108
Nuclear Data Sheets 37, 487 (1982) Nuclear Data Sheets for M. A. LEE Idaho National Engineerzng Laboratory EC&G Idaho, Inc. Idaho Falls, Idaho 83415, USA Abstract: The experimental results from the various reaction and decay studies leading to nuclides in the A=153 mass chain have been reviewed. These data are summarized and presented, together with the adopted level schemes and properties. Cutoff Date: Data available prior to December 1980 have been evaluated. In addition, mass data from 82WaZZ have been included. Acknowledgments: The evaluator is grateful to R. L. Bunting, R. G. Helmer, and C. W. Reich for many helpful discussions. The evaluator also thanks R. C. Greenwood for providing his data prior to publication. GENERAL ORGANIZATION OF MATERIAL Within each A-chain, information is collected by isotope and arranged in order of increasing Z. For each isotope, AZ, the arrangement of material and conventions for inclusion in tables are described below. Uncertainties are shown whenever available. 1. Adopted levels in *Z - All adopted level properties are shown for each level, together with explanatory comments. 2. Adopted y-radiations in AZ. 3. Radiations from *Z decay - All adopted radiation properties are shown for each (1- or y-radiation from decay of the ‘Z ground state. Properties of E-, p+- or p= branches are shown if they have special interest. 4. Radiations from *Z isomeric-state decay - Decay of each isomeric state is presented according to the same conventions as for the ground-state decay. 5. Levels and y-rays in *Z from decay+ - Decays are ordered by A, Z of the parent. a) Table of levels deduced from the decay. b) Table of y-rays observed in the decay unless given under its respective parent according to 3 or 4 above. 6. Levels and y-rays in AZ from nuclear reactions - Reactions are ordered by A, 2 of the target, then by A, Z of the incident nucleus. A heading is given for each reaction. a) Table of’levels deduced from the reaction. b) Table of y-rays observed in the reaction. ?’ The detailed results are tabulated only when the information is not adequately summarized on the drawings. Research sponsored by the US Department of Energy 0090-3752/S? $5.00 Copyright 0 1982 by Academic Press, Inc. ALL rights of reproduction in any form reserved. 487

Nuclear data sheets for A = 153

  • Upload
    ma-lee

  • View
    242

  • Download
    18

Embed Size (px)

Citation preview

Nuclear Data Sheets 37, 487 (1982)

Nuclear Data Sheets for

M. A. LEE Idaho National Engineerzng Laboratory

EC&G Idaho, Inc. Idaho Falls, Idaho 83415, USA

Abstract: The experimental results from the various reaction and decay studies leading to nuclides in the A=153 mass chain have been reviewed. These data are summarized and presented, together with the adopted level schemes and properties.

Cutoff Date: Data available prior to December 1980 have been evaluated. In addition, mass data from 82WaZZ have been included.

Acknowledgments: The evaluator is grateful to R. L. Bunting, R. G. Helmer, and C. W. Reich for many helpful discussions. The evaluator also thanks R. C. Greenwood for providing his data prior to publication.

GENERAL ORGANIZATION OF MATERIAL

Within each A-chain, information is collected by isotope and arranged in order of increasing Z. For each isotope, AZ, the arrangement of material and conventions for inclusion in tables are described below. Uncertainties are shown whenever available.

1. Adopted levels in *Z - All adopted level properties are shown for each level, together with explanatory comments.

2. Adopted y-radiations in AZ. 3. Radiations from *Z decay - All adopted radiation properties are shown for each

(1- or y-radiation from decay of the ‘Z ground state. Properties of E-, p+- or p= branches are shown if they have special interest.

4. Radiations from *Z isomeric-state decay - Decay of each isomeric state is presented according to the same conventions as for the ground-state decay.

5. Levels and y-rays in *Z from decay+ - Decays are ordered by A, Z of the parent. a) Table of levels deduced from the decay. b) Table of y-rays observed in the decay unless given under its respective

parent according to 3 or 4 above. 6. Levels and y-rays in AZ from nuclear reactions ’ - Reactions are ordered by A, 2

of the target, then by A, Z of the incident nucleus. A heading is given for each reaction.

a) Table of’levels deduced from the reaction. b) Table of y-rays observed in the reaction.

?’ The detailed results are tabulated only when the information is not adequately summarized on the drawings.

’ Research sponsored by the US Department of Energy

0090-3752/S? $5.00 Copyright 0 1982 by Academic Press, Inc.

ALL rights of reproduction in any form reserved.

487

A = 153 DRAWING 1, PART 1 NUCLEAR DATA SHEETS

30000

25000

20000

See following drawings for detailed level schemes

6000 J

6000

5000

4000

3000

2000

1000 1000

900

800

700

600

500

400

3oc

2oc

1oc

0

2333

3929

166 ps 0.64 n3 0.49 N 2.34 d

I %Tbse zr+X&7+=100

q+=1579’

1/2+ 328

76.1 p.s 2.61 ns 1.97 n9 3.5 jl.3

4.1 7x3 S/2- 41.55

C 1X2+> 481.04& ‘Me. 134 ==~~ =:=== iii i i i ii====== /y 241.6 d

___........... 40?z286ee ~<=,olJ q+=484.6*’

( I l/2+) 325.0624

< 7,2+1 269.7333

0.21 w 0.14 11s 0.36 ns 3.88 715 0.20 ns 0.60 m

I-

,-

I-

I-

I-

,-

NUCLEAR DATA SHEETS DRAWING 1, PART 2 A = 153

0.0 ‘T&-JLY s Q.=5126’ Q,=58655 Q,=6382”

Q+=6,5O’Y” Q,=5240’

r ‘J’Hf a Decay 79Ho10,73Ea01,65Mai4

5000 Q,=5865’

r 36000

I

30000

25000

20000

L

15000

6000 ; 6000

I 5000

- 4000

I- 3000

L 1000 rlOO0 ! I

900

L [ 800

’ 700

r

t

600

1

500

i- 400

I

300

I

200

100

489

A = 153 DRAWING 2 NUCLEAR DATA SHEETS

2 400

2000

15oc

lOOC

5oc

(

‘s’Sm(d,3He) Adopted Levels 77suzw

13’Sm(polarized t,a) 78Bu18

is 2333 / 2333

Band structure

5,2+ 511

3,2+ 453

3/2[4111

(13,2-) -378

5/Z?+ 32

5.4m 5,2- 0.0 5/2C4131 5/215321

7,2- ,022

(3/Z-) 935 3/2C5411

490

NUCLEAR DATA SHEETS DRAWING 3 A = 153

A = 153 DRAWING 4, PART 1

1600

0

3/2- II II I I I I 5,2+ 7.535 a/2+ - ’ 1 I * 1 t + 1 0.0

‘ES%,

492

NUCLEAR DATA SHEETS DRAWING 4, PART 2 A = 153

‘%hri(n,y) 69Sm04,69Re04,71Be41

Part 2 of 2

584.3..

L 800 - 800

- 500

A = 153 DRAWING 5, PART 1 NUCLEAR DATA SHEETS 153pm p- Decay (5.4 m)

69Sm04,tXKolO ‘53Sm IT Decay (10.6 ms)

71KiZC

‘soNd(a,ny) 79Re04

‘?3n(d,p) 65Ke09,72Ka07

‘%m(n,y) 69Sm04,69Re04,71Be41

‘54Sm(d,t)

8000 4000 I 4000-

3500-

3000-

2500-

2000 - 1600- 160C

15oc

14oc

1100

1000

900

800 800

500

0

vz- 127.30

1/S- 90.874 0.52 ns

,/2+ 53.533 1,s 35.843 < 0.1 TX3 m/2+ 7.535 1/2+ 46.7 h

%Sm,,

. . . . . . . . . . . . . . . . . ..!0!8.-.

NUCLEAR DATA SHEETS DRAWING 5, PART 2 A = 153 Adopted Levels

r 8000

I 14000

1 4000

3500

1 3000

2500

1 2000

1600 r 1600

Band structure

.1500 7/z+ ,532

7/x.4041

1 1400

t 1300

I

1200

1100

1000

900

- 800 800

500

0

1/2C6601+1/2C4001 (l/2)- 695.80

1/2c5211

(7/L?)- 523

t/2+ 414.92 1/2C4001+?/2~6601

(3,211 321.11 3/2C4021+3/2E6511

3/Z- -127.298

10.67~~ 3,'2[5323 0.52 ns 5,2- 90.874 IV> 98.4 -

11/2C5051 9/z+ 65.475 7/2+ 53.533

c 0.1 ?I.5 3/2- 35.843 5,2+ 7.535 3/2C5211

46.7 h 3/2+ - 0.0 3/2C6511+3/2C4021

495

0 OS

Inn

OSI

002

osz

CD I 00s

cn *

[ OOE

009

ti

I,,,\ (

69.9

NUCLEAR DATA SHEETS

!‘* a;? ‘5ZEu(n,y) E=Thermal

% $2

70Mu04 Intensities: relative Iy

$$ * Multiple placement . . . ..~~~~.....‘..............~...........~........~....~....................‘...........~..~................~‘..........~...~~~~~~~~~.~~~~~~.~~~~ . . . . . . . . ..?%?!9!.

: ) : :

300

700

600

A = 153 DRAWING 8 NUCLEAR DATA SHEETS

8OC

7oc

600

500

400

300

200

100

0

Coulomb Excitation Intensities: relative photon branching from each level

3,2* 5/2-

NUCLEAR DATA SHEETS DRAWING 9 A = 153

‘5’Sm(d,3ny) 75Dr07

Intensities: relative photon branching from each level

716.Z

654.5

589.6

538.1

‘W%,

499

r- 2000

1000

500

A = 153 DRAWING 10, PART 1 NUCLEAR DATA SHEETS

‘?3m /3- Decay 69Un03

‘3/‘;;$$ ““Eu(n,y) E=Thermal 70Mu04

“‘Cd E Decay 63Gr09,74Se08,78HeZl

‘J2Sm(3He,d) 69Un04

‘J~oo;j~iP)

290( I-

250(

2ooc

15oc

1000 Kloo

950

900

850

800

)-

l-

,-

600-

550-

500- 500

450

400

350

300

~

(7/Z+) 269.732 250

733

616

‘“3E~(~,p9 78LalO

Coulomb Excitation

NUCLEAR DATA SHEETS DRAWING 10, PART 2 A = 153

“%n(d,3ny) 75Dr07

Adopted Levels

2500

2000

1500

1000

Band structure

1350

1

300

250

200

t

150

t 100

(7/X) 269.7333 ( 9,2- ) 235.278$

9,2+ 193.0630 0.21 17s 9,2+ 1X.0630 5/*+ 172.8517 0.14 m (7,2)- 151.6225 0.36 ns 3,2+ 103.1794 3.88 ns 5/J- \ / 97.4297 - 0.20 7l.s 7/z+ 83.3671 0.80 17s 7/2t 83.3671

t 50

0

501

A = 153 DRAWING 11, PART 1 NUCLEAR DATA SHEETS

A d

R6 ‘2 92 B

? 1 Y

502

NUCLEAR DATA SHEETS DRAWING 11. PART 2 A = 153

d

I I I Ii / iii i-ill I I

503

‘=Tb

E

D

ecay

75

Vy01

.74T

uOl

Part

3 of

3

Inte

nsiti

es:

I(y+c

e)

per

100

deca

ys

of

pare

nt

* M

ultip

le

plac

emen

t 16

00 i

5/2+

0.

0 2.

34

d

'%!T

b,

xr+x

p+=1

oo

Q+=

1579

' t5

ooJ

1500

1

KK2.

22

1400

__

14

01.5

7

1 5/2+

13

28.0

3 13

00

+ 12

72.7

0

1200

12

00

1000

5oc c

5,2+

95

5.43

Ix?

+ \

/ 94

5. I*

+

’ 93

7.42

3/2+

86

5.49

3/

2-

’ 85

7.62

NUCLEAR DATA SHEETS DRAWING 12 A = 153

2 'J%m(a,3ny)

72Lo04,72Re04 Intensities: relative 1-y

~2400

I 2000

r 600

A = 153 DRAWING 13, PART 1 NUCLEAR DATA SHEETS

‘=Gd IT Decay (76.1 ws) 70Bo02,67CoZO

Intensities: relative l-y

2400

1600 1 1600

1500

1400

1300

1200

1100

1000

900

800 aoc

50(

‘=Tb E Decay 75Vy01.74TuOl

““Cd(d,p) 67TjOl

‘-Gd(d,t) 73Lo14.67TjOl

‘J’Cd(3He,a) 73LO14

506

NUCLEAR DATA SHEETS DRAWING 13, PART 2 A = 153

‘=Gd(p,t) 73LoO8

Adopted Levels Band structure

:9/2)+ 95.2 Mixed positive-parity.

sirongly Coriolis-coupled

t

t

-2400

-1600 1600

1500

1400

1300

1200

1100

1000

900

800

c

1 100

500

A = 153 DRAWING 14, PART 1 NUCLEAR DATA SHEETS

‘JQy E Decay 72Ha41,77De05,76Gr13

Part I of 6 Intensities: I(y+ce) per 100 decays of parent

’ Multiple placement 2175

1

/T 6.4 h

_ _ . 0.t 0’0’0. xr+ir&Q+=sfl.asoa I Q+=2170.020

2150 2150

) 19oc 19oc

15oc

1000

500

C ) -

508

NUCLEAR DATA SHEETS

‘=Dy E Decay 72Ha41,77De05,78Cr13

Part 2 of 6

DRAWING 14, PART 2 A = 153

2175 2175 6.4 h 6.4 h r r

iOO0

A = 153 DRAWING 14, PART 3 NUCLEAR DATA SHEETS

‘%y E Decay 72Ha41,77De05,78Gr13

Part 3 of 6 Intensities: I(y+ce) per 100 decays of parent

* Multiple placement 2175

I 2150

15oc I-

NUCLEAR DATA SHEETS DRAWING 14; PART 4 A = 153

‘=Dy E Decay 72Ha41,77De05,78Gr13

Part 4 Of 6

1429.58 i

\ ~ll/ll/lllll 9/Z-

I I I : I I I I II

0.027

< 1.2

7 7.10 J

21 6.69 )

1900 1900

500

1000

500

0

511

A = 153 DRAWING 14, PART 5 NUCLEAR DATA SHEETS

2175

‘=Dy c Decay 72Ha41,77De05,78Gr13

Part 5 Of 6 Intensities: I(r+ce) per 100 decays of parent

s Multiple placement

/ %DY*, xr+x19+=ss.ssos 1

4+=2170.0~~

1900

1500

1000

500

0

7/2t

9/2-

3/2+, 5/2+

~11,2+~ 9/Z- (g/2+) x2+,5/*+

512

NUCLEAR DATA SHEETS

Is3Dy c Decay 72Ha41,77De05,78Gr13

Part 6 of 6

DRAWING 14, PART 6 A = 153

-2175 7,.X-) O.O 6.4 h j

xr+i&w=ae.ssoa 1 Q+=.?l70.0~~

I !.lE !c- 1% ff 2150 0.61 4.08 ) r 2150 zizi.i3 / (

A = 153 DRAWING 15 NUCLEAR DATA SHEETS

9 “‘E~(a,Zny),‘~~Eu(a,4ny) 78Wi02,78De27

& Intensities: relative ly at 125’ in (a,2ny) at Ea=27 MeV

!?5/zT!.....~...~.-...........................-..........................-....-.............................-................................-........-.................~~9~.~.

