86
Steels Department of Materials Science and Engineering Materials Engineering Prof. Péter János SZABÓ Department of Materials Science and Engineering

Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels

Department of Materials Science and Engineering

Materials Engineering

Prof. Péter János SZABÓ

Department of Materials Science and Engineering

Page 2: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Outline of todays lecture

• Alloying elements

• The effect of carbon

• The effect of alloying elements on

– Microstructure

– Grain size

– Softening during tempering

– Embrittlement during tempering

– Ductile-brittle Transition temperature

– Temperature of recrystallization

– Mechanical properties of ferrite

– Forming of carbides and nitrides

2

Page 3: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Basic alloying and impurity

elements

Basic alloying elements

C – primer alloying element

Mn – austenite producing element

Si – ferrite producing element

Main impurity elements

S – hot and cold brittleness

P – hot brittleness

O – gas inclusions (CO)

N – ageing

3

Page 4: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Effect of C% on properties –

annealed state

Carbon %

Har

dn

ess

HB

, Str

en

gth

(M

Pa)

Contraction Z

Impact Energy , KV

Elong. Stra

in, c

on

trac

tio

n (

%)

Imp

. E (

J)

Structural steels Tool steels 4

Page 5: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Effect of C% on properties

Annealed state

Quenched state

Non-heattreatable

Heat treatable

5

Page 6: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The effect of alloying elements

on the properties of steel

1. Solubility – ferrite or austenite producing

elements

2. Non-equilibrium γ α transformation

3. Austenite grain growth

4. Softening during tempering

5. Embrittlement during tempering

6. Ductile-brittle transition temperature

7. Recrystallization's temperature

6

Page 7: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

1. Does it dissolve in the steel?

• Does not dissolve

– Produces inclusions, disadvantageous

– S, As, Pb…

• Dissolves

– Dissolves better in ferrite – ferrite producing element

• Cr, Al, Si, W, Mo, V, Ti

– Dissolves better in austenite – austenite producing

element

• Ni, Mn, C, N, Cu

7

Page 8: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Microstructure

C and alloy content

Ferrite producing

element

Austenite producing

element

austenitic

Ferritic-perlitic

Perlitic+Sec.Cem

Ledebutitic

Allo

y %

Semi-austenitic

Led

eb

utitic

Ferritic-perlitic

Perlitic+Sec.Cem

Allo

y %

8

Page 9: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Change of transformation’s

temperature

9

Page 10: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

2. Effect of alloying elements on

non-equilibrium transformation

• All alloying elements decreases the Ms and Mf

temperatures, except Co and Al.

• The present of residual austenite increases.

– Deep cooling if necessary

• The CCT curves are shifted to the left.

– The critical cooling rate is decreasing.

• Hardenability, trough hardening diameter

increases.

10

Page 11: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Conditions of quenching

• Importance of quenching: with quenching&tempering (allotropic transformation) the properties can be influenced in wide range.

• Conditions– Heating to the temperature of A3 + ~50°C

– Keeping at constant temperature till material is fully austenitized

– Cooling faster than the critical cooling rate.

– Practical condition: C > 0.2%

11

Page 12: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The alloying decreases the critical cooling rate

and the Ms temperature.

vcritical

vwater

Effect of through

hardenability

voil

C10

C45

C (%)

MS = 480 °C

MS = 340 °C

~0,22

12

Practical conditions

Page 13: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The trough hardening diameter

The maximal diameter of a bar, which can be

quenched to contain 50% of martensite.

(see more: lab practice…)

T

Temperature distribution Distribution of cooling rate

vcritf

cooling

Martensitic layer

13

Page 14: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

The effect of alloying elements

on through hardenability

D-

thro

ug

h h

ard

en

ab

ility

Alloying (%)

SiNi

CrMoMn

V austenitizing at 950

and 1100 °CCo

14

Page 15: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Application of Jomminy test

results

• Verification of material

– Harness according to the

standards

• Technology information

– Maximal/minimal hardness by

quenching

– Harness distribution in the cross

section Distance from quenched end

Ha

rdn

ess

15

Page 16: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

3. The effect of alloying on the

austenite grain growth

• Mn, Si and B increases the susceptibility to grain

coarsening

• Grain refining effect: Ti, V, Nb, Al, Zr

– Producing fine uniformly distributed nitro-carbides on the

grain boundaries, what decreases the boundary migration.

