25
1 1 Reactor Institute Delft / Nuclear Energy Science&Technology NUCLEAR ENERGY 2.0 500 times more energy 1000 times less waste Dr Jan Leen Kloosterman Assoc. Prof Nuclear Reactor Physics Head of Section Physics of Nuclear Reactors Program Director of Sustainable Energy Technology 2 Reactor Institute Delft / Nuclear Energy Science&Technology Reactor Institute Delft Research on Energy and Health with Radiation

NUCLEAR ENERGY 2 - Jan Leen Kloosterman · NUCLEAR ENERGY 2.0 500 times more energy 1000 times less waste Dr Jan Leen Kloosterman ... 1950 1960 1970 1980 1990 2000 Year TWh TWh=TeraWattHour=1012

Embed Size (px)

Citation preview

1

1Reactor Institute Delft / Nuclear Energy Science&Technology

NUCLEAR ENERGY 2.0

500 times more energy

1000 times less waste

Dr Jan Leen KloostermanAssoc. Prof Nuclear Reactor Physics

Head of Section Physics of Nuclear ReactorsProgram Director of Sustainable Energy Technology

2Reactor Institute Delft / Nuclear Energy Science&Technology

Reactor Institute DelftResearch on Energy and Health with Radiation

2

3Reactor Institute Delft / Nuclear Energy Science&Technology

4Reactor Institute Delft / Nuclear Energy Science&Technology

Neutrons

Spin-Echo Small Angle Neutron Scattering (SESANS)

3

5Reactor Institute Delft / Nuclear Energy Science&Technology

Positrons

POSH-Strongest positron beam in the world

6Reactor Institute Delft / Nuclear Energy Science&Technology

Energy• solar cells• batteries• hydrogen storage• nuclear reactors

} Materials research

Current Research Themes (1)

4

7Reactor Institute Delft / Nuclear Energy Science&Technology

Health• radiation and radioactive nuclides for therapy• “ and “ for diagnostics• radiation detection systems for imaging• new production routes for radionuclides

Current Research Themes (2)

8Reactor Institute Delft / Nuclear Energy Science&Technology

Simeon de pilaarheilige, Simeon Stylites, Carel Willink, 1939

5

9Reactor Institute Delft / Nuclear Energy Science&Technology

010001800192719601974198719992030

= 1 million people

Source: www.pbs.org/wgbh/nova

World population

10Reactor Institute Delft / Nuclear Energy Science&Technology

World population

year

popu

lati

on /

mill

ion

9 billion

6

11Reactor Institute Delft / Nuclear Energy Science&Technology

Last 160,000 years (from ice cores)and the next 100 years

Time (thousands of years)160 120 80 40 Now

–10

0

10

100

200

300

400

500

600

700

CO2 in 2100(with business as usual)

Double pre-industrial CO2

Lowest possible CO2stabilisation level by 2100

CO2 now

Temperature

difference

from now °C

CO2

conc

entr

atio

n (p

pm)

Source: IPCC

CO2 concentration

12Reactor Institute Delft / Nuclear Energy Science&Technology

Electricity consumption in the Netherlands

0

20

40

60

80

100

120

1950 1960 1970 1980 1990 2000

Year

TWh800 Watt/capitaTWh=TeraWattHour=1012 Whr

7

13Reactor Institute Delft / Nuclear Energy Science&Technology

Renewable Energy, Sep 27, 2011

442 reactors (Jan 2011)

62 under construction

157 planned

322 proposed

14Reactor Institute Delft / Nuclear Energy Science&Technology

Physics of Nuclear Energy

8

15Reactor Institute Delft / Nuclear Energy Science&Technology

Elements, atoms and more…

Electrons

Protons

Neutrons

Atoms

16Reactor Institute Delft / Nuclear Energy Science&Technology

Uranium

• Uranium contains 92 protons• Uranium is the heaviest element on earth• Uranium is almost twice as heavy as lead (19 g/cm3)

9

17Reactor Institute Delft / Nuclear Energy Science&Technology

Atom: cloud of electrons around a nucleus• the nucleus consists of Z protons and N neutrons

