22
This article was downloaded by: [Institute of Geology and Geophysics of CAS] On: 21 November 2011, At: 16:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK International Geology Review Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tigr20 Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies Ben-Xun Su a b , Ke-Zhang Qin a , Patrick Asamoah Sakyi c , Sanjeewa P.K. Malaviarachchi d , Ping-Ping Liu a b , Dong-Mei Tang a , Qing-Hua Xiao a , He Sun a , Yu-Guang Ma e & Qian Mao e a Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing, 100029, China b Graduate University of Chinese Academy of Sciences, Beijing, 100049, China c Department of Earth Science, University of Ghana, P.O. Box LG 58, Legon-Accra, Ghana d Research School of Earth Sciences, The Australian National University, Canberra, ACT, 0200, Australia e State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing, 100029, China Available online: 13 Jun 2011 To cite this article: Ben-Xun Su, Ke-Zhang Qin, Patrick Asamoah Sakyi, Sanjeewa P.K. Malaviarachchi, Ping-Ping Liu, Dong-Mei Tang, Qing-Hua Xiao, He Sun, Yu-Guang Ma & Qian Mao (2012): Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies, International Geology Review, 54:3, 249-269 To link to this article: http://dx.doi.org/10.1080/00206814.2010.543009 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Occurrence of an Alaskan-type complex in the Middle ...Ping-Ping Liu a b, Dong-Mei Tang a, Qing-Hua Xiao a, He Sun a, Yu-Guang Ma e & Qian Mao e a Key Laboratory of Mineral Resources,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • This article was downloaded by: [Institute of Geology and Geophysics of CAS]On: 21 November 2011, At: 16:54Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

    International Geology ReviewPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/tigr20

    Occurrence of an Alaskan-type complex in theMiddle Tianshan Massif, Central Asian Orogenic Belt:inferences from petrological and mineralogical studiesBen-Xun Su a b , Ke-Zhang Qin a , Patrick Asamoah Sakyi c , Sanjeewa P.K. Malaviarachchi d ,Ping-Ping Liu a b , Dong-Mei Tang a , Qing-Hua Xiao a , He Sun a , Yu-Guang Ma e & Qian Mao ea Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, ChineseAcademy of Sciences, P.O. Box 9825, Beijing, 100029, Chinab Graduate University of Chinese Academy of Sciences, Beijing, 100049, Chinac Department of Earth Science, University of Ghana, P.O. Box LG 58, Legon-Accra, Ghanad Research School of Earth Sciences, The Australian National University, Canberra, ACT,0200, Australiae State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics,Chinese Academy of Sciences, P.O. Box 9825, Beijing, 100029, China

    Available online: 13 Jun 2011

    To cite this article: Ben-Xun Su, Ke-Zhang Qin, Patrick Asamoah Sakyi, Sanjeewa P.K. Malaviarachchi, Ping-Ping Liu, Dong-MeiTang, Qing-Hua Xiao, He Sun, Yu-Guang Ma & Qian Mao (2012): Occurrence of an Alaskan-type complex in the Middle TianshanMassif, Central Asian Orogenic Belt: inferences from petrological and mineralogical studies, International Geology Review,54:3, 249-269

    To link to this article: http://dx.doi.org/10.1080/00206814.2010.543009

    PLEASE SCROLL DOWN FOR ARTICLE

    Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

    This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form toanyone is expressly forbidden.

    The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.

    http://www.tandfonline.com/loi/tigr20http://dx.doi.org/10.1080/00206814.2010.543009http://www.tandfonline.com/page/terms-and-conditions

  • International Geology ReviewVol. 54, No. 3, February 2012, 249–269

    Occurrence of an Alaskan-type complex in the Middle Tianshan Massif, Central Asian OrogenicBelt: inferences from petrological and mineralogical studies

    Ben-Xun Sua,b*, Ke-Zhang Qina∗, Patrick Asamoah Sakyic, Sanjeewa P.K. Malaviarachchid, Ping-Ping Liua,b,Dong-Mei Tanga, Qing-Hua Xiaoa, He Suna, Yu-Guang Mae and Qian Maoe

    aKey Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing100029, China; bGraduate University of Chinese Academy of Sciences, Beijing 100049, China; cDepartment of Earth Science,

    University of Ghana, P.O. Box LG 58, Legon-Accra, Ghana; dResearch School of Earth Sciences, The Australian National University,Canberra, ACT 0200, Australia; eState Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese

    Academy of Sciences, P.O. Box 9825, Beijing 100029, China

    (Accepted 11 October 2010)

    The Xiadong mafic–ultramafic complex lies in the central part of the Middle Tianshan Massif (MTM), along the southernmargin of the Central Asian Orogenic Belt (CAOB). This complex is composed of dunite, hornblende (Hbl) clinopyroxenite,hornblendite, and Hbl gabbro. These rocks are characterized by adcumulated textures and variable alteration. Orthopyroxeneis an extremely rare mineral in all rock units and plagioclase is absent in dunite and Hbl clinopyroxenite. Hbl, Fe-chromite,and Cr-magnetite are common phases. Olivines have forsterite (Fo) contents ranging from 92.3 to 96.6. Clinopyroxenes areCa-rich, Ti-poor diopsides, and mostly altered to tremolites or actinolites. Chromites display low TiO2 and Al2O3 contentsand high Cr# and Fe2+/(Fe2+ + Mg) values. Primary and secondary Hbls show wide compositional variations. These petro-logical and mineralogical features as well as mineral chemistry are comparable to typical Alaskan-type complexes worldwide,which are widely considered to have formed above subduction zones. The chemistry of clinopyroxene and chromite sup-ports an arc plate-tectonic origin for the Xiadong complex. Its confirmation as an Alaskan-type complex implies that theMTM, with Precambrian basement, was probably a continental arc during oceanic plate underflow and further supports thehypothesis of southward subduction of the Palaeozoic Junggar Ocean.

    Keywords: Alaskan-type mafic–ultramafic complex; Central Asian Orogenic Belt; mafic–ultramafic complex; MiddleTianshan Massif; continental arc

    Introduction

    The Central Asian Orogenic Belt (CAOB), reflecting juve-nile crustal growth, is the largest Phanerozoic orogen in theworld, extending 7000 km E–W, from the Siberian Cratonin the north to the Tarim Craton in the south (Figure 1A;Sengör et al. 1993, 2004; Hu et al. 2000; Jahn et al. 2000a,2000b, 2004; Windley et al. 2007; Sun et al. 2008; Xiaoet al. 2009). Its tectonic evolution has been attributed tosubduction, accretion, and collision of an ocean-arc–micro-continent system in the Palaeo-Asian Ocean (Wu et al.1996; Gao et al. 1998, 2006, 2009; Chen et al. 1999; Xiaet al. 2004; Xiao et al. 2004, 2009; Lin et al. 2009).

    The Chinese Tianshan Mountains occupy the southernpart of the CAOB and are characterized by widely dis-tributed mafic–ultramafic complexes, most of which havebeen identified as ophiolites or post-orogenic intrusions(Xiao et al. 1992; Qin et al. 2002; Zhou et al. 2004; Maoet al. 2008; Pirajno et al. 2008; Zhang et al. 2008; Sun2009). A great number of Early Permian mafic–ultramaficcomplexes are exposed in the Eastern Tianshan and

    ∗Corresponding authors. Email: [email protected]; [email protected]

    Beishan belts and in most host magmatic Ni–Cu sulphidedeposits (Figure 1B; Qin et al. 2002, 2003, 2007; Hanet al. 2004; Zhou et al. 2004; Chai et al. 2006, 2008; Hanet al. 2006; Jiang et al. 2006; Mao et al. 2006; Sun et al.2006, 2007; Mao et al. 2008; Pirajno et al. 2008; Su et al.2009, 2010a, 2010b; Tang et al. 2009; Wang et al. 2009;Liu et al. 2010; Xiao et al. 2010).

    Although multiple subduction events in the CAOBhave produced abundant arc-related volcanic rocks andcoeval intrusions, so far no study has reported evidence forAlaskan-type complexes, which are thought to have formedin subduction zone environments (e.g. Williams 1991;Saleeby 1992; Foley et al. 1997; Ayarza et al. 2000; Valliet al. 2004). We discovered a mafic–ultramafic complex inthe Middle Tianshan Massif (MTM) and recognized it to beof Alaskan-type. To our knowledge, this is the first findingof such a complex in the southern margin of the CAOB.

    Here we present a detailed description of thepetrological and mineralogical features of the Xiadongmafic–ultramafic complex and compare it with typical

    ISSN 0020-6814 print/ISSN 1938-2839 online© 2012 Taylor & Francishttp://dx.doi.org/10.1080/00206814.2010.543009http://www.tandfonline.com

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

    mailto:[email protected]:[email protected]://dx.doi.org/10.1080/00206814.2010.543009http://www.tandfonline.com

  • 250 B.-X. Su et al.

    Figure 1. (A) Location map of the study area in the Central Asian Orogenic Belt and partly in the Tarim Craton (modified after Jahn et al.2000b). (B) Regional geological map of the Eastern Tianshan and Beishan Rift showing the distribution of Palaeozoic mafic–ultramaficcomplexes (modified after Su et al. 2010a).

    Alaskan-type complexes. These data are then used to shedlight on the origin and emplacement of the complex.

    Geological setting

    The MTM, in eastern Xinjiang Uygur AutonomousRegion, is situated between the Jueluotage tectonic belt inthe north and the Beishan Rift in the south, and boundedby the Aqikuduke–Shaquanzi fault in the north and theHongliuhe fault in the south (Figure 1B). Abundant gran-ites and granitic gneisses crop out as a Precambrian crys-talline basement of the MTM (BGMRXUAR 1993; Qinet al. 2002; Xu et al. 2009). Several Early Permian mafic–ultramafic complexes, including Tianyu (280 Ma; Su et al.2010a) and Baishiquan (284.8 Ma; Su et al. 2010a), aredistributed along the northern margin of the MTM. TheXiadong complex is located in the central part of the MTM(Figure 1B).

    The Xiadong mafic–ultramafic complex is strip shapedand generally strikes E–W. It is 7 km long and up to 500 mwide with an exposed area of extent ∼2.5 km2 (Figure 2).The country rocks of the complex are dominated by lateProterozoic schist, gneiss, and marbles. Undated graniteand diorite are widely present in the surrounding region andappear to be younger than the mafic–ultramafic complex,

    as some granitic and dioritic veins intrude the mafic–ultramafic complex in the horizontal profile (Figure 2).

    The rock types that compose the Xiadong complex aredunite, hornblende (Hbl) clinopyroxenite, Hbl gabbro, andminor hornblendite, hereafter called dunite, Hbl clinopy-roxenite, Hbl gabbro, and hornblendite. The dunite bodydominates the northern and western parts of the complex,whereas the Hbl clinopyroxenite and Hbl gabbro are mainlyfound in the southern and eastern parts. The hornblenditeis only observed in the horizontal profile (Figure 2). Themafic rock units (Hbl clinopyroxenite, hornblendite, andHbl gabbro) are mostly gradational over a short distance(approximately several metres), whereas the contactswithin the dunite unit are well defined and display chilledmargins (Figure 3A–3C). The profile demonstrates thatmany veins, including Hbl clinopyroxenite, Hbl gabbro,hornblendite, granite, and diorite, cut through the dunitebodies, suggesting late-stage intrusions within the dunitebodies.

    Petrography

    Dunite

    The dunite occurs as bands of masses aligned in an E–W direction parallel to the elongated direction of the

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 251

    Figure 2. Geological map of the Xiadong mafic–ultramafic complex, accompanied by a horizontal profile along A to B showing its rockunits and sampling positions.

