35
Nuclear Chemistry Types of Nuclear Radiation There are three primary types of radiation: Alpha (helium nucleustwo protons & two neutrons) Beta (an electron) Gamma (wave of energy) See Table O (&N) in the Chemistry Reference Tables.

Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Chemistry    Types  of  Nuclear  Radiation    There  are  three  primary  types  of  radiation:    Alpha  (helium  nucleus-­‐two  protons  &  two  neutrons)  Beta  (an  electron)  Gamma  (wave  of  energy)    See  Table  O  (&N)  in  the  Chemistry  Reference  Tables.    

 

Page 2: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

   Summary:    Alpha  particles  are  positively  charged  and  have  low  penetrating  power  (relatively  large  mass:    4amu).    Beta  particles  are  negatively  charged  and  have  medium  penetrating  power  (relatively  low  mass:    1/2000amu).    Gamma  rays  have  no  charge  and  have  high  penetrating  power  (&  are  considered  massless).        

Page 3: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Why  does  nuclear  radiation  happen?    Radiation  is  a  means  to  help  stabilize  the  nucleus.    Radioisotopes  are  isotopes  that  have  an  unstable  nucleus  and  emit  radiation  in  order  to  become  more  stable.    For  example,  carbon-­‐12  is  stable,  but  carbon-­‐13  is  considered  a  radioisotope.    There  are  two  reasons  why  a  nucleus  may  be  unstable:    1.    The  neutron/proton  ratio  (N/Z)  is  not  correct.    2.    The  nucleus  is  too  large.    Any  element  that  has  more  than  83  protons  (Z  >  83)  is  unstable  and  considered  radioactive.        

Page 4: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

The  Band  of  Stability    

   Notice  that  for  smaller  atoms  (Z>20)  the  nucleus  is  stable  when  the  neutron  proton  ratio  (N/Z)  is  approximately  1:1.    Larger  nuclei  need  more  neutrons  to  have  stability.    There  are  no  stable  nuclei  beyond  83  protons.        

Page 5: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

How  do  radioisotopes  emit  radioactivity?    Radioisotopes  go  through  “nuclear  decay”  in  order  to  stabilize  themselves.    This  is  also  called  nuclear  transmutation,  where  an  element  is  naturally  changed  into  another  element.    There  are  various  types  of  this  decay.    Alpha  Decay    Beta  Decay    Positron  Decay          

Page 6: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

 Alpha  Decay    

     

   “Reactants”  are  on  the  left;  “Products”  are  on  the  right.    Larger  nuclei  tend  to  go  through  alpha  decay  because  it  means  it  gets  to  lose  mass.    Remember  that  nuclei  that  have  over  83  protons  cannot  be  stable.    This  means  that  large  nuclei  tend  to  decay  multiple  times  in  order  to  reduce  their  mass.      

Page 7: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Beta  Decay    

   A  neutron  changes  into  a  proton  and  an  electron  is  emitted.    

   

   Notice  that  you  may  write  the  beta  particle  two  different  ways.    Beta  decay  is  often  used  for  smaller  atoms  in  order  to  alter  their  neutron/proton  ratio  (N/Z),  but  can  also  be  utilized  by  larger  nuclei.      

Page 8: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Positron  Decay  (or  Beta-­‐positive  Decay)    

   A  proton  transforms  into  a  neutron  and  releases  a  positron  (a  positive  electron).    

   This  type  of  decay  helps  the  nucleus  to  find  a  proper  N/Z  ratio.        Summary    -­‐There  are  two  reasons  why  nuclei  are  unstable:     1.  N/Z  ratio     2.  Mass    -­‐Alpha  decay  reduces  the  mass  of  the  atom.    -­‐Beta  and  positron  decay  alter  the  N/Z  ratio.      

Page 9: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Types  of  Nuclear  Transmutation    1)  Natural  Transmutation  2)  Artificial  Transmutation          Natural  Transmutation  When  a  single  nucleus  is  unstable  and  changes  (or  mutates)  into  another  element.       -­‐All  Natural  Transmutations  have  only  ONE  REACTANT.    

