41
Observing Dynamical Chiral Symmetry Breaking Craig Roberts Physics Division

Observing Dynamical Chiral Symmetry Breaking

  • Upload
    aldona

  • View
    50

  • Download
    0

Embed Size (px)

DESCRIPTION

Observing Dynamical Chiral Symmetry Breaking. Craig Roberts Physics Division. Q C D ’s Challenges. Understand emergent phenomena. Quark and Gluon Confinement No matter how hard one strikes the proton, one cannot liberate an individual quark or gluon. - PowerPoint PPT Presentation

Citation preview

Page 1: Observing Dynamical  Chiral  Symmetry Breaking

Observing Dynamical Chiral Symmetry Breaking

Craig Roberts

Physics Division

Page 2: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

QCD’s Challenges

Dynamical Chiral Symmetry Breaking Very unnatural pattern of bound state masses;

e.g., Lagrangian (pQCD) quark mass is small but . . . no degeneracy between JP=+ and JP=− (parity partners)

Neither of these phenomena is apparent in QCD’s Lagrangian Yet they are the dominant determining characteristics

of real-world QCD.

Both will be important herein QCD

– Complex behaviour arises from apparently simple rules.2

Quark and Gluon ConfinementNo matter how hard one strikes the proton, one cannot liberate an individual quark or gluon

Understand emergent phenomena

Page 3: Observing Dynamical  Chiral  Symmetry Breaking

Universal Truths

Spectrum of hadrons (ground, excited and exotic states), and hadron elastic and transition form factors provide unique information about long-range interaction between light-quarks and distribution of hadron's characterising properties amongst its QCD constituents.

Dynamical Chiral Symmetry Breaking (DCSB) is most important mass generating mechanism for visible matter in the Universe. Higgs mechanism is (almost) irrelevant to light-quarks.

Running of quark mass entails that calculations at even modest Q2 require a Poincaré-covariant approach. Covariance requires existence of quark orbital angular momentum in hadron's rest-frame wave function.

Confinement is expressed through a violent change of the propagators for coloured particles & can almost be read from a plot of a states’ dressed-propagator. It is intimately connected with DCSB.

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

3

Page 4: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Dyson-SchwingerEquations

Well suited to Relativistic Quantum Field Theory Simplest level: Generating Tool for Perturbation

Theory . . . Materially Reduces Model-Dependence … Statement about long-range behaviour of quark-quark interaction

NonPerturbative, Continuum approach to QCD Hadrons as Composites of Quarks and Gluons Qualitative and Quantitative Importance of:

Dynamical Chiral Symmetry Breaking– Generation of fermion mass from nothing Quark & Gluon Confinement

– Coloured objects not detected, Not detectable?

4

Approach yields Schwinger functions; i.e., propagators and verticesCross-Sections built from Schwinger FunctionsHence, method connects observables with long- range behaviour of the running couplingExperiment ↔ Theory comparison leads to an understanding of long- range behaviour of strong running-coupling

Page 5: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

5

Confinement

Quark and Gluon Confinement– No matter how hard one strikes the proton, or any other

hadron, one cannot liberate an individual quark or gluon Empirical fact. However

– There is no agreed, theoretical definition of light-quark confinement

– Static-quark confinement is irrelevant to real-world QCD• There are no long-lived, very-massive quarks

Confinement entails quark-hadron duality; i.e., that all observable consequences of QCD can, in principle, be computed using an hadronic basis.

X

Page 6: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

6

Confinement Confinement is expressed through a violent change in the

analytic structure of propagators for coloured particles & can almost be read from a plot of a states’ dressed-propagator– Gribov (1978); Munczek (1983); Stingl (1984); Cahill (1989);

Krein, Roberts & Williams (1992); …

complex-P2 complex-P2

o Real-axis mass-pole splits, moving into pair(s) of complex conjugate poles or branch pointso Spectral density no longer positive semidefinite & hence state cannot exist in observable spectrum

Normal particle Confined particle

Page 7: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

7

Dressed-gluon propagator

Gluon propagator satisfies a Dyson-Schwinger Equation

Plausible possibilities for the solution

DSE and lattice-QCDagree on the result– Confined gluon– IR-massive but UV-massless– mG ≈ 2-4 ΛQCD

perturbative, massless gluon

massive , unconfined gluon

IR-massive but UV-massless, confined gluon

A.C. Aguilar et al., Phys.Rev. D80 (2009) 085018

Page 8: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

8

S(p) … Dressed-quark propagator- nominally, a 1-body problem

Gap equation

Dμν(k) – dressed-gluon propagator Γν(q,p) – dressed-quark-gluon vertex

Page 9: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

9

With QCD’s dressed-gluon propagator

What is the dressed-quarkmass function?