• Other has no significant effect of grain coarsening.

16

Page 17: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

4. The effect alloying on

softening during tempering

Temperature of 1 hour tempering Temperature of 1 hour tempering

17

Page 18: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

5. The effect of alloying on the

embrittlement during tempering

• Cr, Mn causes brittleness if

slowly cooled at 500-650°C

• Reason: Enrichment of

Carbides, nitrides,

phosphides at grain

boundaries

• P makes it worse.

• Ni together with Cr and Mn

is disadvantageous

• 0,2…0,3% Mo or 0,5-0,7% W and fast cooling is

advantageous.

Tempering temperature, °C

Imp

ac

t e

ne

rgy

18

Page 19: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

6. The effect of alloying on the

Ductile-brittle Transition temperature

• Ni alloying shifts the Impact energy–temp. diagram

to the left.

– 1% Ni alloying ~20°C shift

• Grain refinement helps as well

– Nb, V, Ti, Al, Zr, N microalloying ~40°C effect

• Impact energy–temp. Diagram is shifted to right

(makes it worse)

– C, 0.1% C ~25°C

– P, 0.1% P ~55°C

– N, 0.01% N ~300°C (as solution)

– O, 0.01% O ~200°C (as solution)

19

Page 20: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

7. The effect of alloying on the

recrystallization temperature

• The alloying increases the heat and creep

resistance.

– W, Mo ~110°C / at%

– V ~55°C / at%

– Cr ~30°C / at%

20

Page 21: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Classification of steels

Page 22: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Classification according to

1) Steel production methods (old category)

2) Structure at room temperature

3) Content of alloying elements

4) Purpose of utilization

22

Page 23: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Plain (carbon) steels

Because of the steel making process contains

unavoidable elements

Mn < 0.8% Si < 0.6% Cr,Ni,Cu <0.3%

Mo,W < 0.2% Al, Ti, V, Nb < 0.05%

Alloyed steels

- micro alloyed steels Σ alloy < 0.1% (Ti, Ni, V, …)

- low alloyed steels Σ alloy < 3 %

- medium alloyed steels Σ alloy < 10 %

- high alloyed steels Σ alloy > 10 %

Content of alloying elements

23

Page 24: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Structure at room temperature

• Ledeburitic

• Semi austenitic

• Austenitic

– Austenite producing element

Ferritic- Ferrite producing element

Semi ferritic Hipoeutektoidic Hipereutektoidic

austenitic

Ferritic-perlitic

Perlitic+Sec.Cem

Ledebutitic

Allo

y %

Semi-austenitic

Led

eb

utitic

Ferritic-perlitic

Perlitic+Sec.Cem

Allo

y %

24

Page 25: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Structure at room temperature

• Perlitic

• Martensitic

• Austenitic

• Ferritic

• Bainitic

25

Page 26: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Utilization

• Structural steels

– Automotive industry, machine industry , steel structures

– Toughness is also a requirement

– C < 0,6%

• Tool steels

– Machining and forming tools

– Wear resistance, stiffness, hardness

– hardenable, precipitation hardenable alloys

• Special steels and alloys

– For a specific purpose

• Heat resistance, corrosion resistance etc.

26

Page 27: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Designation of steels

According to different standards

Most well-known standards:

International Standard Organization ISO

American Iron and Steel Institute AISI

Society of Automotive Engineer SAE

American Society for Testing and Materials ASTM

27

Page 28: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Designation of steels

Example: number (werkstoffnummer)

1 – steels

2 – heavy metals

3 – light metals

4 – nonmetallic

1.43 00 xx

Material group

Steel group

number

Auxiliary sign

28

Page 29: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

sign Application Area Main prop. e.g.