3000

2500

2000

1500

1000

5oc

,1 C

I

514

lsaTb IT Decay (186 ,s)

I r

NUCLEAR DATA SHEETS “‘E~(a,Zny),‘“~Eu(a,4ny)

78Wi02,78De27 ‘=Dy c Decay ‘JZGd(3He,d)

72Ha41,77De05,78Gr13 76Stlo

I c35/2y)..m......... ...__

r --1 I

DRAWING 16

‘=Gd(a,t) Adopted Levels 76St10 See drawing 17

for band structure

2 0.63 542

A = 153

r3500

i 2200

c 2200 2100

c 2000

i- 1900

1 1800

/

r 1700 1600 1500 1400

L 1300

0.60 TX.5

-1300

-1000

- 500

0.22m.s -300

-250

-200 186 &s 186 p-s

0.84 m -150

-100 0.49 71s

r50

515

A = 153 DRAWING 17 Adopted Levels

NUCLEAR DATA SHEETS

Band structure

<g/2>+ 325.01

0.22 715 <7,2>+ 254.22

<9/2)- 262.97 (5/2)+ am.* Unl’avored Coriolis-decoupled

(7/Q- 213.79 hll/Z-related band Negative-parity band

186 @s (11/2)- 163.31 0.84 11s (3/2)+ 147.48

3/ZC411~ Favored Coriolis-decoupled

hll/Z-related band

0.49 ?a!3 7,2+ 80.77 7/x4041

2.34 d 5,2+ 0.0 5/2~4021

516

NUCLEAR DATA SHEETS DRAWlNG 1% A = 153

Gd(u,3ny),Gd(a,5ny),Gd(a,Gny) 793a14.77K104

P P Intensities: relative ly at 125” in (u,5ny) Q

- * ,.’

0 ..................r. ~.......~.~...........~.............................-~.~..--.-................~-.~.~-.-.......-......~!~.--

Lx/z+ > : 3 4063.:

4200

4000

3500

3000

2500

2000

1500

1000

500

0

A = 153 DRAWING 19 NUCLEAR DATA SHEETS

430(

4ooc

35oc

3ooc

2500

2000

1500

1000

5oc

,

‘=Ho E Decay (9.3 m) 78An25

Intensities: relative ly

Adopted Levels

Gd(a,3ny).Gd(o,Sny),Gd(a,Gny) 79Ja14.77Kl04

Band structure

~11,2+~ 1040.6

il3/2-related band

518

A = 153 NUCLEAR DATA SHEETS A = 153

Tables Contained in This Evaluation

Table Page

y(‘=Pr) from ‘=Cf SF Decay 520 Is3Prn Adopted Levels 521 P-radiations from ‘53Pm p- Decay (5.4 m) 521 y(‘53Sm) from ‘=Pm /3- Decay (5.4 m) 522 ‘=Pm Levels from ‘54Sm(d,3He) 522 ls3Prn Levels from ‘54Sm(polarized t,a) 523 ‘53Sm Adopted Levels 524 P-radiations from ls3Sm p- Decay 527 Y(‘~~Eu) from ‘53Sm p- Decay 527 ‘53Sm Levels from ls3Pm p- Decay (5.4 m) 530 “%m Levels from lJ3Sm IT Decay (10.6 ms) 530 y(‘?3m) from ‘?Sm IT Decay (10.6 ms) 530 ‘=Sm Levels from “‘Nd(a,ny) 531 y(‘%3n) from ‘50’Jd(a,ny) 531 ‘53Sm Levels from “‘Sm(n,y) 532 y(‘=Sm) from ‘=Sm(n,y) 532 ‘93m Levels from ‘52Sm(d,p) 537 ’53sm Levels from ‘54Sm(d,t) 539 153EU Adopted Levels 540 ‘=Eu Levels from ‘%m p- Decay 541 ls3Eu Levels from ls3Gd E Decay 542 ‘53Eu Levels from ‘=Eu(t.p) 542 ls3Eu Levels from ‘52Sm(3He,d) 543 ‘=Eu Levels from ‘=Eu(n,y) E=Thermal 543 Y(‘~~Eu) from ‘5ZEu(n,y) E=Thermal 544 ‘=Eu Levels from ‘=Eu(d,p) 545 ‘=Eu Levels from ‘=Eu(p,p’) 545 ls3Eu Levels from Coulomb Excitation 545 y(ls3Eu) from Coulomb Excitation 546 153E~ Levels from 15*Sm(d,3ny) 547 y(‘=Eu) from ‘54Sm(d,3ny) 547 ‘=Gd Adopted Levels 549 P+,E Data from “%d c Decay 551 y(ls3Eu) from ls3Gd E Decay 552 “%d Levels from ls3Gd IT Decay (76.1 ps) 552 y(“‘Gd) from ls3Gd IT Decay (76.1 ~LS) 553 ls3Gd Levels from ls3Tb E Decay 553 ‘=Gd Levels from ‘5”Sm(a,3ny) 554

y(‘%d) from ‘5”Sm(a,3ny) ‘53Gd Levels from ‘“‘Gd(d,p) ‘%d Levels from “%d(d,t) ls3Gd Levels from ‘S”Gd(3He,a) ‘=Gd Levels from ‘=Gd(p,t) ‘=Tb Adopted Levels P+,E Data from ‘53Tb E Decay y(‘=Gd) from ‘=Tb c Decay ls3Tb Levels from ls3Tb IT Decay (166 MS) y(‘=Tb) from ‘53Tb IT Decay (186 ~ls) i53Tb Levels from ls3Dy z Decay ‘=Tb Levels from ‘5‘E~(ol,2ny),‘“3E~(a,4ny) y(‘=Tb) from ‘5‘Eu(a,2ny).‘53Eu(o,4ny) ls3Tb Levels from ‘JZGd(3He,d) ‘=Tb Levels from ‘=Gdia,t) ‘=Dy Adopted Levels p+,c Data from ‘53Dy E Decay y(‘=Tb) from ls3Dy c Decay a-radiations from ls3Dy u Decay ls3Dy from ‘53H~ c Decay (2.0 m) 153Dy Levels from ls3Ho E Decay (9.3 m) ls3Dy Levels from Gd(u,3ny),Gd(a,5ny),Gd(a,Gny) Y(‘~~D~) from Gd(a,3ny),Gd(n,Snr),Gd(a,Gny) ‘53HO Adopted Levels y(‘=Dy) from lB3Ho c Decay (2.0 m) a-radiations from ls3Ho a Decay (2.0 m) y(‘=Dy) from ‘J3H~ E Decay (9.3 m) ‘53Er Adopted Levels a-radiations from ls3Er (Y Decay ‘=Er Levels from 15’Yb n Decay ‘53TFll Adopted Levels a-radiations from lJ3Tm a Decay ‘53Tm from ls3Yb E Decay ‘53Tm Levels from 15’Lu a Decay ls3Yb Adopted Levels ls3Yb Levels from 15’Hf a Decay ‘53LU Adopted Levels ‘53Lu Levels from 15’Ta a Decay

Page

554 556 556 557 558 559 561 562 569 569 570 570 571 571 572 573 574 575 580 580 581 5’31 582 583 583 593 564 585 585 585 586 586 586 586 587 587 587 587

519

%pr94 NUCLEAR DATA SHEETS wr94

Y(‘~~PI-) from 252Cf SF Decay 72Ho08

Identification: observed (K X-ray)y-coincidence in fission products from ‘s%f(SF). Ge(Li)-Ge(Li).

E-Y Comments

x191 8 5 Ey: also observed by 7OJo20. ‘199 1 5 X211 2 5 ‘218 7 5 X232 2 5 X250 5 5

x y-ray not placed in level scheme

520

lgyPm,,-l NUCLEAR DATA SHEETS 1zyPm92-l

153Pm Adopted Levels

Q(P-)=lOOO 25; S(n)=7467 79; S(p)=7800 39; Q(a)=-2106 27 82WaZZ.

E(level)t

0.05

32# 4 666 4

107# 4 1516 4 2oo# 4 25.59 4

“312# “3785

453@ 4 511s 4 588@ 4 682 4 707% 4 77381 4

2795L 935& 4 935a 4 968=4 4

1022a 4 1152a 4 1179 4 lzo8b 4 1262b 4 1311 4 1345b 4 1376 4 1437 4 1476 4 1629

-1702 -1737 -1763 -1794 -1829 -1869

2138 2221 2280 2333

5/2- 5.4 m 2 zp-=lOO. T,,,: weighted average of 5.3 m 3 (69Sm04) and 5.5 m 2 (62KolO). configuration: 5/2C5321 Nilsson state.

5/2+ configuration: 5/2C4131 Nilsson state. 7/2- 7/2+ 9/2- 9/2+ 1 l/2- (11/2’) (13/2-j 3/2+ configuration: 3/2C4111 Nilsson state. 5/z+ 7/2+

configuration: 1/2C4201 Nilsson state.

configuration: probably the 3/2C5411 Nilsson state.

configuration: 3/2C4221 Nilsson state

J?TS T,,e Comments .-

1/2+ 5/z+ 3/2+

(g/2+) (3/2-j 7/z+ 7/2- 1 l/2-

(3/2+) 3/2t

(5/2+)

7/2t

‘t Listed values are from 78Bu18. Authors indicate that for E>1500 keV, values are based on extrapolation of calibration curve and, consequently, AE>4 keV.

:I Listed assignments are from 78Bu18 and are based on observed L-transfer and analyzing power in ‘5*Sm(pclarized t,a).

i 0 5/2C5321 band member. # 5/2C4131 band member. @ 3/2[4111 band member. & l/X4201 band member. a 3/2C5411 band member. 13 3/2C4221 band member.

P-radiations from 153Pm p- Decay (5.4 m) 69Sm04,62KolO

Sources produced III ‘54Sm(y,p) reaction. Semi, scin. Other measurements: 70SeZY. The decay scheme is essentially that of 69Sm04. EP=1650 50 (62~010).

EP- E( level) 1p-zt Log ft Comments - -

(1717 25) 182.90 7.7 6.2 avg E/3=642 11. (1773 25) 127.30 22.6 5.8 avg Ep=SSS 11. (1810 30) 90.874 6.2 6.4 avg EP=682 17. (1860 30) 35.843 63 5.4 avg E/3=707 Il.

7 The p- intensity to the g.s. and 7-keV level is not known. The 1B and log ft values shown are based on the assumption of no feeding to the g.s. and 7-keV levels and are thus relative values only.

521

'ETPrn,,-2 NUCLEAR DATA SHEETS '~~Pm,,-2

EY

(7.535 5)

28.3 2 35.9 2 45.996? 5 53.534? 5 83.3 5 91.0 3

119.5 3 127.3 3 129.3 5 147.3 5 175.3 5 183.0 5

y(153Sm) from 153Pm p- Decay (5.4 m) 69Sm04,62KolO

E( level) I,+ Mult. ~ - a Comments

7.535 Ey: calculated from y-ray energy differences. The 7.535-keV transition was not observed directly, but its existence was inferred from L X-ray intensities.

35.843 80. El 1.56 35.843 250. El 0.797 53.533 MltE2 53.533 E2 26. 90.874 113 El 0.455 90.874 35 9 El 0.358

127.30 60 6 El 0.171 127.30 140. El 0.144 182.90 185 El 0.138 182.90 5 1 Ml+E2 0.58 182.90 20 3 El 0.0604 182.90 27 3 El 0.0538

7 The P-feeding intensity to the g.s. and ‘I-keV level is not known. Therefore, no y-intensity normalization has been adopted for this decay.

‘53Pm Levels from ‘54Sm(d,3He) 77suzw

E=35 MeV, FWHM=40 keV, 6=5’-30”. Listed band assignments (77SuZW) are in substantial agreement with 78Bu18 for the 5/2[5321,

5/2C4131 and 3/2C4111 bands.

E(leve1) J7rf

0.00 5/2-

LS -

E(leve1): the g.s. was not directly observed in this experiment. However, the g.s. Q value inferred from other members of the g.s. band is -3623 MeV 25. Note that the E(level) values are consistently higher than those adopted from (polarized t,a).

35# 718

112# 153? 201# 2745 461@ 529@ 628?@ 724% 786% 850& 920% 968=

1026a 1158a 1211 1273 1354

5/2+ 7/2- 7/2+

Q/2 Q/2+

(11/2-) 3/2+ 5/2+

(7/2+) (3/z+) 5/2+

(7/2-f) 9/2+

(3/2-) 7/2- 11/2- 3/2+

7/2+

2 3 4 2

4.5 5 2 2

2 2 4 4

(1) 3 5 2 4 3

Jr from 77suzw.

Jr: from 77suzw. Jrr: from 77SuZW.

Jrr: from 77SuZW.

J?r: from 77SuZW.

Jr: 77SuZW assigns Jr=7/2- for this level.

t Adopted values assignments of 77SuZW, based on fits to bands and L-values, agree with adopted values from (polarized t,a), except for the 1354 level as indicated.

$ From DWBA analysis. 5 5/2C5321 band member. # 5/2C4131 band member. @ 3/2C4111 band member. % 3/2C4221 band member. a 3/2C5411 band member.

522

NUCLEAR DATA SHEETS

‘53Pm Levels from ‘54Sm(polarized t,ol) 78Bu18

E=l7 MeV. Magnetic spectrometer, resolution-17 keV.

E(level)t J?yf S§

o.o# 5/z- 0.006

32@ 66# 4

107@ 4 151# 4 zoo@ 4 255# 4 312?@ 376?# 453& 4 511& 4 568& 4 682 707a 4 773a 4

7z795a 935a 4

45/2+ 7/2- 7/2+ 9/2- 9/2+ 1 l/Z-

(11/2+) (13/2-I 3/2+ 5/2+ 7/2+

0.03 0.06 0.63 0.10 0.05 1.1

0.014 0.26 0.05

1/2+ 5/2+ 3/2+

(Q/2+)

0.42 0.06

SO.15

935b 4 (3/2-I so.034

368a 4 7/2t io22b 4 7/2- ii52b 4 11/2- 1179 4 (3/2+)

0.38 0.29 1.4

1208C 4 1262C 4

1311 4 1345c 4 1376 4 1437 4 1476 4 1629

~1702 El737 -1763 41794 21829 -1869

1953 2138 2221 2280 2333

3/2+

(5/z+)

7/a+

0.089 0.074

0.53

Comments

Jr: 5/2C5321 Nilsson state. This band originates in the hl1/2 shell-model state, so most of the strength is expected to be found in the 11/Z member of the band. The weak popuiation of the ground state is consistent with this assignment.

Jr: 5/2C4131 Nilsson state.

Jr: 3/2C4111 Nilsson state

Jr: 1/2C4201 Nilsson state

E(leve1): 78Bul8 indicated that the peak at 935 keV is likely due, in part, to the 9/2+ member of the l/ZC4201 band. This assignment is consistent with the I(I+l) rule.