Page 10: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Frontiers of Nuclear Science:Theoretical Advances

In QCD a quark's effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies (m =0, red curve) acquires a large constituent mass at low energies.

10

Page 11: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Frontiers of Nuclear Science:Theoretical Advances

In QCD a quark's effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies (m =0, red curve) acquires a large constituent mass at low energies.

11

DSE prediction of DCSB confirmed

Mass from nothing!

Page 12: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Frontiers of Nuclear Science:Theoretical Advances

In QCD a quark's effective mass depends on its momentum. The function describing this can be calculated and is depicted here. Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies (m =0, red curve) acquires a large constituent mass at low energies.

12

Hint of lattice-QCD support for DSE prediction of violation of reflection positivity

Page 13: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

12GeVThe Future of JLab

Numerical simulations of lattice QCD (data, at two different bare masses) have confirmed model predictions (solid curves) that the vast bulk of the constituent mass of a light quark comes from a cloud of gluons that are dragged along by the quark as it propagates. In this way, a quark that appears to be absolutely massless at high energies (m =0, red curve) acquires a large constituent mass at low energies.

13

Jlab 12GeV: Scanned by 2<Q2<9 GeV2 elastic & transition form factors.

Page 14: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

14

Dynamical Chiral Symmetry Breaking

Strong-interaction: QCD Confinement

– Empirical fact– Modern theory and lattice-QCD support conjecture

• that light-quark confinement is real • associated with violation of reflection positivity; i.e., novel analytic

structure for propagators and vertices– Still circumstantial, no proof yet of confinement

On the other hand, DCSB is a fact in QCD– It is the most important mass generating mechanism for visible

matter in the Universe. Responsible for approximately 98% of the proton’s

mass.Higgs mechanism is (almost) irrelevant to light-quarks.

Page 15: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

15

Strong-interaction: QCD Gluons and quarks acquire momentum-dependent masses

– characterised by an infrared mass-scale m ≈ 2-4 ΛQCD

Significant body of work, stretching back to 1980, which shows that, in the presence of DCSB, the dressed-fermion-photon vertex is materially altered from the bare form: γμ.– Obvious, because with

A(p2) ≠ 1 and B(p2) ≠ constant, the bare vertex cannot satisfy the Ward-Takahashi identity; viz.,

Number of contributors is too numerous to list completely (300 citations to 1st J.S. Ball paper), but prominent contributions by:J.S. Ball, C.J. Burden, C.D. Roberts, R. Delbourgo, A.G. Williams, H.J. Munczek, M.R. Pennington, A. Bashir, A. Kizilersu, L. Chang, Y.-X. Liu …

Dressed-quark-gluon vertex

Page 16: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

16

Dressed-quark-gluon vertex

Single most important feature– Perturbative vertex is helicity-conserving:

• Cannot cause spin-flip transitions– However, DCSB introduces nonperturbatively generated

structures that very strongly break helicity conservation– These contributions

• Are large when the dressed-quark mass-function is large– Therefore vanish in the ultraviolet; i.e., on the perturbative

domain– Exact form of the contributions is still the subject of debate

but their existence is model-independent - a fact.