S Structural steel ReH (MPa) S235

P Pressure vessel steel ReH (MPa) P275

L Pipe steels ReH (MPa)

E Steels for machines ReH (MPa) E235

B Steels for concrete ReH (MPa)

… … … …

Short designation

29

Page 30: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Designation according to

chemical composition

Carbon steels: C22, C60, C90, C120

Alloyed steels:14NiCrMo13-4

high alloy steels:

X8CrNiTi18-10

30

Page 31: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Structural steels

A: hot rolled structural steels

B: flat steel products for pressure vessels

Formable, weldable

C: Steels for cold forming

D: Heat treatable steels

E: Case hardening steels

F: Nitridable steels

G: …other

31

Page 32: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Hot rolled unalloyed

structural steels

• For general purpose

• Hot rolled of forged state

• Certificate: Rm, ReH, A, KV, chem. comp

• Can not be used in some cases

– Carbon equivalent ( less than 0,5%, see later)

• Various types

• E.g.: S235JR

32

Page 33: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Normalized rolled,

weldable, fine-grained steels

• Normalized during rolling

• Grain size number greater than 6

• Auxiliary mark:

– N: normalized

– L: impact energy 27 J at -50°C

• E.g.: S275N, S275NL

33

Page 34: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Thermomechanical rolled,

weldable, fine-grained steels

• Thermomechanical rolling: controlled

recrystallization during deformation

• Nb alloying increases the recrystallization

temperature

• The grain refinement is promoted by Ti-alloying

• Auxiliary mark: M

• E.g.: S355M, S355ML

34

Page 35: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Thermomechanical rolled,

weldable, fine-grained steels II.

• Hydrogen resistant steels

• Problem: H makes the iron carbide dissociate

– Higher temperatures speeds up the process (T>200°C)

– Tensile stress speeds up the process

• Solution: stabile carbide producing alloying

elements

– Cr, Mo, V, W

• Better heat resistance, used in heat treated state

• Oil industry, refineries, hydrogen appliances

35

Page 36: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: atmospheric corrosion

resistant (weathering) steels

• The steel corrodes. Pores.

• Cu, Cr, P, Ni, Mo alloying (low content!)

• Forming of phosphate, sulfate, hydroxide

compounds – closes the pores, the corrosion stops.

• Passive layer, red-brown color, < 0.3 mm

• E.g.: S235J0W, S355J0WP

36

Page 37: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Sheets and bands for high

strength heat treatable steels

• Welded structures for high load at low or

environment temperature.

• Containers, bridges cranes etc.

• Auxiliary mark: Q

• Weldable but susceptible to cold cracking

• E.g.: S460QL

37

Page 38: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Plain and alloyed steels for

elevated temperatures

• Plain steels (e.g.: P235GH)

– Yield stress or creep strength is given

– Steam boilers, pressure vessels

– Up to ~400°C-

• Alloyed steels(e.g.: 12CrMo9-10)

– Mn, Mo, Cr, V, Nb and Si, Ni for weldability

– boilers, heat exchanger, chemistry appliances,

flanges, fasteners

– Up to ~500-530°C

38

Page 39: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Weldable fine-grained

normalized steels

• Three sub-classes

– Room temperature quality (P…N)

• T > -20°C

– Heat resistant quality (P…NH)

• T= -20…400°C

– Sub-zero toughness (P…NL1 and P…NL2)

• Not brittle even at T=-40 or -50°C

• Grain size number is greater than 6

• Welding: carbon equivalent

39

Page 40: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Cryogenic Ni alloyed steels

• The impact energy is prescribed for structures

• Below -60°C Ni alloying

• FCC lattice not sensitive to embrittlement

• Selection according to temperature and thickness

• Acceptable impact energy even at -200 °C

• Cooling and cryogen technology

• E.g.: 11MnNi5-3, 12Ni14, X7Ni9

40

Page 41: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Weldable fine-grained

thermomechanical rolled steels

• Nb alloying to increase the recrystallizations

temperature

• Ti alloying to grain refining

• V and Mo alloying to strengthen

• Auxiliary mark: M

• E.g.: P355ML1

41

Page 42: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Weldable, fine-grained heat

treatable steels

• Three sub-classes

– Room temperature quality (P…Q)