    Figure 3. Field and outcrop photographs of the Xiadong mafic–ultramafic complex: (A) field survey showing the position of the hori-zontal profile and the relationship of dunite and Hbl gabbro; (B) light yellow dunite intruded by dark green dunite, with chilled marginpresent in the latter; (C) detailed contact between dark green dunite and light yellow dunite; (D) compact and the strongly serpentinizeddark green dunite; (E) occurrence of chromite layer in dark green dunite; (F) coarse-grained, light yellow olivine aggregate within darkgreen dunite; (G) chromite layer well defined in light yellow dunite; (H) the contact between Hbl clinopyroxenite and hornblendite; (I)fresh Hbl gabbro sample.

    Xiadong complex. It can be subdivided into two types:dark green dunite and light yellow dunite. The dark greendunite appears to be compact (Figure 3B and 3C) butessentially has been strongly serpentinized (Figure 3D).Most olivines in the dark green dunites are altered to

    serpentines, whereas clinopyroxenes (modal abundance

  • 252 B.-X. Su et al.

    with light yellow dunite bodies, the dark green dunitebodies frequently exhibit chilled margins ranging from5 to 15 cm in width (Figure 3B and 3C). Some light yellowolivine aggregates can occasionally be observed in the darkgreen dunites (Figure 3F), probably demonstrating that theemplacement of the dark green dunite is later than that ofthe light yellow dunite.

    The light yellow dunite consists of olivine and chromitewith accessory Hbl and altered clinopyroxene. Olivinesoccur as cumulate crystals of variable sizes (Figure 4A).Many olivine grains are considerably large (2–4 mm) andirregularly shaped. Other olivine grains are small and round(

  • International Geology Review 253

    Figure 5. Back-scattered images of rocks from the Xiadong mafic–ultramafic complex. (A) Dunite 09XDTC1-28 showing fine-grainedolivine, long prismatic clinopyroxene, spinel rimmed by chromite; (B) Hbl clinopyroxenite 09XDTC1-39 displaying altered clinopyrox-ene, primary hornblende (Hbl), granular magnetite, and dolomite vein; (C) Hbl gabbro 09XDTC1-12 showing the relationship betweenmagnetite and ilmenite; (D) Hbl gabbro 09XDTC1-12 displaying detailed intergrowth of magnetite and ilmenite.

    altered to actinolite or tremolite and contain ilmenite lamel-lae. The modal abundance of magnetite and ilmenite in theHbl gabbros can reach up to 15%, which is relatively higherthan that in other rock types (Figure 4C). The magnetites,in most cases, display parallel intergrowth with ilmenitesand occasionally occur as interstitial grains (Figure 5Cand 5D).

    Analytical method

    Quantitative mineral compositions were determinedby wavelength-dispersive spectrometry using a JEOLJXA8100 electron probe (JEOL, Tokyo, Japan), operatingat an accelerating voltage of 15 kV with 12 nA beamcurrent, 5 µm beam spot, and 10–30 s counting time. Theprecisions of all analysed elements are better than 2.0%.Natural minerals and synthetic oxides were used as stan-dards, and a program based on the ZAF procedure was usedfor data correction. The analyses were done at the State KeyLaboratory of Lithospheric Evolution, Institute of Geologyand Geophysics, Chinese Academy of Sciences. Fe2+–Fe3+ redistribution from electron microprobe analyses wascarried out using the general equation of Droop (1987) forestimating Fe3+. Representative analyses of each of theanalysed phases are given in Tables 1–6.

    Mineral chemistry

    Olivine

    Olivine grains are only observed in the dunites of theXiadong complex. They have Forsterite (Fo) ranging from92.3 to 96.6, MnO from 0.03 to 0.23 wt.% with a rangeof 0.08–0.18 wt.%, NiO from 0.05 to 0.76 wt.%, andextremely low CaO of

  • 254 B.-X. Su et al.

    Table 1. Olivine compositions of the Xiadong mafic–ultramafic complex.

    Sample Rock type No. SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total Fo

    09XD-1 Dunite 6 41.8 0.03 0.00 0.00 4.85 0.16 53.3 0.00 0.00 0.01 0.27 100.5 95.209XDTC1-5 Dunite 4 41.2 0.00 0.00 0.05 5.67 0.11 51.8 0.03 0.01 0.00 0.51 99.4 94.309XDTC1-11 Dunite 5 41.7 0.00 0.00 0.00 7.28 0.09 50.9 0.02 0.00 0.01 0.47 100.4 92.609XDTC1-14 Dunite 5 41.9 0.03 0.00 0.01 6.36 0.10 51.3 0.01 0.00 0.00 0.76 100.4 93.609XDTC1-15 Dunite 5 39.9 0.02 0.00 0.06 5.60 0.07 53.0 0.00 0.00 0.02 0.35 99.0 94.509XDTC1-16 Dunite 5 41.0 0.00 0.00 0.02 4.98 0.14 53.3 0.00 0.00 0.00 0.34 99.7 95.109XDTC1-19 Dunite 5 41.5 0.00 0.01 0.00 6.92 0.16 51.2 0.00 0.00 0.00 0.50 100.3 93.009XDTC1-23 Dunite 5 42.0 0.00 0.01 0.00 6.45 0.14 51.6 0.01 0.00 0.01 0.41 100.7 93.509XDTC1-24 Dunite 5 42.1 0.00 0.00 0.03 3.64 0.08 53.6 0.01 0.04 0.02 0.29 99.8 96.409XDTC1-25 Dunite 4 42.4 0.05 0.00 0.00 3.59 0.14 54.1 0.02 0.02 0.00 0.32 100.7 96.409XDTC1-28 Dunite 5 42.4 0.01 0.00 0.00 4.36 0.12 53.5 0.03 0.00 0.02 0.48 100.9 95.709XDTC1-29 Dunite 5 42.2 0.00 0.00 0.04 4.04 0.14 53.2 0.03 0.02 0.02 0.44 100.1 96.009XDTC1-30 Dunite 5 42.4 0.00 0.00 0.01 3.62 0.11 54.3 0.00 0.00 0.00 0.28 100.7 96.409XDTC1-31 Dunite 5 42.1 0.02 0.00 0.02 5.75 0.17 52.2 0.01 0.00 0.00 0.11 100.4 94.209XDTC1-32 Dunite 5 42.0 0.00 0.01 0.00 3.55 0.11 53.9 0.02 0.01 0.01 0.23 99.9 96.509XDTC1-35 Dunite 4 42.1 0.00 0.00 0.09 5.00 0.19 53.1 0.04 0.01 0.03 0.36 100.8 95.009XDTC1-36 Dunite 5 42.3 0.06 0.00 0.00 4.15 0.19 53.9 0.00 0.01 0.03 0.32 100.9 95.909XDTC1-47 Dunite 5 41.8 0.03 0.00 0.01 6.99 0.12 51.6 0.01 0.00 0.01 0.42 100.9 93.0

    Note: Fo = 100 × Mg/(Mg + Fe).

    have identical compositions in Al2O3 (∼55.0 wt.%),Cr2O3 (∼10.5 wt.%), FeO (∼11.5 wt.%), and MgO(∼12 wt.%). Most chromites have very low Mg#[100 × Mg/(Mg + Fe)] values of

  • International Geology Review 255

    Tabl

    e2.

    Chr

    omit

    eco

    mpo

    siti

    ons

    ofth

    eX

    iado

    ngm

    afic–

    ultr

    amafi

    cco

    mpl

    ex.

    Sam

    ple

    Roc

    kty

    peM

    iner

    alN

    o.S

    iO2

    TiO

    2A

    l 2O

    3C

    r 2O

    3Fe

    OM

    nOM

    gOC

    aON

    a 2O

    K2O

    NiO

    Tota

    lC

    r#M

    g#

    09X

    D-1

    Dun

    ite

    Chr

    40.

    010.

    220.

    0414

    .180

    .70.

    572.

    250.

    000.

    010.

    000.

    8198

    .799

    .64.

    7309

    XD

    TC

    1-3

    Dun

    ite

    Chr

    core

    20.

    110.

    087.

    7443

    .942

    .90.

    762.

    780.

    010.

    040.

    010.

    1498

    .579

    .210

    .4C

    hrri

    m1

    0.02

    0.50

    0.29

    36.7

    58.2

    0.84

    1.41

    0.02

    0.02

    0.00

    0.23

    98.2

    98.8

    4.14

    09X

    DT

    C1-

    5D

    unit

    eC

    hr3

    0.02

    0.24

    0.09

    22.9

    70.9

    0.89

    2.75

    0.01

    0.00

    0.00

    0.72

    98.5

    99.4

    6.46

    09X

    DT

    C1-

    6H

    blC

    pxt

    Chr

    10.

    020.

    000.

    146.

    7089

    .30.

    420.

    980.

    020.

    000.

    011.

    1198

    .797

    .11.

    9209

    XD

    TC

    1-11

    Dun

    ite

    Chr

    core

    20.

    010.

    670.

    1520

    .975

    .30.

    761.

    070.

    000.

    040.

    010.

    6299

    .598

    .92.

    46C

    hrri

    m2

    0.05

    0.26

    0.00

    9.48

    86.9

    0.30

    0.61

    0.01

    0.01

    0.00

    0.67

    98.3

    100.

    01.

    2309

    XD

    TC

    1-14

    Dun

    ite

    Chr

    40.

    030.

    150.

    6415

    .480

    .80.

    351.

    110.

    020.

    010.

    020.

    7399

    .394

    .12.

    3909

    XD

    TC

    1-15

    Dun

    ite

    Chr

    40.

    030.

    140.

    3312

    .684

    .30.

    412.

    090.

    000.

    000.

    000.

    5610

    0.4

    96.3

    4.23

    09X

    DT

    C1-

    16D

    unit

    eC

    hr5

    0.01

    0.09

    0.00

    9.97

    87.1

    0.25

    1.00

    0.00

    0.00

    0.01

    0.68

    99.1

    100.

    02.

    0109

    XD

    TC

    1-19

    Dun

    ite

    Chr

    30.

    010.

    461.

    7422

    .569

    .61.

    182.

    470.

    040.

    030.

    010.

    4598

    .589

    .75.

    9609

    XD

    TC

    1-20

    Dun

    ite

    Chr

    30.

    020.

    110.

    3024

    .971

    .90.

    790.

    720.

    010.

    020.

    000.

    3599

    .198

    .31.

    7609

    XD

    TC

    1-23

    Dun

    ite

    Chr

    30.

    040.

    290.

    8916

    .379

    .10.

    540.

    820.

    030.

    000.

    020.

    7198

    .792

    .51.

    8209

    XD

    TC

    1-24

    Dun

    ite

    Chr

    30.

    010.

    000.

    3810

    .883

    .90.

    392.

    480.

    010.

    000.

    001.

    0199

    .095

    .05.

    0009

    XD

    TC

    1-25

    Dun

    ite

    Chr

    30.

    020.

    050.

    084.

    9290

    .50.

    222.

    270.

    050.

    040.

    010.

    9699

    .197

    .64.

    2709

    XD

    TC

    1-28

    Dun

    ite

    Sp

    20.

    030.

    0054

    .910

    .611

    .40.

    1419

    .80.

    000.

    070.

    010.

    4997

    .411

    .475

    .6C

    hr3

    0.01

    0.27

    0.14

    12.5

    83.0

    0.48

    1.56

    0.01

    0.00

    0.01

    1.02

    99.0

    98.4

    3.24

    09X

    DT

    C1-

    29D

    unit

    eC

    hr4

    0.00

    0.12

    0.04

    7.54

    88.1

    0.26

    1.31

    0.00

    0.02

    0.00

    0.86

    98.3

    99.1

    2.58

    09X

    DT

    C1-

    30D

    unit

    eC

    hr3

    0.00

    0.16

    1.62

    28.2

    64.9

    1.01

    2.78

    0.02

    0.03

    0.02

    0.57

    99.3

    92.1

    7.09

    09X

    DT

    C1-

    32D

    unit

    eC

    hr3

    0.01

    0.16

    1.08

    20.1

    74.0

    0.65

    3.48

    0.00

    0.00

    0.00

    0.64

    100.