Page 17: Observing Dynamical  Chiral  Symmetry Breaking

Gap EquationGeneral Form

Dμν(k) – dressed-gluon propagator good deal of information available

Γν(q,p) – dressed-quark-gluon vertex Information accumulating

Straightforward to insert Ansatz for Γν(q,p) into gap equation & from the solution obtain values for– in-pion condensate– estimate of pion’s leptonic decay constant

However, there’s a little more than that to hadron physicsCraig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

17

Many are still doing only this

Page 18: Observing Dynamical  Chiral  Symmetry Breaking

Gap EquationGeneral Form

Dμν(k) – dressed-gluon propagator Γν(q,p) – dressed-quark-gluon vertex Until 2009, all studies of other hadron phenomena used the

leading-order term in a symmetry-preserving truncation scheme; viz., – Dμν(k) = dressed, as described previously– Γν(q,p) = γμ

• … plainly, key nonperturbative effects are missed and cannot be recovered through any step-by-step improvement procedure

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

18

Bender, Roberts & von SmekalPhys.Lett. B380 (1996) 7-12

Page 19: Observing Dynamical  Chiral  Symmetry Breaking

Gap EquationGeneral Form

Dμν(k) – dressed-gluon propagator good deal of information available

Γν(q,p) – dressed-quark-gluon vertex Information accumulating

Suppose one has in hand – from anywhere – the exact form of the dressed-quark-gluon vertex

What is the associated symmetry-preserving Bethe-Salpeter kernel?!

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

19

If kernels of Bethe-Salpeter and gap equations don’t match,one won’t even get right charge for the pion.

Page 20: Observing Dynamical  Chiral  Symmetry Breaking

Bethe-Salpeter EquationBound-State DSE

K(q,k;P) – fully amputated, two-particle irreducible, quark-antiquark scattering kernel

Textbook material. Compact. Visually appealing. Correct

Blocked progress for more than 60 years.

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

20

Page 21: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Bethe-Salpeter EquationGeneral Form

Equivalent exact bound-state equation but in this form K(q,k;P) → Λ(q,k;P)

which is completely determined by dressed-quark self-energy Enables derivation of a Ward-Takahashi identity for Λ(q,k;P)

21

Lei Chang and C.D. Roberts0903.5461 [nucl-th]Phys. Rev. Lett. 103 (2009) 081601

Page 22: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Ward-Takahashi IdentityBethe-Salpeter Kernel

Now, for first time, it’s possible to formulate an Ansatz for Bethe-Salpeter kernel given any form for the dressed-quark-gluon vertex by using this identity

This enables the identification and elucidation of a wide range of novel consequences of DCSB

22

Lei Chang and C.D. Roberts0903.5461 [nucl-th]Phys. Rev. Lett. 103 (2009) 081601

iγ5 iγ5

Page 23: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Dressed-quark anomalousmagnetic moments

Three strongly-dressed and essentially-

nonperturbative contributions to dressed-quark-gluon vertex:

23

DCSB

Ball-Chiu term•Vanishes if no DCSB•Appearance driven by STI

Anom. chrom. mag. mom.contribution to vertex•Similar properties to BC term•Strength commensurate with lattice-QCD

Skullerud, Bowman, Kizilersu et al.hep-ph/0303176

L. Chang, Y. –X. Liu and C.D. RobertsarXiv:1009.3458 [nucl-th]Phys. Rev. Lett. 106 (2011) 072001

Page 24: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

24

Dressed-quark anomalous chromomagnetic moment

Lattice-QCD– m = 115 MeV

Nonperturbative result is two orders-of-magnitude larger than the perturbative computation– This level of

magnification istypical of DCSB

– cf.

Skullerud, Kizilersu et al.JHEP 0304 (2003) 047

Prediction from perturbative QCD

Quenched lattice-QCD

Quark mass function:M(p2=0)= 400MeVM(p2=10GeV2)=4 MeV

Page 25: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Dressed-quark anomalousmagnetic moments

Three strongly-dressed and essentially-

nonperturbative contributions to dressed-quark-gluon vertex:

25

DCSB

Ball-Chiu term•Vanishes if no DCSB•Appearance driven by STI

Anom. chrom. mag. mom.contribution to vertex•Similar properties to BC term•Strength commensurate with lattice-QCD

Skullerud, Bowman, Kizilersu et al.hep-ph/0303176

Role and importance isnovel discovery•Essential to recover pQCD•Constructive interference with Γ5