– Heat resistant quality (P…QH)

– Sub-zero toughness quality upto -40°C-ig (P…QNL1), up to

-50°C-ig (P…QNL2)

• Micro alloying elements for grain refining and

strengthening (Ti, Nb, V, N, B)

• Weldability is influenced by: thickness, input energy,

design, welding process, electrode

42

Page 43: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Corrosion resistant steels

• Ferritic steels

– Weak corrosive environment; pressure vessels, food industry appliances

– Up to 350°C 155-215 MPa yield stress

• Martensitic steels

– Pump parts, valves, turbine impellers

– Up to 300°C-ig 530-580 Mpa yield stress

• Austenitic steels

– Wide range of application

– From -196 to 600°C applicable (FCC, no susceptibility to

embrittlement after solution heat treatment, there is no

TTKV)

• Ferritic-austenitic (duplex) steels

43

Page 44: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Cold rolled flat products from

low carbon steels for cold forming

• Low carbon content, ferritic steel

• Very low alloy content

• DC01…DC06, : A, or B – surface quality

– A: surface insufficiency (e.g. scratch) allowed

– B: no surface imperfection allowed

• Surface roughness grades

– Shiny, matt, normal, rough

• E.g.: DC01Am

44

Page 45: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Cold rolled uncoated steel

band for cold forming

• With less than 600 mm, thickness lass than 10 mm

un-alloyed and alloyed steel band

• designation:

– Annealed (A)

– Cold rolled (C )

– Skin passed (LC)

– Surface quality MA, MB and MC

• E.g.: DC03C440MB

45

Page 46: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Hot rolled high strength steel

flat products for cold forming

• For cold forming, hot rolled, weldable high strength,

alloyed

• Thermo mechanical or normalizing rolled

• Low Perlite steels (Ti, Nb, V) – HSLA

• E.g.: S420NC, S460MC

• Plastically formable, shearable, bendable,

machinable

• Welded structures, automotive industry

46

Page 47: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

DP Steels

• Dual Phase steels

– very hard martensite finely distributed in soft ferrite matrix

• Good strength, good formability

• Wheels, car body, bumper, wires, building structures

47

Page 48: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

TRIP steels

• TRansformation Induced Plasticity

• Ferritic-austenitic-bainitic microstructure after hot

forming

• Austenite transforms to martensite during further

forming

• car body, vehicle industry

48

Page 49: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

DP / TRIP

DP TRIP

49

Page 50: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

IF steels

• Interstitial Free

• Extra low content of alloying elements

(30-60 ppm)

• Good deep drawability, formability, no aging

• Household appliances, vehicle overlay parts

50

Page 51: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

BH steels

• Bake Hardening

• Low carbon content alloys, precipitation

hardenable at ~200°C

• Increases the yield stress by ~40 MPa though

precipitation hardening (C and N)

• E.g.: after forming during painting

• Vehicle body elements

51

Page 52: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Heat treatable steels

• Must be tough enough and resistant to dynamic

impacts

• Fasteners, pins, joints, beam structures, wrenches,

axle, cardan cross, gears, etc.

• Unalloyed and alloyed steels

• Purpose of alloying:

– Increase the trough hardening diameter

– Increase toughness, decrease TTKV

– Improve fatigue resistance

– Decrease softening during tempering

52

Page 53: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Unalloyed Heat treatable

steels

• Only carbon, no additional alloying element

(except elements from production)

• Higher toughness, lower strength

• Small trough hardening diameter

• Wear resistance can be improved by surface

quenching

• Rm: 500…1000 MPa,

ReH: 300-580 Mpa, A: 20-11%, Z: 50-20%

• designation: Cnn, where nn = C%

• Auxiliary marks: E: S < 0.035%,

R: 0.020 % < S < 0.040%

53

Page 54: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed Heat

treatable steels I.

