64
EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 1 Network Processor TX RX O E Network Processor O E RX TX E O E O 16 16 16 16 622Mb/s 10 Gb/s 622Mb/s Photo Diode TIA + Preamp 10 Gb/s Mod Laser 10 Gb/s 10 GHz OC-192 (10 Gb/s) transceiver 0.18 µm CMOS process OC-192 communications system block diagram

OC-192 communications system block diagram

  • Upload
    thyra

  • View
    29

  • Download
    0

Embed Size (px)

DESCRIPTION

OC-192 communications system block diagram. 10 Gb/s. Laser. Mod. TIA + Preamp. 10 Gb/s. Photo Diode. 10 GHz. 16. 16. TX. RX. E O. O E. Network. Network. 10 Gb/s. 622Mb/s. 622Mb/s. Processor. Processor. RX. TX. 16. 16. E O. O E. - PowerPoint PPT Presentation

Citation preview

Page 1: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 1

NetworkProcessor

TX

RX

O E

NetworkProcessor

O E

RX

TX

E O

E O

16

16

16

16

622Mb/s 10 Gb/s 622Mb/s

Photo Diode

TIA + Preamp

10 Gb/sModLaser

10 Gb/s

10 GHz

• OC-192 (10 Gb/s) transceiver• 0.18 µm CMOS process

OC-192 communications system block diagram

Page 2: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 2

Transceiver block diagram:

10 GHz

10 Gb/s

Page 3: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 3

ReadPointer

FIFOControlRESET

CLK16IP

CLK16IN

DI0P

DI0N

DI15P

DI15N

REFCLKP

REFCLKN

REF155EN

INP

UT

RE

GIS

TE

R

10/10.7 GHzCMU

SELFECB

16

X 1

0 F

IFO

WritePointer

16

:1 M

UX

DIVIDE-BY-16

OutputRetime

IFSEL

VCP

VCN

TSDP

TSDN

TSCKP

TSCKN

CLK16OP

CLK16ON

LCKDET

RB_LD

LVDS Parallel

Input Bus

LVPECLRef.

Clock

CMLHigh- SpeedOutputs

LVDSOutput Clock

OVF

Transmitter Block Diagram

Page 4: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 4

Low-Frequency Input signals

Reference clock

Input clock

Input data

Input data aligned to input clock (usually jittery)

Very low jitter (~10 ppm)reference clock; used in CMUto generate 10 GHz internal clock

Reference clock and input clock are not synchronized.

T

tsh

Maximum allowable variation between Input clock & Reference clock is T − tsh

Page 5: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 5

Input clock timing domain

Reference clock timing domain

input clock

input data

16

Reference clock

High-frequency clock

16

16

Connection could exhibit varying delay Variable phasing between

input & reference clock domainscan cause bit errors in MUX

Illustration of Input Timing Regimes

16:1 MUX

Page 6: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 6

We require an intermediateblock to resolve timing variationsbetween input & reference clock

First-In/First-Out (FIFO) Circuit (1)

16:1 MUX

Page 7: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 7

First-In/First-Out Circuit (2)

Din_0

Din_n

k

k

Readclock

Writeclock

Readclock

Write clock

Dout_0

Dout_n

Synchronizedwith input clock

To serializer(signals synchronizedwith reference clock)

Since these signals have period k times longer than the input period, the circuit can tolerate k times larger variation between input & reference clocks.

Ref clock

Ref clock

Read clock based on input clockWrite clock based on reference clock

Page 8: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 8

FIFO approach:• Large amount of hardware (many latches)• Significant power dissipation unless static CMOS is used• Can handle arbitrarily large delay variations

DLL approach:• Less hardware• Can handle modest delay variations• Better choice for BJT or GaAs processes

Appropriate phase chosen

Page 9: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 9

staticCMOS

CML

16:1 Multiplexer Tree Structure

10 Gb/s5 Gb/s

2.5 Gb/s1.25 Gb/s

5 GHz2.5 GHz1.25 GHz

Page 10: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 10

2:1 MUX cell details

D flip-flop with extra latch

Page 11: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 11

Assume all blocks have:• Tail current ISS

• Resistor R• Diff pair transistor sizes W/L

ISS5ISS2ISS10ISS Total current: 18ISS

Page 12: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 12

We can take advantage of gain/bandwidth tradeoff by appropriate scaling:

Design parameters:• ISS

• R• W/L CL

Idea:

Lower bit rate allows lower power!