L. Chang, Y. –X. Liu and C.D. RobertsarXiv:1009.3458 [nucl-th]Phys. Rev. Lett. 106 (2011) 072001

Page 26: Observing Dynamical  Chiral  Symmetry Breaking

Dressed-quark anomalousmagnetic moments

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

26

Formulated and solved general Bethe-Salpeter equation Obtained dressed electromagnetic vertex Confined quarks don’t have a mass-shello Can’t unambiguously define

magnetic momentso But can define

magnetic moment distribution

ME κACM κAEM

Full vertex 0.44 -0.22 0.45

Rainbow-ladder 0.35 0 0.048

AEM is opposite in sign but of roughly equal magnitude as ACM

L. Chang, Y. –X. Liu and C.D. RobertsarXiv:1009.3458 [nucl-th]Phys. Rev. Lett. 106 (2011) 072001

Factor of 10 magnification

Page 27: Observing Dynamical  Chiral  Symmetry Breaking

Dressed-quark anomalousmagnetic moments

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

27

Potentially important for elastic and transition form factors, etc. Significantly, also quite possibly for muon g-2 – via Box diagram,

which is not constrained by extant data.

L. Chang, Y. –X. Liu and C.D. RobertsarXiv:1009.3458 [nucl-th]Phys. Rev. Lett. 106 (2011) 072001

Factor of 10 magnification

Formulated and solved general Bethe-Salpeter equation Obtained dressed electromagnetic vertex Confined quarks don’t have a mass-shello Can’t unambiguously define

magnetic momentso But can define

magnetic moment distribution

Contemporary theoretical estimates:1 – 10 x 10-10

Largest value reduces discrepancy expt.↔theory from 3.3σ to below 2σ.

Page 28: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

DSEs and Baryons Dynamical chiral symmetry breaking (DCSB)

– has enormous impact on meson properties.Must be included in description and prediction of baryon properties.

DCSB is essentially a quantum field theoretical effect. In quantum field theory Meson appears as pole in four-point quark-antiquark Green function →

Bethe-Salpeter Equation Nucleon appears as a pole in a six-point quark Green function

→ Faddeev Equation. Poincaré covariant Faddeev equation sums all possible exchanges and

interactions that can take place between three dressed-quarks Tractable equation is based on observation that an interaction which

describes colour-singlet mesons also generates nonpointlike quark-quark (diquark) correlations in the colour-antitriplet channel

28

R.T. Cahill et al.,Austral. J. Phys. 42 (1989) 129-145

rqq ≈ rπ

Page 29: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Faddeev Equation

Linear, Homogeneous Matrix equationYields wave function (Poincaré Covariant Faddeev Amplitude)

that describes quark-diquark relative motion within the nucleon Scalar and Axial-Vector Diquarks . . .

Both have “correct” parity and “right” masses In Nucleon’s Rest Frame Amplitude has

s−, p− & d−wave correlations29

R.T. Cahill et al.,Austral. J. Phys. 42 (1989) 129-145

diquark

quark

quark exchangeensures Pauli statistics

composed of strongly-dressed quarks bound by dressed-gluons

Page 30: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

30

Photon-nucleon current

Composite nucleon must interact with photon via nontrivial current constrained by Ward-Takahashi identities

DSE, BSE, Faddeev equation, current → nucleon form factors

Vertex contains dressed-quark anomalous magnetic moment

Oettel, Pichowsky, SmekalEur.Phys.J. A8 (2000) 251-281

Page 31: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

31

I.C. Cloët, C.D. Roberts, et al.arXiv:0812.0416 [nucl-th]

)(

)(2

2

QG

QGpM

pEp

Highlights again the critical importance of DCSB in explanation of real-world observables.

DSE result Dec 08

DSE result – including the anomalous magnetic moment distribution

I.C. Cloët, C.D. Roberts, et al.In progress

Page 32: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Unification of Meson & Baryon Spectra

Correlate the masses of meson and baryon ground- and excited-states within a single, symmetry-preserving framework Symmetry-preserving means:

Poincaré-covariant & satisfy relevant Ward-Takahashi identities Constituent-quark model has hitherto been the most widely applied

spectroscopic tool; and whilst its weaknesses are emphasized by critics and acknowledged by proponents, it is of continuing value because there is nothing better that is yet providing a bigger picture.