• Mn (1.4-1.65%)

– cheap

– Increased trough hardening diameter

– Susceptibility to over heating and embrittlement

during tempering (fast cooling necessary)

– Must not be used for parts with service

temperature below 0°C

– E.g.: 28Mn6

54

Page 55: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed Heat

treatable steels II.

• Cr (even 2%)

– Most common alloying element

– Strongly Increases the trough hardening

diameter and yield stress

– Good surface hardenability

– For low to middle stresses, engine parts, axles

– E.g.: 34Cr4

55

Page 56: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed Heat

treatable steels III.

• Cr-Mo (even 2% Cr, 0.9-1.2% Mo)

– Mo eliminates the embrittlement during

tempering

– Cr and Mo are strong carbide-forming elements,

tempering at higher temperatures (~600°C)

– Significant strength and good toughness

– For middle sized part for high fatigue and impact

loads.

Axles, parts with teeth

– E.g.: 50CrMo4

56

Page 57: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed heat

treatable steels IV.

• Cr-V (0.7-1.1% Cr, 0.1-0.2% V)

– Similar to Cr-Mo steels

– a little cheaper but worse toughness

– For middle sized part for high fatigue and impact

loads.

– E.g.: 51CrV4

57

Page 58: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed heat

treatable steels V.

• Ni-Cr-Mo(-V) (0.7-1.1% Cr, 0.1-0.2% Mo)

– Large sized parts where the fast cooling can not

be realized.

• Ni decreases the ductile to brittle temperature

(TTKV)

• Mo eliminates the embrittlement during

tempering

– Though hardening diameter increases

significantly (~150 mm)

– Engine parts, crankshaft, quenched&tempered

state

– E.g.: 36NiCrMo16

58

Page 59: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Alloyed heat

treatable steels VI.

• Boron steels

– Mn, Mn-Cr alloying, B micro alloying

– Though hardening diameter increases

significantly

– Delivered generally in hot formed state

– Good toughness

– E.g.: 20MnB5, 27MnCrB5-2

59

Page 60: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: Case hardening steels

• Carbon content below 0.2%

• Tough core and wear resistant surface layer

~1%C in the surface layer, 60-63 HRC

• Can be used up to the diameter of ~80 mm

(through hardenability)

• Heat treatable steels have higher

strength for the same toughness

• No carburizing for fatigue

loaded parts, 35-45 HRC

60

Page 61: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: Unalloyed case

hardening steels

• Small size parts for modest loads

• pins, gear pumps

• Harness: 55-60 HRC

• Up to 20-30 mm size

• E.g.: C10, C15

61

Page 62: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: Alloyed case

hardening steels

• Alloying elements are the same as those of heat

treatable steels

• Low carbon content, C<0,2%

• Cr-Mo alloying for middle sized and loaded parts

(bush, pin, gears)

– Susceptible to overheating, up to the diameter

of

40-60 mm

• Mn-Cr-Mo alloying for highly loaded parts (gears,

chain wheels, axles)

– up to the diameter of 70-80 mm

• Ni-Cr-Mo alloying for extrem strong dynamic loads

tough core, high surface hardness

62

Page 63: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

F: Nitridable steels

• They are basically heat treatable steels

• Aim: very hard wear resistant surface layer

• Addition of nitride-forming elements (Cr, Al, V, Ti)

• Results: wear-resistant, hard, better fatigue-

resistance. Sensitive to high local pressures

• E.g.: 34CrAlNi7-10

63

Page 64: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Other structural steels

• Free-cutting steels

• Steels for roll-bearings

• Spring steels

• Steels and nickel alloys for cryogenic and Low-

Temperature application

• Heat resistant steels and nickel alloys

• Steels and alloys for valves of internal combustion

engines

64

Page 65: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Free-cutting steels

• For high performance machining cells

• aim: brittle chip

• S and S+Bi alloying

• E.g.: 11SMn37, 10S20, 44SMn28

65

Page 66: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels for roll-bearings

