3
Why We Still Need Nuclear Power Concerns about climate change and air pollution, as well as growing demand for electricity, led many governments to reconsider their aversion to nuclear power, which emits little carbon dioxide and had built up an impressive safety and reliability record. Some countries reversed their phase-outs of nuclear power, some extended the lifetimes of existing reactors, and many developed plans for new ones. Today, roughly 60 nuclear plants are under construction worldwide, which will add about 60,000 megawatts of generating capacity— equivalent to a sixth of the world's current nuclear power capacity. Electricity generation emits more carbon dioxide in the United States than does transportation or industry, and nuclear power is the largest source of carbon-free electricity in the country. Nuclear power generation is also relatively cheap, costing less than two cents per kilowatt-hour for operations, maintenance, and fuel. Even after the Fukushima disaster, China, which accounts for about 40 percent of current nuclear power plant construction, and India, Russia, and South Korea, which together account for another 40 percent, shows no signs of backing away from their pushes for nuclear power. Nuclear power's track record of providing clean and reliable electricity compares favorably with other energy sources. Low natural gas prices, mostly the result of newly accessible shale gas, have brightened the prospects that efficient gas-burning power plants could cut emissions of carbon dioxide and other pollutants relatively quickly by displacing old, inefficient coal plants, but the historical volatility of natural gas prices has made utility companies wary of putting all their eggs in that basket. Besides, in the long run, burning natural gas would still release too much carbon dioxide. Wind and solar power are becoming increasingly widespread, but their intermittent and variable supply make them poorly suited for large-scale use in the absence of an affordable way to store electricity. Hydropower, meanwhile, has very limited prospects for expansion in the United States because of environmental concerns and the small number of potential sites. If the benefits of nuclear power are to be realized in the United States, each of the hurdles it faces must be surpassed. When it comes to safety, the design requirements for nuclear reactors must be reexamined in light of up-to-date analyses of plausible accidents. As for cost, the government and the private sector need to advance new designs that lower the financial risk of constructing nuclear power plants. The country must also replace its broken nuclear waste management system with a more adaptive one that safely disposes of waste and stores it for centuries. Only then can the public's trust be earned.

Nuclear Power

Embed Size (px)

DESCRIPTION

Nuclear Power

Citation preview

Why We Still Need Nuclear Power

Concerns about climate change and air pollution, as well as growing demand for electricity, led many governments to reconsider their aversion to nuclear power, which emits little carbon dioxide and had built up an impressive safety and reliability record. Some countries reversed their phase-outs of nuclear power, some extended the lifetimes of existing reactors, and many developed plans for new ones. Today, roughly 60 nuclear plants are under construction worldwide, which will add about 60,000 megawatts of generating capacityequivalent to a sixth of the world's current nuclear power capacity.Electricity generation emits more carbon dioxide in the United States than does transportation or industry, and nuclear power is the largest source of carbon-free electricity in the country. Nuclear power generation is also relatively cheap, costing less than two cents per kilowatt-hour for operations, maintenance, and fuel. Even after the Fukushima disaster, China, which accounts for about 40 percent of current nuclear power plant construction, and India, Russia, and South Korea, which together account for another 40 percent, shows no signs of backing away from their pushes for nuclear power.Nuclear power's track record of providing clean and reliable electricity compares favorably with other energy sources. Low natural gas prices, mostly the result of newly accessible shale gas, have brightened the prospects that efficient gas-burning power plants could cut emissions of carbon dioxide and other pollutants relatively quickly by displacing old, inefficient coal plants, but the historical volatility of natural gas prices has made utility companies wary of putting all their eggs in that basket. Besides, in the long run, burning natural gas would still release too much carbon dioxide. Wind and solar power are becoming increasingly widespread, but their intermittent and variable supply make them poorly suited for large-scale use in the absence of an affordable way to store electricity. Hydropower, meanwhile, has very limited prospects for expansion in the United States because of environmental concerns and the small number of potential sites.If the benefits of nuclear power are to be realized in the United States, each of the hurdles it faces must be surpassed. When it comes to safety, the design requirements for nuclear reactors must be reexamined in light of up-to-date analyses of plausible accidents. As for cost, the government and the private sector need to advance new designs that lower the financial risk of constructing nuclear power plants. The country must also replace its broken nuclear waste management system with a more adaptive one that safely disposes of waste and stores it for centuries. Only then can the public's trust be earned.

A Smaller Solution

The safety and capital cost challenges involved with traditional nuclear power plants may be considerable, but a new class of reactors in the development stage holds promise for addressing them. These reactors, called small modular reactors (SMRs), produce anywhere from ten to 300 megawatts, rather than the 1,000 megawatts produced by a typical reactor. An entire reactor, or at least most of it, can be built in a factory and shipped to a site for assembly, where several reactors can be installed together to compose a larger nuclear power station. SMRs have attractive safety features, too. Their design often incorporates natural cooling features that can continue to function in the absence of external power, and the underground placement of the reactors and the spent-fuel storage pools is more secure.Since SMRrs are smaller than conventional nuclear plants, the construction costs for individual projects are more manageable, and thus the financing terms may be more favorable. And because they are factory-assembled, the on-site construction time is shorter.

Waste Basket Case

If nuclear energy is to enjoy a sustained renaissance, the challenge of managing nuclear waste for thousands of years must be met. Nuclear energy is generated by splitting uranium, leaving behind dangerous radioactive products, such as cesium and strontium that must be isolated for centuries. The process also produces transuranic elements, such as plutonium, which are heavier than uranium, do not occur in nature, and must be isolated for millennia. There is an alternative to disposing of transuranic elements: they can be separated from the reactor fuel every few years and then recycled into new nuclear reactor fuel as an additional energy source.

Now or Never

As greenhouse gases accumulate in the atmosphere, finding ways to generate power cleanly, affordably, and reliably is becoming an even more pressing imperative. Nuclear power is not a silver bullet, but it is a partial solution that has proved workable on a large scale. Countries will need to pursue a combination of strategies to cut emissions, including reining in energy demand, replacing coal power plants with cleaner natural gas plants, and investing in new technologies such as renewable energy and carbon capture and sequestration. The government's role should be to help provide the private sector with a well-understood set of options, including nuclear powernot to prescribe a desired market share for any specific technology.

Source: