aerodynamic transformation

- stupanj aerodinamične pretvorbepwind(0) - average wind power at the sea level

- prosječna snaga vjetra na razini mora

cp,max - Betz’ limit - Betzov koeficijent

r - gas constant - plinska konstanta

ek, wind - kinetic energy of the wind - kinetička energija vjetra

t - time- vrijeme

p - absolute pressure - apsolutni tlak

T - temperature- temperatura

pt - transformed power - transformirana snaga

v - speed- brzina

pwind - average wind power - prosječna snaga vjetra

ρ - air density- gustoća zraka

Figure 1. New and overall installed wind power plant capacities in the worldSlika 1. Novi i ukupno instalirani kapaciteti vjetroelektrana u svijetu

Investors compete for their part of the installed wind capacity quotas specified by each country. This is especially the case with countries with partly congested transmission network. Therefore, some investors tend to rush into inadequately elaborated projects with unclear feasibility studies. The most important information needed to correctly assess the feasibility of a wind power plant project is the historic wind data. Wind characteristics should be available for at least the past year in order to make a valid feasibility assessment of the project, and correctly select the type, number and layout of the wind turbines. Some countries do not maintain the required wind characteristics data for the investors’ potential wind power plant locations. Therefore, the investors have to set up their own measurement masts and collect data for at least one year. This causes a significant prolongation of the project unbeneficial to the investor.

This paper addresses the described problem by introducing a method for wind power plant project assessment when there are no available historical wind measurements for the exact location. The method is based on wind data available from locations relatively near to the location lacking such data.

The rest of this paper is organized as follows: The following section describes the data needed for accurate wind power plant location assessment. Section 3 provides a brief overview of the wind prediction methods and describes neural networks including a literature overview. Section 4 provides a thorough description of the measurement locations, equipment, and the data on which the neural network is trained. Section 5 provides the calculation results, and conclusions are discussed in Section 6.

2. Input Data

In order to successfully predict the wind power plant’s output power, it is imperative to first identify the parameters which directly influence wind power plant operation. Wind turbine blades transform kinetic energy of the wind into mechanical energy on the turbine rotor, which is coupled with an electrical generator via a common shaft. The produced wind power density is proportional to the air density (ρ) and the cubed wind speed. For a constant wind speed, it can be calculated as:

(1)

In general, the wind speed is not constant. Thus, the average wind power density for a given time interval is equal to:

(2)

The density of dry air can be calculated using the ideal gas law, expressed as a function of the atmospheric pressure and air temperature:

Page 5: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

Strojarstvo 53 (6) 455-462 (2011) I. KUZLE et. al., Feasibility Assessment of a Wind Power... 457Feasibility Assessment of a Wind Power... 457 457

(3)

The specific gas constant for dry air is 287,05 J/kgK. Air pressure and temperature are functions of the height above the sea level. At sea level (ρ = 1,2 kg/m3), the wind power density can be approximated as pwind(0) = 0,6·v3.

Wind kinetic energy over time t is calculated according to:

(4)

and for the time interval T with constant wind power speed:

(5)

Since wind still has a significant speed even after it passes through the wind turbine blades, all its kinetic energy cannot be transformed into mechanical energy. This is known as the Betz’ law and can be mathematically expressed as a level of aerodynamic transformation (coefficient of performance), which is defined as the ratio of the mechanical rotor power and the wind power:

(6)

The largest theoretical value for the aerodynamic transformation level (maximum coefficient of performance) is cp,max = 16/27 = 0,593 (Betz’ limit), and the efficiency of any given wind power plant facility cannot be greater than that value. Taking all the energy transformation losses within a wind turbine into consideration, it can be concluded that less than half of the total kinetic energy of the wind can be transformed in useful electrical energy, as shown in Figure 2.

From all of the above, it can be concluded that wind speed and direction data, as well as air temperature and pressure data are the necessary parameters for calculating the wind power plant’s power output [4].

Figure 2. Curve of transformation of wind energy to electricitySlika 2. Krivulja pretvorbe energije vjetra u električnu energiju

3. Neural Networks3.1. Wind-prediction Methods

The wind speed prediction methods can be arranged in two categories: the physical methods and the statistical methods.

In order to predict wind speed physical methods use physical considerations such as weather forecast, terrain structure, temperature and pressure. Some of these methods are Numerical Weather Forecast and Mesoscale models.

The concept of statistical methods is based on finding the relationship of the observed wind speed time series. The most common statistical method is autoregressive integrated moving average (ARIMA).

However, many methods use both physical and statistical parameters.