Example:    Nuclear  Decay.    

Reactant          à            Products  

       

Page 10: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Artificial  Transmutation  When  a  particle  collides  with  a  nucleus  to  produce  other  elements. Artificial  transmutation  can  be  accomplished  through  the  use  of  particle  accelerators  that  strike  elements  with  alpha  particles,  deuterons,  or  small  nuclei.  With  this  process,  some  of  the  protons  from  the  bombarding  particles  are  lodged  in  the  target  nucleus,  promoting  the  transmutation  into  a  different  element.  In  a  “traditional”  nuclear  reactor,  the  target  nucleus  is  struck  with  neutrons,  resulting  in  fission  or  breaking  of  large  nuclei.    

-­‐For  this  to  happen,  the  original  nucleus  does  not  have  to  be  radioactive.  

  -­‐All  Artificial  Transmutations  have  TWO  REACTANTS.    

Reactant  +  Reactant  à    Products    

   

Other  examples  of  artificial  transmutation  include:    

Fusion:   When  two  nuclei  combine  (or  fuse)  together  to  make  a  larger  single  nucleus.  

 Fission:   When  a  small  particle  collides  to  break  down  a  large  

nucleus  into  multiple  smaller  nuclei.      

Page 11: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Balancing  Nuclear  Equations    

     Summary:  The  Law  of  Conservation  of  Matter  says  that  matter  cannot  be  created  or  destroyed.    1)  Balance  the  Mass  Numbers.  2)  Balance  the  Atomic  Numbers.  3)  Find  the  element  that  may  be  missing  using  its  Atomic  Number.        

Page 12: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Before  balancing,  explain  if  the  reactions  are  Natural  or  Artificial  Transmutation.    

     

Page 13: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Problems:    1)  Write  the  balanced  nuclear  equation  for  the  decay  of  220Fr.    Include  all  mass  numbers  and  atomic  numbers.  (Don’t  know  how  220Fr  decays?    Use  Table  N.)      2)  Write  the  balanced  nuclear  equation  for  potassium-­‐42.    Include  all  mass  numbers  and  atomic  numbers.      3)  Uranium-­‐238  decays  14  times  before  it  becomes  a  stable  isotope.  Write  the  series  of  decay  of  uranium-­‐238:  For  each  step,  determine  the  balanced  nuclear  equation.    1)  alpha  2)  beta  3)  beta  4)  alpha  5)  alpha  6)  alpha  7)  alpha  

8)  alpha  9)  beta  10)  beta  11)  alpha  12)  beta  13)  beta  14)  alpha  

 What  is  the  stable  isotope  at  the  end  of  this  decay  series?      

Page 14: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

     

     

Page 15: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Half-­‐life  of  a  Radioisotope    Radioisotopes  decay  at  a  certain  rate  (or  speed).    Half-­‐life  is  the  time  that  it  takes  for  half  of  the  nuclei  of  a  sample  to  decay  or  transform  into  another  element.    Half-­‐life  is  always  the  same,  regardless  of  quantity,  temperature  or  other  external  conditions.      

   Remember  that  the  original,  unstable  nucleus  (parent)  does  not  disappear,  rather  it  transforms  into  another  element  (daughter).      

Page 16: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

If  a  radioisotope  decays  quickly,  then  it  will  have  a  SHORT  half-­‐life.  And  the  opposite  is  true:    If  a  radioisotope  has  a  LONG  half-­‐life,  then  it  means  that  it  decays  slowly.    Problem  #1    Analyze  the  graph  and  determine  the  half-­‐life  of  bismuth.  

       

Page 17: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Problem  #2    a.   Determine  the  half-­‐life  of  this  radioisotope.  b.   Using  Table  N,  determine  the  identity  of  the  radioisotope.    