Jr: probably the 3/2C5411 Nilsson state. The observed value of do/dR for this peak is larger than expected for the 3/2C5411 Nilsson st.ate, so 788~18 attributed part of the intensity to the Q/2+ member of the l/ZC4201 band.

Jr: angular distributions suggest L=2, and negative analyzing power indicates J=L-l/2. The Jr assignment is listed as tentative because the L-transfer is not definite.

Jr: 3/X4221 Nilsson state. JR although the angular distribution is consistent with L=2 and the energy

agreement is good, the analyzing power is not consistent with DWBA curves for L=2, so the Jr assignment is tentative.

t Authors estimate AEs4 keV for E<l500 keV and AE somewhat larger for higher excitations. t Listed J values were assigned by 78Bul8 and are based on comparisons of measured angular distributions of

cross sections and analyzing powers with DWBA predictions. 4 Listed valul?s are spectroscopic factors defined by da/dR(exp)=N*C”S=du/dR(DWBA) with normalization

factor N=23. # 5/2C5321 band member. @ 5/2C4131 band member. & 3/2C4111 band member. a 1/2C4201 band member. b 3/21]5411 band member. c 3/2C4221 band member.

523

lfjzSm,,-l NUCLEAR DATA SHEETS '~~Sm,,-1

‘53Sm Adooted Levels

Q@-)=809.8 25; S(n)=5867.7 6; S(p)=8585 75; Q(a)=-609.2 22 82WaZZ.

E( level)

o.ot

Js T,,,

3/2+ 46.7 h I

7.5357 5 5/z+

35.8433 5

53.5337 5

65.475t 5 90.874$ 5

98.48 2

112.954? 10 127.298# 5

170.871? 5 174.17% 1 182.90# 1

1s9.zt 3

194.65 I

195.9t 4

237.? 5 246.35 4 262.33 2 265.93# 2 276.71 2

321.11s 2

356.69@ 2 362.29 2

371.04# 2 405.46& 5

413.30 4

3/2- (0.1 ns

7/2+

Q/2+ 5/2- 0.52 ns 16

1 l/2- 10.6 ms 3

3/2-

7/2- 5/2- 17 ns 7

(13/2+)

(13/2-) (y/2+) (7/Z)- (3/z)+

(3/z)+

(5/2+) (5/z+)

(9/Z-) (3/z)-

(15/Z-)

Comments

p=-0.0217; Q=O.Q (76F~06); s,p-=lOO. Jr: atomic beam. (76FuO6) 7r=+ from Ml mult of 414.9y from l/2+

state. 72Ka07 and 71Be41 estimated the g.s. to consist of 3/2C6511 (%84X) and 3/2C4021 (~15%). with small contributions from the 3/2+ rotational states of the 1/2C4003 and 1/2C6601 bands.

T I,a: weighted average of 46.5 h 70 (52RulO), 47.0 h 3 (54Le08), 47.1 h 1 (58Co76), 46.7 h 16 (58Gu09), 46.2 h 7 (61Gri8), 47.1 h I (62Ca24). 46.5 h 5 (63H015), 46.8 h 7 (61WyO1, 68Re04), 46.75 h 9 (70Ch09), 46.44 h 8 (71Ba28). Others: 42Ku03, 46Bo25, 46Mi06, 5OWiO6, 73St22.

Jr: member of mixed 3/2C6511+3/2~4021 band. E(leve1): calculated from y-ray energy differences. The existence

of the 7.53-keV transition was inferred from cc(L) intensities (69S11104). The small value of the energy spacing in the ground-state band results from the expected strong Coriolis coupling between the ground-state band and higher lying positive-parity orbitals, principally 5/2C6421 and 1/2[6601, arising from the il3/2 spherical shell-model state (71B~16).

Jr: L=l from (d,t). El transition to 5/2+. configuration: 3/2C5211 Nilsson state. T,,,: from 68Na21 y-y(t) in “‘Pm p- decay. Jr: Ml component in 45.996y to 5/2+ state; 53.531 to g.s. is E2;

member of mixed 3/2C6511+3/2C4021 band. Jn: L=4 from (d,t) member of mixed 3/2C6511+3/2C4021 band. Jr: El transitions to 3/2+ and 7/2t states. T,,,: from 68Na21 yy(t) in ‘a3Pm p- decay. %IT=lOO. Jr: 11/2C5051 Nilsson state. L=5 from (d,t). T ,,?: from 71KiZC in ‘53Sm IT decay (10.6 ms).

Jr: L=l from (d,t); El transition to 5/2+ state. configuration: 3/2C5321 Nilsson state.

Jx: L=3 in (d,t); member of 3/2[5211 band. Jrr: L=3 in (d,t); member of 3/2C5321 band. T ,,e: from 68Na2l yy(t) in ls3Prn p- decay. E(leve1): 68Na21 gave E=170 keV for this level. Subsequent

measurements of the capture y-ray spectrum suggest that the 182.9-keV level is more consistent with the y-y-coincidence measurements.

Jn: transitions to 7/2+ and 9/2+ members of 3/2C6511+3/2C4021 band. Likely 11/2+ member of this band.

Jr: possibly the 5/2C6421 Nilsson state. The (n,y) data suggest J=1/2, 3/2 or 5/2. The absence of a y-ray to this level from the l/2+ capture state favors 5=5/2.

E(leve1): from 79Re04. Jr: L=6 in (d,t); transition to 9/2+ member of 3/2C6511+3/2C4021

band; likely 13/2+ member of this band.

Jr: probable member of 11/21I5051 band. Jn: possibly the 7/2t member of the 5/2C6421 band. Jr: probable member of 3/2C5321 band. L=3 in (d,t). Jrr: this level may be largely vibrational in character since it

was not observed in either (d,t) or (d,p) (71B~16). The tentative J7r=(3/2)+ spin assignment is based on the Ml(tE2+EO) mult deduced from the a(K) and u(L1) of the 276.71~ to the 3/2+ g.s. observed in (n,r).

Jn: L=2 in (d,t). Transition from l/2+ neutron-capture state is presumed to be Ml. Bandhead of the 3/2C4027+3/2~6511 band.

Jn: L=2 in (d,t). Member of 3/2C4021+3/2C6511 band. Jr: the y-decay pattern observed in (n,y) indicates the same Jr as

the 356.69 level. Jr: member of 3/2C5321 band. Jr L=l in (d,t). Probably the 3/2- member of the 1/2C5301 band.

The bandhead has not been identified. Ja: member of 11/2C5051 band.

Continued on next page (footnotes at end of table)

524

'~~Srng,-2 NUCLEAR DATA SHEETS igiSm,,-2

‘53Sm Adopted Levels (continued)

E(leve1) _

414.92a 5

417.8t 6 425.3t 4 447.070 5 450.04& 5 481.08a 4 4928 5 506 5 523% 5 524.36 6 547 5 584.35? 3 598.04 4 602 5 630.21 4

JlI

1/2+

t 17/2+) t 15/2+) (7/2+-J (5/2)- (3/z)+ (11/Z-)

t7/2)- (5/2)

(17/Z-)

(3/2-j

647.78 7 665? 5 695.8ob 3

730 5 733.27 7 734.90c 7.5

(l/2)-

75o.32b 1.5

764? 5 765.8r 6 776 5 786 5 7961) 5

(21/2+) 1/2t

(3/2-)

(19/2+)

800.2§ 5 841 5 881 5 903 5 916.7? 10 919 5 92z.lb 10

(5/2-j (19/2-j

(712-j Jr: member of 1/2C5211 band. 961 5 984 5

looob 10 (9/2-j

1018? I 1075 10 1110 1 1139 10 1166 5 1171 1 1175 10 1197 10 1223 1 1229? 10 1264? 10 1296 10 1310 IO 1322 I 1344 1 1362 1

1375 10 1394? 1 1400? 1 1425 10

Comments

Jx: L=O in (d,t). 1/2C4001 Nilsson state, with considerable admixture of 1/2C6601 suggested by large a value.

Jr: member of 3/2C6511+3/2C4021 band. Jr: member of 3/2C6511+3/2C4021 band. Jr: member of 3/2C4021+3/2E6511 band. Jr: member of 1/2C5301 band. Jr: member of 1/2C4001+1/2C6601 band. Ja: member of 3/2C5211 band.

Jr: L=3 in (d,t). Member of 1/2[5301 band. Jx: transitions to 3/2+, 5/2+, 7/2t, 3/2-, 5/2-, and 7/2- states observed in (II,?).

Jrr: member of 11/2C5051 band.

Jr: 71Be41 indicate that a spin assignment of 3/2- is favored since the level is populated in (n,?) but not in (d,p) nor (d,t), leading them to suspect that the level has a collective nature, perhaps a p vibration based on the 3/X5211 state.

Jr: 1/2C5211 Nilsson state, with some admixture of the K-2 y vibration. L=l in t&t).

JYT: member of 3/2C6511+3/2C4021 band. Jr: L=O in (d,t). configuration: 1/2C6601+1/2C4001. E(leve1): likely the state observed at 747 keV in (d,p) and at 745 keV in (d,t).

Member of 1/2C5211 band. E(leve1): observed in (d,t) only. Jr: member of 3/2C6511+3/2C4021 band. E(leve1): observed in (d,t) only. E(leve1): observed in (d.t) only. Jr: member of 1/2C5211 band. Jn: member of 11/2C5051 band. E(leve1): observed in (d,p) only.

E(leve1): observed in (d,t) only.

E(leve1): from 69Sm04 (n,y). Likely the level observed at 981 keV in (d,p) and at 982 keV in (d,t).

E(leve1): observed in (d,p) only. Jr: tentative assignment of Jr=9/2- based on energy agreement with predicted value

of 1004 keV for 9/2- member of 1/2[5211 band.

E(leve1): observed in (d,p) only. E(leve1): listed value is the average of (d,p) and (d,t) measurements

E(leve1): listed value is the average of (d,p) and (d,t) measurements

E(leve1): from 69Sm04 (n,r). Likely the level observed at i319 keV in (d,p). E(leve1): from 69Sm04 (II,?). Likely the level observed at 1342 keV in (d,p). E(leve1): from 69Sm04 (n,y). Likely the level observed at 1363 keV in (d,p) and at

1358 keV in (d,t).

E(ieve1): listed value is average of (d,p) and (d,t) measurements

Continued on next page (footnotes at end of table)

525

'E$Sm,,-3 NUCLEAR DATA SHEETS 1~~Sm,,-3

7/2+

E(level) JR

1464 10 1488 10 1506 8 1525? 1 15324 to

1541 8 1558 10 1563 8 1592 10 1602 10 1612 12 1624 12 1644 9 1678 9 1715 9 1744 9 1778 12 1794 10 1818 10 1830 10 1846 10 1864 10 1883 10 1905 10 1927 10 1971 10 1991 10 2029 10 2076 10 2121 75 2128 15 2144 2165 2188 2202 2240 2286 2302 2332 2355 2366 2394 2413 2456 2484 2506

1

1

5 5 5 2 6 1 4 5 5 5 5 5 1 1 4

‘53Sm Adopted Levels (continued)

Comments

Jr: L=4 in (d,t). Bandhead of 7/2C4041 band.

2534 11 2561 I7 2575 15 2601 75

7 3/2C6511+3/2[4021 band member. $ 3/2C5211 band member. A=ll.O keV. 4 11/2[505] band member. A=12.1 keV. B=-8.7 eV. # 3/2[5321 band member. A=ll.l keV. @ 3/2C4021+3/2C6511 band member. A=8.2, keV, B=0.07 eV, C=O.28 eV % 1/2C5301 band member. A=8.9 keV. a 1/2C4001+1/2C6601 band member. A=15.3 keV, B=0.44 eV. b 1/2C5211 band member. A=13.6 keV, a=0.33 eV. C 1/2C6601+1/2C4001 band member. d 7/2C4041 band member.

E(level)

2619 15 2669 15 2686 11 2721 12 2751 12 2788 14 2832 II 2880 12 2912 14 2944 14 2972 15 2994 15 3047 15 3073 15 3097 12 3113 16 3135 12 3158 14 3187 16 3214 16 3221 15 3236 16 3253 16 3268 16 3291 12 3316 16 3349 12 3361 72 3380 15 3396 15 3414 15 3469 17 3501 17 3513 17 3558 17 3563 19 3579 17 3601 19 3634 15 3635 3676 3716 3736 3759 3809 3834 3856

1

1

3890 17 3913 17 3929 17

526

'~~Srn,,-4 NUCLEAR DATA SHEETS 1~~Smg,-4

P-radiations from ‘53Sm p- Decay 69Un03

Other measurements: 50Hil7, 52Ba49, 5ZRul0, 54Gr19, 54Le08, 55Ma62, 56Du31, 57JoZ4, 5BCo76, 58Gu09, 6OSuOB, 61Grl8, 6lMo07, 6lRu01, 6lWyO1, 62Bi16, 62Ca24, 62SuO1, 63ChE5, 63Ho15, 64AlO9, 64NoO8, 66Bl06, 66Ne06, 6BRe04, 69Pa03, 69Sm04, 70Ch09, 70Me26, 70Mil5, 70PaZI, 70Ra37.

The decay scheme shown in the drawings is primarrly that of 69Un03.

EP- !(level) I@-$? Log ft

(46 3) 763. 8 <0.0001 >8.6

(49 3) 760.39 0.0007 2 7.86 15

(91 3) 718.59 0.0018 1 8.27 5 (103 3) 706. 59 0.021 2 7.33 5 (109 3) 701.04 0.0050 9 8.06 9 (116 3) 694. 16 0.025 2 7.44 5

(128 3) 681.84 0.0094 4 7.97 4 (152 3) 657. 67 50.0009 ~9.3

(173 3) 636.49 0.069 5 7.55 4 (175 3) 634. 62 0.066 7 7.58 5

641 6 172.854 34.7 16 6.69 2

(6.58 3) 151.627 694 15 103.180

0.036 13 9.961U 16 43.8 23 6.75 3

(712 3) 97.429 0.56 4 8.65 4 803 70 0.0 20.7 17 7.28 4

Comments

avg EPsll.7 7. avg Ep=l2.6 7. avg E/3=23.7 7. avg EP=27.0 7. avg E/3=28.5 7. avg E/3=30.4 7. avg E/3=33.9 7. avg E/3=40.7 8. avg EP=46.8 8. avg E/3=47.3 8. avg EP=200.3 10. Ep-: weighted average of 640 keV 75 (54Grl9), 650 keV 15

(55Ma62), 645 keV 10 (56Du31), 610 keV 20 (575024), 640 keV 20 (58Co76). From Q(P-)-value, E/3=636.9 25.

Ip-: measured intensities include 30 (54Grl9), 43 (55Ma62), 40 (56Du31), 15 (57Jo24), 40 (58Co76).

avg E/3=208.1 70. avg E/3=226.1 10. EP-: weighted average of 680 keV 10 (50Hil7), 700 keV 20

(52Ba49). 710 keV 15 (54GrlQ), 685 keV 5 (54Le08), 720 keV 15 (55Ma62), 720 keV 70 (56D~31), 685 keV 15 (575024), 710 keV 20 (58Co76). From Q(p-)-value, EP=706.6 25.