3.2. Cascade-correlating Neural Networks

A neural network is a non-linear statistical data modeling tool. Its computational structure resembles a biological neuron [5], and its ability to learn from experience makes it appealing and sought solution for various problems [6]. Neural networks learn from the available data and examples by pursuing an input-output mapping without an explicit model equation statement [7].

Cascade neural networks using a cascade-correlating algorithm were developed by Fahlman and Libiere [8] in 1990. The main characteristic of this method is the addition of a new neuron into a hidden layer during the network learning process [9], as shown in Figure 3. The initial network contains only input and output layers. New (hidden) layers are used only during the learning process. The network is considered upgraded when an optimal architecture is achieved with an optimal number of hidden layers.

Figure 3. Neural network upgraded with cascade-correlating algorithmSlika 3. Neuronska mreža s kaskadno-korelacijskim algoritmom

A self-organizing network with an optimized number of neurons in the hidden layers is obtained this way. The

Page 6: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

458 I. KUZLE et. al., Feasibility Assessment of a Wind Power... Strojarstvo 53 (6) 455-462 (2011)

learning time is much shorter, making these networks faster. Additionally, they are very robust and results are obtained even with a fairly small number of input parameters. Optimization is performed by minimizing the Mean Squared Error (MSE) between the real network output and the calculated output [10].

Neural networks are suitable for modeling complex nonlinear processes [11-14]. This is the reason they are widely used in wind power generation forecasting based on meteorological data. The most important works include [15], where a non-linear recursive least-squares method is used to train a recurrent neural network. In [16] neural network models are reported to have better performance than regression modeling in wind power turbine generation estimation. In [17] a neural network is applied to estimate power output as a function of the time delay of wind speed and the power itself, while [18] is focused on virtual and generalized models to predict turbine parameters of interest.

3.3. Activation Function Selection

For selecting the most suitable transfer function inside the cascade-added neurons, it is necessary to explore the dependence of the wind turbine power output on the wind speed, as well as other characteristics. Dependence of wind turbine power output on air density and thus on air temperature and pressure is expressed in (1) – (4). True functional dependence of wind speed and wind turbine power output is provided in a form of the power curve, which is supplied by the wind turbine manufacturer. Although this data is different across various types of turbines, they all have the same shape. In Figure 4 the Siemens SWT-2.3-93 wind turbine power curve is shown. The shape of the curve fits into a hyperbolic tangent function, which is therefore chosen as an activation function for the cascade added elements in neural networks. The general function of hyperbolic tangent is:

(7)

Figure 4. Siemens SWT-2.3-93 wind turbine power curveSlika 4. Krivulja snage vjetroagregata Siemens SWT-2.3-93

4. Data Collection and Analysis

4.1. Selection of Input and Output Data

The output from the neural network is the wind power plant’s active power, more precisely the power output at the grid connection point. Formulae (2) – (5) state that the required input parameters are the wind speed and direction, as well as the parameters which define air density (temperature and pressure). Therefore, it is necessary to define [19]:

wind speed and direction,• air temperature and pressure.•

Thus, the training of the network requires a sequence of input data that defines the atmospheric parameters and the associated output data sequence that defines the active power at generator terminals.

4.2. Wind Measurements

Measurements of wind speed and direction, as well as the air temperature and pressure, are mostly obtained by meteorological masts [20]. Since their wind turbine shafts are situated relatively high above the ground, greater accuracy and correlation can be achieved between wind potential and output power (Figure 4). This paper is based on the processed data from 50 m tall towers [21- 22].

4.3. Measurement Locations

The observed wind power plant location is the location of the actual WPP Trtar-Krtolin near the city of Šibenik with the rated power of 11,2 MW. WPP Trtar-Krtolin is connected to the grid at the nearby substation 220/110/30 kV Bilice over a 30 kV cable line and line field where power measurements and feed-in energy audits are made. Several 50 m meteorological masts measuring wind speed and direction, as well as air temperature and pressure are erected in the vicinity of the WPP’s location. Three locations were chosen to carry out measurements: Krš-Pađene, Borajica and Promina. The positions of these locations with their respective distances to WPP Trtar-Krtolin are provided in Figure 5. It can be seen that the meteorological mast locations are significantly far from each other. The idea of this paper is to show a significant correlation between the measurements from these distant measurement mast locations and the electricity produced at WPP Trtar-Krtolin.