     

Page 18: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Equation  for  Half-­‐life    

     Problem  #1:  The  half-­‐life  of  Zn-­‐71  is  2.4  minutes.  If  one  had  100.0  g  at  the  beginning,  how  many  grams  would  be  left  after  7.2  minutes  has  elapsed?    Problem  #2:  Os-­‐182  has  a  half-­‐life  of  21.5  hours.  How  many  grams  of  a  10.0  gram  sample  would  have  decayed  after  exactly  four  half-­‐lives?    Problem  #3:  After  24.0  days,  2.00  milligrams  of  an  original  128.0  milligram  sample  remain.  What  is  the  half-­‐life  of  the  sample?        

Page 19: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

 How  do  we  measure  radiation?    The  Geiger  Counter  

   

   In  order  to  create  electrical  current,  there  must  be  free-­‐flowing  ions  (solutions  of  ions  or  ionized  gas)  or  free  flowing  electrons  (metals).      

Page 20: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Units  of  a  Geiger  Counter    CPM  (counts  per  minute)  is  a  measure  of  radioactivity,  a  unit  of  measurement  for  a  Geiger  counter.  Technically,  “It  is  the  number  of  atoms  in  a  given  quantity  of  radioactive  material  that  are  detected  to  have  decayed  in  one  minute.”    1,200  CPM  on  the  meter  (for  Cs137)  is  about  1  mR/hr  (milliRad  per  hour).  120  CPM  on  the  meter  (for  Cs137)  is  about  1  uSv/hr  (microSievert  per  hour)      Average  annual  human  exposure  to  radiation  (U.S.)  600  milliRem  (mRem)  6  milliSievert  (mSv)    Radiation  dose  for  increase  cancer  risk  of  1  in  a  1,000  1,250  milliRem  (mRem)  12.5  milliSievert  (mSv)    Earliest  onset  of  radiation  sickness  75,000  milliRem  (mRem)  750  milliSievert  (mSv)    Onset  of  radiation  poisoning  300,000  milliRem  (mRem)  3,000  milliSievert  (mSv)    Expected  50%  death  from  radiation  400,000  milliRem  (mRem)  4,000  milliSievert  (mSv)        

Page 21: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Days  to  receive  chronic  dose  for  increase  cancer  risk  of  1  in  a  1,000  432  (at  100  CPM)  86  (at  500  CPM)  28  (at  1,500  CPM)  4  (at  10,000  CPM)    Days  for  earliest  onset  of  radiation  sickness  25,937  (at  100  CPM)  5,187  (at  500  CPM)  1,729  (at  1,500  CPM)  259  (at  10,000  CPM)      All  food  sources  expose  a  person  to  around  40  millirems  per  year  on  average.  Many  foods  are  naturally  radioactive,  and  bananas  are  particularly  so,  due  to  the  radioactive  potassium-­‐40  they  contain.  The  equivalent  dose  for  365  bananas  (one  per  day  for  a  year)  is  3.6  millirems  (36  μSv).    Other  foods  that  have  above-­‐average  levels  are  potatoes,  kidney  beans,  nuts  (especially  brazil  nuts),  and  sunflower  seeds.      Ways  to  limit  radiation  exposure:    1.  Time  (limit  exposure  time)  2.  Distance  (intensity  decreases  sharply  according  to  the  inverse-­‐square-­‐law)  3.  Shielding  (alpha:  nearly  anything…  a  sheet  of  paper  will  stop  it  –  danger  of  breathing  it)  (beta:  wood,  water,  plastic-­‐acrylic,  aluminum)  (gamma:  water,  concrete,  lead)    