    192

    .67.

    7309

    XD

    TC

    1-35

    Dun

    ite

    Chr

    30.

    060.

    140.

    051.

    3896

    .20.

    050.

    490.

    000.

    020.

    010.

    3798

    .895

    .10.

    8909

    XD

    TC

    1-36

    Dun

    ite

    Chr

    30.

    020.

    180.

    0314

    .680

    .60.

    522.

    010.

    000.

    000.

    000.

    7398

    .799

    .74.

    2509

    XD

    TC

    1-37

    Hbl

    tC

    hr2

    0.01

    0.40

    0.08

    13.9

    81.5

    0.46

    0.82

    0.00

    0.01

    0.00

    0.57

    97.8

    99.2

    1.76

    09X

    DT

    C1-

    40H

    blC

    pxt

    Chr

    10.

    000.

    070.

    2610

    .885

    .40.

    310.

    20.

    010.

    030.

    000.

    1097

    .296

    .50.

    5009

    XD

    TC

    1-47

    Dun

    ite

    Chr

    60.

    020.

    197.

    6737

    .048

    .40.

    964.

    810.

    000.

    040.

    020.

    2399

    .376

    .415

    .0X

    DE

    -4H

    blG

    brC

    hr2

    2.43

    0.00

    11.2

    51.9

    23.9

    2.54

    4.43

    0.35

    0.05

    0.35

    0.00

    97.2

    75.7

    24.8

    Not

    es:C

    hr,c

    hrom

    ite;

    Cpx

    t,cl

    inop

    yrox

    enit

    e;G

    br,g

    abbr

    o;H

    bl,h

    ornb

    lend

    e;H

    blt,

    horn

    blen

    dite

    ;Sp,

    spin

    el.C

    r#=

    100×

    Cr/

    (Cr+

    Al)

    .

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 256 B.-X. Su et al.

    Tabl

    e3.

    Pyr

    oxen

    eco

    mpo

    siti

    ons

    ofth

    eX

    iado

    ngm

    afic–

    ultr

    amafi

    cco

    mpl

    ex.

    Sam

    ple

    Roc

    kty

    peM

    iner

    alS

    iO2

    TiO

    2A

    l 2O

    3C

    r 2O

    3Fe

    OM

    nOM

    gOC

    aON

    a 2O

    K2O

    NiO

    Tota

    lM

    g#F

    sW

    oE

    n

    09X

    D-1

    2H

    blC

    pxt

    Cpx

    50.6

    0.28

    2.97

    0.05

    3.45

    0.10

    15.4

    24.7

    0.05

    0.00

    0.03

    97.6

    88.9

    5.49

    50.4

    44.1

    09X

    DT

    C1-

    27H

    blG

    brC

    px55

    .70.

    050.

    490.

    000.

    680.

    2317

    .825

    .20.

    160.

    000.

    0510

    0.3

    97.9

    1.04

    49.8

    49.1

    Cpx

    55.2

    0.13

    1.23

    0.01

    0.68

    0.16

    17.8

    25.4

    0.06

    0.00

    0.04

    100.

    797

    .91.

    0450

    .048

    .9C

    px55

    .80.

    050.

    670.

    080.

    510.

    1518

    .025

    .50.

    060.

    020.

    0610

    0.9

    98.4

    0.78

    50.0

    49.3

    Cpx

    54.8

    0.16

    1.13

    0.00

    0.70

    0.10

    17.6

    25.7

    0.07

    0.00

    0.09

    100.

    497

    .91.

    0650

    .448

    .509

    XD

    TC

    1-40

    Hbl

    Cpx

    tC

    px50

    .51.

    226.

    420.

    474.

    710.

    1614

    .320

    .11.

    220.

    010.

    0099

    .184

    .58.

    3846

    .045

    .7X

    DE

    -2H

    blG

    brC

    px52

    .90.

    001.

    160.

    291.

    190.

    0817

    .425

    .00.

    070.

    020.

    0098

    .196

    .31.

    8449

    .748

    .4C

    px51

    .70.

    002.

    390.

    711.

    290.

    0416

    .625

    .00.

    120.

    000.

    0097

    .895

    .82.

    0450

    .847

    .1C

    px52

    .40.

    060.

    890.

    421.

    080.

    0717

    .525

    .00.

    200.

    000.

    0097

    .696

    .71.

    6749

    .648

    .7C

    px52

    .30.

    000.

    550.

    511.

    100.

    0817

    .225

    .10.

    330.

    000.

    0197

    .296

    .61.

    7150

    .248

    .1X

    DE

    -3H

    blG

    brC

    px51

    .90.

    001.

    610.

    480.

    990.

    0517

    .525

    .40.

    060.

    010.

    0098

    .096

    .91.

    5250

    .248

    .3C

    px52

    .40.

    030.

    900.

    070.

    890.

    0317

    .625

    .30.

    060.

    010.

    0197

    .397

    .31.

    3750

    .048

    .6C

    px53

    .90.

    070.

    770.

    080.

    920.

    0218

    .025

    .60.

    030.

    020.

    0399

    .497

    .31.

    3849

    .649

    .0C

    px52

    .90.

    000.

    800.

    060.

    930.

    0217

    .825

    .50.

    030.

    010.

    0798

    .297

    .21.

    4149

    .848

    .8X

    DE

    -4H

    blG

    brC

    px51

    .30.

    002.

    980.

    951.

    140.

    0616

    .625

    .30.

    110.

    000.

    0298

    .596

    .31.

    8051

    .147

    .1C

    px52

    .40.

    002.

    750.

    841.

    100.

    0616

    .824

    .60.

    170.

    010.

    1398

    .996

    .51.

    7450

    .348

    .0C

    px53

    .00.

    030.

    760.

    000.

    930.

    0317

    .825

    .30.

    050.

    000.

    0497

    .897

    .21.

    4249

    .748

    .9C

    px53

    .20.

    000.

    680.

    000.

    970.

    0217

    .425

    .20.

    100.

    000.

    0797

    .797

    .01.

    5050

    .048

    .5X

    DE

    -5H

    blG

    brC

    px53

    .50.

    031.

    380.

    061.

    030.

    0717

    .325

    .20.

    030.

    010.

    0098

    .696

    .81.

    6050

    .248

    .2C

    px53

    .10.

    011.

    210.

    111.

    000.

    1117

    .325

    .40.

    060.

    040.

    0598

    .496

    .91.

    5550

    .348

    .1C

    px52

    .10.

    052.

    270.

    211.

    110.

    0516

    .825

    .20.

    040.

    000.

    0097

    .996

    .51.

    7450

    .847

    .409

    XD

    TC

    1-14

    Dun

    ite

    Opx

    58.6

    0.01

    0.30

    0.10

    4.05

    0.07

    36.8

    0.05

    0.02

    0.00

    0.22

    100.

    294

    .25.

    760.

    194

    .1

    Not

    es:C

    px,c

    lino

    pyro

    xene

    ;Cpx

    t,cl

    inop

    yrox

    enit

    e;G

    br,g

    abbr

    o;H

    bl,h

    ornb

    lend

    e;O

    px,o

    rtho

    pyro

    xene

    .Mg#

    =10

    0×M

    g/(M

    g+

    Fe);

    Fs=

    100

    ×Fe

    /(M

    g+

    Fe+

    Ca)

    ;Wo

    =10

    Ca/

    (Mg

    +Fe

    +C

    a);

    En

    =10

    Mg/

    (Mg

    +Fe

    +C

    a).

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 257

    Tabl

    e4.

    Hbl

    com

    posi

    tion

    sof

    the

    Xia

    dong

    mafi

    c–ul

    tram

    afic

    com

    plex

    .

    Sam

    ple

    09X

    D-1

    09X

    D-7

    09X

    D-1

    009

    XD

    -12

    09X

    D-1

    309

    XD

    TC

    2-1

    XD

    ZK

    1601

    -20

    09X

    DT

    C1-

    409

    XD

    TC

    1-6

    09X

    DT

    C1-

    709

    XD

    TC

    1-8

    09X

    DT

    C1-

    9

    Roc

    kty

    peD

    unit

    eH

    blt

    Hbl

    tH

    blG

    brH

    blt

    Hbl

    tH

    blG

    brH

    blG

    brH

    blC

    pxt

    Gbr

    Dio

    Hbl

    Gbr

    Hbl

    tM

    iner

    alA

    mph

    Tr

    Am

    phA

    mph

    Act

    Am

    phA

    mph

    Am

    phA

    mph

    Act

    Tr

    Act

    Act

    Am

    phA

    mph

    Am

    phN

    o.2

    12

    22

    52

    21

    21

    54

    25

    4

    SiO

    247

    .457

    .442

    .144

    .552

    .348

    .347

    .242

    .448

    .952

    .458

    .951

    .454

    .647

    .647

    .541

    .6T

    iO2

    0.11

    0.00

    0.82

    0.53

    0.09

    0.01

    0.23

    1.30

    0.07

    0.11

    0.04

    0.00

    0.19

    0.30

    0.59

    0.85

    Al 2

    O3

    9.62

    0.60

    14.5

    11.6

    3.59

    9.64

    11.0

    10.7

    8.49

    5.85

    0.03

    7.68

    2.59

    8.97

    8.51

    13.1

    Cr 2

    O3

    0.64

    0.09

    0.23

    0.04

    0.11

    0.02

    0.22

    0.00

    0.86

    0.29

    0.00

    0.07

    0.02

    0.03

    0.03

    0.00

    FeO

    3.56

    0.76

    10.9

    16.1

    6.31

    3.69

    4.84

    18.0

    3.94

    3.38

    0.96

    3.50

    9.95

    12.2

    13.4

    15.8

    MnO

    0.09

    0.09

    0.26

    0.25

    0.14

    0.07

    0.09

    0.44

    0.08

    0.07

    0.14

    0.05

    0.24

    0.16

    0.28

    0.25

    MgO

    19.4

    24.7

    13.3

    11.5

    19.0

    18.7

    17.7

    10.3

    20.0

    21.0

    23.9

    19.8

    17.2

    14.1

    13.4

    10.3

    CaO

    12.2

    12.3

    12.2

    10.5

    12.5

    12.3

    13.0

    11.5

    12.0

    12.0

    13.2

    13.1

    11.9

    11.8

    11.6

    11.7

    Na 2

    O2.

    370.

    042.

    382.

    000.

    361.

    511.

    481.

    322.

    041.

    340.

    011.

    310.

    601.

    731.

    141.

    84K

    2O

    0.08

    0.00

    0.93

    0.24

    0.04

    0.13

    0.15

    1.23

    0.10

    0.05

    0.01

    0.06

    0.08

    0.24

    0.25

    1.19

    NiO

    0.11

    0.10

    0.00

    0.01

    0.07

    0.07

    0.02

    0.02

    0.13

    0.15

    0.00

    0.04

    0.01

    0.00

    0.00

    0.00

    Tota

    l95

    .696

    .097

    .697

    .394

    .594

    .496

    .097

    .196

    .696

    .797

    .397

    .097

    .497

    .296

    .696

    .6O

    xyge

    n23

    2323

    2323

    2323

    2323

    2323

    2323

    2323

    23S

    i6.

    748

    7.79

    66.

    142

    6.47

    17.

    522

    6.91

    86.

    745

    6.36

    16.

    848

    7.25

    98.

    016

    7.18

    27.

    719

    6.88

    86.

    906

    6.25

    8T

    i0.

    011

    0.00

    00.

    090

    0.05

    80.