Nevertheless, no connection with quantum field theory & certainly not with QCD not symmetry-preserving & therefore cannot veraciously connect

meson and baryon properties

32

Page 33: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Faddeev Equation

33

quark-quark scattering matrix - pole-approximation used to arrive at Faddeev-equation

o Nucleon states, combination of J=0 and J=1 diquarkso Δ-states, much simpler … only J=1 diquarks

Page 34: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Baryons & diquarks

34

Provided numerous insights into baryon structure; e.g., There is a causal connection between mΔ - mN & m1+- m0+

mΔ - mN

mN

Physical splitting grows rapidly with increasing diquark mass difference

H.L.L. Roberts et al., Masses of ground and excited-state hadrons1101.4244 [nucl-th], Few Body Syst. 51 (2011) pp. 1-25; DOI:10.1007/s00601-011-0225-x

Page 35: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Baryons & diquarks

35

Provided numerous insights into baryon structure; e.g., mN ≈ 3 M & mΔ ≈ M+m1+

Page 36: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Baryon Spectrum

36

Our predictions for baryon dressed-quark-core masses match the bare-masses determined by Jülich with a rms-relative-error of 10%. Notably, however, we find a quark-core to the Roper resonance,

whereas within the Jülich coupled-channels model this structure in the P11 partial wave is unconnected with a bare three-quark state.

H.L.L. Roberts et al., to appear Few Body Syst., 1101.4244 [nucl-th] Masses of ground and excited-state hadrons

Page 37: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Baryon Spectrum

37

In connection with EBAC's analysis, our predictions for the bare-masses agree within a rms-relative-error of 14%. Notably, EBAC does find a dressed-quark-core for the Roper

resonance, at a mass which agrees with our prediction.

H.L.L. Roberts et al., to appear Few Body Syst., 1101.4244 [nucl-th] Masses of ground and excited-state hadrons

Page 38: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

38

EBAC & the Roper resonance

EBAC examined the dynamical origins of the two poles associated with the Roper resonance are examined.

Both of them, together with the next higher resonance in the P11 partial wave were found to have the same originating bare state

Coupling to the meson-baryon continuum induces multiple observed resonances from the same bare state.

All PDG identified resonances consist of a core state and meson-baryon components.

N. Suzuki et al., Phys.Rev.Lett. 104 (2010) 042302

Page 39: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

Hadron Spectrum

39

Legend: Particle Data Group H.L.L. Roberts et al. EBAC Jülich

o Symmetry-preserving unification of the computation of meson & baryon masseso rms-rel.err./deg-of-freedom = 13%o PDG values (almost) uniformly overestimated in both cases - room for the pseudoscalar meson cloud?!

Page 40: Observing Dynamical  Chiral  Symmetry Breaking

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

40

Next steps …

In Hand … A documented comparison between the electromagnetic form factors of mesons and those diquarks which play a material role in nucleon structure.

In position to complete reference M=constant computation of nucleon elastic form factors

& nucleon → Roper transition form factor Compare with existing calculations of elastic form factors using

M=M(p2) Compute M=M(p2) nucleon → Roper transition form factors Identify those signals in these observables that are unambiguously

related to QCD-behaviour of M=M(p2)

Page 41: Observing Dynamical  Chiral  Symmetry Breaking

41

Epilogue

Dynamical chiral symmetry breaking (DCSB) – mass from nothing for 98% of visible matter – is a realityo Expressed in M(p2), with observable signals in experiment

Poincaré covarianceCrucial in description of contemporary data

Fully-self-consistent treatment of an interaction Essential if experimental data is truly to be understood.

Dyson-Schwinger equations: o single framework, with IR model-input turned to advantage,

“almost unique in providing unambiguous path from a defined interaction → Confinement & DCSB → Masses → radii → form factors → distribution functions → etc.”

Craig Roberts: Observing Dynamical Chiral Symmetry Breaking. JLab 16 May 2011 - Nucleon Resonance Structure with the CLAS12 Detector - 41pgs

McLerran & PisarskiarXiv:0706.2191 [hep-ph]

Confinement is almost Certainly the origin of DCSB

e.g., BaBar anomaly