41
Nuclear Science & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade Michael Ramsey-Musolf, INPC 2007 Fifty years of PV in nuclear physics Nuclear physics studies of s & fundamental symmetries played an essential role in developing & confirming the Standard Model Our role has been broadly recognized within and beyond NP Solar s & the neutrino revolution The next decade presents NP with a unique opportunity to build on this legacy in developing the “new Standard Model” The value of our contribution will be broadly recognized outside the field QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Nuclear Science & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade

  • Upload
    shing

  • View
    19

  • Download
    0

Embed Size (px)

DESCRIPTION

The next decade presents NP with a unique opportunity to build on this legacy in developing the “new Standard Model” The value of our contribution will be broadly recognized outside the field. - PowerPoint PPT Presentation

Citation preview

Nuclear Science & the New Standard Model: Neutrinos & Fundamental Symmetries in the Next Decade

Michael Ramsey-Musolf, INPC 2007

Fifty years of PV in nuclear physics

Nuclear physics studies of s & fundamental symmetries played an essential role in developing & confirming the Standard Model

Our role has been broadly recognized within and beyond NP

Solar s & the neutrino revolution

The next decade presents NP with a unique opportunity to build on this legacy in developing the “new Standard Model”

The value of our contribution will be broadly recognized outside the field

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Fundamental Symmetries & Cosmic History

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Fundamental Symmetries & Cosmic History

Standard Model puzzles Standard Model successes

to explain the microphysics of the present universe

It utilizes a simple and elegant symmetry principle

SU(3)c x SU(2)L x U(1)Y

• Big Bang Nucleosynthesis (BBN) & light element abundances

• Weak interactions in stars & solar burning

• Supernovae & neutron stars

Fundamental Symmetries & Cosmic History

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Puzzles the Standard Model can’t solve

1. Origin of matter2. Unification & gravity

3. Weak scale stability4. Neutrinos

What are the symmetries (forces) of the early universe beyond those of the SM?

• Supersymmetry ?• New gauge interactions?• Extra dimensions ?

Opportunity: Unique role for low energy studies in the LHC era

Two frontiers in the search for new physics

Collider experiments (pp, e+e-, etc) at higher energies (E >> MZ)

High energy physics

Particle, nuclear & atomic physics

CERN

Ultra cold neutronsLarge Hadron Collider

Indirect searches at lower energies (E < MZ) but high precision

(and beyond!)

Primary Scientific Questions

• What are the masses of neutrinos and how have they shaped the evolution of the universe? decay, 13, decay,…

• Why is there more matter than antimatter in the present universe? EDM, DM, LFV, , 13 …

• What are the unseen forces that disappeared from view as the universe cooled? Weak decays, PVES, g-2,…

Tribble report

• Major Discovery Potential:

-decay & EDM• Precision measurements

Neutrino mixing & hierarchy

Weak decays, PVES, g-2• Electroweak probes of QCD

PVES, Hadronic PV, N scatt…

Specific Opportunities

The Origin of Matter & Energy

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

Cosmic Energy Budget

?

Baryogenesis: When? CPV? SUSY? Neutrinos?

Nuclear Science mission: explain the origin, evolution, & structure of the baryonic component

Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos

Weak scale baryogenesis: test experimentally: EDMs

Baryogenesis: Ingredients

Sakharov Criteria

• B violation

• C & CP violation

• Nonequilibrium dynamics

Sakharov, 1967

Present universe Early universe

Weak scale Planck scale

log10(μ / μ0)

αS−1

αL−1

αY−1

??

Leptogenesis

Present universe

Planck scale

log10(μ / μ0)

αS−1

αY−1

Leptogenesis

Early universe

Weak scale

Key Ingredients

• Heavy R

• m spectrum

• CP violation

• L violation

Out of equilibrium decays

Particle-Antiparticle asym

L violation B violation

0 -decay,,

-decay, 13 ,…

-Decay: LNV? Mass Term?

e−

e−

M

W −

W −

A Z,N( )

A Z − 2,N + 2( )0.1

1

10

100

1000

Effective

( )Mass meV

12 3 4 5 6 7

12 3 4 5 6 7

12 3 4 5 6 7

1 ( )Minimum Neutrino Mass meV

U1e = .866 δm2

sol = 7 meV

2

U2e = .5 δm2

atm = 2 meV

2

U 3e =

Inverted

Normal

Degenerate

Dirac Majorana

-decayLong baseline

?

?