    010

    0.00

    10.

    024

    0.14

    70.

    008

    0.01

    10.

    004

    0.00

    00.

    020

    0.03

    20.

    064

    0.09

    6A

    l1.

    613

    0.09

    62.

    490

    1.98

    90.

    609

    1.62

    81.

    854

    1.88

    41.

    402

    0.95

    50.

    005

    1.26

    60.

    431

    1.53

    01.

    458

    2.32

    1C

    r0.

    072

    0.01

    00.

    027

    0.00

    40.

    013

    0.00

    30.

    025

    0.00

    00.

    096

    0.03

    10.

    000

    0.00

    80.

    002

    0.00

    30.

    003

    0.00

    0Fe

    3+0.

    385

    0.68

    60.

    355

    1.07

    30.

    352

    0.29

    20.

    170

    0.80

    00.

    592

    0.49

    60.

    099

    0.05

    60.

    286

    0.43

    00.

    628

    0.43

    2Fe

    2+0.

    039

    0.59

    90.

    976

    0.88

    30.

    406

    0.15

    00.

    408

    1.45

    10.

    130

    0.10

    40.

    010

    0.35

    30.

    891

    1.04

    41.

    000

    1.55

    2M

    n0.

    011

    0.01

    10.

    032

    0.03

    10.

    017

    0.00

    80.

    010

    0.05

    60.

    009

    0.00

    80.

    016

    0.00

    60.

    028

    0.01

    90.

    034

    0.03

    1M

    g4.

    120

    5.00

    22.

    888

    2.49

    04.

    071

    4.00

    03.

    763

    2.30

    14.

    176

    4.34

    34.

    850

    4.12

    93.

    622

    3.05

    22.

    907

    2.31

    0C

    a1.

    859

    1.79

    21.

    909

    1.63

    31.

    920

    1.89

    11.

    986

    1.83

    91.

    799

    1.78

    61.

    926

    1.96

    71.

    810

    1.83

    31.

    802

    1.88

    8N

    a0.

    653

    0.01

    10.

    674

    0.56

    20.

    101

    0.41

    80.

    408

    0.38

    30.

    553

    0.36

    00.

    003

    0.35

    40.

    165

    0.48

    60.

    322

    0.53

    5K

    0.01

    50.

    000

    0.17

    30.

    044

    0.00

    70.

    024

    0.02

    70.

    236

    0.01

    80.

    010

    0.00

    20.

    011

    0.01

    50.

    044

    0.04

    60.

    228

    Ni

    0.01

    30.

    011

    0.00

    00.

    001

    0.00

    80.

    007

    0.00

    20.

    002

    0.01

    50.

    017

    0.00

    00.

    004

    0.00

    10.

    000

    0.00

    00.

    000

    Tota

    l15

    .54

    14.8

    115

    .76

    15.2

    415

    .04

    15.3

    415

    .42

    15.4

    615

    .38

    15.1

    714

    .93

    15.3

    414

    .99

    15.3

    615

    .17

    15.6

    5M

    g#99

    .189

    .374

    .773

    .890

    .996

    .490

    .261

    .397

    .097

    .799

    .892

    .180

    .374

    .574

    .459

    .8

    (con

    tinu

    ed)

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 258 B.-X. Su et al.

    Tabl

    e4.

    (con

    tinu

    ed).

    Sam

    ple

    09X

    DT

    C1-

    1009

    XD

    TC

    1-12

    09X

    DT

    C1-

    1309

    XD

    TC

    1-19

    09X

    DT

    C1-

    2109

    XD

    TC

    1-22

    09X

    DT

    C1-

    2409

    XD

    TC

    1-25

    09X

    DT

    C1-

    2809

    XD

    TC

    1-31

    09X

    DT

    C1-

    32

    Roc

    kty

    peH

    blC

    pxt

    Hbl

    Gbr

    Hbl

    tD

    unit

    eH

    blt

    Hbl

    Gbr

    Dun

    ite

    Dun

    ite

    Dun

    ite

    Dun

    ite

    Dun

    ite

    Min

    eral

    Act

    Tr

    Am

    phA

    mph

    Am

    phA

    mph

    Am

    phA

    ctT

    rT

    rA

    mph

    Act

    Act

    No.

    42

    44

    35

    44

    64

    35

    1

    SiO

    253

    .558

    .646

    .045

    .045

    .541

    .347

    .055

    .357

    .756

    .648

    .254

    .754

    .2T

    iO2

    0.19

    0.00

    1.20

    0.82

    0.32

    1.19

    0.98

    0.14

    0.00

    0.04

    0.17

    0.02

    0.12

    Al 2

    O3

    4.68

    0.34

    9.04

    11.3

    11.5

    14.1

    8.51

    1.42

    2.18

    2.78

    10.1

    4.16

    4.47

    Cr 2

    O3

    0.00

    0.00

    0.04

    0.03

    0.42

    0.04

    0.05

    0.00

    0.11

    0.06

    0.61

    0.00

    0.09

    FeO

    3.43

    1.63

    14.8

    11.9

    4.80

    13.3

    13.2

    9.20

    1.64

    1.91

    4.01

    2.55

    2.48

    MnO

    0.11

    0.17

    0.44

    0.33

    0.08

    0.32

    0.31

    0.29

    0.09

    0.06

    0.03

    0.08

    0.05

    MgO

    21.5

    23.5

    12.0

    13.9

    18.9

    12.0

    13.4

    17.7

    23.1

    22.9

    19.5

    22.2

    22.0

    CaO

    12.0

    12.7

    11.3

    11.1

    11.7

    11.9

    11.4

    12.5

    12.8

    12.6

    12.5

    12.4

    12.4

    Na 2

    O1.

    210.

    101.

    832.

    262.

    672.

    421.

    510.

    210.

    350.

    381.

    740.

    870.

    76K

    2O

    0.05

    0.00

    0.35

    0.20

    0.14

    0.66

    0.24

    0.03

    0.05

    0.00

    0.14

    0.03

    0.07

    NiO

    0.02

    0.03

    0.00

    0.04

    0.12

    0.06

    0.00

    0.00

    0.07

    0.08

    0.16

    0.05

    0.02

    Tota

    l96

    .897

    .096

    .996

    .896

    .197

    .396

    .796

    .898

    .097

    .497

    .297

    .196

    .7O

    xyge

    n23

    2323

    2323

    2323

    2323

    2323

    2323

    Si

    7.38

    37.

    981

    6.78

    36.

    509

    6.43

    66.

    095

    6.85

    67.

    865

    7.79

    97.

    685

    6.72

    77.

    489

    7.44

    6T

    i0.

    020

    0.00

    00.

    133

    0.08

    90.

    034

    0.13

    20.

    108

    0.01

    50.

    000

    0.00

    40.

    018

    0.00

    20.

    013

    Al

    0.76

    10.

    055

    1.57

    01.

    922

    1.91

    42.

    446

    1.46

    30.

    238

    0.34

    80.

    446

    1.66

    60.

    671

    0.72

    5C

    r0.

    000

    0.00

    00.

    004

    0.00

    30.

    047

    0.00

    40.

    005

    0.00

    00.

    012

    0.00

    60.

    067

    0.00

    00.

    010

    Fe3+

    0.54

    00.

    258

    0.44

    80.

    773

    0.76

    60.

    514

    0.55

    80.

    130

    0.21

    50.

    377

    0.50

    80.

    476

    0.47

    1Fe

    2+0.

    145

    0.07

    21.

    375

    0.67

    20.

    197

    1.12

    71.

    056

    0.96

    50.

    030

    0.15

    90.

    040

    0.18

    40.

    186

    Mn

    0.01

    30.

    020

    0.05

    50.

    040

    0.01

    00.

    040

    0.03

    80.

    035

    0.01

    10.

    007

    0.00

    30.

    009

    0.00

    6M

    g4.

    427

    4.75

    92.

    631

    2.99

    33.

    991

    2.64

    12.

    916

    3.75

    34.

    646

    4.63

    44.

    051

    4.53

    64.

    516

    Ca

    1.77

    81.

    846

    1.77

    81.

    715

    1.77

    41.

    876

    1.78

    81.

    905

    1.85

    81.

    837

    1.86

    81.

    811

    1.83

    0N

    a0.

    324

    0.02

    70.

    523

    0.63

    40.

    733

    0.69

    10.

    426

    0.05

    80.

    091

    0.10

    10.

    471

    0.23

    20.

    203

    K0.

    008

    0.00

    00.

    065

    0.03

    60.

    024

    0.12

    50.

    044

    0.00

    50.

    008

    0.00

    00.

    025

    0.00

    60.

    011

    Ni

    0.00

    30.

    003

    0.00

    00.

    004

    0.01

    40.

    007

    0.00

    00.

    000

    0.00

    70.

    009

    0.01

    80.

    005

    0.00

    2To

    tal

    15.1

    114

    .88

    15.3

    715

    .39

    15.5

    515

    .70

    15.2

    614

    .97

    14.9

    614

    .95

    15.3

    815

    .05

    15.0

    5M

    g#96

    .898

    .565

    .781

    .795

    .370

    .173

    .479

    .599

    .496

    .799

    .096

    .196

    .1

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 259

    Tabl

    e4.

    (con

    tinu

    ed).

    Sam

    ple

    09X

    DT

    C1-

    3709

    XD

    TC

    1-39

    09X

    DT

    C1-

    4009

    XD

    TC

    1-42

    XD

    E-1

    XD

    E-2

    XD

    E-3

    XD

    E-4

    XD

    E-5

    XD

    E-5

    Roc

    kty

    peH

    blt

    Hbl

    Cpx

    tH

    blC

    pxt

    Hbl

    tH

    blG

    brH

    blG

    brH

    blG

    brH

    blG

    brH

    blG

    brH

    blG

    brM

    iner

    alA

    ctA

    mph

    Tr

    Tr

    Am

    phA

    mph

    Am

    phA

    ctA

    mph

    Am

    phA

    mph

    Act

    No.

    56

    22

    13

    13

    55

    31

    SiO

    253

    .348

    .456

    .857

    .546

    .547

    .944

    .453

    .946

    .750

    .747

    .752

    .5T

    iO2

    0.05

    0.23

    0.06

    0.03

    0.45

    0.03

    0.00

    0.03

    0.01

    0.07

    0.02

    0.04

    Al 2

    O3

    2.46

    8.36

    0.03

    0.11

    9.33

    8.09

    13.9

    2.42

    11.5

    7.18

    10.5

    3.91

    Cr 2

    O3

    0.01

    0.13

    0.02

    0.00

    0.00

    0.37

    1.95

    0.70

    0.56

    1.04

    1.08

    0.03

    FeO

    9.21

    3.91

    0.82

    1.22

    12.8

    3.78

    2.87

    1.46

    2.09

    1.89

    2.19

    1.67

    MnO

    0.18

    0.04

    0.08

    0.08

    0.24

    0.09

    0.07

    0.05

    0.05

    0.08

    0.07

    0.08

    MgO

    17.6

    19.8

    24.1

    23.4

    13.7

    19.5

    17.3

    22.3

    19.1

    20.6

    19.5

    22.1

    CaO

    12.4

    13.3

    13.2

    13.1

    12.3

    12.6

    13.1

    13.5

    13.0

    13.2

    12.8

    13.1

    Na 2

    O0.

    620.

    620.

    050.

    071.

    011.

    242.

    080.

    191.

    691.

    091.

    560.

    46K

    2O

    0.03

    0.06

    0.00

    0.00

    0.30

    0.10

    0.21

    0.03

    0.32

    0.12

    0.23

    0.13

    NiO

    0.00

    0.05

    0.07

    0.00

    0.00

    0.05

    0.14

    0.07

    0.00

    0.08

    0.06

    0.06

    Tota

    l95

    .994

    .995

    .295

    .596

    .893

    .796

    .094

    .695

    .196

    .095

    .894

    .0O

    xyge

    n23

    2323

    2323

    2323

    2323

    2323

    23S

    i7.