Ifl-: measured intensities include 67 (50Hi17), 49 (54Grl9), 70 (54Le08), 35 (55Ma62), 38 (56D~31), 65 (575024), 40 (5BC076).

avg EP=228.2 10. avg E/3=265.2 10. EP-: weighted average of 800 keV 10 (50Hil7), 800 keV 20

(52Ba49), 810 keV IO (54GrlQ), 795 keV 5 (54Le08), 820 keV 70 (55Ma62), 825 keV 70 (56Du31), 792 keV IO (575024), 813 keV 20 (58Co76). From Q(p-)-value, EP=809.8 25.

IO-: average of 20 (54Grl9), 21 (54Le08). 20 (55Ma62). 22 (56Du31), 20 (575024), 20 (58Co76).

t From I(y+ce)-imbalance at each level. i For p- intensity per 100 decays, multiply by 1.00

Y(‘~~Eu) from i53Sm p- Decay 69Un03

ce Intensities are from 6lMo07, 62SuO1, 69Sm04, and 70PaZ1, and are given in number of K-conversion electrons per 100 decays normalized to 40.8 for the 103~ to give a(K)(l03y)=l.44.

Subshcll ratios are from 70PaZI. Iy-normalization: based on Iy(lO3y)=28.3 6 per 100 decays of ls3Srn as measured by 66Ne06.

EYS _ E(leve1) I,?§ Mu1 t. n Comments

19.82 2 103.180 E2 3290. Iy+ce§: 39 17. L2:L3:M:N=l0:13.2:5.3:1.38. L2:L3:M=lO:l4:5.5 (E2 theory). Ey: weighted average of 19.85 5

(6ih4007), 19.81 2 (70PazI). Iy+ce: from intensity balance at 83

level. 54.199 2 151 ,627 0.164 34 if Ml,E2 18 7 Ey: weighted of 54.19 2 average

(64A109), 54.1988 22 (70Ra37). x55.9 3 3.5 I-y: from 69Un03.

68.23 2 151.627 0.122 37 if El 0.80 Ey: from 64AIO9.

Continued on next page (footnotes at end of table)

527

‘~~Srn,,-5 NUCLEAR DATA SHEETS

Y(‘~~Eu) from ls3Sm ,l- Decay 69Un03 (continued)

EYS E(level) 1ytg Molt. a

69.674 1 172.854 525 25 Ml+E2 5.42

75.422 6 172.854 19 2 El

83.367 3 83.368 21 3 E2tMl

89.485 3 172.854 17 2 MltE2

96.88 I 269.732 0.7

97.429 3 97.429 73 2

103.180 1 103.180 2830 60 E2fMi

0.611

3.82

2.62

if Ml,E2 2.4 4

El 0.307

1.73

comments

6: 0.138. Ey: weighted average of 69.675 2 (61Sc19),

89.675 3 (628116), 69.676 7 (62Ha46), 69.872 6 (62SuOl), 69.68 I (64A109), 69.675 5 (69Sm04). 69.6715 20 (70Ra37).

ce(K)=22 7. K:L1:L2:L3:M:N:0=76:10:1.71:1.3:2.81:0.75:0.13

(exp). K:Ll:L2:L3:M=76.7:10:1.58:0.99:2.72 (theory

for 6=0.138). ce(K)=0.073 8. K/Ll=lO/1.17. Ey: weighted average of 75.43 7 (64A109),

75.42 I (69Sm04). 75.44 5 (70PaZI), 75.4212 23 (70Ra37).

6: 0.61. E-y: weighted average of 83.37 2 (62SuOl),

83.37 2 (64A109), 83.37 7 (69Sm04), 83.38 2 (70PaZI), 83.3666 24 (70Ra37).

ce(K)=O.BO 2. K:Ll:L2:L3:M:N=75.8:10:15.8:16.8:5.26:2.63

(exp). n(K)=2.37. K:Ll:L2:L3:M:N=85.3:10:14.8:15.6:9.24 (theory

for 6=0.81). =X(M): disagreement between the experimental

and calculated values may be due to incomplete resolution of this line and the ce(L2)-line of the 89.485~.

6: -0.2. ce(K)=0.44 5. K:Ll:L2:L3:M=58.1:10:5.6:1.25:1.5. K:Ll:L2:L3:M=77.5:10:1,8:1.2: 2.8 if 6=0.2

theory. Ey: weighted average of 89.47 4 (62SuOl).

89.49 2 (64A109). 89.48 2 (69Sm04). 89.48 2 (70PaZI), 89.4853 33 (70Ra37).

ce(L2): the disagreement between the experimental and calculated values may be due to incomplete resolution of this line and the cc(M)-line of the 83.367-y.

Ey: from 7OMuO4. y was seen only in coincidence data by 69Un03.

ce(K)=O.EO I; a(K)exp=0.27+3-2. K:Ll:L2:L3=91:10:3:3.3. a(K)=0.258 (El theory). K:Ll:L2:L3=99:10:2.1:2.6. E-y: weighted average of 97.42 4 (60Wall),

97.45 4 (62s~oi), 97.45 2 (64~109), 97.42 I (69Sm04), 97.42 2 (70PaZI), 97.4292 33 (70Ra37).

6: 0.130. 6: from 70PaZI. K:L1:L2:L3:M:N=83:10:1.3:0.43:3.4:0.6. K:L1:L2:L3:M:N=77.6:10:1.14:0.480:2.53

(theory). a(K)=1.44. a(K)exp=1.16 8 (6OSuO8), 1.50 15 (62SuOl),

1.40 8 (83Ch25). Ey: weighted average of 103.175 4 (60Bell),

103.181 3 (61Sc19), 103.181 2 (62Bi16), 103.180 70 (62Ha46), 103.19 2 (64A109), 103.181 5 (69Sm04), 103.179 4 (70Ra37).

Iy: 0.283 6 per decay from 66Ne06

Continued on next page (footnotes at end of table)

528

'E$Sm9,-6 NUCLEAR DATA SHEETS 1fj$Sm,,-6

EYS - 118.11 1

151.62 1 166.55 7

172.30 I

172.850 8

412.05 2C 681 .I34 424.38 2G 694.16 436.83 2C 706.59 462.0 3 634.62 463.67 15 636.49 485.03? 20 657.67 509.11 15 681.84 521.28 I.5 694.16 530. ? 681 .84

531.38 15 533.34 15 539.03 10 542.60 20 545.75 15 554.94 10 574.01? 30 578.66 15 584.49 20 587.47 20 590.96 20 596.72 15 598.4 3

603.39? 15

609.22 70 615.41 20 617.71 20

x63o.7o 30 634.61 30 636.45 25 657.55? 25

634.62 636.49 636.49 694.16 718.59 706.59 657.67 681.84 681 .84 760.39 694.16 694.16 681.84 701.04 701.04 706.59 706.59 718.59 701.04

662.4 6 676.9 5 682.

634.62 636.49 657.67 760.39 760.39 760.39 681.84

694.4 4 701.5 4 706.2 4

‘713.6 3 718.5 4 760.2 3 763.8? 6

694.16 701.04 706.59

718.59 760.39 763.8

Y(‘~~Eu) from ls3Sm p- Decay 69Un03 (continued)

E(leve1) I,?$ Mu1 t. a

269.732 0.03 if El 0.182

151.627 1.15 if El 0.092 269.732 0.06

269.732 0.04

172.854 7.0 10 Ml+E2 0.37

6 3 2 0 0 0 0 0 0 0 0 1

SO 60

0 50

0 0 0 0 0

SO 50

0 0

50

23 2 230 23 180 18 141 28 56 16 04 1 22 2 75 8

40 64 20 32 0 2 27 3 10 I 51 5 010 3 330 33 086 9 034 4 091 9 15 12 15 15 31 3 31 27 13 080 8 11 1 01 030 8 190 19 040 040 008 3 0010 3 0014

Comments

8-f: from 70Mu04. y was seen only in coincidence data by 69Un03.

Ey: from 70Mu04. Ey: from 70Mu04. y was seen only in

coincidence data by 69Un03. Ey: from 70Mu04. y was seen only in

coincidence data by 69Un03. 6: 1.19. K/L=4.5 (54GrlQ); ce(K)=O.OZG 2. Ey: weighted average of 172.847 :O

(62SuOl), 172.87 4 (64A109), 172.85 2 (69Sm04), 172.90 5 (70PaZI).

6: calculated from K/L=4.5 (54Gr19).

Ey: from 70PaZI.

Ey: from 7OPaZI. Shown on !evel scheme only.

Ey: from 70PaZI. Not reported by 69Un03

Ey: from 70PaZI 1-y: from 70PaZl.

0020 5 0025 6 0015 4 019 0020 5 0025 6 0031 17 E-y: from 70PaZl

1-y: from 70PaZi.

7 From 69LJnO3 for E>200 keV. For Es200 keV the listed values are welghted averages of measured values from 62SuO1, 64A109, 668106, 66Ne06, 69SmO4, 69Un03 and 70PaZI.

f From 69UnO3 except as indicated otherwise. 5 For absolute intensity per 100 decays, multiply by 0.0100. x y-ray not placed in level scheme.

529

'~~Srn,,-7 NUCLEAR DATA SHEETS '~~Sm9,-7

153Sm Levels from 153Pm fl- Decay (5.4 m) 69Sm04,62KolO

Sources produced in ‘54Sm(y,p) reaction. Semi, win. Other measurements: 70SeZY. The decay scheme is essentially that of 69Sm04.

E(level)t Jn$ T,,,

0.0 3/2+ 46.7 h 7.535 5 5/2+

35.843 5 3/2- (0.1 ns 53.533 5 7/2+ 90.874 5 5/2- 0.52 nsg 16

127.30 3/2- 182.90 5/2- 17 ns§ 7

t Determined by 69Sm04 from results of (n,y) experiment with bent-crystal spectrometer.

$ Adopted values. 5 From yy(t) (68Na21).

‘53Sm Levels from 15%rn IT Decay (10.6 ms) 71KiZC

Sources produced in Sm(pulsed n,-y) reaction, with natural and enriched Sm targets

E( level) Ji?t T, ,a Comments

0.0 3/2+ 7.5 5/2t

53.533 7/2+ 65.475 9/2+ 98.4 2 11/2- 10.6 ms 3 T,,,: from 71KiZC.

t Adopted values.

y(‘53Srn) from ‘53Sm IT Decay (10.6 ms) 71KiZC

E-Y E(leve1) IYt Mult. $ a 1ytcet1

7 5 7.5 156 16 11 9 65.475 156 8 32 9 r 98.4 100 4 if El 1.02 202. 46 1 1 53.533 4.4 7 MltE2 110 14 53 6 1 53.533 1.7 4 E2 25.9 46 71 58 0 I 65.475 2.3 4 E2 18.8 46 8

t For absolute intensity per 100 decays, multiply by 0.495 70. $ Theoretical values (68Ha53) for the listed mult. § Calculated by the evaluator from the measured 1y of 71KiZC and listed

values for a, the decay scheme shown in the drawings and requiring intensity balance at each level.

530

'~~Srng,-8 NUCLEAR DATA SHEETS '~~Srn,,-8

153Sm Levels from i50Nd(a,ny) 79Re04

Eu=17 MeV. Measured E-y, Iy, yy-coincidence; Ge(Li).

E(le~el)~ ~-

0.05 (7.56) 53.56 65.56 98.4#

189.ZB 3 195.98 4 246.4# 4 413.3# 4 417.88 6 425.36 4 598.0# 4 733.26 7 765.84 6 800.2# 5

J?TS Comments

3,‘2+ a/2+ Level not directly observed in this experiment. 7/2+ 9/2+ No depopulating y-ray transitions were reported by 79Re04. 1:/2- No depopulating y-ray transitlons were reported by 79Re04.

(11/21-l (13/z+) (13/z-) (15/z-) (17/2+) (15/2+) (17/2-l (21/z+) (19/2+) (1Q/2-)

7 Listed values have been calculated by the evaluator from the Ey values of 79Re04. fi 5

Adopted values. Ground-state band member. The primary component is likely 3/2[6511, but conslderable mixing of 3/2C4021 i? expected.

# 11/2C5051 band member.

y(‘53Sm) from “ONd(a,ny) 79Re04

EY+

53.5 3 ‘103.2 3

123.9 3 130.2 3 135.5 3

X137.3 3 147.4 3

‘148.9 3 166.7 3

x175.1 3 ‘183.0 3

184.9 3 xzoo.6 3

202.1 3 221.9 3 229.3 3 236.3 3

‘238.6 3 ‘255.2 3 xZ85.8 3 ‘301.8 3

315.4 3

E( level)

53.5

189.2 195.9 189.2

246.4

413.3

598.0

800.2 417.8 425.3 425.3

413.3 733.2

5.0 5 3.0 3

<lOO.§ <0.79§

0.19 2 CO.685

0.25 3 0.91 9 0.73 7 0.24 2 0.35 4 0.28 3 0.14 2

CO.716

0.37 4 0.18 2

0.53 5 0.87 9

CO.254 <0.25§

t 79Re04 indicated AE<0.3 keV $ 79Re04 indicated Aly<lO%. § Component of an unresolved multiplet. x y-ray not placed in level scheme.

Wf ‘316.3 3 ‘329.5 3 x334.1 3

340.5 3 351.4? 3

‘356.0 3 ‘361.1 3 x366.5 3 ‘370.6 3

387.0? 3 x439.5 3 x454.1 3 ‘462.3 3 ‘484.0 3 ‘523.2 3 x540.4 3 x565.5 3 ‘572.0 3 ‘585.1 3 x674.9 3

E(leve1) I-YZ

0.27 3 0.40 4 0.35 4

765 8 §

598.0 0.61 6 0.40 4 2.5 3 0.37 4

800.2 0.34 3 0.30 3 0.85 9 0.34 3 0.37 4 0.91 9 1.2 1 0.23 2 1.6 2 1.9 2

531

'~~Sm,,-9 NUCLEAR DATA SHEETS '~~Sm,,--9

‘53Sm Levels from ‘52Sm(n,y) 69Sm04,69Re04,71Be41

The level scheme shown in the drawings is based on data from 69Sm04, 69Re04 and 71Be41. The energy of the capture state was determined from an unweighted average of the values reported by these authors for the energy of the primary transition to the 127.30-keV level. The energies used for the primary transitions from the capture state represent the difference between this value and that of the final state.

Other measurements: 60Dr04, 61Sc19, 72De67, 72Kr20.

E(leve1) Ja E( level) Jr E( level) Jr E( level) J?l

0.0 3/2+ 262.33 (7/2)+ 524.36 (5/2+) 1171. 7.535 5/2+ 265.93 (7/2-j 584.3? 1223.

35.843 3/2- 276.71 (3/2)+ 630.20 1322. 53.533 7/2+ 321.11 3/2+ 647.8? 1344. 65.475 9/2+ 356.69 (s/2)+ 695.83 (l/2)- 1362. 90.874 5/2- 362.29 (5/2+) 734.90 1394.?

112.954? 371.04 (9/2-j 750.32 (3/2)- 1400.? 127.298 3/2- 405.46 3,‘2- 916.7? 1525.? 170.88? (11/2+) 414.92 1/2+ 922.1? 1556.?