Page 13: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 13

Cp ≈ 10 fF GSCALE=3 ISS = 1.2 mA

MSCALE=1/8 MSCALE=1/2 MSCALE=1/2 MSCALE=1

Itotal = 5.75ISS

= 6.9 mA

Page 14: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 14

Clock Dividers

The operation of “real” high-speed clock dividers is more complex …

Page 15: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 15

Clock divider based on CML D flip-flop:

Divider sensitivity curve:

Vmin = minimum input clock amplitude required for correct operation.

fso = self-oscillation frequency

Vmax = maximum dc differential voltage that can be applied to the input clock for which the circuit self-oscillates.

Vmax

Page 16: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 16

Desired frequency divider operationQuasiperiodic operationSlew-rate limited operation

Region I:Region II:

Region III:

Sensitivity Curve Analysis

Page 17: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 17

Region II: Quasiperiodic behavior

self-oscillating

lockedfin = 11GHz

Page 18: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 18

Region III: Slew-rate limited Behavior

Sine-wave input

Square-wave input

Page 19: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 19

Effect of Transistor Sizes on Sensitivity Curve

Latch transistors

Driver transistors

Clock transistors

Page 20: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 20

Alternatives to DFF-Based Clock Dividers

• Latches present large capacitive load slow

Page 21: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 21

At very high frequencies, latch transistors are not necessary and only add capacitance to the circuit:

Page 22: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 22

Ring-Oscillator-Based Divider

Behaves like a 4-stage ring oscillator with injection of full-rate frequency.

Page 23: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 23

Comparison of Sensitivity Curves

Conventional divider:Dynamic divider:

Wider frequency range; lower self-oscillation frequencyNarrow frequency range; higher self-oscillation frequency

Page 24: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 24

I1 I2

I2(t)

0

ISS

I1(t)

Vout-(t)

Vout+(t)

VDD

VDD – ISSR

VDD – ISS(R+R)

0

Vout+(t) – Vout-(t)

ISSR

ISS(R+R)

Effect of Non-Ideal Clock Signals

Offset resistance causes deviation from50% duty cycle in clock signal.

Page 25: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 25

Half-rate clock

MUX output

ideal

with offset

with offset ideal

Result of nonideal half-rate clock is Periodic Jitter.

Page 26: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 26

retimer

10 GHz clock

10 Gb/s retimed data5 Gb/s

5 GHz

10 Gb/s data

Full-rate clock(could be non-50% duty cycle)

retimed output

Retimer eliminates this problem:

Page 27: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 27

10 Gb/s data output

10 GHz clock

2.5 Gb/s data input

5 Gb/s

5 GHz2.5 MHz

tp1

tp2

tp1 & tp2 are “clock-to-Q” delays.Because the clock & data flow in opposite directions, alignment between 5 Gb/s data & 5 GHz clockis determined by the sum: tp1 + tp2

(High sensitivity to processing / temp. corners)

Internal MUX Timing

Page 28: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 28

• 50 back termination used to reduce reflections.

• CML blocks scaled up so that last stage drives ac load of 25

• Shunt-peaking used in second stage.

Serial Output 50 Line Driver

Page 29: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 29

Receiver Block Diagram

Page 30: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 30

DMUX Architecture

Page 31: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 31

1:4 DMUX Tree Structure

10 Gb/s data input

2.5 Gb/s data outputs

10 GHz clock 5 GHz 2.5 GHz

5 Gb/s

Page 32: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 32

1:2 DMUX cell details:

Page 33: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 33

10 Gb/s data input

2.5 Gb/s data output

10 GHz clock 5 GHz 2.5 GHz

tp1 & tp2 are “clock-to-Q” delays.

Because the clock & data flow in the same direction, alignment between 5 Gb/s data & 2.5 GHz clockis determined by the difference: tp1 – tp2

(Low sensitivity to processing/temp. corners)

tp1

tp2

Internal DMUX Timing

5 Gb/s

Page 34: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 34

Crosstalk in Transceivers

f1 f2

• Capacitive coupling between VCO’s can cause “frequency pulling”

• Momentary differences in frequencies between 2 VCO’s can give rise to additional jitter.