• High wear resistance and fatigue limit

• Carbon content 0.85-1.1% - hardness

– S < 0.015%, P < 0.025%, O < 0.,002%

– Polishing – fatigue

• Quenching, cooling to lower temp. (-30°C), low

temperature tempering – 62 HRC

• E.g.: 100Cr6, 100CrMnMoSi8-4-6, 19MnCr5,

18NiCrMo14-6, 70Mn4, KO:X65Cr14, X89CrMoV18-1,

80MoCrV42-16, X82WMoCrV6-5-4

66

Page 67: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Spring steels I.

• Storing of elastic energy

• High yield stress (1000-1350 MPa) and acceptable

ultimate tensile strain are necessary (6-8%)

• Heat treatable steels, 0.4-0.7% C-content, low

temperature tempering (450-480°C)

• For different purposes

67

Page 68: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Spring steels II.

• Heat treated springs from hot rolled steels by

forming

– Si alloying, ReH increases

– Cr-V, Cr-MoV high performance, high dynamic

loads

– E.g.: 38Si7, 60SiCrV7, 60CrMo3-2

• Cold rolled narrow steels trip for heat treatment

– Good surface quality, Rm up to 2100 MPa

– E.g.: C75S

• Corrosion resistant steels strip for springs

– For corrosive media

68

Page 69: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels and nickel alloys for cryogenic, low-

temperature and heat resistant application

• Unalloyed / alloyed (corr. resistant too)

• Applicable up to 900°C

• Mo: carbide-forming increases strength

• The corrosion must be taken into account beside of

heat-loading.

– E.g.: 42CrMo5-6, 25CrMo4, NiCr20TiAl (Ni alloy),

X10CrNiMoMnNbVB15-10-1

• Ni alloying for low temperatures

– E.g.: 41NiCrMo7-3-2, X8Ni9, X6CrNi18-10

69

Steels and nickel alloys

Page 70: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Heat resistant steels

and Ni-alloys I.

• Problem: Oxidizing of steels’ surface over 500°C

• Austenitic, ferritic, austenitic-ferritic steel

• Creep resistant and strength are the characteristic

properties

• Alloying with Cr, Si, Al

• Applicable even at 900°C-ig

• Groin coarsening can be a problem

• Ni based superalloys (not iron alloys!)

70

Page 71: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Heat resistant steels

and Ni-alloys II.

• Ferritic

– Susceptible to grain coarsening and embrittlement at 350-550°C and over 900°C, better in S-containing environment,

e.g.: X10CrAlSi18

• Austenitic

– Grain coarsening is not significant even at higher

temperatures, between 600-800°C the σ-phase causes

brittlement, e.g.: X10NiCrAlTi32-21

• Austenitic-ferritic

– In oxidizing S-containing environment,

e.g.: X15CrNiSi25-4

• Ni alloys

– Jet engines, rocket industry, e.g.: NiCr23Fe

71

Page 72: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Steels and alloys for valves of

internal combustion engines

• Homogeneous microstructure, high alloying,

calculable thermal expansion

• Loads: unsteady temperature, corrosion, oxidation,

fatigue, strike, wear

• Bars, wires

• Hot formable, hard to machine

• Main types

– Martensitic valve steel e.g.: X40CrSiMo10-2

– Austenitic valve steel e.g.: X50CrMnNiNbN21-9,

NiFe25Cr20NbTi

72

Page 73: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Hadfield steels

• Austenitic, high alloyed Mn steels

– ~1.2%C, ~0.4 Si, ~12.5% Mn

• Impact wear resistance, hardening during wear

(cold forming)