174.17 (7/2-) 447.07 (7/2+) 984. 5868.20 10 1/2t 182.90 5/2- 450.04 (5/Z)- 1018.? 194.65 (512) 481.08 (3/2)+ 1110.

y(‘53Sm) from 15*Sm(n,y) 69Sm04,69Re04,71Be41

Ice: listed values are given in electrons per 100 captures. (69Sm04).

EY E(leve1) rrt* Mu1t.G Comments

(7.535) 7.535 28.309 5 35.843 35.571 5 356.69 35.842 5 35.843 36.423 5 127.298 37.343 5 90.874 45.996 5 53.533

x51.040# 10 53.534 5

55.031 8 90.874 0.171 17 55.61 I 182.90 0.029 6 57.94 1 65.475 <0.042

59.42 1 x63.66# I

66.16 1 ‘76.96 1

79.43 1 83.03 2 83.302 8 83.339 5 88.16 1

x9O.56 1 90.766 13 90.874 5

91.455 5

53.533

170.88 <0.042 (E2,Ml)

112.954

481.08

262.33 265.93 174.17

90.874 262.33

0.026 5 0.0070 35 0.008 2 0.0430 86 0.21 5 0.043 8 0.059 12 1.70 10 0.0073 22 0.052 10 0.116 23 2.47 12

El ce(K)=0.7 2; ce(L1)=0.13 7.

356.69 90.874 El ce(K)=1.33 47.

127.298 CO. 80 Ml(+E2tEO)

262.33 CO. 80 (E2)

2.10 21 0.030 3 6.20 62 0.021 4 0.223 22 0.262 26

0.030 6 0.136 14

Ml ce(Ll)tce(L2)=50 20; ce(M)<lO. El ce(Ll)<2.0; ce(L2)<2.0; ce(L3)<2.0.

El ce(Ll)=1.83 55; ce(L2)<1.0; ce(L3)<1.2. ce(Ll)<l.O; ce(L2)<1.0; ce(L3)il.O. ce(Ll)<l.O; ce(L2)<1.0; ce(L3)<1.0. ce(Ll)=i.S 9; ce(L2)=1.6 70; ce(L3)=2.5 10. Intensity of overlapping Auger lines has been

MltE2

E2

Ml(tE2)

(E2)

subtracted.

ce(L1)=0.35 21; ce(L2)=1.25 25; ce(L3)=1.40 28. w(L) values include intensities of overlapping

Auger lines. ce(K)<l.‘I; ce(Ll)<O.B; ce(L2)<0.3; ce(L3)<0.3. ce(K)<1.7; ce(L1)<0.3; ce(L2)<0.3; ce(L3)<0.3. 0.13Cce(K)<1.5; 0.07<ce(L1)<0.3; 0.07<ce(L2)<0.3. 0.07<ce(L3)<0.3. Mult.: (E2,Ml) from conversion data, placement in

level scheme rules out Ml. 0.13<ce(K)<1.5; 0.07<ce(L1)<0.3; 0.07<ce(L2)<0.3. 0.07<ce(L3)<0.3. ce(K)<l.S; ce(Ll)<O.S; ce(L2)<0.3; ce(L3)<0.3.

x(K) value includes intensity of overlapping Auger lines.

ce(K)=2.45 86; ce(LI)=O.SO 15. See comments for Sly from 262 level. ce(K)=2.45 86; ce(L1)=0.30 75. w(K) value includes intensity of overlapping

Auger lines. Mult.: Ml(+E2+EO) from conversion data for

multiply-placed 91 y. Mult=E2 required from level scheme for placement from 262 level.

Continued on next page (footnotes at end of table)

532

NUCLEAR DATA SHEETS

E(leve1) 1,tt:

92.03 1 93.81 1

'104.58# I x1o4.93 1

105.42 1

182.90 276.71

108.71 I x1o8.89 1 x112.65# I x113.18# I

117.330 5 x118.838 5

119.763 5 120.64 I

'123.62 ;! 126.44 i! 127.298 5 129.36 1

X135.54 i! 138.21 i!

112.954 170.88 371.04

0.08 I 0.008 2 0.0080 24 0.0070 28

(0.016 <0.016

0.250 15 0.0510 51 0.0180 27 0.0100 15

170.88

127.298 174.17

321.11 127.298 182.90

138.32 I! 138.64 3

'146.73 4 147.06 I 149.417 11 162.09 i!

X163.E1 Z! 166.64 I

xl67.15 3 170.33 3 171.45 1 173.34 I 175.370 11

'180.34 3 x181.8o 3 '182.44 ;!

182.52 1 182.900 8

'184.82 2 185.845 II 187.10 i! 188.119 II

321.11 414.92 174.17 265.93

182.90 276.71 524.36

174.17

447.07 262.33 450.04 182.90

356.69 182.90

193.82 ;! '194.33 ;!

194.66 :I '194.95# 4 '195.58 4!

'195.80 4 196.866 17

276.71 194.65 362.29 371.04 321.11

194.65

262.33 371.04

x198.2o 4' x2oo.93# 7 '202.78 5

203.25 4’

204.36 c' 208.802 14

'211.24 2 x212.14 4' '212.844 II '220.77 6 '222.656 II

223.173 I7

524.36 481.08 262.33

276.71

0.1200 84 2.84 14 0.130 9 0.0290 44 0.012 4 6.60 33 0.69 3 0.0280 42

<0.024 <0.024

0.035 5 0.015 2 0.0160 32 0.242 24 0.025 3 0.027 5 0.0110 44 0.78 4 0.0080 32 0.013 4 0.069 7 0.137 11 1.21 7 0.0110 22 0.0110 22 0.0100 25 0.024 4 1.49 7 0.0440 88 0.056 6 0.008 2

<0.028 <0.028

0.060 9 0.0630 35 0.021 5 0.0140 4.2 0.0180 54 0.0180 54

<0.210 <0.210

0.0090 27 0.033 5 0.0110 22 0.042 8 0.070 6 0.103 12 0.020 3 0.020 3 0.150 9 0.0040 72

CO.24 0.250 20

229.40 5 356.69 0.0063 79 230.243 13 321.11 0.015 2

y(‘53Sm) from ‘52Sm(n,y) 69Sm04,69Re04,71Be41 (continued)

Mult.6 Comments

ce(K)<0.4; ce(Ll)<O.l; ce(L2)<0.1; ce(LB)<O.l.

ce(K)<0.2; ce(L1)~O.l; ce(L2)<O.i; ce(L3)~O.l. ce(K)<O.Z; ce(Ll)<O.l; ce(L2)<0.1; ce(LS)<O.l. ce(K)<0.3; ce(Ll)<O.l; ce(LE)<O.l; ce(L3)cO.l.

El ce(K)=0.43 4; ce(L1)=0.078 16. ce(K)<0.2; ce(L1)<0.03.

El ce(K)=O.QS 6; ce(Ll)=O.ll 2. El ce(K)<0.12.

ce(K)<O.l.

Ml+E2 ce(K)=0.15 5.

El ce(K)=0.065 13.

El ce(K)<0.02. El ce(K)=0.073 7

El ce(K)=0.066 IO.

ce(K)C0.03

(E2) ce(K)=0.056 25; ce(L1)=0.016 70. Mult.: (E2,Ml) from conversion data, Ml ruled out

from placement in level scheme.

Continued on next page (footnotes at end of table)

533

‘~~Sm,,-11 NUCLEAR DATA SHEETS ‘~~Sm,,-11

y(153Sm,) from 15’Sm(n,y) 69Sm04,69Re04,71Be41 (continued)

EY

234.93 5 240.868 14

‘242.24 20 x243.06# 4 ‘244.62 4 ‘247.08 3 ‘247.62 6 ‘248.39 4 x249.14 4 X249.73 4 ‘252.010# 16 X254.794 15

‘257.68 5 258.43 5

‘261.15 5 x261.58 3 ‘261.76 4

262.31 4 x262.86 4

263.20 4 ‘264.25 5 ‘265.10 4

265.78 4 267.56 3 269.17 2 271.40 8

x275.2O 4 276.71 2

x277.72 4 278.17 2

‘282.55 4 ‘284.41# 5

285.23 4 287.49 6

X290.71 8 291.17 5

x293.54 7 296.82 5 298.20 5

‘298.94 3 X302.95 4

303.16 4 x3O7.21 4

308.71 7 ‘310.62 7 ‘312.85 5

313.54 3 314.60 3

x315.21 5 x317.8O 3

321.13 3 326.45 5

‘327.81@ 8 329.39 3

X330.75 3 X340.95 5 ‘347.85 6

349.16 5 350.20 5

x351.19 6 354.76 3 356.62 10

‘358.48 6 359.12 10

x36O.21 10 362.30 3

E(leve1)

362.29 276.71

262.33

265.93 524.36

262.33

564.3

356 69 321 11 276 71 362 29

276 71

321 11 414 92

356 69

362 29 481 08

356 69

362 29

321 11 405 46

321 11 362 29

734

356 69 524 36

362 29 356 69

450

362

04

29

46

90

1rtl:

0.029 3 0.047 7 0.014 7 0.0370 56 0.0290 44 0.0300 45 0.0070 21 0.0140 21 0.0240 36 0.0150 23 0.0460 69 0.449 23 0.449 22 0.0270 54

(0.008 <0.008

0.0036 18 0.0550 66 0.0110 33 0.0057 17 0.0140 31 0.0160 32 0.0080 32 0.0630 51 0.043 5 0.014 3 0.786 47 0.012 4 0.0370 56 1.62 70 0.0440 53 0.195 12 0.0490 59 0.0130 39 0.020 4 0.030 5 0.0150 45 0.090 9 0.0310 62 0.028 4 0.038 5 0.075 6 0.105 13 0.105 13 0.93 23 0.100 8 0.0190 38 0.0170 43 0.235 /4 0.099 8 0.0530 53 0.135 If 2.64 16 0.031 5 0.0170 51 0.186 13 0.103 10 0.0710 71 0.0180 54 0.117 9 0.156 71 0.0510 56 1.01 6 0.038 10 0.050 7 0.032 5 0.0360 58 0.810 57

MuIt.§ Comments

Ml. E2 ce(K)=0.042 75.

ce(K)=0.032 16; ce(Ll)=O.OlO 7.

Ml(+EBtEO) ce(K)=0.187 77; ce(L1)=0.023 9.

Ml+E2 ce(K)=0.017 9.

Ml ce(K)=0.171 10.

Ml ce(K)=0.063 73.

Ml(+E2) ce(K)=O.O+l 16.

Continued on next page (footnotes at end of table)

534

NUCLEAR DATA SHEETS

EY

X365.13 7 X367.03 7 '368.27 i'0

369.63 :I X370.43 9 X371.89 9 '372.87 4

374.69 4 379.10 4

X384.79 4 '386.02 7 '389.12 'f6

390.24 4 393.58 13

396.49 4 397.90 4

'398.89 i3 '400.63 f6 x404.17 4

407.30 7 413.75 15 414.97 6

x417.13 17 X419.93 17 '422.71 :> x425.97 r9 X428.18 r9

433.11? 10 435.43 .?O 439.53 13 442.51 15 445.15 6 447.27 13

'452.22 30 456.20 30

'459.92 6 '470.65@ 6

473.63 8 481.14 ,5

'482.51 5 466.57 12

x491.55 12 X494.35 12 X502.21 I8 '503.52 I8

516.72 10 '518.02 13 x521.12 20 x523.O6 .20

524.22 20 x53O.65 26 x532.92@ 26 '535.42 28

539.16 90 540.53 30

X549.86 30 551.74 30

x559.88 1.5 '561.61 22

564.70 22 567.50 15 568.52 .24

X574.05 50 '574.99 50 X579.91 so

Y( 153Sm) from 15*Sm(n,y) 69Sm04,69Re04,71Be41 (continued)

E(leve1) I,?$ Mult.5 Comments

481.08 405.46

695.83 414.92

481.08 447.07 750.32 450.04 405.46

414.92 734.90 414.92

524.36 630.20 447.07 450.04 481.08 630.20

630.20

524.36 481.08 481.08

524.36

524.36

524.36

630.20 734.90

734.90

630.20 750.32 695.33

0.0340 68 0.0340 68 0.0820 82 0.082 a 0.300 18 0.0280 84 0.0160 56 0.0750 75 0.048 7 0.132 II 0.102 10 0.0210 63 0.054 76 0.667 40 (El) ce(K)<O.Ol.

<0.109 <0.109 ce(K)=0.037 6.

0.431 34 3.31 20 El ce(K)=0.021 3. 0.051 10 0.028 11 1.85 11 0.171 14 0.176 35 3.04 18 Ml ce(K)=0.107 II. 0.0210 84 0.0110 66 0.0240 96 0.0290 87 0.0240 96 0.071 II 0.028 8 0.280 22 0.754 45 0.164 16 0.050 8 0.0170 85 0.018 9 0.321 26 1.86 13 1.86 13 ce(K)=0.016 35.

c2.23 MltE2 ce(K)=0.037 75. 0.686 55 0.175 18 0.135 15 0.040 10 0.098 20 0.227 27 0.075 75 0.473 33 0.115 18 0.042 13 0.104 21 0.152 30 0.059 24 0.147 30 0.137 35 0.113 28 0.125 31 0.064 23 0.095 24 0.129 26 0.052 13 0.141 28 0.524 63 0.229 32 0.101 30 0.114 34 0.155 39

Continued on next page (footnotes at end of table)

535

1~~Sm,,-13 NUCLEAR DATA SHEETS ‘~$Smg,-13

y(‘53Sm) from “‘Sm(n,y) 69Sm04,69Re04,71Be41 (continued)

E-Y

582.96? 50 '586.44@ 50 '589.83@ 50 X593.77 17 X604.19 34 x6O5.93 34 '610.07 28 '614.44 16 '616.94 40

622.76 10 '627.55 30

630.24 10 '646.28 22 '649.77 33

659.95 10 '662.90 50 '675.28 33

681.70 26 '689.41 35 x693.16 35 '698.41 24 '702.61 24 '707.08 25 X714.91 20 '721.96 50

727.37 25 734.89 13 743.10 53

'746.70 53 749.92 54

'753.60 27 X757.59 57 '767.62 24 '772.31 30 '780.72 24 x768.72 24 '808.40 33 '817.44 66 '825.20 34 '834.07 34 '838.98 34 '847.15 70 '858.02 70 '871.28 51 '878.63 38 '891.40 90 x9O2.91 40 x911.96 42 '924.40 43 '941.23 44 '954.16 67 '969.90 68 X979.30 80 '988.56 90

'1023.76 90 x1041.34 90

4312. 4343. 4468. 4474. 4506. 4524. 4546. 4645. 4697. 4758. 4850. 4884.