Theory Challenge: matrix elements+ mechanism

EFF= Uek

2mk e2iδ

k

e−

e−

χ 0

˜ e −

u

u

d

d

˜ e −€

e−

e−

M

W −

W −

u

u

d

d

Mechanism & m

0.1

1

10

100

1000

Effective

( )Mass meV

12 3 4 5 6 7

12 3 4 5 6 7

12 3 4 5 6 7

1 ( )Minimum Neutrino Mass meV

U1e = .866 δm2

sol = 7 meV

2

U2e = .5 δm2

atm = 2 meV

2

U 3e =

Inverted

Normal

Degenerate signal equivalent to degenerate hierarchy

Loop contribution to m of inverted hierarchy scale

Impt to know if RPV interactions exist and, if so, what magnitude

111/ ~ 0.06 for mSUSY ~ 1 TeV

Lepton Flavor & Number Violation

Present universe Early universe

Weak scale Planck scale

log10(μ / μ0)

αS−1

αL−1

αY−1

e

γ

e

A Z,N( )

A Z,N( )

MEG: B!eγ ~ 5 x 10-14

Mu2e: B!e ~ 5 x 10-17

??

R = B!e

B!eγ

Also PRIME

Lepton Flavor & Number Violation

e

γ

e

A Z,N( )

A Z,N( )

MEG: B!eγ ~ 5 x 10-14

Mu2e: B!e ~ 5 x 10-17

e

γ*

e

e

˜ ν

e

γ*

e+

e+

Δ−−

Logarithmic enhancements of R

Low scale LFV: R ~ O(1) GUT scale LFV: R ~ Oα

e−

e−

M

W −

W −

u

u

d

d

e−

e−

χ 0

˜ e −

u

u

d

d

˜ e −

0 decay

Light M exchange ?

Heavy particle exchange ?

Raidal, Santamaria; Cirigliano, Kurylov, R-M, Vogel

k11/ ~ 0.09 for mSUSY ~ 1 TeV

!eγ LFV Probes of RPV:

k11/ ~ 0.008 for mSUSY ~ 1 TeV

!e LFV Probes of RPV:

Baryogenesis: New Electroweak Physics

Weak Scale Baryogenesis

• B violation

• C & CP violation

• Nonequilibrium dynamics

Sakharov, 1967

?

ϕ new

?

φ(x)

Unbroken phase

Broken phaseCP Violation

Topological transitions

1st order phase transition

?

γ

?

e -?

ψnew• Is it viable?• Can experiment constrain it?• How reliably can we compute it?

?

ϕ new

?

ϕ new

90’s: Cohen, Kaplan, Nelson Joyce, Prokopec, Turok

EDM Probes of New CP Violation

f dSM dexp dfuture

e−

n199Hg

μ

< 10−40

< 10−30

< 10−33

< 10−28

< 1.6 ×10−27

< 3.0 ×10−26

< 2.1×10−28

< 1.1×10−18

→ 10−31

→ 10−29

→ 10−32

→ 10−24

CKM

If new EWK CP violation is responsible for abundance of matter, will these experiments see an EDM?

Also 225Ra, 129Xe, d

SNS, ILL, PSI

Yale, Indiana, Amherst

BNL

ANL, Princeton, TRIUMF, KVI…

EDMs: New CPV?

γ

f

˜ χ 0

˜ f

˜ f

g

q

˜ χ 0

˜ q

˜ q

Electron

Improvements of 102 to 103

Neutron

γ

f

˜ χ 0

˜ f

˜ f

Neutral Atoms

g

q

˜ χ 0

˜ q

˜ q

Deuteron€

g

q

˜ χ 0

˜ q

˜ q

N

e−

QCD

QCD

QCD

π

+L

γ

n€

p

π−

π−

π

+L

Baryogenesis: EDMs & Colliders

Prospective dePresent dePresent de Prospective de

LHC reach

Present de Prospective de

LHC reach

LEP II excl

dn similar

Theory progress & challenge: refined computations of baryon asymmetry & EDMs

ILC reach

baryogenesis

Precision Probes of New Symmetries

Beyond the SM SM symmetry (broken)

Electroweak symmetry breaking: Higgs ?

New Symmetries

1. Origin of Matter2. Unification & gravity

3. Weak scale stability4. Neutrinos

˜ χ 0

˜ μ −

˜ ν μ

e

W −

e−

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressorare needed to see this picture.

?