• Z is the “atomic number”, determines the chemical element (always an integer)

• A = N+Z is the number of nucleons in the nucleus;also called the “atomic weight”

• the neutral atom has Z electrons surrounding apositively charged nucleus

10-10 m

10-14 mAtoms

18Reactor Institute Delft / Nuclear Energy Science&Technology

Uranium isotopes

Not fissile

Fissile Good fuel

99,3% 0,7%

10

19Reactor Institute Delft / Nuclear Energy Science&Technology

Exercise: Lifetime of the Earth

5

8

9

Nuclide a Yield %

U-234 2.446 10 0.005

U-235 7.038 10 0.720

U-238 4.468 10 99.275

Calculate the lifetime of the earth (or more precise:

the lifetime of the material the earth is made of )

T

½

20Reactor Institute Delft / Nuclear Energy Science&Technology

Solution: Lifetime of the earth

0 01/2

55 50

8 8 80

5 80 0

8 5

For both U-235 and U-238 holds:

ln 2exp exp

exp 0.7200.0072526

99.275exp

Assume (equal amounts of U-235 and U-238 formed)

ln 0.0072526

From this you

N t N t N tT

tN T N

N T N t

N N

T

9can calculate 6 10 a (6 billion years)T

11

21Reactor Institute Delft / Nuclear Energy Science&Technology

Decay of Uranium

40 MeV+

22Reactor Institute Delft / Nuclear Energy Science&Technology

How to extract energy from decay of Uranium?

Geothermal energy: 40 MeV per nuclide

12

23Reactor Institute Delft / Nuclear Energy Science&Technology

How to extract energy from fission of Uranium?

• Uranium is so heavy that the nucleii decay of fission in two products. Especially U-235 is instable.

• Fission is easier if uranium is hit by a bullet. Neutrons are very good bullets. Why?

24Reactor Institute Delft / Nuclear Energy Science&Technology

235 200 MeVX YU n n

Nuclear fission

Radio-active

24 2 2CH 2O 2 8C eVHO O

13

25Reactor Institute Delft / Nuclear Energy Science&Technology

Fission product yields

80 100 120 140 16010

-3

10-2

10-1

100

101

102

M as s num ber A

Yie

ld (

%)

LW R

U-235

P u-239P u-241 I-131

Cs-137Sr-90

26Reactor Institute Delft / Nuclear Energy Science&Technology

Distribution of energy

14

27Reactor Institute Delft / Nuclear Energy Science&Technology

Gasoline Coal

2500 liter 3000 kg

Fossils equivalent to 1 gram of U235

28Reactor Institute Delft / Nuclear Energy Science&Technology

Binding energy per nucleon

15

29Reactor Institute Delft / Nuclear Energy Science&Technology

aE

236U: Ea=5.3 MeV239U: Ea=5.5 MeV

Coulomb barrier for fission

30Reactor Institute Delft / Nuclear Energy Science&Technology

Adding a neutron (easily enters the nucleus) releases

Eb(236U)- Eb(235U)=6.6 MeVEb(239U)- Eb(238U)=5.1 MeV

• All odd heavy nuclides fission easily (thermal neutrons)• All even heavy nuclides need energy threshold in MeV range• Most important nuclides:

233U, 235U, 238U, 232Th, 239Pu, 240Pu, 241Pu

Inducing fission

Fissile Fissionable

16

31Reactor Institute Delft / Nuclear Energy Science&Technology

10-2

100

102

104

106

10-1

100

101

102

103

104

Fis

sion

cro

ss s

ectio

n

f (ba

rn)

Energy (eV)

U-233

U-235Pu-239

U-238

Fissile

Fissionable

Fissile/fissionable nuclides

32Reactor Institute Delft / Nuclear Energy Science&Technology

Fission cross section

10-2

100

102

104

106

10-1

100

101

102

103

104

Fis

sion

cro

ss s

ectio

n (b

arn)