    667

    6.88

    17.

    899

    7.98

    76.

    776

    6.91

    56.

    378

    7.63

    26.

    680

    7.13

    56.

    741

    7.45

    6T

    i0.

    006

    0.02

    40.

    006

    0.00

    40.

    049

    0.00

    30.

    000

    0.00

    30.

    002

    0.00

    70.

    002

    0.00

    4A

    l0.

    416

    1.40

    30.

    005

    0.01

    81.

    602

    1.37

    62.

    351

    0.40

    41.

    929

    1.19

    11.

    751

    0.65

    4C

    r0.

    001

    0.01

    50.

    003

    0.00

    00.

    000

    0.04

    20.

    221

    0.07

    80.

    063

    0.11

    60.

    121

    0.00

    4Fe

    3+0.

    234

    0.53

    10.

    220

    0.09

    00.

    559

    0.48

    40.

    000

    0.08

    30.

    125

    0.10

    10.

    270

    0.27

    0Fe

    2+0.

    873

    0.06

    60.

    124

    0.05

    11.

    006

    0.02

    70.

    344

    0.09

    00.

    125

    0.12

    20.

    011

    0.07

    2M

    n0.

    022

    0.00

    50.

    010

    0.01

    00.

    030

    0.01

    10.

    008

    0.00

    60.

    007

    0.00

    90.

    008

    0.00

    9M

    g3.

    780

    4.20

    84.

    982

    4.84

    12.

    980

    4.19

    63.

    698

    4.70

    44.

    070

    4.31

    94.

    118

    4.67

    5C

    a1.

    911

    2.02

    41.

    967

    1.94

    61.

    925

    1.94

    32.

    011

    2.04

    61.

    996

    1.98

    51.

    945

    1.99

    6N

    a0.

    174

    0.17

    20.

    013

    0.01

    80.

    284

    0.34

    70.

    579

    0.05

    10.

    467

    0.29

    80.

    426

    0.12

    5K

    0.00

    50.

    011

    0.00

    10.

    001

    0.05

    60.

    018

    0.03

    90.

    005

    0.05

    90.

    022

    0.04

    10.

    023

    Ni

    0.00

    00.

    005

    0.00

    70.

    000

    0.00

    00.

    006

    0.01

    60.

    008

    0.00

    00.

    009

    0.00

    70.

    006

    Tota

    l15

    .09

    15.2

    114

    .99

    14.9

    615

    .27

    15.3

    115

    .65

    15.1

    115

    .52

    15.3

    115

    .42

    15.1

    5M

    g#81

    .298

    .597

    .699

    .074

    .899

    .491

    .598

    .197

    .097

    .399

    .798

    .5

    Not

    e:A

    ct,a

    ctin

    olit

    e;A

    mph

    ,am

    phib

    ole;

    Cpx

    t,cl

    inop

    yrox

    enit

    e;D

    io,d

    iori

    te;G

    br,g

    abbr

    o;H

    bl,h

    ornb

    lend

    e;H

    blt,

    horn

    blen

    dite

    ;Gbr

    ,gab

    bro;

    Tr,

    trem

    olit

    e.

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 260 B.-X. Su et al.

    Tabl

    e5.

    Pla

    gioc

    lase

    com

    posi

    tion

    sof

    the

    Xia

    dong

    mafi

    c–ul

    tram

    afic

    com

    plex

    .

    Sam

    ple

    Roc

    kty

    peM

    iner

    alN

    o.S

    iO2

    TiO

    2A

    l 2O

    3C

    r 2O

    3Fe

    OM

    nOM

    gOC

    aON

    a 2O

    K2O

    NiO

    Tota

    lA

    nA

    b

    09X

    D-7

    Hbl

    tP

    l2

    64.2

    0.06

    21.2

    0.00

    0.01

    0.02

    0.03

    2.07

    10.7

    0.21

    0.00

    98.5

    9.72

    90.3

    Zo

    243

    .00.

    0223

    .60.

    010.

    100.

    000.

    0026

    .20.

    120.

    000.

    0393

    .199

    .20.

    8109

    XD

    -10

    Hbl

    tP

    l2

    58.5

    0.00

    24.8

    0.04

    0.03

    0.00

    0.00

    6.57

    7.97

    0.02

    0.00

    98.0

    31.3

    68.7

    09X

    D-1

    3H

    blG

    brZ

    o4

    43.5

    0.03

    33.7

    0.00

    0.01

    0.01

    0.00

    17.7

    1.07

    0.02

    0.00

    96.2

    90.1

    9.86

    XD

    ZK

    1601

    -20

    Hbl

    Gbr

    Pl

    159

    .30.

    0024

    .50.

    000.

    020.

    000.

    006.

    427.

    940.

    070.

    0198

    .230

    .969

    .109

    XD

    TC

    1-7

    Gbr

    Dio

    Pl

    366

    .60.

    0420

    .50.

    120.

    040.

    030.

    031.

    6910

    .90.

    050.

    0010

    0.1

    7.86

    92.1

    09X

    DT

    C1-

    8H

    blG

    brP

    l2

    60.5

    0.07

    24.4

    0.00

    0.08

    0.03

    0.01

    6.30

    8.24

    0.03

    0.02

    99.7

    29.7

    70.3

    09X

    DT

    C1-

    12H

    blG

    brP

    l3

    62.4

    0.00

    23.4

    0.00

    0.04

    0.00

    0.01

    4.86

    8.99

    0.06

    0.00

    99.8

    23.0

    77.0

    09X

    DT

    C1-

    21H

    blt

    Zo

    438

    .60.

    1325

    .70.

    058.

    920.

    150.

    0523

    .20.

    000.

    000.

    0096

    .799

    .90.

    0209

    XD

    TC

    1-22

    Hbl

    Gbr

    Pl

    362

    .80.

    0023

    .60.

    000.

    060.

    000.

    015.

    008.

    990.

    090.

    0410

    0.6

    23.5

    76.5

    09X

    DT

    C1-

    27H

    blG

    brZ

    o5

    39.0

    0.12

    27.0

    0.00

    7.11

    0.09

    0.03

    23.5

    0.01

    0.01

    0.00

    96.9

    99.9

    0.08

    XD

    E-1

    Hbl

    Gbr

    Zo

    244

    .40.

    0032

    .80.

    020.

    020.

    040.

    0016

    .61.

    870.

    020.

    0095

    .783

    .116

    .9X

    DE

    -2H

    blG

    brZ

    o6

    38.7

    0.02

    32.5

    0.17

    0.37

    0.00

    0.04

    24.0

    0.01

    0.00

    0.00

    95.8

    99.9

    0.07

    XD

    E-3

    Hbl

    Gbr

    Zo

    338

    .40.

    0033

    .00.

    030.

    660.

    010.

    0324

    .40.

    010.

    010.

    0196

    .599

    .90.

    04X

    DE

    -4H

    blG

    brZ

    o2

    39.0

    0.00

    32.1

    0.02

    0.75

    0.04

    0.03

    24.0

    0.00

    0.01

    0.02

    95.9

    100

    0.00

    XD

    E-5

    Hbl

    Gbr

    Zo

    238

    .40.

    0233

    .10.

    010.

    460.

    030.

    0323

    .90.

    010.

    000.

    0196

    .099

    .90.

    10

    Not

    es:D

    io,d

    iori

    te;H

    bl,h

    ornb

    lend

    e;H

    blt,

    horn

    blen

    dite

    ;Gbr

    ,gab

    bro;

    Pl,

    plag

    iocl

    ase;

    Zo,

    zois

    ite.

    An

    =10

    Ca/

    (Ca

    +N

    a);A

    b=

    100

    ×N

    a/(C

    a+

    Na)

    .

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 261

    Table 6. Ilmenite and titanite compositions of the Xiadong mafic–ultramafic complex.

    Sample Rock type Mineral SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total

    09XDTC1-7 Gbr Dio Tita 30.8 38.2 0.85 0.03 0.76 0.01 0.04 27.8 0.00 0.02 0.00 98.509XDTC1-8 Hbl Gbr Ilme 0.00 52.0 0.00 0.02 42.9 3.86 0.10 0.06 0.00 0.01 0.00 98.9

    Tita 31.0 39.2 0.57 0.04 0.39 0.04 0.02 28.1 0.01 0.00 0.00 99.409XDTC1-12 Hbl Gbr Ilme 0.03 51.3 0.00 0.02 43.1 4.36 0.10 0.05 0.03 0.00 0.00 99.0

    Ilme 0.02 49.0 0.02 0.05 45.9 2.67 0.41 0.04 0.02 0.00 0.02 98.109XDTC1-13 Hblt Ilme 0.02 50.8 0.00 0.04 41.9 6.20 0.10 0.05 0.00 0.03 0.00 99.1

    Tita 30.8 39.2 0.64 0.01 0.35 0.06 0.00 28.3 0.00 0.00 0.04 99.309XDTC1-21 Hblt Ilme 0.03 49.7 0.01 0.02 41.3 7.47 0.15 0.03 0.02 0.01 0.03 98.8

    Tita 30.8 37.3 1.59 0.00 0.83 0.06 0.00 28.4 0.02 0.00 0.00 99.009XDTC1-22 Hbl Gbr Ilme 0.03 49.4 0.01 0.00 45.9 2.88 0.10 0.04 0.03 0.01 0.00 98.4

    Ilme 0.00 49.7 0.00 0.05 47.3 1.68 0.08 0.01 0.00 0.00 0.03 98.8

    Note: Dio, diorite; Gbr, gabbro; Hbl, hornblende; Hblt, hornblendite; Ilme, ilmenite; Tita, titanite.

    Figure 6. Plots of (A) Fo versus MnO and (B) Fo versus NiO contents of olivines in the Xiadong mafic–ultramafic complex.

    Figure 7. Plots of chromite compositions in the Xiadong mafic–ultramafic complex. (A) Fe3+–Cr–Al diagram demonstrating Fe-enrichment trend; (B) Al2O3 versus TiO2 diagram showing the close relationship between the Xiadong chromites and the island-arc field.Alaskan-type field after Alaska complex (Himmelberg et al. 1986; Himmelberg and Loney 1995); Ocean island basalt (OIB), mid-oceanridge basalt (MORB), and island-arc fields after Kamenetsky et al. (2001).

    Plagioclase

    Plagioclases are completely absent in the dunites and Hblclinopyroxenites, and those present in some hornblenditesand Hbl gabbros are strongly affected by alteration,changing to mostly zoisites. These zoisites have apparentCa enrichment and Si–Al–Na depletion. Some relics of

    primary plagioclases have anorthite (An) numbers between9.72 and 30.9 (Table 5).

    Ilmenite and titanite

    Ilmenites are commonly present in hornblendites and Hblgabbros and have TiO2 in the range of 49.0–52.0 wt.%,

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 262 B.-X. Su et al.

    Figure 8. Plots of clinopyroxene compositions in the Xiadong mafic–ultramafic complex. (A) Al2O3 versus SiO2 and (B) TiO2 versusAlz in clinopyroxene. The fields of the Alaskan-type complexes are from Quetico, Pettigrew and Hattori (2006); Tulameen, Rublee (1994);and Gabbro Akarem, Helmy and El Mahallawi (2003). Non-alkaline and alkaline boundary is after Le Bas (1962) and Alz refers to thepercentage of Al in the tetrahedral sites (100 × AlIV)/2. The arc cumulate, ophiolite, and Mid-Atlantic Ridge trends are after Loucks(1990).

