36
Numerical Simulation of Complex and Multiphase Flows Numerical Simulation of Complex and Multiphase Flows. IGESA. Porquerolles. 18 th - 22 nd April 2005 Non Homogenous Riemann Solver to simulate two-phase flows. K. Mohamed (1) , L. Quivy (1),(2) , F. Benkhaldoun (1),(2) (1) LAGA, Université Paris XIII, FRANCE (2) CMLA, ENS de Cachan, FRANCE Porquerolles 2005 1

Numerical Simulation of Complex and Multiphase Flows.fayssal/CONFS/Exp_Quivy.pdf · Numerical Simulation of Complex and Multiphase Flows 1 Introduction : – Presentation of VF scheme

  • Upload
    dinhthu

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

Numerical Simulation of Complex and Multiphase Flows

Numerical Simulation of Complex and Multiphase Flows.

IGESA. Porquerolles. 18th - 22nd April 2005

Non Homogenous Riemann Solver to simulate two-phaseflows.

K. Mohamed(1), L. Quivy(1),(2), F. Benkhaldoun(1),(2)

(1) LAGA, Université Paris XIII, FRANCE(2) CMLA, ENS de Cachan, FRANCE

Porquerolles 2005 1

Numerical Simulation of Complex and Multiphase Flows

1 Introduction :

– Presentation of VF scheme for non hongeneous systems, using flux

values instead of eigenvectors.

– Scheme analysis.

– Numerical results in 1D and 2D.

Porquerolles 2005 2

Numerical Simulation of Complex and Multiphase Flows

2 Equations : balance laws

∂U(x, t)

∂t+

d∑

j=1

∂Fj(U(x, t))

∂xj= Q(x, t, U), (1)

x = (x1, x2, ..., xd) ∈ D ⊂ Rd, t > 0,

U : D × R+ −→ Ω : physical values (p components),

Ω open bounded in Rp,

Fj (1 ≤ j ≤ d) : flux functions.

Non homogeneous term Q(x, t, U) (source terms or non conservative

terms).

U(x, 0) = U0(x) : initial condition + boundary conditions.

⇒Modelisation of shallow water or multiphase flows.

Porquerolles 2005 3

Numerical Simulation of Complex and Multiphase Flows

1D uniform case :∂U

∂t+∂F (U)

∂x= Q(x,U), 0 < t < T,

U(x, 0) = U0(x), ∀x ∈ Ω ⊂ R.

SRNHR schemeUnj+ 1

2=

1

2(Unj + Unj+1)−

αnj+ 1

2

2Snj+ 1

2

[F (Unj+1)− F (Unj )

]+αnj+ 1

2

2

∆x

Snj+ 1

2

Qnj+ 12

Un+1j = Unj − rn

[F (Unj+ 1

2)− F (Unj− 1

2)]

+ τnQnj ,

where Snj+ 1

2

= maxp=1,...,m

(∣∣λnp,i∣∣ ,∣∣λnp,i+1

∣∣) : local Rusanov velocity,

αnj+ 1

2

real and positive parameter, rn = τn

∆x .

Remark : αnj+ 1

2

is a parameter which aims to control numerical diffusion of

scheme.For example, for linear scalar equation on uniform mesh, αn

j+ 12

= 1

corresponds to Lax-Wendroff scheme.

Porquerolles 2005 4

Numerical Simulation of Complex and Multiphase Flows

3 Scheme analysis :Hypothesis : (scalar case)H1) f ′ and f” have a constant sign and does not vanish.H2) u0 has a constant sign and does not vanish. Suppose that0 < um ≤ u0(x) ≤ uM .

Proposition 3.1 Suppose that αnj+ 1

2

= (αnj+ 1

2

)1 =Snj+ 1

2

snj+ 1

2

, ∀j, ∀n, with

Snj+ 12

= max(|f ′(unj )|, |f ′(unj+1)|

)and

snj+ 12

= min(|f ′(unj )|, |f ′(unj+1

)|).