Precision Neutrino Property Studies

Mixing, hierarchy, & CPV

U =

Ue1 Ue2 Ue 3

Uμ1 Uμ 2 U μ 3

Uτ 1 Uτ 2 Uτ 3

⎜ ⎜ ⎜

⎟ ⎟ ⎟

=

1 0 0

0 cosθ23 sinθ23

0 −sinθ23 cosθ23

⎜ ⎜ ⎜

⎟ ⎟ ⎟×

cosθ13 0 e−iδ CP sinθ13

0 1 0

−e iδ CP sinθ13 0 cosθ13

⎜ ⎜ ⎜

⎟ ⎟ ⎟×

cosθ12 sinθ12 0

−sinθ12 cosθ12 0

0 0 1

⎜ ⎜ ⎜

⎟ ⎟ ⎟×

1 0 0

0 e iα / 2 0

0 0 e iα / 2+iβ

⎜ ⎜ ⎜

⎟ ⎟ ⎟

Daya BayT2KDouble Chooz

Mini Boone

Long baseline oscillation studies:

CPV?

Normal or Inverted ?

Precision Neutrino Property Studies

Solar Neutrinos

KamLAND Borexino CLEAN LENS

Ice Cube

High energy solar s

DM + EWB

EM vs. luminosity: MNSP unitarity? Solar model?

Neutrino Mass & Magnetic Moments

How large is ?

Experiment: < (10-10 - 10-12) B

e scattering, astro limits

Radiatively-induced m

< 10-14 B Dirac

e < 10-9-10-12 B Majorana

Bell, Cirigliano, Gorshteyn,R-M, Vogel, Wang, Wise Davidson, Gorbahn, Santamaria

Both operators chiral odd

Weak decays & new physics

u c t( )

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎜ ⎜ ⎜

⎟ ⎟ ⎟

d

s

b

⎜ ⎜ ⎜

⎟ ⎟ ⎟

d → u e− ν e

s → u e− ν e

b → u e− ν e

Correlations

dW ∝1 + ar p e ⋅

r p ν

Ee Eν

+ Ar σ n ⋅

r p eEe

+ L

Non (V-A) x (V-A) interactions: me/E

SNS, NIST, LANSCE, RIA?

Vud from neutron decay: ILL, LANSCE, SNS, NIST

Similarly unique probes of new physics in muon and pion decay

SUSY models

CKM, (g-2) MW, MtM˜ μ L >M˜ q L

TRIUMF & PSI

n → p e− ν e

A(Z,N) → A(Z −1,N +1) e+ ν e

π + → π 0 e+ ν e

-decay

GFβ

GFμ

= Vud 1+ Δrβ − Δrμ( )

New physics€

˜ χ 0

˜ μ −

˜ ν μ

e

W −

e−

u

d€

e

e−

˜ χ 0

˜ χ −€

˜ u

˜ ν e

+L

+LSUSY€

δOSUSY

OSM~ 0.001

Correlations in Muon Decay & m

Model Independent Analysis

constrained by m

Model Dependent Analysis

e

W1,2−

e−

MWR (GeV )

Pμξ

Pμξδ

ρ€

TWIST ρ

TWIST Pμξ

First row CKM

2005 Global fit: Gagliardi et al.

H 0

H 0

H 0

Z,W

H 0

Prezeau, Kurylov 05 Erwin, Kile, Peng, R-M 06 m

MPs

Also -decay, Higgs production

e−

e+€

Constraints on non-SM Higgs production at ILC:

m , and decay corr

Weak Mixing in the Standard Model

Scale-dependence of Weak Mixing

JLab Future

SLAC Moller

Parity-violating electron scattering

Z0 pole tension

re −€

e−

e−, p€

e−, p

Z 0

re −€

e−

e−, p€

e−, p

γ

Probing SUSY with PV Electron Scattering

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

δ Q

WP

, S

US

Y /

QW

P,

SM

RPV: No SUSY DM Majorana s

SUSY Loops

δ QWe, SUSY / QW

e, SM

g-2

12 GeV

6 GeV

E158

Q-Weak (ep)

Moller (ee)

˜ e −

˜ e +

+L

+

e−

f€

Z 0

γ

˜ χ −

˜ χ +€

e−

e−€

e−

f

f€

f

γ

Z 0

Muon Anomalous Magnetic Moment

γ

QED

Z

Weak Had LbL

Had VP

π

SUSY Loops

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

SM Loops

Future goal

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

~ 3.4 !

Uncovering the New Standard Model

What is the New Standard Model ?

Neutrino Mass ? Mixing ? Sterile ’s ?

Weak Scale CP- Violation ?

Lepton Number Violation ?

New Forces?

Baryon asymmetry?

Baryon asymmetry?

Supersymmetry ? Extra Dimensions ?

Cuore Majorana Moon GERDA…

EDM: nEDM atomic dEDM

Precision: Muon g-2 PVES decay

Neutrinos: decay Reactor ’s mag mom

Critical role for the international NP community !

Back Matter

Precision Probes of Symmetries

• Precision measurements predicted a range for mt

before top quark discovery

• mt >> mb !