E(leve1)

695.83

630.20

630.20

695.83

734.90

734.90 734.90 750.32

750.32

5868.20 5868.20 5868.20 5868.20 5868.20 5868.20 5868.20 5868.20 5868.20 5868.20 5868.20 5868.20

I,?$ Comments

0.276 44 0.270 43 0.178 36 0.223 31 0.073 22 0.192 31 0.030 15 0.170 21 0.095 29 1.42 10 0.363 44 1.82 13 ce(K)CO.OlS. 0.233 28 0.090 32 2.07 14 ce(K)<0.015. 0.160 40 0.161 40 0.289 46 0.257 41 0.281 45 0.353 50 0.224 45 0.229 46 0.986 99 0.096 39 0.420 63 1.65 17 0.183 64 0.239 72 0.188 56 0.546 55 0.083 42 0.685 69 0.406 65 0.535 64 0.985 99 0.263 53 0.101 50 0.492 79 0.483 77 0.87 10 0.185 93 0.229 69 0.276 83 0.90 14 0.209 84 0.73 12 0.352 71 0.59 II 0.72 II 0.597 96 0.66 13 1.18 19 0.37 If 0.57 17 0.71 18 0.28 0.87 0.13 0.11 0.67 0.26 0.84 0.14 0.96 0.11 0.09 0.37

Continued on next page (footnotes at end of table)

536

1~~Sm,,-14 NUCLEAR DATA SHEETS '~$Smg,-14

y(‘53Sm) from ‘52Sm(n,y) 69Sm04,69Re04,71Be41 (continued)

E-Y E(ieve1) I,?$ hlu1t.B Comments

4946 1 5868 20 0 16 4951 5 5868 20 0 116 5117 9 5868 20 0 40 5133 3 5868 20 0 060 5172 4 5868 20 0 81 5220 4 5868 20 0 016 5238 0 5868 20 1 08 El 5283 9 5868 20 0 033 5387 1 5868 20 0 41 Ml 5453 3 5868 20 0 24 Ml 5462 7 5868 20 0 33 El 5505 9 5868 20 0 010 (E2)

5511.5 5868.20 0.007 5547.1 5868.20 0.120 Ml 5591.5 5868.20 0.085 Ml 5740.9 5868.20 4.35 El 5832.4 5868.20 I .09 El 5860.7 5868.20 0.014 (E2) Mult.: (E2,Ml) from conversion data, Ml ruled out

from placement in level scheme. 5868.20 10 5868.20 0.1420 85 Ml

Mult.: (E2,Ml) from conversion data, Ml ruled out from placement in level scheme.

‘! Photons per 100 captures. For secondary transitions the l-y were normalized to the value of 28 gammas per 100 neutron captures in “‘Sm for the 103.2-keV y ray emitted in the p decay of 153Sm to ls3Eu when the P-decay rate is in equilibrium with the neutron-capture rate. For primary transitions the Iy values are from 69Sm04 and were normalized to the ly values observed in the “?3m(n,y) reaction as given by 63Gr18.

t For intensity per 100 neutron captures, multiply by 1.0. 6 Listed assignments are those deduced by 69Sm04 from comparison of experimental and theoretical a. # Questionable isotopic assignment. @ Possible d.oublet. ’ y-ray not placed in level scheme.

‘53Sm Levels from “‘Sm(d,p) 65Ke09,7ZKa07

65KeO9: E=lE MeV; observed protons at five angles from 25” to 125”. Deduced levels to E=3929 keV. 72Ka07: E=12 MeV: observed protons at 90” and 125”, deduced levels to E=lQQl keV.

E(level)t

o.o#

35@ 2 64# 2 92 4

125% 2 :76@ 3 182% 5 194# 5 237 5 262& 3 3203 5 361a 5 370 6 409 4 420= 7 449b 4 497 7 525b 4 547 4 665 5 696d 5 732e 8 751d 6 798d 5 841 5

3/2+

3/2- 9/2+

3/2- 7/2- 5/2- 13/2+

7/2- 3/2+ 5/2t

*/2+ (5/2-l

(712-I

(l/2-) (l/2+) (3/2-j (5/2-j

LB -

r2

a2 r3 52 12

23 <2

52 23 23 23

82

r3

Comments

Jr: 72Ka07 estimated that the g.s. consists of 3/2C6511 (-84%) and 3/2C4027 (z15%), with small contributions from the 3/2+ rotational states of the l/X4007 and 1/2C6601 bands.

E(leve1): from 72Ka07. E(leve1): from 72Ka07.

E(leve1): from 72Ka07. E(leve1): from 65Ke09.

E(leve1): from 65Ke09.

E(leve1): from 72Ka07

E(leve1): from 72Ka07. AE estimated by evaluator.

Continued on next page (footnotes at end of table)

537

‘~~Sm,,-15 NUCLEAR DATA SHEETS 1~$Sm,,-15

‘53Sm Levels from 15’Sm(d,p) 65Ke09,72Ka07 (continued)

E(level)t J,f L§ Comments ~ -

881 5 921d 6 964 9 984 6

1000 8 1078 6 1110 7 1139 7 1168 7 1201 7 1229 12 1260 12 1295 14 1310 10 1323 12 1346 12 1365 12 1393 8 1431 10 1468 10 1491 12 1506 8 1540 8 1563 8 1603 9 1612 12 1624 12

1643 9 1679 9 1715 9 1742 9 1751 12 1776 12 1793 12 1815 12 1830 9 1842 12 1864 12 1885 11 1904 9 1931 14 1969 12 1991 10 2029 10 2076 10 2121 15 2128 15 2144 15 2165 15 2188 15 2202 12 2240 16 2286 11 2302 14 2332 15

E(leve1): from 72Ka07. AF. estimated by evaluator. (7/2-j ~3

E(leve1): from 72Ka07. AE estimated by evaluator.

E(leve1): from 65Ke09.

E(leve1): from 65Ke09.

E(leve1): from 65KeOQ.

E(levei): apparently misprinted as 1349 in 65KeOQ

E(leve1): from 65KeOQ. E(leve1): from 65KeOQ.

E(leve1): 72Ka07 reported one level at 1618 keV. This is probably an unresolved doublet consisting of the 1612- and 1624-keV peaks reported by 65KeOQ.

E(leve1): from 65Ke09.

E(leve1): from 65Ke09.

E(leve1): from 72Ka07. AE estimated by evaluator.

E(level)t E(level)t E( level)? E( level)t E(level)t

2355 15 2669 15 3073 15 3361 12 2366 15 2686 11 3097 12 3380 15 2394 15 2721 12 3113 16 3396 15 2413 15 2751 12 3135 12 3414 15 2456 II 2788 14 3158 14 3469 17 2484 II 2832 II 3187 76 3501 17 2506 14 2880 12 3214 76 3513 17 2534 11 2912 14 3236 76 3558 17 2561 II 2944 14 3253 16 3563 19 2575 15 2972 15 3268 16 3579 17 2601 15 2994 15 3291 12 3601 19 2619 I5 3021 15 3316 16 3635 19 2634 15 3047 15 3349 12 3676 13

3716 17 3736 17 3759 13 3809 76 3834 13 3856 13 3890 17 3913 17 3929 17

t Listed values up to 2000 keV are averages of level energies reported by 65KeOQ and 72Ka07. For E>2000 keV, listed values are those of 65Ke09.

t Deduced from L-values and energy fits to rotational bands. 5 Listed values are from 65KeOQ and are based on observed angular distributions compared with DWBA

predictions. # 3/2C6511+3/2C4021 band member. @ 3/2C5211 band member. & 3/2C5321 band member. a 3/2C4021+3/2C6511 band member. b 1/2C5301 band member. C 1/2C4001+1/2C6601 band member. d 1/2C5211 band member. e 1/2C6601+1/2C4001 band member.

538

NUCLEAR DATA SHEETS

153Sm Levels from 15*Sm(d,t)

References: 71Be41, 72Ka07, 75Ja16, 79Ja23. E(d)=12 MeV. Spectrometer resolutionel4 keV

E( level)7 J7Tl: LB - - Comments

o.o# 7.5#

34@ 64# 94&

126a 1710 180a 194# 262a 320” 36ob 402c 41zd 446C 480 492 506 523c 548 602 646 698e 732f 745e 764 776 786 797e 880 903 920e 962 982

1075 1164 1175 1297 1310 1358 1375 1420 1484 1506 15321 1558 1592 1602

3/z+ 2 5/z+ Observed by 71Be41 3/2- 1 9/z+ 4 11/2- 5 3/2- 7/2- i3) 5/2- (3) (13/2)+ 6 (7/2)- 3 (3/2)+ 2 (5/2)+ 2 (3/z)- 1 1/2+ 0

(5/2)-

(7/2)- 3

(l/2)- 1 1/2t 0

(3/2)-

(5/2-l

(7/2-)

7/z+ 4

7 From 72Ka07 unless otherwise indicated. Evaluator estimated AE%5 keV. $ Adopted values. 5 From 75Ja:LE and 79Ja23. # 3/2C6511+3/2C4021 band member. 72Ka07 and 71Be41 estimated the g.s. to consist of 3/2C65il (~84%) and

3/2[402] (::15%), with small contributions from 1/2C6603, 3/ZC4021 and l/X4001. @ 3/2C521J brand member. & 11/2C5051 band member. a 3/2[532] band member. b 3/2C4021+3/2C6511 band member. C 1/2[530] band member. d 1/2C4007+1/2C6601 band member. 72Ka07 estimated that the 1/2C6601 component constitutes -20% of this state e 1/2C5211 band member. f 1/2iY6601+1,‘2C4001 band member. g 7/X4047 band member.

539

‘;;Eu,,-1 NUCLEAR DATA SHEETS ‘;;Eug,-l

153E~ Adopted Levels

Q(fi-)=-484.6 24: S(n)=8553.2 25; S(p)=5895.1 24; Q(a)=269 5 82WaZZ. Q(p-): recent work by 8lGrZZ appears to remove the discrepancy between published values of Q(c)

for the ‘%d decay. 77Wa08 adopted the value Q(&)=243 keV derived from measurements of the K-capture probability to the 172.85-keV level in lJ3Eu whereas 73Kr24 and 70Ma05 adopted the , “‘Gd(d,p) and ‘e4Gd(d,t) reaction Q values and adjusted the rs3Gd Q(E) value accordingly. The value for S(n)(‘%d) deduced by 8lGrZZ from measurements of the prompt y-ray spectrum resulting from 2-keV neutron capture in rseEu is in excellent agreement with the value S(n)(‘%d)=6240 keV 10 derived from the “%d(d,p) reaction, thus confirming the choice of reaction data (73Kr24 and 70Ma05) over the E data as the basis for deducing the Q(E) value for the decay of “‘Cd. The newest mass adjustment yields 484.6 24 (82WaZZ).

E(leve1)

o.ot

83.3671t 4

97.4297% 5 5/2- 0.20 0s 7

Ja T, ,2

5/2+ stable

7/2+ 0.80 ns 2

103.17945 6 3/2+

151.6225x 5

172.85170 6

193.0630t 7

235.27842 6 269.73335 6 321.8558% 7 325.0624+ 9 396.39926 9 403.286? 4 442.618? 3 448.134? 7 477.923$ 1 481.046+ 2 537.9375 7 552.468 7 559.734 2 569.29 15 589.504t 7 617.2 2 634.58 6 636.51 2 641.582 3 654.696t 8 657.68 74 681.84 5 694.16 3 701.04 10 706.61 3 711.1? 5

3.88 ns 5

(7/2)- 0.36 ns 7

5/2+ 0.14 ns

9/2+ 0.21 0s 2

(9/2-j (7/z+) (11/2)- (11/2+) (g/2+)

(15/2-)

(3/2,5/2)

(15/2+)

5/2t (3/2,5/2) 5/2+

Comments

~=+1.5330 8; Q=2.85 18 (78LeZA). Jrr: electron paramagnetic resonance (78LeZA); L=O in “‘Eu(t,p);

configuration: 5/2C4131. fi=+1.81 6 (78Le~~). Jrr: Coulomb excited; Ml component in 83.4~ to g.s. energy fits

J(Jt1) rule. T ,,e: weighted average of 0.80 ns 2 (66~~03) 0.82 ns 7 (66~r~~),

0.73 ns 7 (72Th09). Other: 1.09 ns 5 (61Bill). fi=t3.22 23 or -0.52 23 (78LeZA). B(E1)=2.1~10-’ (72Th09). Jr: El transitions to 5/E+ g.s. and 7/2+ state. log ft=6.7 from

3/2- g.s. of ls3Gd implies J#7/2. configuration: 5/2C5321. T,,,: weighted average of 0.20 ns 2 (64Ha43), 0.214 ns 20

(66AtOl), 0.180 ns 20 (68Ma15). 0.23 ns 4 (72Th09). Others: 0.27 ns 9, 0.26 ns 3 (66GrZZ).

fi=t2.04 7; Q=1.54 14 (78~ez~). Jr: 69.7-y from 5/2+ level at 172.85 keV is MltE2, so Jrr=3/2+,

5/E+ or 7/2+. J#5/2 from yr(6). J#7/2 from log ft=6.7 in ‘?Sm p- decay. Ja=3/2+ and ~=2.0 consistent with 3/2C4111 Nilsson assignment.

T,,,: weighted average of 4.0 ns 2 (54GrlQ), 4.0 ns 2 (56VelQ), 3.8 ns 2 (61Na06), 3.3 ns 2 (61Rell), 4.3 ns 5 (61Ve04), 3.90 ns 5 (65Me08). 3.9 ns 2 (66~1-ZZ), 3.9 ns 5 (72Th09). Others: 3.0 ns 3 (50~~64), 3.4 ns (54MclO).

Jr: El transition to g.s. implies J=3/2, 5/2 or 7/2 and R=--. log ft>9.4 from 3/2- g.s. in ‘e3Gd c decay and log f”‘t-10 from 3/2+ g.s. in ‘e%m p- decay favor J=7/2.

T,,,: from 72Th09 centroid-shift, plunger method. T,,,: from 54Gr19 by(t). Other: (1 ns (56VelQ) @y(t). Jm: L=O from rslEu(t,p). Jn: Coulomb excited. E2 transition to g.s. energy fits J(Jt1)

rule.

Jn: n=- from L=5 in ‘S’Sm(3He,d) Jr: Coulomb excited.

Jrr: L=O from “‘Eu(t,p).

Jx: L=O from ‘e’Eu(t,p).

Continued on next page (footnotes at end of table)

540

lgEU,,-Z NUCLEAR DATA SHEETS

E(level)-

716.176 6 718.59 II 760.39 13 763.8 6 783 5 797.12 3 825.52 I 829 5 842 5 651.4? 880 5 889 5 948 5 955.0$ 1

1020 5 1061.06~ 16 1074 5 1141 5 1150 5 1175 5 1183 5 1227 5 1261.9Ot: 72 1293.34t 17 1310 5 1355 5 1395 5 1404.90% 15 1442 5 1475 5 1536.07 2 1683 5 1771.9$ 2 1924.91: 2

JR

(13/z+)

153EU Adopted Levels (continued)

Comments

(17/2-j

(17/2+)

(19/Z-)

(19/z+)

5/2+ Jn: L=O from ‘51Eu(t,p)

(2312-I 5/2+ 5/2t

(23/2+)

Jr: L=O from “‘Eu(t,p). Jr: L=O from “‘Eu(t,p).

(25/2-) (27/2-j

t 5/2C4131 band member. A=12 keV. $ 5/2C5321 band member. A=7.5 keV. B=41 eV, C=1.9 eV 4 3/2C4117 band member. A=13.9 keV.