Denoting by αn = sup(j∈Z)

Snj+ 1

2

snj+ 1

2

, αmax =fpMfpm

,

fpm = min(|f ′(um)|, |f ′(uM )|), fpM = max(|f ′(um)|, |f ′(uM )|) and

M = sup | f ′(w) |, w ∈ w inR/ |w| ≤ αmax ‖ u0 ‖∞.Then, under condition αnMrn ≤ 1, SRNHR scheme is TV D, satisfy

maximum principle and then is L∞ stable.

Porquerolles 2005 5

Numerical Simulation of Complex and Multiphase Flows

Proposition 3.2 Suppose now that αnj+ 1

2

= (αnj+ 1

2

)2 = rnSnj+ 1

2

. Then

scheme SRNHR writes

unj+ 1

2

= 12 (unj + unj+1)− rn

2

[f(unj+1)− f(unj )

]

un+1j = unj − rn

[f(un

j+ 12

)− f(unj− 1

2

)].

which is secund order Richtmeyer scheme.

Then, the use of limiter theory :

αnj+ 12

= Φj(αnj+ 1

2)1 + (1− Φj) (αnj+ 1

2)2 (2)

where Φj is a limiter function (Superbee, Van-Leer,...).

Porquerolles 2005 6

Numerical Simulation of Complex and Multiphase Flows

4 Stationnary states preserving :

For Saint-Venant equations :

∂h

∂t(x, t) +

∂hu

∂x(x, t) = 0

∂hu

∂t(x, t) +

∂(hu2 + gh2

2 )

∂x(x, t) = −gh(x, t)

dz

dx(x)

h0(x), u0(x), z(x) given

Proposition 4.1 Under condition that source term is discretized as

Qnj = − 1

8∆xg(unj−1 + 2unj + unj+1)(zj+1 − zj−1)

SRNHR scheme satisfy exact C-property.

Riemann invariants for Saint-Venant equations are Wk = u+ (−1)k2c.

Porquerolles 2005 7

Numerical Simulation of Complex and Multiphase Flows

At step n, for each cell, local Rusanov velo-

city : Snj+ 1

2= max

p

(max

(|λnp,j |, |λnp,j+1|

))

If (Wkj+1 = Wkj ) then

θWk = 0

elseVelocity at interface :

cj+ 12

=√ghj+hj+1

2,

Vj+ 12

=(uj+uj+1)

2,

λkj+ 1

2

= Vj+ 12

+ (−1)k cj+ 12

If (λkj+ 1

2

> 0) then

θWk =Wkj

−Wkj−1

Wkj+1−Wkj

elseθWk =

Wkj+2−Wkj+1

Wkj+1−Wkj

end Ifend If

sj+ 12

= min(|λ1j+ 1

2

|, |λ2j+ 1

2

|)If (sj+ 1

2< ε ) then

sj+ 12

= ε

end IfIf (θW1 < 0 or θW2 < 0) then

φ = 0

else

φ = limiter functionend Ifαnj+ 1

2=

Snj+ 1

2sj+ 1

2

(1− φ) + φrnSnj+ 1

2.

Porquerolles 2005 8

Numerical Simulation of Complex and Multiphase Flows

5 1D homogeneous Saint-Venant equations :

Consider a dam break with solution containing a shock wave and a

rarefaction wave.

∂h

∂t(x, t) +

∂(hu)

∂x(x, t) = 0

∂(hu)

∂t(x, t) +

∂(hu2 + gh2

2

)

∂x(x, t) = 0

(3)

with initial conditions : h0(x) =

6 if x ≤ 6

2 if x > 6., and u0(x) = 0, ∀x.

Mesh contains 100 points and results are given at t = 0.4.

Porquerolles 2005 9

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 122

2.5

3

3.5

4

4.5

5

5.5

6Hauteur de l’eau, SRNHR, t=0.4, np=100

solution exacteSRNHR−alpha limiteROE

Homogeneous Shallow Water,

water level, SRNHR and Roe

schemes.