Page 35: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 35

Crosstalk Measurement

Serial input data10 Gb/s

CMU reference clock

recovered clock10 GHz

output data10 Gb/s + 100ppm

output clock10 GHz + 100ppm

Low-frequencyinputs/outputs

Low-frequencyinputs/outputs

Jitter is measured at TX output clock (or data) and RX recovered clock.

Page 36: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 36

• Sufficient physical separation between VCO’s

• Separate supply connections to package for each block (e.g., CMU, CDR, MUX, DMUX, FIFO, etc.)

• Ample guard rings to minimize substrate coupling

Techniques for Reducing Transceiver Crosstalk

Very difficult to simulate & predict!

Page 37: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 37

SONET Jitter Specifications

1. Jitter Generation (transmitters)

2. Jitter Tolerance (receivers)

3. Jitter Transfer (repeaters)

Page 38: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 38

Jitter Generation (1)

• DJ always specified in peak-to-peak

• RJ rms jitter well-characterized

• RJ peak-to-peak jitter dependent on measurement time (increases without bound)

SONET:

JPP usually measured over a specified frequency range.

Wideband jitter (p-p or rms) can be measured directly from serial output data signal

Gigabit Ethernet & Fiber Channel:

Equivalent JPP determined by measured BER.

Page 39: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 39

SONET jitter generation is specified within a certain jitter frequency range.For OC-192: 50 kHz – 80 MHz

To measure narrowband jitter generation, we can:

A. Measure the recovered clock from a “golden” CDR:

TXCDR

(low jitter generation)

Ref. clock

output data

recovered clock

to jitter analyzer

Should have jitter bandwidth > 80MHz

SONET OC-192 bandpass filter

Jitter Generation (2)

10 GHz

Page 40: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 40

B. Measure the TX output clock directly(assuming its jitter is the same as the data):

TX

Ref. clock

output data

TX output clock

to jitter analyzer

Note: ISI is usually measured separately (peak-to-peak only).

Jitter Generation (3)

10 GHz

Page 41: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 41

9.95328 GHz 10.6642 GHz

Measured at output clock; 231-1 PRBS serial data applied to input

Phase noise: -100 dBc/Hz @ 1MHz offsetJitter generation (SONET filter): 5.6mUI rms / 60mUI p-p

Phase noise: -100 dBc/Hz @ 1MHz offsetJitter generation (SONET filter): 6.2mUI rms / 65mUI p-p

Jitter Generation (4)

Page 42: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 42

Jitter Generation (231-1 PRBS):6.44 ps pp (wide band) 0.38ps rms (within SONET band)

Closed-loop VCO phase noise (231-1 PRBS): –107 dBc/Hz @ 1 MHz offset

Jitter Generation (5)

Jitter measurements from clock:

Page 43: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 43

10.6642GHz clock Wideband jitter: 7.5ps p-p / 1.2ps rms

10.6642Gb/s data

Wideband jitter: 10.7ps p-p / 1.8ps rms

231-1 PRBS input data applied:

Jitter Generation (6)

Page 44: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 44

Serial data in

recovered clock

retimed data out

To DMUXretimer

Experiment: Apply serial data to CDR with jitter at a certain frequency. Increase the jitter amplitude until a bit error occurs.

If data jitter & recovered clock jitter could perfectly track, then retiming would be error-free.

Data in

Recovered clock

T

tsh

Jitter Tolerance (1)

Page 45: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 45

Given CDR open-loop characteristic

fdata fclock

(expressed in UI)

^

Jitter Tolerance (2)

Page 46: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 46

Bit rate: 10.7Gb/sPattern: 231-1PRBSBER threshold: 10-12

Jitter Frequency (Hz)

Jitt

er T

ole

ran

ce [

UIp

p]

Jitter Frequency [Hz]

Bit rate: 10.7 Gb/sPattern: 231-1PRBSData in: 50 mV ppBER threshold: 10-12

100 1K 10K 100K 1M 10M 100M0.01

10

0.1

1

10

100

1000

10000

Jitter Tolerance > 40 ps pp at high frequency

Jitter Tolerance (3)

Page 47: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 47

O E RX TX E O

n repeaters:

repeater

Jitter peaking should be minimized.

Jitter Transfer

f0

0.1dB

-20 dB/decade

Jitter Transfer Mask:

Page 48: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine

Electrical-to-Optical Interfaces (1)

Electrical to optical (TX):

MUXlaserdriver

IL

IL

optical output power

T

laser diode orVertical Cavity Surface Emitting Laser(VCSEL)

48

Page 49: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 49

Electrical-to-Optical Interfaces (2)

Electroabsorption modulator

Operates by making optical material more or less absorptive.