    1.0

    0.8

    0.6

    0.4

    Mg/

    (Mg

    + Fe

    2+)

    0.2

    0.0

    1.0

    0.8

    0.6

    0.4

    Na

    + K

    0.2

    0.08.0 8.07.5 7.57.0

    Si Si

    7.06.5 6.55.56.0 6.0

    Actinolite

    Ferro-actinolite

    Magnesio-hornblende

    Ferro-hornblende

    Ferro-pargasite

    DuniteHbl clinopyroxeniteHornblenditeHbl gabbro

    Gabbroic diorite

    Tulameen

    Quetico

    Gabbro AkaremArc cumulates

    Pargasite

    Tremolite (A) (B)

    Figure 9. Plots of hornblende (Hbl) compositions in the Xiadong mafic–ultramafic complex. (A) Hbl classification after Leake et al.(1997); (B) Si versus Na + K contents in Hbl. The fields of the Alaskan-type complexes are from Quetico, Pettigrew and Hattori (2006);Tulameen, Rublee (1994); and Gabbro Akarem, Helmy and El Mahallawi (2003). Arc cumulates field is defined by Beard and Barker(1989).

    FeO of 41.3–47.3 wt.%, and MnO of 1.68–7.47 wt.%.All the analysed titanites show homogeneous compositions(Table 6).

    Discussion

    Comparisons to regional mafic–ultramafic complexes

    Abundant mafic–ultramafic complexes are distributed inthe Jueluotage Belt, MTM, and Beishan Rift (Figure 1B).These complexes from the three belts have apparently

    different features. The Jueluotage and MTM complexesare generally composed of clinopyroxene/Hbl peridotite,olivine clinopyroxenite, clinopyroxenite, gabbro, norite,and diorite. These rocks often exhibit poikilitic and gab-broic textures. Orthopyroxene, plagioclase, and mica arecommon minerals, but magnetite is minor or absent inthese complexes. Fo contents of olivines range from 78 to86. Clinopyroxenes are classified as diopside and augite.Spinels are mainly Al-rich types and no chromite isobserved. Most of the complexes host magmatic Ni–Cusulphide deposits (Qin et al. 2003, 2007; Zhou et al. 2004;

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 263

    Chai et al. 2006, 2008; Mao et al. 2008; Pirajno et al. 2008;Liu et al. 2010; Xiao et al. 2010).

    The rock types of the Beishan complexes are mainlydunite, clinopyroxene peridotite, troctolite, gabbro, anddiorite. Plagioclase is present in all rock units, but orthopy-roxene and hydrous minerals such as Hbl and micaare completely absent. Very rare magnetite is observed.Poikilitic (orthocumulated) and gabbroic textures are alsowell developed in the ultramafic and mafic rocks, respec-tively. Olivines have Fo contents in the range of 76–90.Clinopyroxenes are diopsidic and augitic and spinels rangefrom Al-spinel to Cr-spinel. Significant amounts of dissem-inated Ni–Cu sulphides have also been observed in thesecomplexes (Jiang et al. 2006; Su et al. 2009, 2010a, 2010b;Ao et al. 2010).

    These regional mafic–ultramafic complexes havewidely been interpreted as evolving from high-Mg tholei-itic magmas from the lithospheric mantle in the post-orogenic extension tectonic setting and/or mantle plume(Zhou et al. 2004; Han et al. 2006; Jiang et al. 2006; Wanget al. 2006; Chai et al. 2008; Mao et al. 2008; Pirajno et al.2008; Zhang et al. 2008; Su et al. 2009, 2010a, 2010b; Sun2009). The Xiadong complex, on the contrary, is distinctlydifferent in petrology, mineralogy, and mineral chemistryfrom other regional complexes, suggesting that the petro-genesis and tectonic environment for the evolution of theXiadong complex is different from the other two.

    Comparisons to classic Alaskan-type complexes

    Typical features of Alaskan-type complexes have been welldocumented in previous studies (e.g. Taylor 1967; Irvine1974; Rublee 1994; Himmelberg and Loney 1995; Johan2002; Helmy and El Mahallawi 2003; Pettigrew and Hattori2006; Thakurta et al. 2008; Ripley 2009). Morphologically,Alaskan-type complexes have crude concentric zoning inlithologies and, in most cases, are roughly circular orelliptical in shape, pipe-like in cross section, with sizesranging from 12 to 14 km2 (Johan 2002). Petrologically,the Alaskan-type complexes are generally composed ofdunite, wehrlite, olivine clinopyroxenite, Hbl clinopyrox-enite, hornblendite, and Hbl gabbro, but the completesequence of lithologies is rarely observed (Irvine 1974;Himmelberg and Loney 1995). The ultramafic cumulatestend to show adcumulated textures and lack interstitial min-erals crystallized from ‘trapped liquid’ (Thakurta et al.2008; Ripley 2009). Mineralogically, abundant clinopy-roxenes and primary Hbls occur in Hbl clinopyroxenitesand hornblendites. Chromite is commonly concentrated indunite and often forms stratiform segregations and irreg-ular veins (Irvine 1974; Himmelberg and Loney 1995;Johan 2002; Ripley 2009). Orthopyroxene and plagioclaseare rare in the ultramafic rocks, and plagioclase occurs

    only in marginal gabbroic rocks (Helmy and El Mahallawi2003; Pettigrew and Hattori 2006). Magnetite is a commonmineral in clinopyroxenite and hornblendite and its modalabundance can range between ∼15 and 20% (Taylor 1967;Himmelberg and Loney 1995).

    The mineral chemistry of Alaskan-type complexesis characterized by Mg-rich olivine, Ca-rich diopsidicclinopyroxene, high Fe–Cr, and low Al chromite, andcalcic Hbls with a wide range in composition (Irvine1974; Rublee 1994; Helmy and El Mahallawi 2003).Geochemically, all rock types show low abundances ofincompatible elements such as Y and rare earth elements,low high-field strength elements, and relatively high large-ion lithophile elements (Helmy and El Mahallawi 2003;Pettigrew and Hattori 2006; Ripley 2009).

    The Xiadong mafic–ultramafic complex has rock unitsof dunite, Hbl clinopyroxenite, hornblendite, and Hblgabbro, together with a mineral assemblage of high-Mgolivine, diopsidic clinopyroxene, chromite, calcic Hbl,magnetite, and other accessory minerals, which are iden-tical to typical Alaskan-type complexes. On the contrary,the regional mafic–ultramafic complexes in the EasternTianshan and Beishan Rift can be excluded from theAlaskan-type complexes.

    Chromite compositions are important indicators todistinguish an Alaskan-type complex, stratiform com-plex, Alpine-type complex, and ophiolite. Relative toAlaskan-type complexes, chromites from both stratiformand Alpine-type complexes have higher Mg#, lowerFe3+/(Fe3+ + Cr + Al) ratios, and slightly lower Cr#(Figure 10A and 10B; Irvine 1967); whereas the chromitesfrom ophiolites show apparently lower Fe2+/(Mg + Fe2+)ratios (Figure 10C; Barnes and Roeder 2001). Allchromites from the Xiadong complex overlap with thefield defined by the typical Alaskan-type complexes anddisplay similar compositional trends to Alaskan-type com-plexes (Figure 10A–10C). Furthermore, it is apparent thatchromite compositions of the Xiadong complex follow adifferentiation (Fe enrichment) trend from an intermedi-ate Cr–Al-rich spinel to Cr-magnetite (Figure 7A). Suchtrend of increasing Fe3+ has been reported for spinels fromAlaskan-type complexes (Snoke et al. 1981; Nixon et al.1990) and is not identified with other igneous complexessuch as ophiolites or layered intrusions (Barnes and Roeder2001). Clinopyroxenes and Hbls from the Xiadong com-plex also have compositional variations similar to someAlaskan-type complexes such as Quetico, Tulameen, andGabbro Akarem (Figures 8A, 8B, and 9B). Olivines fromAlaskan-type complexes worldwide show a Fo range from66 to 95 (Figure 11). The Xiadong olivines show anoma-lously high Fo contents in the range of 92–97, partlyoverlapping the range of those from typical Alaskan-typecomplexes (Figure 11). All the comparisons are summa-rized in Table 7.

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 264 B.-X. Su et al.

    Figure 10. Chromite compositional comparisons betweenXiadong and typical Alaskan-type complexes. (A) Plot of Mg#versus Fe3+/(Fe3+ + Al + Cr) of chromites. The fields in thediagram are from Alaskan-type complexes worldwide, Barnesand Roeder (2001); SE Alaskan-type complexes, stratiform com-plexes, and Alpine-type complexes, Irvine (1967). (B) Plot ofMg# versus Cr# of chromites. All field sources are the same asin (A). (C) Plot of Fe2+/(Mg + Fe2+) versus Cr# of chromites.The fields of Alaskan-type complexes and ophiolite and alterationtrend are after Barnes and Roeder (2001).

    Figure 11. Fo content of olivines from the Xiadong mafic–ultramafic complex and typical Alaskan-type complexes (modi-fied after Pettigrew and Hattori 2006). Sources: Turnagain, Clark(1980); Gabbro Akarem, Helmy and Moggesie (2001); BlashkeIsland, Himmelberg et al. (1986); Union Bay, Polaris, and DukeIsland, Irvine (1974, 1976), Tulameen, Rublee (1994); Queticoand Samuel Lake, Pettigrew and Hattori (2006).

    These similarities suggest that the Xiadong complexis equivalent to an Alaskan-type complex in terms ofpetrology and mineral chemistry, indicating that they areprobably cogenetic, but without any similarity to strati-form, Alpine-type, and ophiolitic complexes.

    Petrogenesis and tectonic significance

    A number of hypotheses have been proposed to account forthe Alaskan-type complexes. Taylor (1967) suggested thatfractional melting in the mantle accounted for Alaskan-type complexes. Sha (1995) proposed that the parentalmagmas of Alaskan-type complexes fractionally crystal-lized from the mixture between a mantle-derived maficmagma and a crustal felsic magma. Efimov (1998), onthe contrary, attributed Alaskan-type complexes to tectonicemplacement of fragments of a pre-existing body. Farahatand Helmy (2006) suggested the formation of Alaskan-typecomplexes by fractional crystallization from a commonhydrous parental magma without significant crustal con-tamination. Parental magmas of the Xiadong complex mostlikely contain high Mg contents, evidenced by anomalouslyhigh-Fo olivine (Table 1; Figure 6), high-Mg# clinopyrox-ene (Table 3), and high-Mg Hbl (Table 4; Figure 9A). Onthe contrary, olivines only occur in the dunite unit, andtheir compositions do not show fractional correlations buthomogeneous MnO contents against varying Fo and nega-tive correlation between NiO and Fo (Table 6). The discon-tinuity of mineral modal abundances and intrusive contactswith chilled margins (Figures 2, 3B, and 3C) suggests that

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 265

    Table 7. Comparisons between typical Alaskan-type and Xiadong complexes.