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5

3

3.5solution exacteSRNHR−alpha limiteROE

Homogeneous Shallow Water,

water velocity, SRNHR and Roe

schemes.

Porquerolles 2005 10

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5

3

3.5alpha−limite

Homogeneous Shallow Water,

variations of αnj+ 1

2.

0 2 4 6 8 10 12−20

−15

−10

−5

0

5

10

15

20Invariant de Riemann 1Invariant de Riemann 2

Homogeneous Shallow Water,

Riemann invariants.

Porquerolles 2005 11

Numerical Simulation of Complex and Multiphase Flows

−7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2−6

−5

−4

−3

−2

−1

0

log(dx)

log

(L1

−e

rre

ur)

SRNHR−alpha−cstPENTE=0.887ROEPENTE=0.83RUSANOV PENTE=0.77

np=100

np=200

np=400

np=800

np=1600

np=3200

np=6400

np=12800

FIG. 1 – Homogeneous Shallow Water, water level, error curve.

Porquerolles 2005 12

Numerical Simulation of Complex and Multiphase Flows

6 1D homogeneous Euler equations :

Shock tube with initial conditions

ρ0(x, y) =

1 kg/m3 si x ≤ 0

0.01 kg/m3 si x > 0,

u0(x, y) = 0m/s, ∀x ∈ [−10; 10],

P0(x, y) =

105 Pa si x ≤ 0

103 Pa si x > 0,

Mesh : 800 points ; cfl = 0.95 ; t = 0.01.

Comparaison between SRNHR scheme and VFRoe scheme.

First characteristic field is a rarefaction wave which contains a sonic point.

Roe scheme needs to add entropic correction.

Porquerolles 2005 13

Numerical Simulation of Complex and Multiphase Flows

−10 −8 −6 −4 −2 0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Densité du fluide, CFL=0.75, t=0.01, Maill=400

SRNHR ROE

Fluid density ; SRNHR and Roe

schemes.

−10 −8 −6 −4 −2 0 2 4 6 8 100

100

200

300

400

500

600

700Vitesse du fluide, CFL=0.75,T=0.01, MAILLAGE=400

SRNHR ROE

Fluid velocity ; SRNHR and Roe

schemes.

Porquerolles 2005 14

Numerical Simulation of Complex and Multiphase Flows

7 1D non homogeneous Saint-Venant

equations :Consider a dam break over a step. Source term describes bottom geometry.

∂h

∂t(x, t) +

∂(hu)

∂x(x, t) = 0

∂(hu)

∂t(x, t) +

∂(hu2 + gh2

2 )

∂x(x, t) = −gh(x, t)

dz

dx(x)

z(x) =

0 if x ≤ 6

1 if x > 6

h0(x) =

5 if x ≤ 6

1 if x > 6.

u0(x) = 0.

(4)

Porquerolles 2005 15

Numerical Simulation of Complex and Multiphase Flows

Comparaison between SRNHR and Vazquez (equilibrium) schemes.

Mesh : 100 points ; results are given at t = 0.5.

0 2 4 6 8 10 121

1.5

2

2.5

3

3.5

4

4.5

5Hauteur de l’eau, t=0.5, np= 100

solution exacteSRNHR−alpha limiteVAZQUEZ

Non homogeneous Shallow

Water, water level, SRNHR and

Vazquez schemes.

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5

3

3.5Vitesse de l’eau, t=0.5, np=100

solution exacteSRNHR−alpha limiteVAZQUEZ

Non homogeneous Shallow

Water, water velocity, SRNHR

and Vazquez schemes.

Porquerolles 2005 16

Numerical Simulation of Complex and Multiphase Flows

−5 −4.5 −4 −3.5 −3 −2.5 −2−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(dx)

log

(L1

−E

rre

ur)

SRNHR−alpha limitéPente=0.82SRNHR−alpha=1.1Pente=0.734VazquezPente=0.51

np=100

np=200

np=400

np=800

np=1600

FIG. 2 – Non homogeneous Shallow Water, error curve, (water level), SRNHR and

Vazquez schemes.