All the data include time records for suitable inter-comparisons and synchronization. At Krš-Pađene, wind speed was measured at 25 m and 50 m above the ground, and the wind direction at 50 m above the ground. At Borajica and Promina, wind speed was measured at 10, 30, 44 and 46 m, with the wind direction at 10 and 44 m,

Page 7: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

Strojarstvo 53 (6) 455-462 (2011) I. KUZLE et. al., Feasibility Assessment of a Wind Power... 459Feasibility Assessment of a Wind Power... 459 459

the air temperature at 2 and 40 m, and the atmospheric pressure at 2 m above the ground. The measurement equipment used at Krš-Pađene, Promina and Borajica are cup anemometers, wind wanes, thermometers and barometers.

Figure 5. Positions of wind mast locationsSlika 5. Lokacije stupova za mjerenje značajki vjetra

The input data from these locations used by the training algorithm are given in Tables 1, 2 and 3.

Table 1. Input parameters of location Krš-Pađene (measuring location A)Tablica 1. Ulazni parametri lokacije Krš-Pađene (mjerna lokacija A)

Label / Oznaka Value / Vrijednost Height /

VisinaA-V1 wind speed / brzina vjetra, m/s 50 mA-V2 wind speed / brzina vjetra, m/s 25 mA-S1 wind direction / smjer vjetra 50 m

Table 2. Input parameters of location Borajica (measuring location B)Tablica 2. Ulazni parametri lokacije Borajica (mjerna lokacija B)

Label /Oznaka Value / Vrijednost Height /

VisinaB-V1 wind speed / brzina vjetra, m/s 10 mB-V2 wind speed / brzina vjetra, m/s 30 mB-V3 wind speed / brzina vjetra, m/s 44 mB-V4 wind speed / brzina vjetra, m/s 46 mB-S1 wind direction / smjer vjetra 10 mB-S1 wind direction / smjer vjetra 44 m

B-T1air temperature /

temperatura zraka, °C40 m

B-P1 air pressure / tlak zraka, hPa 2 m

The measuring devices at Krš-Pađene are calibrated according to NIST standards, while those at Promina and Borajica according to MEASNET standards. All measurements at these three locations were recorded as 10-minute averages. At the same time, the active power output was recorded at WPP Trtar-Krtolin, more precisely in substation Bilice. The power output records are 15-minute averages.

Table 3. Input parameters of location Promina (measuring location C)Tablica 3. Ulazni parametri lokacije Promina (mjerna lokacija C)

Label / Oznaka Value / Vrijednost Height /

VisinaC-V1 wind speed / brzina vjetra, m/s 10 mC-V2 wind speed / brzina vjetra, m/s 30 mC-V3 wind speed / brzina vjetra, m/s 44 mC-S1 wind speed / brzina vjetra, m/s 10 mC-S2 wind direction / smjer vjetra 44 m

C-T1air temperature /

temperatura zraka, °C40 m

C-P1 air pressure / tlak zraka, hPa 2 m

4.4. Neural-network training

The output result (wind power plant power output at the grid connection point) is given as an hourly average and is synchronized with the input data. A set of 3290 simultaneous hourly averages are selected corresponding to 137 days (around 4 and a half months). Increasing this number would not only increase the network accuracy, but also the network training time. The algorithm selects an optimal neural network by minimizing the MSE of the output values. This optimized network with a certain number of cascade-added elements in hidden layer represents the final result of the algorithm and can be used for wind power plant power output estimation in the future.

5. Results

The results are obtained by a neural network with 70 cascade-added elements in the hidden layer. The calculation was terminated after 22238 iterations. The best network with the least MSE was selected in iteration number 13285. Behavior of MSE through calculation iterations is shown in Figure 6.

Page 8: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

460 I. KUZLE et. al., Feasibility Assessment of a Wind Power... Strojarstvo 53 (6) 455-462 (2011)

Figure 6. Mean squared error (MSE) during calculation iterationsSlika 6. Srednja kvadratna pogreška tijekom iteracija

The correlation factor is r = 0,9423 (r2 = 0,8878). The actual and forecasted values are both displayed in Figure 7.

Figure 8 shows the scatter plot of the actual vs. forecasted power with a correlation factor of 0,9423. Since there are 3290 data points, Figure 9 shows a three day period subset in more detail.

Figure 7. Actual and forecasted values of WPP power output in a period of 137 daysSlika 7. Stvarne i predviđene vrijednosti izlazne snage vjetroelektrane tijekom 137 dana

Figure 8. Scatter plot of actual vs. forecasted real power from WPP Trtar-KrtolinSlika 8. Stvarne i predviđene vrijednosti izlazne snage vjetroelektrane Trtar-Krtolin

Figure 9. Actual and forecasted values of WPP Trtar-Krtolin power output in a 3 day time period Slika 9. Stvarne i predviđene vrijednosti izlazne snage vjetroelektrane Trtar-Krtolin tijekom 3 dana

The difference between the measured and estimated power is shown in Figure 10. Input importance (InpIm) of every input value was also calculated. When calculating the input importance, each of the input values is deleted from the model sequentially and the effect of this action on the predicting model qualities is calculated.