‘53E~ Levels from ‘53Sm @- Decay 69Un03

Other measurements: 50Hi17, 52Ba49, 52Ru10, 54Gr19, 54LeO8, 55Ma62, 56Du31, 5yJ024, 58co76, 58GUo9, 6OSuO8, 61Gr18, 61Mo07, 61Ru01, 61WyO1, 62Bi16, 62Ca24, 62SuO1, 63Cb25, 63Ho15, 64A109, 64No08, 669106, 66Ne06, 68Re04, 69Pa03, 69Sm04, 70Ch09, 7OMe26, 7OMil5, 7OPaZI, 7ORa37.

The docay scheme shown in the drawings is primarily that of 69UnO3.

E( level) J,t

0.0 5/2+ 83.366 2 7/2+ 97.429 3 5/2-

103.180 1 3/2+ 151.627 3 (7/z)- 172.654 1 5/2+ 269.732 5 (7/2+) 634.62 12 636.49 7 657.67? 14 681.84 5 694.16 8 701.04 11 706.59 6 718.59 II 760.39 13 763.8? 6

f From Is3Eu adopted levels

541

';;Eu,,-3 NUCLEAR DATA SHEETS '@ELI,,-3

‘53E~ Levels from 153Gd E Decay 63Gr09,74Se08,78HeZl

Other measurements: 76Gu02, 75Ba69, 74Ma27, 71Kr19, 70Me26, 67Bol1, 64Ew04, 64CrO6, 64A109, 63Ho15, 62Bll1, 60Le06, 58An34, 54Mc10, 50He18, 49KeOl.

The decay scheme shown in the drawings is from 74Se08.

E(leve1) J,? T, ,2

0.0 5/z+ stable 83.367 7/2+ 97.432 5/2-

103.181 3/2t 151 ,622 (7/2)- 172.851 5/2t

7 From lS3Eu adopted levels.

153E~ Levels from 151Eu(t,p) 76Bu03

E=15 MeV. Magnetic spectrometer.

E(level)t

0.0 173 694 706 829 880 948

1020 1150 1226 1352 1395 1442 1475 1683

Jr%

5/2t 5/2+ 5/2t 5/2+

5/2t

5/2t 5/2t

L Comments

0 configuration: 5/2C4131 Nilsson. 0 0 0

(2)5 (Z)§

(2)5 0

0 0 (2)§

t Authors estimated AEz5 keV. $ From L-value with Jrr(‘51Eu)=5/2t. 5 Angular distributions are in reasonably good agreement with DWBA predictions for L=2, but 76BuO3 indicated

that, since multistep processes are likely involved in the reaction mechanism, they have not calculated

spectroscopic factors.

542

1;gEu,,-4 NUCLEAR DATA SHEETS 'g;Eug,-4

153E~ Levels from 152Sm(3He,d) 69Un04

E=28 MeV. Magnetic spectrograph

E( level)? Jr% L comments - -

0.05 90

173@ 2658 321# 397Q 568 635

700

783 842 2 889

1074 1141 1175 1183 1228 3 1310 1 1357 3 1478 2

5/2+ Jr: 5/2C4131 N~lsson state. E(leve1): unresolved multiplet, likely consisting of the known states at

83.4 keV, 97.4 keV and 103.2 keV. 5/Z+ 2

(7/2+) (11/2)- 5

(g/2+) 4-5 Jn: possibly the 7/2[4041 Nilsson state oi- the 11/Z- member of the 7/2C5231 band. 3.4 E(leve1): although unresolved in this study of the (3He,d) reaction, this peak

is likely due to the 634.6-keV and 636.5-keV levels observed in “*Eu(n,y) and in ‘53Sm p- decay studies.

Jr: the low values for the cross sections observed by 69Un04 do not confirm previous suggestions that the 634.6- and 636.5-keV levels are the first two members of the 1/2C4117 band.

E(level): the width of the large peak at E-700 keV suggests that there are several unresolved components. Likely candidates are the levels at energies of 694.2, 701.4, 706.6, and 718.6 keV which have been observed in ls3Srn p- decay.

7 69Un04 estimated that AECZ3 keV for the more strongly populated states. t Prom ‘=Eu adopted level. 5 5/2C4131 band member. # 5/2C5327 band member. @ 3/2C4111 b.lnd member.

153E~ Levels from 15’Eu(n,y) E=Thermal 70Mu04

Bent-crystal spectrometer. The level scheme presented in the drawings is that of 70Mu04.

E(level) JH E(leve1) JS E( level) Jr

o.ot 5/z+ 325.06 (11/z+) 589.504?# 83.377 7/z+ 396.390 (g/2+) 634.56 97.43% 5/z- 403 288’# 636.51

103.184 (3/2,5/2)

3/z+ 442.619?# 641.582?# 151 ,622 (7/z-) 448.134?# 654.69? 172.855

(15/2+) 5/z+ 477.91% (13/Z-) 681.84

193.061‘ 9/2+ 481 ,047 (13/z+) 694.19 235.27$

(5/Z) (9/Z-) 537.924 706.60

269.738 (11/2+) (5/Z)

(7/2+) 552.468?# 716.16? 321 .85x

(13/z+) (11/2-) 559.734?# 797.138?#

7 5/2C4131 band member. z 5/2C5321 band member. 5 3/2C4111 band member. # Level based on energy sums of y-ray transitions tentatively assigned to 153Bu.

543

1;;Eu,,-5 NUCLEAR DATA SHEETS

y(ls3Eu) from 15’Eu(n,y) E=Thermal 70Mu04

Bent-crystal spectrometer. The level scheme presented in the drawings is that of 70Mu04.

EY+ 39.3320? 25 42.2144? 25

X47.4300 10 54.1929 4 68.2552 5 69.6725 74.5445? 12

75.4222 7 81.8469? 25 83.3668 5 83.6560 6 86.5776 6

‘88.2944 9 89.4841 7 89.7851 1.5

X90.1237 12 90.5145? 15 96.8817 7 97.4301 7

x99.959o 10 102.9567? 77 103.1793 7 104.3344? 75

‘107.872 6 109.6958 8

X109.7591 9 111.5995? 72 118.1107 IO 123.0714? 9 126.6654 10 128.7925 9 131.9991 10 137.8487 20 141.5370 10 151.6233 12 151.9123 12 152.861 4 155.9836 20 156.0661 12 159.1895 20 161.127 12 166.5534 15 170.2330 25

E(leve1)

442.619 235.27

151.62 151.62 172.85 396.39 552.468 172.85 641 ,582

83,37 235.27 321.85

172.85 325.06

797.138 269.73

97.43

797.138 103.18 552.468

193.06

559.734 269.73 448.134 396.39 321.85 325.06 235.27 537.92 151.62 235.27 477.91 481 .04 477.91 481.04 396.39 269.73 321.85

2.50 38 0.50 35 1.57 19

12.4 21 10.1 10 37.0 37

0.43 65 0.430 65 1.33 13 0.290 44

44 4 21.7 20 11.5 8

0.470 43 1.19 11 3.40 51 0.360 54 0.260 37

38.8 31 192 1.5

1.91 29 0.170 43

121.0 85 0.260 65 0.124 31

16.3 12 2.14 75 0.89 13 2.26 if3 4.70 94

23.5 19 6.10 49 3.90 35 2.05 25 7.5 6

48.0 39 26.1 27

0.98 29 0.78 8 5.80 47 1.30 13 0.90 45 5.30 43 3.12 28

EY’ E(level) IYS 172.3020 20 172.885? 5 173.643? 10 178.227? 7 186.215? 7 193.062 3 198.966? 4

x2O1.OO6 6 216.084 5 223.543 3 237.887? 1.2 241.6942 25 242.643 4 244.775 4

x247.938 4 249.556? 5 255.101? 20 268.203 5 287.990 5 302.658 6 305.87? 4 319.781? 15

269.73 442.619 654.69 716.16 589.504 193.06 641.582

537.92 396.39 559.734 325.06 477.91 396.39

329.649? 15 x338.249 20 ‘338.358 17 ‘352.981 20 ‘353.148 25

359.424? f5 ‘361.187 20

463.64 5 509.02 12

‘513.87 3 521.37 6 531.40 6 533.366 25 539.04 3 554.89 12 578.66 9 596.60 70 603.30 10 609.20 4

x667.93 6

442.619 448.134 537.92 481 .04 537.92 403.288 589.504 716.16 654.69

552.468

636.51 681.84

694.19 634.56 636.51 636.51 706.60 681 .84 694.19 706.60 706.60

4.00 36 0.45 9 0.16 4 1.50 45 0.68 17

47.0 47 0.83 17 0.56 14 1.10 33

11.1 89 1.50 45

28.3 20 4.0 6

10.5 7 4.30 43 2.35 24 0.73 15 7.50 53 8.50 68 7.00 56 0.90 36

<3.00 3.00 51 2.8 14 1.10 28 1.87 32 3.70 56 3.00 51 2.90 73 2.50 63 3.0 6 3.9 20 7.8 12 6.0 9 6.0 3 8.8 13 8.0 12

10 2 5.4 If 8.2 20 4.3 11

11.8 14 5.80 87

t The spectrometer energy calibration by 70Mu04 is based on the values given by 59Be51 for the Ka X-ray of Eu and Sm (73ScO4). These X-ray energies agree to within 0.2 eV with the values tabulated by 67Be73; however, the latest measurement of the wavelength of the Ka, X-ray in W (79KelO) indicates that the energies reported by 67Be73 and, therefore, al.so by 70Mu04 should be increased by approximately 0.0019%. The recalibrated Ey values are given in the level scheme and are listed in the tables. The listed uncertainties in Ey are those of 70Mu04.

$ Relative photon intensity. x y-ray not placed in level scheme.

544

NUCLEAR DATA SHEETS

ls3Eu Levels from ‘=Eu(d,p) 80Lall

E=ZO MeV. Resolution 8-12 keV. Measured proton spectra at angles from 25” to 65” mass-separated SOUl-te.

E(leve1) Lt - l?(level) E( level) l?(level) E(leve1) E(level)

2218 3 2408$ 2236 5 2496 5 2294 4 2527 4

0.0 5 733 3 1870 4 2028 3 83 I 5 1400? 1915 4 2045 3

191 2 5 1748 3 1932 3 2082 5 319 4 5 1777 4 1961 3 2099 4 616 2 1843$ 1982 3 2118 3 I 2327 2368 4 6 2610 2651 4 5

t Listed values obtained by authors by comparison of observed and calculated (DWBA) angular distributions. $ Possibly an unresolved multiplet.

153E~ Levels from ‘53E~(p,p’) 7’8LalO

E=lE MeV. Magnetic spectrograph. DWBA and coupled-channel analyses. Using adiabatic coupled-channel analysis, authors deduced values for deformation parameters

p,=O.28 and p,=O.O6.

E( 1evel)t Jnt

0.0 5/2+ 83.37 7/2+

193.06 9/2+ 325.06 (11/2+) 481 .05 (13/2+)

t From adopted levels.

153E~ Levels from Coulomb Excitation

‘53E~(~,~‘y): 72Th09: x=a, E=8-12 MeV; x=35Cl, E=30-90 MeV. Semi. 71Le04: x=p, E=4.5 MeV; x=a, E=5-11 MeV. Semi. 67Se09: x=“O, E=50 MeV. Semi. 66Bo16: x=‘flO, E=45 MeV. Semi. 65As03: x=n, E=3.1 MeV. Scin. 64DeZY: x=“O, E=18-42 MeV. 62Go23: x=p, E=4.5 MeV. Scin. 600102: x=p, E=4.5 MeV. s, p’. 60Be16: x=p, E=2.8 MeV. s, ce. 59De29: x=p, E=4 MeV. Scin. 57C144: x=p, E=4 MeV. s, ce. 57Be56: x=a, E=4 MeV. s, ce. 56Hu49: x=p, E=1.75 MeV. s, ce. 56He78: ~=a, E=6 MeV. Scin. 56Go47: x=p, E=2.9 MeV. Scin. 55Ua77: x=p, E=2.9 MeV. Scin. Others: ‘53Eu(a.a’), E=12 MeV. (70Za04).

E(level)t

0.0 83.37

97.43

103.18 3/2+ 151 .61 7/2- 172.9 5/21 193.07 9 9/2t

Js

5/z+ 7/2+

5/z-

E(leve?)

2707 5 28081:

T, ,2 Comments

0.73 0s 7 B(E2)=2.18 8. B(E2): if a(83y)=3.87 (72ThOQ); others: 2.87 (56He78), 2.6 (56Hu49). 2.1

(57C144), 2.5 (59De29), 2.28 10 (600102). T ,,2: from centroid shift, plunger method, quoted by 72ThOQ.

0.17 ns B(E1)=0.000021 (7ZThOQ). T,,,: from B(E1) for a=0.307. B(E2)=0.0049 (72ThOQ).

0.36 ns 7 T,,,: from 72Th09, centroid shift, plunger method.

0.20 ns 2 B(E2)=0.75. T,,,: from centroid shift, plunger method, quoted by 72Th09. B(E2): average of 0.82 (56He78), 0.64 (57C144), 0.86 (59De29), 0.70

(SOOlOZ), 0.75 (70Za04).

Continued on next page (footnotes at end of table)

545

i;;Eu,,-7 NUCLEAR DATA SHEETS 1E;Eu9,-'i

153E~ Levels from Coulomb Excitation (continued)

E(level)t Jr comments

269.9 7/z+ 325.00 11/2t 480.65 569.4 2 cB(E2)=0.034 4 (67Se09).

cB(E2): 71Le04 reported zEJ(E2)=0.027 2 in an experiment using natural Eu targets. 617.4 2 cB(E2)=0.0143 20 (67Se09).

E(leveI): weighted average of’ 617.3 3 (72Th09), 617.5 5 (71Le04), 617.5 5 (67Se09). 654.6 3 711 .o

t From 72Th09.

Y(‘~~Eu) from Coulomb Excitation

E(leveI) EYt IYS MuIt. 6 comments

83.37

97.43 97.43 103.18 103.18

151.61 172.9

151.61 69.7 75.4

109.70 5 39.7 25 193.07

x159. ‘466. X545. ‘587. ‘596. ‘632.9 10 x783. ‘889.

83.37

193.07 9 100 E2

Ml+E2 0.82 +fO-12 K/L=2.13 30 (60Be16); a(K)exp=2.38 77. a(K)exp: weighted average of 2.47 20 (62Go23)

and 2.34 73 (65As03). Ey: from 70Ra37. 6: from 60Be16. Ey: from 70Ra37.

K/L ~3.4 (60Be16). Ey: from 70Ra37. Ey: from 64AIO9.

269.9 97.0 100 166.7 8.3 172.5 6.0

325.00 131.93 7 14.7 II

241.63 10 100 480.65 156.0 3 8.8 18

287.58 10 100 569.4 485.8 2

569.4 2 617.4 533.6 4

617.3 3 654.6 329.6 3 711 .o 518.3 10

628.1’ 7 710.2? 10

t From 72ThOQ. 0 Relative photon branching from each level. x y-ray not placed in level scheme.