Pin

Pout

VM

VMVswing~ 3V

49

Page 50: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 50

Mach-Zender modulator:

Electrical-to-Optical Interfaces (3)

Mach-Zender interferometer:

• Invented in 1890s• Used to precisely measure optical

phase shift of materials.• By using constructive/destructive

interference, can be used as a laser modulator.

VMVswing ~ 6V

50

Page 51: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 51

Electrical-to-Optical Interfaces (4)

Optical pulsewidth distortion commonly occurs due to:• Unequal turn-on/turn-off times of laser diode• Non-ideal bias voltage in modulators.

Electrical signal(IL or VM)

Optical output

Additional circuitry to correct pulsewidth is often added to system...

Results in DCD

51

Page 52: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 52

Electrical-to-Optical Interfaces (5)

VM

Vref

IB

laser diode monitor diode

R

Optical output control circuit:

Feedback sets

52

Page 53: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 53

Optical Receiver Block Diagram

O E

LA CDREQ DMUX

≈ -18 dBm ≈ 10 mV p-p≈ 10 µA ≈ 400 mV p-p

TIA

53

Page 54: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 54

Optical-to-Electrical Interfaces (1)

p-i-n photodetector structure: circuit model:

+

_

+

_

n

p

i

applied optical signal

resulting electrical

current

VR~5V

54

Page 55: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 55

Eye diagram of PRBS resulting from 96 km of single-mode fiber

and photodetector.

Optical-to-Electrical Interfaces (2)

• DCD & ISI are evident.

• Noise is higher at logic 1 than at logic 0.

Photodetector noise:

55

Page 56: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 56

Transimpedance Amplifier (TIA)

R

Cd

A0

Vref

Iin

from photodetector

Vout

Used to convert photodetector current into voltage.

low-impedance node maintains nearly constant detector voltage good linearity.

56

Page 57: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 57

Transimpedance Amplifier (2)

R

Cd

A0

Vref

Iin

photodetector

Vout

Transimpedance:

Input impedance:

Loop gain:

additional pole limits closed-loop BW

Cg

57

Page 58: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 58

Transimpedance Amplifier (3)

Noise analysis:

Good sensitivity requires:• Large Rf

• Large Cg

• Large gm

Tradeoff with BW

58

Page 59: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 59

Transimpedance Amplifier (4)

• Cd decoupled from feedback network

• Common-gate device increases noise

Cd

Cg

RCd

Cg

LB

R

• LB provides decoupling (series peaking); could be realized by bondwire.

59

Page 60: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 60

Limiting Amplifiers

Requirements:

• Amplify input signal with variable amplitude (~10-30 mV) to a fixed-amplitude (~450 mV) output.

• Sufficiently high bandwidth

• Sufficiently low noise

• Low offset voltage

+Vin

+Vout

n stages

Single stage: n-stage amplifier:

Overall gain:

Overall bandwidth:

60

Page 61: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 61

7-Stage Limiting Amplifier Example (1)

Each stage uses shunt-peaked CML buffer with:

A0 = 5.5 dBBW = 10 GHz

100 MHz 1 GHz 10 GHz 100 GHz

1st stage output

7th stage output

61

Page 62: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 62

7-Stage Limiting Amplifier Example (2)

Input amplitude = 20 mV p-p Input amplitude = 40 mV p-p

1st stage output

7th stage output

6th stage output

1st stage output

7th stage output

6th stage output

62

Page 63: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 63

Input amplitude = 20 mV p-p

1st stage output

7th stage output

6th stage output

Input-referred offset of 5 mV applied

7-Stage Limiting Amplifier Example (3)

Offset-cancellation circuitry required!

63

Page 64: OC-192 communications system block diagram

EECS 270C / Spring 2014 Prof. M. Green / U.C. Irvine 64

Limiting Amplifier Offset Compensation

n-stageamplifier core

lowpass filter

+vin

offset compensation

RL RL

M1 M1 M1 M1RF

CF

RF

CF

VOS

Vout+−

+−

V1

+Vout

H.-Y. Huang et al., “A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback,” JSSC, May 2007, pp. 1111-1120.

compensation circuit:

amplifier circuit:

64