Porquerolles 2005 17

Numerical Simulation of Complex and Multiphase Flows

8 2D SRNHR schemeNon homogeneous Saint-Venant equations :

∀(x, y) ∈ Ω ⊂ R2, t ∈ R+,

∂h

∂t(x, y, t) +

∂(hu)

∂x(x, y, t) +

∂hv

∂y(x, y, t) = 0

∂(hu)

∂t(x, y, t) +

∂(hu2 + 12gh2)

∂x(x, y, t) +

∂hv

∂y(x, y, t) = −gh(x, y, t)

dz

dx(x, y)

∂(hv)

∂t(x, y, t) +

∂hv

∂x+∂(hv2 + 1

2gh2)

∂y(x, y, t) = −gh(x, y, t)

dz

dy(x, y)

(5)

with initial conditions

h(x, y, 0) = h0(x, y)

(hu)(x, y, 0) = (hu)0(x, y)

(hv)(x, y, 0) = (hv)0(x, y)

z(x, y) given.

Porquerolles 2005 18

Numerical Simulation of Complex and Multiphase Flows

Using projection on normal direction at cell interface (R. Abgrall & al.,

2003) :

Denoting by ~V = (u v)t, ~η = (nx ny)t,

U = ~V · ~η = unx + vny and V = ~V · ~η⊥ = −uny + vnx, where U is the

projection of ~V on ~η and V , the projection of ~V on ~η⊥.

∂h

∂t+∂hU

∂η= 0

∂hU

∂t+∂(hU2 + 1

2gh2)

∂η+ gh

dz

dη= 0

∂hV

∂t+∂hUV

∂η= 0.

Porquerolles 2005 19

Numerical Simulation of Complex and Multiphase Flows

Numerical results :

Initial conditions : h0(x, y) =

6 if x ≤ 6, ∀y ∈ [0; 1]

2 if x > 6, ∀y ∈ [0; 1]

u0(x, y) = v0(x, y) = 0, ∀x ∈ [0; 12], ∀y ∈ [0; 1].

PSfrag replacements

12 m

zl = 0 m

zr = 1 mhr = 2 m

hl = 6 m

(u, v)l = (0, 0) m/s (u, v)r = (0, 0) m/s

Porquerolles 2005 20

Numerical Simulation of Complex and Multiphase Flows

Results with unstructured mesh 100× 10.

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

2

2.5

3

3.5

4

4.5

5

5.5

6

Hauteur de l’eau 2D, SRNHR

2

2.5

3

3.5

4

4.5

5

5.5

6

Non homogeneous 2D St-

Venant, water level ; SRNHR

scheme.

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.3

2.6

2.9

3.1

3.4

3.74

4.3

4.6

4.9

5.1

5.4

5.7

x (m)

y (

m)

Isovaleurs de la hauteur d’eau, SRNHR, alpha=1.2, t=0.4

Isolines ; water level ; SRNHR

scheme.

Porquerolles 2005 21

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

−0.5

0

0.5

1

1.5

2

2.5

3Vitesse de l’eau 2D, SRNHR

0

0.5

1

1.5

2

2.5

Non homogeneous 2D St-

Venant, water velocity ; SRNHR

scheme.

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.39

0.59

0.79

0.98

1.2

1.4

1.6

1.8

2

2.2

2.4 2.6

x (m)

y (

m)

Isovaleurs de la vitesse de l’eau , SRNHR, alpha=1.2, t=0.4

Isolines ; water velocity ;

SRNHR scheme.

Porquerolles 2005 22

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

−2

0

2

4

6

8

10

Débit 2D, SRNHR

0

1

2

3

4

5

6

7

8

9

Non homogeneous 2D St-

Venant, water flow ; SRNHR

scheme.