• mt is consistent with that range

• It didn’t have to be that way

Radiative corrections

Direct Measurements

Stunning SM Success

J. Ellison, UCI

Probing Fundamental Symmetries beyond the SM:

Use precision low-energy measurements to probe virtual effects of new symmetries & compare with collider results

Fundamental Symmetries & Cosmic History

Standard Model puzzles Standard Model successesHow is electroweak symmetry broken? How do elementary particles get mass ?

Puzzles the St’d Model may or may not solve:

SU(3)c x SU(2)L x U(1)Y

Electroweak symmetry breaking: Higgs ?

U(1)EM

• Non-zero vacuum expectation value of neutral Higgs breaks electroweak sym and gives mass:

• Where is the Higgs particle?

• Is there more than one?

Related Scientific Questions

• What is the internal landscape of the proton? PVES, hadronic PV, scattering,…

• What causes stars to explode? Large scale supernova simulations, flavor transformation…

• What is the origin of the heavy elements from iron to uranium? Weak interactions and interactions in heavy nuclei,…

Tribble report

Parity-Violating NN Interaction

N

N€

π ±, ρ, ω

T=1 force

T=

0 fo

rce

Long range: π-exchange?

q

q

W ±,Z 0

π

+L

+L

π

π

π

π

+

Effective Field Theory

•Model Independent (7 LECs)

•Few-body systems (SNS, NIST…)

•QCD: weak qq interactions in strong int environment

•Weak Int in nuclei (0 decay)

Hadronic PV: Few-Body Systems

mN λ pp = −1.22 AL (r p p)

mN ρ t = − 9.35 AL (r n p → dγ)

mN λ pn = 1.6 AL (r p p) − 3.7 AL (

r p α ) + 37 Aγ (

r n p → dγ ) − 2 Pγ (

r n p → dγ)

mN λ t = 0.4 AL (r p p) − 0.7 AL (

r p α ) + 7 Aγ (

r n p → dγ ) + Pγ (

r n p → dγ)

mN λ nn = 1.6 AL (r p p) − 0.7 AL (

r p α ) + 33.3 Aγ (

r n p → dγ ) −1.08 Pγ (

r n p → dγ)+ 0.83

dφnα

dz

pp = λ s0 + λ s

1 + λ s2 6

λ nn = λ s0 − λ s

1 + λ s2 6

λ pn = λ s0 − 2λ s

2 6

Pionless theory

Done

NIST,SNS

LANSCE, SNS

HARD*

Ab initio few-body calcs

AL

r γ d → np( )

r n d → tγ( )

dφnp

dz €

Pγ nd → tγ( )

AL

r p d( )

New few-body calcs needed

Pionless th’y: 5 exp’ts Dynamical pions: 7 exp’ts

Neutrino Mass & Magnetic Moments

Majorana vs Dirac ?

Dirac:

Majorana:

Flavor Sym

Flavor Antisym

Effective theory for E <

Neutrino Mass & Magnetic Moments

Majorana vs Dirac ?

Dirac:

Majorana:

7D mixing

Anom Dim

5D matching Antisym in Yukawas

Naturalness bounds on CW,B

Muon Decay & Neutrino Mass

3/4

0

3/4

1

TWIST (TRIUMF)

Pion leptonic decay & SUSY

SM radiative corrections also have QCD effects€

π

γ

l

+L

SM strong interaction effects: parameterized by Fπ Hard to compute

π

l

u

d

l

l −

˜ χ 0

˜ χ −€

˜ u

˜ ν l

To probe effects of new physics in ΔNEW we need to contend with QCD

Pion leptonic decay & SUSY

π

γ

l

+LLeading QCD uncertainty:

Marciano & Sirlin

Probing Slepton Universality

u

d€

e

e−

˜ χ 0

˜ χ −€

˜ u

˜ ν e€

u

d€

˜ χ 0

˜ χ −€

˜ u

˜ ν μvs

New TRIUMF, PSI

Min (GeV)

Tulin, Su, R-M Prelim

Can we do better on ?

Out of equilibrium decays

L violation B violation

ANL, Princeton, TRIUMF, KVI…

Critical role for the international NP community !

re −€

e−

e−, p€

e−, p

Z 0

re −€

e−

e−, p€

e−, p

γ

Parity-Violating electron scattering

ALR =GFQ2

4 2παQW + F(Q2,θ)[ ]

re −€

e−

e−, p€

e−, p

Z 0

re −€

e−

e−, p€

e−, p

γ

“Weak Charge” ~ 1 - 4 sin2 W ~ 0.1

Probing SUSY with Lepton Scattering