Figure 10. The difference between the measured and estimated powerSlika 10. Razlika između stvarne i predviđene vrijednosti izlazne snage vjetroelektrane Trtar-Krtolin

The most important input values are given in Table 4.Other input values have InImp values between 4 and

5%. It can be seen from InImp results that value with label A-V1, more precisely wind speed at 50 m above the ground, at Krš-Pađene has the highest input importance. This is expected since wind measurements should be made at heights close to the heights of wind turbine shaft. In this way, the measurement accuracy is increased.

Also, it should be stressed that given measuring location toward location of WPP Trtar-Krtolin is situated in direct north-northeast wind trajectory of dominant wind direction in wider area. This can be viewed from wind rose measured on subject measuring location (Figure 11). Mean annual wind speed at this location is in the range of 4,5-6,5 m/s and wind power 350-700 W/m2 [23].

Page 9: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

Strojarstvo 53 (6) 455-462 (2011) I. KUZLE et. al., Feasibility Assessment of a Wind Power... 461Feasibility Assessment of a Wind Power... 461 461

Table 4. Input importance of the most influential input values on a quality of modelTablica 4. Prikaz najvažnijih ulaznih podataka

Label / Oznaka Input Importance Value / Vrijednost ulaznog podatka

A-V1 16,8 %C-S2 8,8 %C-S1 7,1 %

Figure 11. Wind rose at location Krš-PađeneSlika 11. Ruža vjetrova na lokaciji Krš-Pađene

Large influence of measuring location Krš-Pađene on surrounding area is the result of the fact that other two values measured on the same location also have bigger InpIm values (Table 5).

6. Conclusions

The described method was used to assess wind power plant power output on the basis of atmospheric and wind characteristic data measured in the surroundings of the future wind power plant. Regarded method represents very useful tool from a statistic view considering a very good correlation of forecasted and real data measured on the existing wind power plant location.

Table 5. Input importance of values measured at location at location Krš-Pađene Tablica 5. Prikaz važnosti mjernih podataka lokacija Krš-Pađene

Label / Oznaka Input Importance Value / Vrijednost ulaznog podatka

A-V1 16,8 %A-V2 5,9 %A-S1 4,6 %

The benefit of the described method is that it does not require long term on-site measurements in order

to assess the quality of wind power plant location. As it was described in the example, very good correlation results can be expected already after 4 months of wind characteristics measurements available from other locations. With the increase in number of input values accuracy of wind power plant location assessment will also be increased.

This wind power plant location assessment tool is very robust and can be used on other wind farm locations using data from wind measuring masts in the location vicinity. Such situations will occur very often in Šibenik County where a large number of potential wind power plant locations was already put in spatial plans and a large number of wind masts was erected.

Acknowledgement

The work of the authors is a part of the ACROSS – Centre of Research Excellence for Advanced Cooperative Systems, FP7-project, Grant Agreement Number 285939.

REFERENCES

[1] WWEA: World Wind Energy Report 2010, March 2011, available at http://www.wwindea.org/home/images/ stories/worldwindenergyreport2010_s.pdf.

[2] EWEA: Annual Report 2010, available at: http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Ewea_Annual_Report_2010.pdf.

[3] KLESSMANN, C.; NABE, C.; BURGES, K.: pros and cons of exposing renewable to electricity market risks – A comparison of the market integration approaches in Germany, Spain, and the UK, Energy Policy 36 (2008), 3646-3661.

[4] KUSIAK, A.; ZHENG, H.-Y.; SONG, Z.: Short-Term Prediction of Wind Farm Power: A Data-Mining Approach, IEEE Transactions on Energy Conversion, Vol. 24, No. 1, 2009, 125-136.

[5] SREELAKSHMI, K.; RAMAKANTHKUMAR, P.: Neural Network for Short Term Wind Speed Prediction, World Academy of Science, Engineering and Technology, 42, 2008.

[6] WASSERMAN, P.: Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York, 1993.

[7] MOhANDES, M.A.; REHMAN, S.; HALAWANI, T.O.: A Neural Networks Approach for Wind Speed Prediction, Renewable Energy, Vol. 13, No. 3, 345-354, 1998.