    Alaskan-type complexes Xiadong complexes

    Age Mostly Phanerozoic Late Carboniferous∗Geological setting Close to the end of subduction, prior to

    accretion–collisionClose to the end of subduction, prior to

    accretion–collision∗Size Most are small in size ranging from 12 to 40 km2 In size of ∼2.5 km2Morphology and zoning Crude concentric zoning of lithologies grading

    from olivine-rich ultramafic cores to mafic rimsStrip shape

    Sequence of intrusion Gabbroic and dioritic rocks intrude late Gabbroic and dioritic rocks intrude lateLithology Dunite, hornblendite, clinopyroxenite, gabbro;

    minor dioritic and syenitic rocksDunite, hornblendite, Hbl clinopyroxenite, Hbl

    gabbro; minor diorite and no syeniteTextures Accumulated texture with minor/no trapped

    liquidAccumulated texture with minor/no trapped

    liquidMineralogy Abundant clinopyroxene, primary hornblende,

    magnetite; lack of orthopyroxene andplagioclase in ultramafic rocks

    Abundant clinopyroxene, primary hornblende,magnetite; lack of orthopyroxene andplagioclase in ultramafic rocks

    Chromite Common occurrence of chromite in dunite Common occurrence of chromite in duniteMineral chemistry High-Mg olivine; diopsidic clinopyroxene;

    phlogopitic mica; hornblende is calcic with awide range in composition

    High-Mg olivine, diopsidic clinopyroxene;hornblende is calcic with a wide range incomposition

    Bulk rock geochemistry Low incompatible elements; relatively high LILEand low HFSE; no Eu anomalies

    Relatively high LILE, and low HFSE and REE;no Eu anomalies∗

    Mineralization PGE mineralization in olivine-rich cores (dunite)associated with chromite; rare Cu–Nimineralization

    Showing potential PGE mineralization in dunite;no Cu–Ni sulphide mineralization∗

    Notes: Hbl, hornblende; HFSE, high field strength element; LILE, large-ion lithophile element; PGE, platinum group element; REE, rare earth element.The features of Alaskan-type complexes are after Taylor (1967), Irvine (1974), Rublee (1994), Johan (2002), Helmy and El Mahallawi (2003), Pettigrewand Hattori (2006), Thakurta et al. (2008), and Ripley (2009). Those marked ‘∗’ will be shown elsewhere.

    the Xiadong complex was formed by multi-stage emplace-ment of magma, in the sequence of light yellow dunite, darkgreen dunite, Hbl clinopyroxenite, hornblendite, and finallyHbl gabbro. In the genesis stage of dunites, Mn, Ni, andFe are probably preferentially partitioned into chromitesas evidenced by the negative correlation of MnO and thepositive correlation of NiO in chromites with the Fo con-tents of olivines (Figure 12). Fe3+-enrichment trend inchromites (Figure 7A) and associated ilmenite (Figure 5Cand 5D) possibly imply that they were crystallized in a rela-tively high oxidizing environment. A considerable numberof dolomite veins observed in the Xiadong rocks (Figure5B) indicates that the complex most likely has reacted withits country rocks such as marble during its emplacement.

    Alaskan-type complexes are always related to the sub-duction environment and arc accretion (Taylor 1967; Irvine1974). For example, the complexes in Alaska intruded thewestern margin of the North American continent during theclosure of the intra-arc basin (Saleeby 1992; Foley et al.1997; Thakurta et al. 2008; Ripley 2009); the Ural mafic–ultramafic complexes intruded during the accretion of arcterrane to the continent (Ayarza et al. 2000); the Queticocomplex formed through the accretion of micro-continentsand arcs to the north, through the subduction of interven-ing oceanic crust (Williams 1991; Valli et al. 2004; Farahatand Helmy 2006). In this study, however, the MTM andJueluotage Belt subduction events took place in Palaeozoic(Han et al. 2006; Wang et al. 2006; Zhang et al. 2008)

    and the Dananhu–Tousuquan, Xiaorequanzi–Wutongwozi,and Yamansu are recognized to be island-arc basin, intra-arc basin, and back-arc basin, respectively (Figure 1B; Qinet al. 2002). Thus, the identification of the Xiadong com-plex as an Alaskan-type intrusion implies that the MTMwith Precambrian basement was probably a continental arcduring the subduction process. This tectonic frameworkmay indicate that the Palaeozoic Junggar Ocean located tothe north of the MTM (Ma et al. 1993; Qin et al. 2002; Li2004; Zhang et al. 2004, 2008; Han et al. 2006; Li et al.2006a, 2006b; Wang et al. 2006).

    Conclusion

    We have conducted a comprehensive study of the petrology,mineralogy, and mineral chemistry of the Xiadong mafic–ultramafic complex. The complex has identical mineralchemistry, as well as similar petrological and mineralogicalcharacteristics as typical Alaskan-type complexes world-wide. The relationships between the rock units, modalcompositions of minerals, and chemical compositionalvariations indicate that the Xiadong complex was formedby multi-stage emplacement mechanisms, accompaniedby reaction with the surrounding country rocks. The dis-covery and the confirmation of the Xiadong complexas an Alaskan-type complex imply that the MTM withPrecambrian basement was most likely a continental arc

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 266 B.-X. Su et al.

    Figure 12. Plots of (A) Fo versus MnO and (B) Fo versus NiO of chromites and olivines from the Xiadong mafic–ultramafic complex.

    during the subduction of oceanic lithosphere, which fur-ther supports the hypothesis of southward underflow of thePalaeozoic Junggar Ocean.

    AcknowledgementsThis study was financially supported the Nature ScienceFoundation of China (Grant 41030424) by the KnowledgeInnovation Programme of the Chinese Academy of Sciences(Grant KZCX2-YW-107) and the Chinese State 305 Programme(Grant 2006BAB07B03-01).

    ReferencesAo, S.J., Xiao, W.J., Han, C.M., Mao, Q.G., and Zhang, J.E.,

    2010, Geochronology and geochemistry of Early Permianmafic-ultramafic complexes in the Beishan area, Xinjiang,NW China: Implications for late Paleozoic tectonic evo-lution of the southern Altaids: Gondwana Research, doi:10.1016/j.gr.2010.01.004.

    Ayarza, P., Brown, D., Alvarez-Marron, J., and Juhlin, C., 2000,Contrasting tectonic history of the arc-continent suture in thesouthern and middle Urals: Implications for the evolution ofthe orogen: Journal of Geological Society, London, v. 157, p.1065–1076.

    Barnes, S.J., and Roeder, P.L., 2001, The range of spinel com-positions in terrestrial mafic and ultramafic rocks: Journal ofPetrology, v. 12, p. 2279–2302.

    Beard, J.S., and Barker, F., 1989, Petrology and tectonic signifi-cance of gabbros, tonalities, shoshonites, and anorthosites ina late Paleozoic arc-root complex in the Wrangellia terrane,southern Alaska: Journal of Geology, v. 97, p. 667–683.

    BGMRXUAR (Bureau of Geology and Mineral Resourcesof Xinjiang Uygur Autonomous Region), 1993, RegionalGeology of Xinjiang Uygur Autonomous Region: Beijing,Geological Publishing House, p. 1–841 (in Chinese).

    Chai, F.M., Zhang, Z.C., Mao, J.W., Dong, L.H., Zhang, Z.H.,and Wu, H., 2008, Geology, petrology and geochemistry ofthe Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions inXinjiang, NW China: Implications for tectonics and genesisof ores: Journal of Asian Earth Sciences, v. 32, p. 218–235.

    Chai, F.M., Zhang, Z.C., Mao, J.W., Dong, L.H., Zhang, Z.H., Ye,H.T., Wu, H., and Mo, X.H., 2006, Petrography and mineral-ogy of Baishiquan Cu-Ni-bearing mafic-ultramafic intrusionsin Xinjiang: Acta Petrologica et Mineralogica, v. 25, p. 1–12(in Chinese with English abstract).

    Chen, C.M., Lu, H.F., Jia, D., Cai, D.S., and Wu, S.M.,1999, Closing history of the southern Tianshan oceanicbasin, Western China: An oblique collisional orogeny:Tectonophysics, v. 302, p. 23–40.

    Clark, T., 1980, Petrology of the Turnagain ultramafic complex,northwestern British Colombia: Canadian Journal of EarthScience, v. 17, p. 744–757.

    Droop, G.T.R., 1987, A general equation for estimatingFe3+ concentrations in ferromagnesian silicates and oxidesfrom microprobe analyses, using stoichiometric criteria:Mineralogical Magazine, v. 51, p. 431–435.

    Efimov, A.A., 1998, The platinum belt of the Urals: Structure,petrogenesis, and correlation with platiniferous complexesof the Aldan Shield and Alaska, in Proceedings of the 8thInternational Platinum Symposium (Abstract), South Africa,p. 93–96.

    Farahat, E.S., and Helmy H.M., 2006, Abu HamamidNeoproterozoic Alaskan-type complex, south EasternDesert, Egypt: Journal of African Earth Sciences, v. 45, p.187–197.

    Foley, J.P., Light, T.D., Nelson, S.W., and Harris, R.A., 1997,Mineral occurrences associated with mafic-ultramafic andrelated alkaline complexes in Alaska: Economic Geology, v.9, p. 396–449.

    Gao, J., Li, M.S., Xiao, X.C., Tang, Y.Q, and He, G.Q., 1998,Paleozoic tectonic evolution of the Tianshan orogen, north-western China: Tectonophysics, v. 287, p. 213–231.

    Gao, J., Long, L.L., Klemd, R., Qian, Q., Liu, D.Y., Xiong,X.M., Su, W., Liu, W., Wang, Y.T., and Yang F.Q., 2009,Tectonic evolution of the South Tianshan orogen and adja-cent regions, NW China: Geochemical and age constraints ofgranitoid rocks: International Journal of Earth Sciences, v. 98,p. 1221–1238.

    Gao, J., Long, L.L., Qian, Q., Huang, D.Z., Su, W., and Klemd, R.,2006, South Tianshan: A late Paleozoic or a Triassic orogen:Acta Petrologica Sinica, v. 22, p. 1049–1061 (in Chinese withEnglish abstract).

    Han, B.F., Ji, J.Q., Song, B., Chen, L.H., and Li, Z.H., 2004,SHRIMP zircon U-Pb ages of Kalatongke No. 1 andHuangshandong Cu-Ni-bearing mafic-ultramafic complexes,North Xinjiang, and geological implications: Chinese ScienceBulletin, v. 49, p. 2424–2429.

    Han, C.M., Xiao, W.J., Zhao, G.C., Mao, J.W., Li, S.Z., Yan,Z., and Mao, Q.G., 2006, Major types, characteristics andgeodynamic mechanism of upper Paleozoic copper depositsin northern Xinjiang, northwestern China: Ore GeologyReviews, v. 28, p. 308–328.

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • International Geology Review 267

    Helmy, H.M., and El Mahallawi, M.M., 2003, GabbroAkarem mafic–ultramafic complex, Eastern Desert, Egypt:A late Precambrian analogue of Alaskan-type Complexes:Mineralogy and Petrology, v. 77, p. 85–108.

    Helmy, H.M., and Moggesie, A., 2001, Gabbro Akarem, EasternDesert, Egypt: Cu-Ni-PGE mineralization in a concentricallyzoned mafic-ultramafic complex: Mineralium Deposita, v. 36,p. 58–71.

    Himmelberg, G.R., and Loney, R.A., 1995, Characteristics andpetrogenesis of Alaskan-type ultramafic-mafic intrusions,Southeastern Alaska: US Geological Survey, ProfessionalPapers 1564, Washington, D.C., U.S. Government PrintingOffice, p. 1–47.

    Himmelberg, G.R., Loney, R.A., and Craig, J.T., 1986,Petrogenesis of the ultramafic complex at the Blashke Islands,Southern Alaska: US Geological Survey Bulletin 1662,Washington, D.C., U.S. Government Printing Office, p. 1–14.

    Hu, A.Q., Jahn, B.M., Zhang, G., Chen, Y., and Zhang, Q., 2000,Crustal evolution and Phanerozoic crustal growth in northernXinjiang: Nd isotope evidence. 1. Isotopic characterization ofbasement rocks: Tectonophysics, v. 328, p. 15–51.

    Irvine, T.N., 1967, The Duke Island ultramafic complex, south-eastern Alaska, in Wyllie, P.J., ed., Ultramafic and RelatedRocks: New York, John Wiley and Sons, p. 84–97.

    Irvine, T.N., 1974, Petrology of the Duke Island ultramaficcomplex southern Alaska: Geological Society of AmericanMemoir, v. 138, p. 240.