Page 22: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Energy    Fission  and  Fusion  utilize  the  exception  of  the  Law  of  Conservation  of  Matter  (Later,  called  the  Law  of  Conservation  of  Energy,  which  states  that  mass  or  energy  cannot  be  created  or  destroyed).    In  Fission  and  Fusion  reactions,  the  total  mass  of  the  products  is  LESS  than  the  total  nuclear  mass  of  the  reactants.    This  means  that  the  small  amount  of  “lost”  matter  was  actually  converted  into  energy.    Einstein  expressed  this  relationship  as:    E=mc2    where  E  is  energy,  m  is  mass,  and  c  is  the  speed  of  light  (3.00x108  m/s).    Because  the  speed  of  light  is  such  a  large  number,  it  is  easy  to  see  that  a  small  amount  of  mass  (a  fraction  of  an  amu)  could  produce  an  extremely  large  amount  of  energy.    These  small  losses  of  mass  are  called  “mass  defect”.      Nuclear  Reactions              vs.            Chemical  Reactions    1.0  gram  of  nuclear     1.0  gram  of  chemical  reactant  (fission):       reactant  (combustion):  9.00x1013J         5.56x104    Nuclear  reactions  give  off  over  a  billion  times  more  energy  than  chemical  reactions.      

Page 23: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission    Nuclear  Fission  occurs  when  a  large  nucleus  collides  with  a  particle  and  breaks  down  into  two  (or  more)  smaller  nuclei  and  at  least  two  neutrons.    

     

Page 24: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Since  the  reaction  creates  more  neutrons,  this  creates  a  chain  reaction:  

 

   

Page 25: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission    Products  of  Nuclear  Fission:    

     

       

Page 26: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission    The  speed  of  the  chain  reaction:    The  released  neutron  travels  at  speeds  of  about  10  million  meters  per  second.  A  critical  mass  of  uranium  is  about  the  size  of  a  baseball  (0.1  meters).  The  time,  t,  the  neutron  would  take  to  cross  the  sphere  is:    

t  =  0.1  meters  

 1  x  10  7  meters/second  

 t  =  

 1  x  10  -­‐8  seconds  

 The  complete  process  of  a  bomb  explosion  is  about  80  times  this  number,  or  about  a  microsecond.      

Page 27: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission    Critical  Mass  is  the  amount  of  material  needed  to  create  a  self-­‐sustaining  nuclear  fission  reaction.    

   This  type  of  Uranium  must  be  U-­‐235,  which  is  a  rare  isotope  with  approximately  0.7%  abundance.    In  order  to  create  critical  mass,  the  uranium  in  the  fuel  should  be  from  3.5-­‐5.0%  U-­‐235.    This  is  complex  enrichment  process  includes:    1)  Turning  the  uranium  into  gas  and  converting  it  to  uranium  hexafluoride.  2)  Condensing  it  and  then  using  a  centrifuge  to  separate  the  isotope.      

Page 28: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission  Reactor    

     

Page 29: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission:    Fuel  Rods  

   

   

Page 30: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission:    Control  Rods    

   Control  rods  are  often  made  of  isotopes  of  boron  and  cadmium.    These  element  readily  absorb  neutrons.    

     

Page 31: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

Nuclear  Fission:    Cooling  Towers  

         

Page 32: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

   Nuclear  Fusion:    Fusion  reactions  involve  the  combining  of  light  nuclei  to  form  heavier  ones.    Nuclei  are  positively  charged,  which  means  that  if  they  get  close  to  each  other,  they  will  repel.    So  the  only  way  for  fusion  to  occur  is  to  make  atoms  move  extraordinarily  fast  (plasma).    The  kinetic  energy  of  the  atoms  overcomes  the  electrostatic  force.    An  example  of  fusion  is  the  sun  (or  other  stars).          

Page 33: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

 The  sun  reaches  5,600°C  on  the  surface  and  up  to  15,000,000°C  in  its  core.    The  minimum  temperature  for  nuclear  fusion  is  approximately  13,000,000°C.    This  is  the  temperature  where  hydrogen  will  be  plasma.      This  is  the  sun’s  process  of  fusing  hydrogen:    

     

Page 34: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM

 

   

   

Page 35: Nuclear(Chemistry( Typesof(Nuclear(Radiation( · Microsoft Word - Nuclear Chemistry.docx Created Date: 11/4/2016 7:42:10 PM