E nergy (eV )10

-210

010

210

410

610

-8

10-7

10-6

Fis

sion

spe

ctru

m

U -235

P u-239

U-238

Moderation

17

33Reactor Institute Delft / Nuclear Energy Science&Technology

Number of collisions needed

Collisions for scattering from 2 MeV to 1 eV:

Element A

H 1 15

D 2 20

C 12 92

Na 23 176

U 238 1731

n

34Reactor Institute Delft / Nuclear Energy Science&Technology

Enrichment

18

35Reactor Institute Delft / Nuclear Energy Science&Technology

Fuel composition

99,3% 0,7%

U-238 U-235

Natural uranium

4% enriched uranium in nuclear fuel

4%96%

36Reactor Institute Delft / Nuclear Energy Science&Technology

1.004q

• Developed during the Manhatten project at the Oak Ridge National Laboratory (ORNL) in the US

• Diffusion of Uranium Hexafluoride (UF6) through a semipermeable membrane under high pressure

• Separation factor per step quite small:

Uranium enrichment: Gas diffusion

19

37Reactor Institute Delft / Nuclear Energy Science&Technology

Gas diffusion cascades

38Reactor Institute Delft / Nuclear Energy Science&Technology

• Developed in the Netherlands by Kistemaker c.s.• Parallel development in Germany and UK• Establishment of the Uranium Enrichment Company

URENCO at 5 March 1970• UF6 separation in a rotating centrifuge• Energy consumption factor 10 smaller compared to

gas diffusion processes• Separation factor depending on design

1.10q

Uranium enrichment: Ultracentrifuges

20

39Reactor Institute Delft / Nuclear Energy Science&Technology

Centrifuge cascades

40Reactor Institute Delft / Nuclear Energy Science&Technology

Exercise: Uranium consumption KCB

• Natural uranium contains 0.7% U-235

• KCB needs 9 tonnes of enriched uranium annually (4.7% U-235)

• The tails have enrichment of 0.2% U-235

• Calculate the annual feed of natural uranium

50,000 – 70,000 rpm

21

41Reactor Institute Delft / Nuclear Energy Science&Technology

Mass balance for Uranium gives

Mass balance for U-235 gives

4.7 0.29 81

0.7 0.2

F p T

p T p T

F F

p T

F T

F P T

Fx Px Tx

Px Tx Px F P xF

x x

x xF P P P tonnes

x x

Product

Feed

Tails

Answer: Uranium consumption KCB

42Reactor Institute Delft / Nuclear Energy Science&Technology

Fuel pellets

Contain 4% Uranium-235 and 96% Uranium-238.

22

43Reactor Institute Delft / Nuclear Energy Science&Technology

Fuel construction and inspection

44Reactor Institute Delft / Nuclear Energy Science&Technology

Positioning of control rods, preparing for transportation

23

45Reactor Institute Delft / Nuclear Energy Science&Technology

FissionFissionCaptureLeakage

Scattering

Neutron balance

46Reactor Institute Delft / Nuclear Energy Science&Technology

September 17, 2012 46

Moderator

U-238

U-239

Pu-239

Np-239

U-235

Moderator

U-238 Pu-239

U-235

neutron

24

47Reactor Institute Delft / Nuclear Energy Science&Technology

Multiplication factor, k

# neutrons in generation n+1

# neutrons in generation nk

• k=1: critical, stationary situation, stable• k>1: supercritical, increasing population, unstable• k<1: subcritical, decreasing population, ‘unstable’

48Reactor Institute Delft / Nuclear Energy Science&Technology

U-238 capture cross section

25

49Reactor Institute Delft / Nuclear Energy Science&Technology

Doppler feedback mechanism

Due to the vibration of the nucleus, the effective resonance broadens.

The area remains virtually constant.

50Reactor Institute Delft / Nuclear Energy Science&Technology

September 17, 2012 50

U-235

Moderator

U-235

U-239

Np-239

U-238

Moderator feedback

Doppler feedback

1) Stable system (important for control)

2) Loss of cooling shuts down the reactor

3) Loss of moderator shuts down the reactor

Feedback mechanisms