0 2 4 6 8 10 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 0.67

1.3

2

2.7

3.3

4

4.7

5.3

6

6.7

7.3 8

8.7

x (m)

y (

m)

Isovaleur du débit de l’eau, SRNHR, alpha=1.2, t=0.4

Isolines ; water flow ; SRNHR

scheme.

Porquerolles 2005 23

Numerical Simulation of Complex and Multiphase Flows

9 Two phase flow

1D case :

∂U

∂t+∂f(U)

∂x= Q1(x,U) +Q2(x,U)

U(x, 0) = U0(x)

(6)

with

U = (µvρv µvρvuv µlρl µlρlul)t,

f(U) = (µvρvuv µvρvu2v µlρlul µlρlu

2l )t,

Q1(x,U) = (0 − µv∂P

∂x0 − µl

∂P

∂x)t,

Q2(x,U) = (0 µvρvg 0 µlρlg)t.

Non hyperbolic and non conservative problem.

Porquerolles 2005 24

Numerical Simulation of Complex and Multiphase Flows

1D Ransom ProblemInitial condition :

∀x ∈ [x0, xl], µv(t = 0) = 0.2,

ul(t = 0) = 10,

uv(t = 0) = 0,

p(t = 0) = 105,

ρv(t = 0) = 1,

ρl(t = 0) = 988, 0638.

Boundary conditions :

– inlet (x0 = 0) :

µv(0, t) = 0.2,

ul(0, t) = 10, uv(0, t) = 0.

– outlet (xl = 12) :

p (12, t) = 105.

g

PSfrag replacements

inlet

outlet

g

12 m

ul = 10 m/svv = 0 m/s

µv = 0.2 m/s

P = 105Pa

gaz

liquid

Porquerolles 2005 25

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5analytic solutionSRNHR48pSRNHR120pSRNHR150pRUSANOV3000p

FIG. 3 – Void fraction.

Porquerolles 2005 26

Numerical Simulation of Complex and Multiphase Flows

10 Discretization of source termSRNHR scheme :

Unj+ 12

= (νUnj + (1−ν)Unj+1)−αnj+ 1

2

2snj+ 1

2

[f(Unj+1)−f(Unj )

]−αnj+ 1

2

2

∆x

snj+ 1

2

Qnj+ 12

Un+1j = Unj − r

[f(Unj+ 1

2

)− f

(Unj− 1

2

))]

+ ∆tnQnj ,

Qnj =1

2∆x

(µnj)

(Pj+1 − Pj−1) (second step).

Qnj+ 12

=µnj+ 1

2

2

(Pj+1 − Pj)h

(first step).

µnj+ 1

2

: intermediate value between µnj and µnj+1.

To preserve stationnary states, 2 choices :

µnj+ 1

2

= 12 (µnj + µnj+1) : results given before.

µnj+ 1

2

= µnj+ 1

2

obtained with Unj+ 1

2

computed at same step→ better in this

case.

Porquerolles 2005 27

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Taux de vide,1D,t=0.6

solution exacteSRNHR−48pSRNHR−100pSRNHR−200pSRNHR−400p

Void fraction ; µnj+ 1

2= µn

j+ 12

.

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

log(dx)lo

g(L

1−

Err

eu

r)

Courbe d’erreur, Taux de vide,SRNHR, cfl=0.5, t=0.6

SRNHR− choix 1PENTE=0.533

np=24

np=48

np=96

np=200

np=400

Error curve ; Void fraction ;

µnj+ 1

2= µn

j+ 12

.

Porquerolles 2005 28

Numerical Simulation of Complex and Multiphase Flows

11 Model with interfacial pressure

Source term writes now :

Q1(x,W ) = (0 −µv∂P

∂x−(P−Pi)∂µv∂x 0 −µl

∂P

∂x−(P−Pi)

∂µl∂x

)t,

Q2(x,W ) = (0 µvρvg 0 µlρlg)t,

with P − Pi = ρv(uv − ul)2 : interfacial pressure.