    Irvine, T.N., 1976, Alaskan-type ultramafic-gabbro bodies in theAiken Lake, McConnel Creek, and Toodagoone map-areas:Geological Survey of Canadian Paper, v. 76-1A, p. 76–81.

    Jahn, B.M., Windley, B., Natal’in, B., and Dobretsov, N., 2004,Phanerozoic continental growth in Central Asia: Journal ofAsian Earth Sciences, v. 23, p. 599–603.

    Jahn, B.M., Wu, F.Y., and Chen, B., 2000a, Massive granitoid gen-eration in Central Asia: Nd isotope evidence and implicationfor continental growth in the Phanerozoic: Episodes, v. 23, p.82–92.

    Jahn, B.M., Wu, F.Y., and Chen, B., 2000b, Granitoids of theCentral Asian Orogenic Belt and continental growth in thePhanerozoic: Research of Society Edinburgh: Earth Science,v. 91, p. 181–193.

    Jiang, C.Y., Cheng, S.L., Ye, S.F., Xia, M.Z., Jiang, H.B.,and Dai, Y.C., 2006, Lithogeochemistry and petrogenesisof Zhongposhanbei mafic rock body, at Beishan region,Xinjiang: Acta Petrologica Sinica, v. 22, p. 115–126 (inChinese with English abstract).

    Johan, Z., 2002, Alaskan-type complexes and their platinum-group element mineralization, in Cabri, L.J., ed., Geology,geochemistry, mineralogy and mineral beneficiation ofplatinum-group elements: Canadian Institute of Mining,Metallurgy and Petroleum, Quebec, special v. 54, p. 669–719.

    Kamenetsky, V.S., Crawford, A.J., and Meffre, S., 2001, Factorscontrolling chemistry of magmatic spinel: An empirical studyof associated olivine, Cr-spinel and melt inclusions fromprimitive rocks: Journal of Petrology, v. 42, p. 655–671.

    Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert,M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J.,Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A.,Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher,J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L.,Whittaker, E.J.W., and Guo, Y.Z., 1997, Nomenclature ofamphiboles: Report of the subcommittee on amphibolesof the international mineralogical association, commissionon new minerals and mineral names: The CanadianMineralogist, v. 35, p. 219–246.

    Le Bas, M.J., 1962, The role of aluminum in igneous clinopy-roxenes with relation to their parentage: American Journal ofSciences, v. 260, p. 267–288.

    Li, J.Y., 2004, Late Neoproterozoic and Paleozoic tectonicframework and evolution of eastern Xinjiang, NW China:Geological Review, v. 50, p. 304–322 (in Chinese withEnglish abstract).

    Li, J.Y., Song, B., Wang, K.Z., Li, Y.P., Sun, G.H., and Qi, D.Y.,2006a, Permian mafic-ultramafic complexes on the south-ern margin of the Tu-Ha Basin, east Tianshan Mountains:Geological records of vertical crustal growth in central Asia:Acta Geoscientica Sinica, v. 27, p. 424–446 (in Chinese withEnglish abstract).

    Li, J.Y., Wang, K.Z., Sun, G.H., Mo, S.G., Li, W.Q., Yang, T.N.,and Gao, L.M., 2006b, Paleozoic active margin slices in thesouthern Turfan-Hami basin: Geological records of subduc-tion of the Paleo-Asian Ocean plate in central Asian regions:Acta Petrologica Sinica, v. 22, p. 1087–1102 (in Chinese withEnglish abstract).

    Lin, W., Faure, M., Shi, Y.H., Wang, Q.C., and Li, Z.,2009, Palaeozoic tectonics of the south-western ChineseTianshan: New insights from a structural study of the high-pressure/low-temperature metamorphic belt: InternationalJournal of Earth Sciences, v. 98, p. 1259–1274.

    Liu, P.P., Qin, K.Z., Su, S.G., San, J.Z., Tang, D.M., Su, B.X.,Sun, H., and Xiao, Q.H., 2010, Characteristics of multi-phase sulfide droplets and their implications for conduit-stylemineralization of Tulargen Cu-Ni deposit, Eastern Tianshan,Xinjiang: Acta Petrologica Sinica, v. 26, p. 523–532 (inChinese with English abstract).

    Loucks, R.R., 1990, Discrimination of ophiolitic from nonophi-olitic ultramafic-mafic allochthons in orogenic belts bythe Al/Ti ration in clinopyroxene: Geology, v. 18,p. 346–349.

    Ma, R.S., Wang, C.Y., Ye, S.F., and Liu, G.B., 1993, Tectonicframework and crustal evolution of the Eastern Tianshan:Nanjing, Nanjing University Press (in Chinese).

    Mao, J.W., Pirajno, F., Zhang, Z.H., Chai, F.M., Wu, H., Chen,S.P., Cheng, S.L., Yang, J.M., and Zhang, C.Q., 2008, Areview of the Cu-Ni sulfide deposits in the Chinese Tianshanand Altay orogens (Xinjiang Autonomous Region, NWChina): Principal characteristics and ore-forming processes:Journal of Asian Earth Sciences, v. 32, p. 184–203.

    Mao, Q.G., Xiao, W.J., Han, C.M., Sun, M., Yuan, C., Yan, Z., Li,J.L., Yong, Y., and Zhang, J.E., 2006, Zircon U-Pb age andgeochemistry of the Baishiquan mafic-ultramafic complex inthe Eastern Tianshan, Xinjiang: Constraints on the closureof the Paleo-Asian Ocean: Acta Petrologica Sinica, v. 22, p.153–162 (in Chinese with English abstract).

    Nixon, G.T., Cabri, L.J., and Laflamme, J.H.G., 1990, Platinumgroup element mineralization in lode and placer depositsassociated with the Tulameen Alaskan-type complex, BritishColumbia: Canadian Mineralogist, v. 28, p. 503–535.

    Pettigrew, N.T., and Hattori, K.H., 2006, The Quetico intrusionsof Western Superior Province: Neo-Archean examples ofAlaskan/Ural-type mafic-ultramafic intrusions: PrecambrianResearch, v. 149, p. 21–42.

    Pirajno, F., Mao, J.W., Zhang, Z.C., Zhang, Z.H., and Chai, F.M.,2008, The association of mafic-ultramafic intrusions andA-type magmatism in the Tianshan and Altay orogens, NWChina: Implications for geodynamic evolution and potentialfor the discovery of new ore deposits: Journal of Asian EarthSciences, v. 32, p. 165–183.

    Qin, K.Z., Ding, K.S., Xu, Y.X., Sun, H., Xu, X.W., Tang, D.M.,and Mao, Q., 2007, Ore potential of protoliths and modes

    Dow

    nloa

    ded

    by [

    Inst

    itute

    of

    Geo

    logy

    and

    Geo

    phys

    ics

    of C

    AS]

    at 1

    6:54

    21

    Nov

    embe

    r 20

    11

  • 268 B.-X. Su et al.

    of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Codeposits, East Tianshan, Xinjiang: Mineral Deposits, v. 26, p.1–14 (in Chinese with English abstract).

    Qin, K.Z., Fang, T.H., and Wang, S.L., 2002, Plate tectonics divi-sion, evolution and metallogenic settings in eastern Tianshanmountains, NW China: Xinjiang Geology, v. 20, p. 302–308(in Chinese with English abstract).

    Qin, K.Z., Zhang, L.C., Xiao, W.J., Xu, X.W., Yan, Z., and Mao,J.W., 2003, Overview of major Au, Cu, Ni and Fe deposits andmetallogenic evolution of the eastern Tianshan Mountains,Northwestern China, in Mao, J.W., Goldfarb, R.J., Seltmann,R., Wang, D.W., Xiao, W.J., and Hart, C., eds., Tectonic evo-lution and metallogeny of the Chinese Altay and Tianshan:London, Natural History Museum, p. 227–249.

    Ripley, E.M., 2009, Magmatic sulfide mineralization in Alaskan-type complexes, in Li, C.S., and Ripley, E.M., eds., Newdevelopments in magmatic Ni-Cu and PGE Deposits: Beijing,Geological Publishing House, p. 219–228.

    Rublee, V.J., 1994, Chemical petrology, mineralogy and structureof the Tulameen Complex, Princeton area, British Colombia[Unpublished M.Sc. thesis]: University of Ottawa, Canada, p.179.

    Saleeby, J.B., 1992, Age and tectonic setting of the Duke Islandultramafic intrusion, southeast Alaska: Canadian Journal ofEarth Science, v. 29, p. 506–522.

    Sengör, A.M.C., Natal’in, B.A., and Burtman, V.S., 1993,Evolution of the Altaid tectonic collage and Paleozoic crustalgrowth in Asia: Nature, v. 364, p. 299–307.

    Sengör, A.M.C., Natal’in, B.A., and Burtman, V.S., 2004,Phanerozoic analogues of Archean oceanic basement frag-ments: Altaid ophiolites and ophirags, in Kusky, T.M.,ed., Precambrian ophiolites and related rocks: Amsterdam,Elsevier, p. 675–726.

    Sha, L.K., 1995, Genesis of zoned hydrous ultramafic-mafic sili-cic intrusive complexes: An MHFC hypothesis: Earth ScienceReview, v. 39, p. 59–90.

    Snoke, A.W., Quick, J.E., and Bowman, H.R., 1981, BearMountain igneous complex, Klamath Mountains, California:An ultrabasic to silicic calc-alkaline suite: Journal ofPetrology, v. 22, p. 501–552.

    Su, B.X., Qin, K.Z., Sakyi P.A., Li, X.H., Yang, Y.H., SunH., Tang, D.M., Liu, P.P., Xiao, Q.H., and Malaviarachchi,S.P.K., 2010a, U-Pb ages and Hf-O isotopes of zirconsfrom Late Paleozoic mafic-ultramafic units in southernCentral Asian Orogenic Belt: Tectonic implications foran Early-Permian mantle plume: Gondwana Research, doi:10.1016/j.gr.2010.11.015.

    Su, B.X., Qin, K.Z., Sun, H., and Wang, H., 2010b,Geochronological, petrological, mineralogical and geochem-ical studies of the Xuanwoling mafic-ultramafic intrusion inthe Beishan area, Xinjiang: Acta Petrologica Sinica, v. 26 , p.3283–3294 in Chinese with English abstract).

    Su, B.X., Qin, K.Z., Sun, H., Tang, D.M., Xiao, Q.H., andCao, M.J., 2009, Petrological and mineralogical character-istics of Hongshishan mafic-ultramafic complex in Beishanarea, Xinjiang: Implications for assimilation and fractionalcrystallization: Acta Petrologica Sinica, v. 25, p. 873–887 (inChinese with English abstract).

    Su, B.X., Zhang, H.F., Tang, Y.J., Chisonga, B., Qin, K.Z., Ying,J.F., and Sayki P.A., 2010c, Geochemical syntheses amongthe cratonic, off-cratonic and orogenic garnet peridotites andtheir tectonic implications: International Journal of EarthSciences, doi: 10.1007/s00531-010-0527-0.

    Sun, H., 2009, Ore-forming mechanism in conduit system and

    ore-bearing property evaluation for mafic-ultramafic com-plex in Eastern Tianshan, Xinjiang [Ph.D thesis]: Institute ofGeology and Geophysics, Chinese Academy of Sciences (inChinese with English abstract).

    Sun, H., Qin, K.Z., Li, J.X., Xu, X.W., San, J.Z., Ding, K.S.,Hui, W.D., and Xu, Y.X., 2006, Petrographic and geo-chemical characteristics of the Tulargen Cu-Ni-Co sulfidedeposits, East Tianshan, Xinjiang, and its tectonic setting:Geology in China, v. 33, p. 606–617 (in Chinese with Englishabstract).

    Sun, H., Qin, K.Z., Xu, X.W., Li, J.X., Ding, K.S., Xu, Y.X., andSa