Page 10: Časopis za teoriju i praksu u strojarstvu = Journal for ... · vjetroelektrana često nema, što znači da investitori ponekad nemaju na temelju čega provesti valjane analize. Ovaj

462 I. KUZLE et. al., Feasibility Assessment of a Wind Power... Strojarstvo 53 (6) 455-462 (2011)

[8] FAHLMAN, S.E.; LEBIERE C.: The cascade-correlation learning architecture, Advances in Neural Information Processing Systems 2, D.S. Touretzky (ed.), Morgan-Kaufmann, Los Altos CA, 1990.

[9] HOEHFELD, M.; FAHLMAN, S.E.: Learning with Limited Numerical Precision Using the Cascade-Correlation Learning Algorithm, IEEE Transactions on Neural Networks, Vol. 3, No. 4, 602-611, July 1992.

[10] HAYKIN, S.: Neural Networks: A Comprehensive Foundation, MacMillan College Publishing, 1994.

[11] KELOUWANI, S.; AGBOSSOU, K.: Nonlinear model identification of wind turbine with a neural network, IEEE Transactions Energy Conversion, Vol. 19, No. 3, 607–612, Sep. 2004.

[12] BIShOP, C.: Neural Networks for Pattern Recognition, London, U.K.: Oxford Univ. Press, 1995.

[13] HAYKIN, S.: Neural Networks: A Comprehensive Foundation, Macmillan, NewYork 1994.

[14] KUSIAK, A.; SONG, Z.; ZHENG, H.: Anticipatory Control of Wind Turbines with Data-Driven Predictive Models, IEEE Transactions on Energy Conversion, Vol. 24, No. 3, Sep. 2009.

[15] BARBOUNIS, T.G.; THEOCHARIS, J.B.; ALEXIADIS, M.C.; DOKOPOULOS, P.S.: Long-term wind speed and power forecasting using local recurrent neural network models, IEEE Transactions on Energy Conversion, Vol. 21, No. 1, 273–284, March 2006.

[16] LI, S.; WUNSCH, D.C.; O’HAIR, E.; GIESSELMANN, M.G.: Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation, ASME Transactions: Journal on Solar Energy Engineering, Vol. 123, 327–332, 2001.

[17] KELOUWANI S.; AGBOSSOU K.: Nonlinear model identification of wind turbine with a neural network, IEEE Transactions on Energy Conversion, Vol. 19, No. 3, 607–612, Sep. 2004.

[18] KUSIAK, A.; LI, W.: Virtual Models for Prediction of Wind Turbine Parameters, IEEE Transactions on Energy Conversion, Vol. 25, No. 1, March 2010.

[19] NJAU, E.C.: Expressions for Wind Speed, Relative Humidita, Rainfall, Absolute Humidity, Vapour Pressure and Dew Point as Functions of Temperature, Renewable Energy, No. 6(1), 23-28, 1995.

[20] PETERSEN, B.M.; PEDERSEN, T.G.; KLUG, H.; VAN DER BORG, N.; KELLEY, N.; ALKE DAHLBERG, J.: Wind speed measurement and use of cup anemometry, Recommended practices for wind turbine testing, 2003.

[21] Dalekovod Plc. Type design – 50 m high wind measuring mast, Dalekovod Plc – Zagreb, 2006.

[22] NRG Systems, Symphonie data logger and accessories, Hinesburg, USA, 2003.

[23] FRANKOVIĆ, B.; VRSALOVIĆ, I.: New high profitable wind turbines, Renewable Energy, Vol. 24. No. 3-4, November 2011.

[24] RAMíREZ-ROSADO, I.J.; FERNáNDEZ-JIMéNEZ, L.A.; MONTEIRO, C.: Artificial Neural Network Models for Wind Power Short-Term Forecasting using Weather Predictions; Modelling, Identification, and Control - MIC 2006, Lanzarote, Canary Islands, Spain, 2006.

[25] DUMNIC, B.; MATIC, D.; KATIC, V.; VASIC, V.; DELIMAR, M.: Optimal MRAS Speed Estimation for Induction Generator in Wind Turbine Application, 15th IEEE Mediterranian Electrotechnical Conference (MELECON 2010), Valletta, Malta, 25-28 April, 2010, 949-954.

[26] PLAVŠIĆ, T.; KUZLE, I.: Artificial Neural Networks Applications in Power Systems, 40th International Symposium ELMAR, Zadar, Croatia, 23-25 June, 1998, 217-220.

[27] FRANKOVIĆ, B.: Obnovljivi izvori energije u Hrvatskoj, Strojarstvo, Vol. 46. No. 3, 181-185. 2007.