• Inner not-hardened layer gives good toughness

• For dynamic and wear loads

• Railroad switches, excavator bucket,

73

Page 74: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Tool Steels

• A: Unalloyed tool steels

• B: Hot forming tool steels

• C: Coldforming tool steels

• D: High speed steels

74

Page 75: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

General requirements

• Harness, wear resistance

• toughness

• Heat resistance

• Resistance against thermal fatigue

• Appropriate trough hardening diameter

75

Page 76: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Un alloyed tool steels

• 0.45-1.25% C content

– 0.45% C – 54 HRc

– 1.125% C – 62 HRc

• Only base alloying and impurity elements (Mn, Si, S,

P)

• For hand tools

• E.g.: C90U, C100U

– U mark: un-treated state

76

Page 77: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Hot forming tool steels

• Service temperature over 200°C, but hardness and

heat resistance even at 600°C (38-46 HRc)

• Main alloying elements: Cr, Mo, W, Ni, Co

• Carbide compounds– hardness at high

temperatures

• Closed-dies for forging, die-casting dies

• E.g.: 55NiCrMoV7, X40CrMoV5-1

77

Page 78: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Cold forming tool steels

• Main alloying elements: Mn, Cr, Mo, V, W, Ni

• To increase through hardening diameter and

improve

– strength

– Wear resistance

– Hardness

• Heat-treated. Service temperature at room

temperature (maximum 150-180°C)

• E.g. Cutting and punching tools

• E.g.: 95MnWCrV5, X210CrW12

78

Page 79: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

E: High speed steels

• For high performance machining. 62-64 HRc harness

at ~600°C

• Main alloying elements : W, Mo, V, Co

• Special heat treatment method. (precipitation

hardening)

• E.g.: HS6-5-2, HS10-4-3-10

79

Page 80: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Corrosion resistant steels

• A: Ferritic corrosion resistant steels

• B: Martensitic corrosion resistant steels

• C: Austenitic corrosion resistant steels

• D: Duplex (austenite + ferrite) corrosion resistant

steels

80

Page 81: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

A: Ferritic corrosion

resistant steels

• The alloying element forms a cohesive, non-porous

surface layer preventing the further oxidation.

• Max 0.08% carbon in ferritic corrosion resistant steels

and ~13% Cr alloying

• ReH ~280-320 MPa, A=18-20%

• Good formability and weldablility

• Good corrosion resistance in wear and modest

corrosive media: food industry, beer- and milk

industry

• For some purposes: semi-ferritic steel

– increased strength (chemical industry)

• E.g.: X2CrTi12, X6CrMo17-1, X2CrMoTi29-4

81

Page 82: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

B: Martensitic corrosion

resistant steels

• ferritic corrosion resistant steels are not strength enough higher C content & heat treatment

• Heat treatment: quenching + tempering

• C content: between0.08% and 1.2%

• Surgery blades, scalpel, needles, food industry blades

• E.g.: X12Cr13, X105CrMo17, X7CrNiAl17-7

82

Page 83: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

C: Austenitic corrosion

resistant steels

• Ferritic corrosion resistant steels does not have good

resistance against strong acids.

• Austenitic steel

– C<0.03% + ~18% Cr + ~10% Ni (Mn, Cu, N)

• Cr-cardibes form at grain boundaries by slow

cooling at 600-800°C, which spoils the corrosion

resistance

– Can prevent by alloying of Ti and Nb

• Difficult to machine

• E.g.: X10CrNi18-8, X3CrNiMo17-13-3

83

Page 84: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

D: Duplex corrosion

resistant steels

• High Cr and Ni content

• ~40-60% austenite at room temperature

• Higher strength

• Better stress-corrosion resitance

• Can be applied as heat resistant steel as well.

• E.g.: X2CrNiN23-4, X2CrNiMoCuWN25-7-4

84

Page 85: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

Corrosion resistant steels

85

Page 86: Nyersvas- és acélgyártás · critf cooling Martensitic layer 13. The effect of alloying elements on through hardenability D-h y Alloying (%) Si Ni Mn Mo Cr V austenitizing at 950

THANK YOU FOR YOUR ATTENTION!Prof. Péter János Szabó – [email protected]

86