→ Hyperbolic problem

Porquerolles 2005 29

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120.2

0.25

0.3

0.35

0.4

0.45

0.5Taux de vide, 1D,cfl=0.5, t=0.6

solution exacteSRNHR−200pSRNHR−500pSRNHR−1000pSRNHR−2000p

Void Fraction (with interfacial

pressure) ; µnj+ 1

2= µn

j+ 12

.

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

log(dx)

log

(L1

−E

rre

ur)

Courbe d’erreur,Taux de vide avec la pression interfaciale, cfl=0.5, t=0.6

SRNHR −Choix 1PENTE=0.4 np=24

np=48

np=96

np=200

np=400

np=800

np=1600 np=2000

Error curve ; Void Fraction

(with interfacial pressure) ;

µnj+ 1

2= µn

j+ 12

.

Porquerolles 2005 30

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 120.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Taux de vide,1D, t=0.6

solution exacteSRNHR−100pSRNHR−200pSRNHR−400pSRNHR−500p

Void Fraction (with

interfacial pressure) ;

µnj+ 1

2= 1

2(µnj + µnj+1).

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

log(dx)

log

(L1

−E

rre

ur)

Courbe d’erreur, Taux de vide avec la pression interfaciale, cfl=0.5, t=0.6

SRNHR−Choix 2PENTE=0.46 np=24

np=48

np=96

np=200

np=400

np=500

Error curve ; Void Fraction

(with interfacial pressure) ;

µnj+ 1

2= 1

2(µnj + µnj+1).

Porquerolles 2005 31

Numerical Simulation of Complex and Multiphase Flows

µnj+ 1

2

= 12 (µnj + µnj+1) µn

j+ 12

= µnj+ 1

2

Classical Refinement until Refinement until

model 150 points 400 points

Interfacial Refinement until Refinement until

pressure 500 points 2000 points

Porquerolles 2005 32

Numerical Simulation of Complex and Multiphase Flows

2D case :

∂W

∂t+∂F (W )

∂x+∂G(W )

∂y= Q1(x, , y,W ) +Q2(x, y,W )

W (x, y, 0) = W0(x, y),(7)

with W (x, y, t) = (µlρl µlρlul µlρlvl µvρv µvρvuv µvρvvv)t,

F (W (x, y, t)) = (µlρlul µlρlu2l µlρlulvl µvρvuv µvρvu

2v µvρvuvvv)

t,

G(W (x, y, t)) = (µlρlvl µlρlulvl µlρlv2l µvρvvv µvρvuvvv µvρvv

2v)t,

Q1(x, y,W ) = (0 − µl∂P

∂x− µl

∂P

∂y0 − µv

∂P

∂x− µv

∂P

∂y)t,

Q2(x, y,W ) = (0 µlρlg 0 0 µvρvg 0)t.

ρk, µk, uk, vk : density, void fraction, velocities.P : commun pressure.P = Avρ

γv , ρl = KlP

a, Av, γ, Kl, a : constantes.

Porquerolles 2005 33

Numerical Simulation of Complex and Multiphase Flows

µv = 0.6. UK Drag mesh 48× 10.

0 2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Taux de vide, SRNHR

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Void fraction ; SRNHR scheme

(α = 2).

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5

3

3.5

4Isovaleur de taux de vide

Void fraction ; Isolines ; SRNHR

scheme (α = 2).

Porquerolles 2005 34

Numerical Simulation of Complex and Multiphase Flows

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

10

11

12

13

14

15

16

Vitesse du liquide, SRNHR

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

Liquid velocity ; SRNHR scheme

(α = 2).

0 2 4 6 8 10 120

0.5

1

1.5

2

2.5

3

3.5

4Isovaleur de la vitesse du liquide

Liquid velocity ; Isolines ;

SRNHR scheme (α = 2).

Porquerolles 2005 35

Numerical Simulation of Complex and Multiphase Flows

Conclusion :

– Robust and efficient scheme for non homogeneous systems.

– Do not need calculus of jacobien fields decomposition.

– Accurate results obtained with few mesh points.

Porquerolles 2005 36