0.71 9 Iy(6Qy)/Iy(75y)=89/13 (72ThOQ). Iy: weighted average of 35.2 22 (62Go23), 42 6

(64~e~Y), 45.4 35 (66~016), 38.5 37 (67Se09).

6: from 60Be16 measurement of K/L=3.4 3. K/L=3.2 (57C144). 59De29 have measured A,=0.175 in py(6).

1-y: Iy(Q7y)/Iy(l66y)/Iy(l7Zy)=B4/7/5 (72ThOQ). 1-y: Iy(97y)/Iy(l66y)/Iy(l7Zy)=84/7/5 (72ThOQ). ly: weighted average of 14.1 16 (66Bo16) and

15.1 14 (67Se09).

Iy: from (67Se09).

546

l;gEU,,-8 NUCLEAR DATA SHEETS $;Eu,~-~

153E~ Levels from 15*Sm(d,3ny) 75Dr0’7

E=18-25 MeV. yy-coin. ny-coin. Angular distributions

E(leveI) JTTT Comments -~ I

0 01: 83 4 97 45

103 2# 151 65 173 of 193 1s 235 36 269 Q# 321 95

t Adopted values. $ 5/2C4131 band member. 5 5/2[5321 band member.

# 3/2C4111 band member.

3/z+ Jn: 5/2[4131 Nilsson state. 7/2+ 5/2- Jr: 5/2C5321 Nilsson state. 3/2+ Jn: 3/2C4111 Nilsson state. 7/2- 5/2+ 9/2+ Q/2- (y/2+) 1 l/2-

E-Y

54.2 69.7 83.4 83.7 86.6 89.6 96.9 97.4

103.2 108.5? 109.7 111.6 126.7 128.8

E(leve1) --

191 .6 173.0

B3.4 235.3 3i!l .Q 3214.7 269. 9

Q7.4 103.2 5E19. 6 193.1 589. 6 3516. 6 321.9

IYt 14.9 20 12.0 5

<69.5 69.5 8 33.2 9

<lB. <117.0 <117.0

39.9 10 3 1

16.5 7 19.5 8 14.6 7

<21.9

129.5? 955.0 <21 .Q

131.6 32:4. 7 5.8 6 137.7 235. 3 3.2 6 141.5 538.1 c10.2 142.? 1404.9 <lO.O 151.6 1511. 6 <lOO.

151.9 Z”5.3 “, <lOO. 156.1 478.0 43.0 13 159.6 481.1 6.5 9 166.7 269.9 3.8 8 170.3 321.9 10.7 9 178.2 716.2 4.4 8 193.1 183.1 44.0 72 223.5 396.6 7.8 10 235.9 825.5 22.0 15 241 .3 324.7 <72.5

242.6 478.0 (72 5

267.7 589.6 (42.5

268.2 538.1 <42.5

288.0 481.1 42.0 20 302.7 538.1 7.1 19 306.8 1261.9 4.0 13 319.8 716.2 6.8 75

E( level) Jnt

324.7$ 11/2+ 396.6# (Q/2+) 478.05 13/2- 481.1 13/2+ 538.1# (11/2+) 589.6 15/2- 654.5$ 15/2t 716.2# (13/2+) 825.55 17/2- 851.4$ 17/2+

Y(‘~~Eu) from 15*Sm(d,3ny) ‘Y5Dr07

E(level) Jnt

955.05 19/z- 1061 .Ot 19/2+ 1261 .Q@ 21/2- 1293.2f. 21/2+ 1404.96 23/2- 1536.0$ (23/a+) 1772. 5 (25/2-j 1925.9 (27/2-)

Comments

I-y: includes intensity of 83.7~. I-y: includes intensity of 83.4~.

Iy: unresolved from line in 15’Eu due to ‘%3m(d,4n). 1-y: includes ly of 97.4-y. 1-y: includes intensity of 96.97.

A,=0.04 6 for 108.5y, 109.7~ and 111.6~. A,=0.04 6 for 108.5y, 109.7y, and 111.6~. A,=0.04 6 for 108.5y, 109.7~ and 111.6~. A,=-0.035 4 for 126.77, 128.8y, 129.5y and 131.6~. ly: includes intensity of 129.5~. A,=-0.035 4 for 126.7y, 128.By, 129.5y and 131.6~. ly: includes intensity of 128.8~. A,=-0.035 4 for 128.8~ and 129.5y. A,=-0.035 4 for 126.7-y, 1213.By, 129.5y and 131.6~.

Iy: includes intensity of 142.0~. Iy: includes intensity of 141.5~. ly: includes intensity of 151.9y. A,=-0.147 2; A,=-0.03 3 for 151.6~ and 151.Qy. A,=-0.147 2; A&=-0.03 3 for 151.6~ and 151.9y. A,=O.O28 20; A,=-0.047 34.

A,=0224 18; A,=O.Ol 4.

A,=0.059 44; A,=-0.005 70. Iy: includes intensity of 242.61. A,=0.246 27; A,=-0.041 32 for 241.31 and 242.67. Iy: includes intensity of 241.3-y. A,=0.246 21; A,=-0.041 32 for 241.3~ and 242.67. ly: includes intensity of 168.27. A,=0.231 35; A,=-0.227 82 for 267.7~ and 268.2~. Iy: includes intensity of 267.7~. A,=0.231 35; A,=-0.227 82 for 267.7~ and 268.27. A,=0.236 25; A,=-0.097 40.

Continued on next page (footnotes at end of table)

547

*;;Eu,,-9 NUCLEAR DATA SHEETS $;Eu,,-9

Y(~~~Eu) from ‘54Sm(d,3ny) i’5Dr07 (continued)

EY E(level) IY+

329.8 654.5 30.7 19 347.6 825.5 18.0 15 365.3 955.0 c31 .o

367. 1772. c31 .o

370.3 851 .4 394.1 716.2 406.5 1061.0 436.5 1261.9 441 .8 1293.2 449.9 1404.9 475.0 1536.0 520. 1925.

28.5 15 5.5 10

12.8 13 12.0 10

9.4 9 13.2 10

6 1

Comments

A,=0.269 3; A,=-0.023 5. A,=0.345 64; A,=-0.087 701. Iy: includes intensity of 367-y. A,=0.259 20; A,=-0.053 20 for 365.3~ and 3677. Iy: includes intensity of 365.3~. A,=0.259 20; A,=-0.053 20 for 365.33 and 367~. A,=0.203 22; A,=-0.080 36.

A,=0.351 66; A+=-0.099 103. A,=0.235 8. A,=0.284 70; A,=0.05 14. A,=0.241 60; A,=-0.108 102.

t Listed values were measured for a deuteron energy of 22 MeV.

548

l;;Gd,,-l NUCLEAR DATA SHEETS l;zGd,,-l

153Gd Adopted Levels

Q(P-)=-I.579 4; S(n)=6247.0 2; S(p)=7286.3 78; Q(a)=l827.0 19 82WaZZ.

E(leve1) Jr T, ,p comments

o.ot 3/2- 241.6 d 2 %z=lOO.

41.55? 2 5/2-

88.30? 70 -# 93.34t 4 7/2-

95.28 2 (g/2)+

109.76 2 (5/Z)- 1.97 ns 23

129.16 2 3/z- 2.61 ns 16

134.98 3 (13/2+) 168.4t 2 171.4x 2

(9/2-j (11/2-)

183.475 3 5/2i

195.19 5 212.03 2 3/2t

221.3?§ 3 (11/2+) 249.58 3 5/2-

303.57 3 5/2t

315.42 6 l/2-,3/2 316.09 6 5/2+

328 3 361.05 3

1/2+ (17/2+)

361.35 8 3/2-

363.4x 3 368.73 5 395 5 415 5 420.56 8

(13/2-) 5/2-

(3/2)+# 5/2-

436.32 4 l/2-

442.21 7 448.45 6

484.04 16 508 5

508.82 5

530.46 8 541.35 10 548.69 5

5/2-

1/2+ (3/z)+

3/2-

3/2-

5/2-

4.1 ns I

3.5 ps 4

76.1 fis 16

T,,,: from 72EmOl. Other measurements: 240.9 d 6 (72EmOl), 242 d 7 (63H015), 200 d (58An34), 236 d 3 (50Hel8), 225 d (49KeOl).

Jr: L=O in ‘55Gd(p,t). configuration: 3/2C5211. T ,,e: from 69An19 yce(t) in lsaGd IT decay. Other measurement:

4.11 ns 24 (70VaZO) yce(t). J?r: Ml+E2 transition to g.s. E(leve1): observed only in ls3Tb c decay (75VyOl). Jr E2 transition to g.s. Ml+E2 transition to 5/2- level at

41.55 keV. T,,,: from 79Ka16 in lJBGd IT decay. Jr: E2 transition from 5/2+ level at 183.47 keV. No tra.nsitions

to 3/2- and 5/2- members of g.s. band. Populated by transition from 13/2+ level at 134.7 keV observed in (a,3ny).

Jr: Ml transition to g.s. Ml+E2 transition to 5/Z- level at 41.55 keV. Configuration=5/2[5231.

T ,,2: from 70VaZ0 yce(t). Other measurement: 0.35 ns 8 (72Af03). fi=+O.40 15; g=+O.16 6 77VaZJ. ~=0.37 7 77Ba63. Jr: Ml transitions to 3/2- g.s. and 5/2- state at 41.55 keV

indicate Jr=3/2-,5/Z-. L=O in (p,t) indicates Jr=3/2-. yy(8) indicates J=3/2.

T,,,: weighted average of 2.84 ns 21 (70VaZO) yce(t) and 2.50 ns 15 (69An19) yy(t).

Jrr: isomeric character favors 11/2- assignment. Configuration=ll/2C5O5l.

T,,,: from 153Gd IT decay. Jr: El transitions to 3/2- g.s., 5/2- level at 41.55 keV and

7/2- level at 93.34 keV.

Jn: El transitions to 3/2- and 5/2- levels; yy(8) indicates Ji?=3/2+. Configuration=3/2[4021.

Jw: Ml transitions to 3/2- g.s. and 5/2-, 41.55-keV state. yy(6) indicates Jr=5/2-.

Jx: L=2 in (d,t) indicates Jr=3/2+,5/2+. El transitions to 3/2-,5/2- and 7/2- levels indicate J~r=5/2+.

J?r: Ml transitions to 3/Z- levels. L(d,t)=l. Jw: El transitions to 3/2- and 5/2- levels indicate

Jn=3/2+,5/2+ yy(6) indicates Ja=5/2+. Jn: L=O in (d,t). Probable configuration=1/2[4001.

Jn: El transition to 5/Z+ level and Ml transition to 3/2- level indicate Jr=3/2-,5/2-. L=l in (d,t) indicates Jn=1/2-,3/2-.

Jrr: Ml transitions to 3/2-, 5/2- and 7/2- states.

Jr: L=2,3 in (d,t) and (3He,a). Jr: Ml component in transitions to 3/2-, 5/2- and 7/2- members

of the g.s. band. Jrr: L=(l) in (d,t) and (3He,a). yy(6) indicates Jsr=1/2-.

log f’“t=10.5 from 5/Z+ parent indicates Jn=i/Z-.

Jr: Ml transitions to 3/2-, 5/2- and 7/2- members of the g.s. band.

Jn: L=O in (d,t). Jr: L=2 in (d,t) and ($He,a). Probable

configuration=3/2C6511+3/2[4021. Jr: L=O in lS5Gd(p,t). Possibly the p vibration based on the

3/2C5211 g.s. Jr: L=O in ‘55Gd(p,t).

Jr: Ml transitions to 3/Z-, 5/Z- and 7/2- states,

Continued on next page (footnotes at end of table)

549

';;Gd,,-2 NUCLEAR DATA SHEETS $iGdgg-2

E( level)

555.96 3 575.0x 3 577 3 606 3 615.69 13 617.99 13 636.04 8 648 5 663 5 676 5 683 5 698.76 21 709.26 13 721 3 723.65 4 727.72 10 731.62 7 774 3 782.66 7

804.7$ 3 821.20 7 857.63 5 865.49 6 876 3 887 3 904 3 932 3 937.42 7 945.18 3 955.43 6 975.51 4 989 3

1024.94 I1 1035.21 5 1037.02 23 1043.50 9 1050.7$ 3 1052 5 1066.19 13 1070.57 42 1082 5 1101.62 3 1107.62 42 1115 5 1131.77 a 1143 5 1155 5 1171 5 1180.53 10 1190.55 4 1194 5 1235 5 1250 5 1272.70 IO 1280 5 1296 5 1311.8% 3 1328.04 8 1339 5 1363 5 1382 5 1389 5 1401.57 16 1422.20 15 1452 5

JB

(15/2+) (15/2-j

t# -#

(21/2+) t#

5/E- (7/2- Jr: L=3 in (d,t) and (3He,u). Jrr: 74TuOl reported Jr=5/2+ for this level. However, the y-ray multipolarities

reported by 75VyOl for the transitions depopulating this level are not consistent with that assignment, so the evaluator did not adopt the Jn=5/2+ assignment.

(17/2-)

3/2- Jrr: from 78Wa14 yy(6) and Ml transitions to 3/2- and 5/2- states. (3/2)+ Jn: from 78Wa14 -yy(e) and El transitions to 3/2- states.

l/2- ) 3/2- Jr: L=l in (d,t).

t# (3/z)+ (5/2)+ (19/2+)

(5/2)+ t# (3/2)- (19/Z-)

t#

(3/2)-t

3/2+,5/a+ (+)#

t# (25/2+)

t#

t#

‘53Gd Adopted Levels (continued)

Comments

Jrr: from 78Wa14 yy(0) and El transitions to 3/2- g.s. Jr: from 78Wal4 yy(6) and El transitions to 3/2- and 5/2- states.

Jr: from 76Wa14 yy(0) and El transitions to 3/2- and 5/2- states.

Jr: from 78Wa14 yy(6) and El transitions to 3/2-, Ml transitions to 5/2+ state.

Jr: from 78Wa14 yy(6) and El transitions to 3/2- and 5/2- states.

Jn: L=2 in (d,t).

Jr: from 78Wa14 yy(6) and El transitions to 3/2- and 5/2- states.

Continued on next page (footnotes at end of table)

550

';;Gd,,-3 NUCLEAR DATA SHEETS fz;Gd,g-3

E( level) _

1477 5 1496 5 150% 5 1531 5 154% 5 1563 5 1584 5 1586.3s 3 1597 5 1615 5 1631 5 1655 5 1669 5 1686 5 1701 5 1720 5 1738 5 1740.75 5 1755 5 1772 5 1872.3x 4 2168.2$ 4 2356.95 5

153Gd Adopted Levels (continued)

Js Comments

Q/2-,11/2- Jr: L=5 ,n (d,t) and (sHe,ol).

(7/2)+ J?r: L=4 in (d,t) and (3He,a). Possibly the 7/2[4041 Nilsson state.

(23/2-j

(29/2+)

(25/2-) (27/Z-) (33/2+)

t 3/2[5211 band member. 1 11/2C5051 band member. 5 Mixed positive-parity, strongly Coriolis-coupled rotational band member based, on the il3/2-related Nilsson

states 1/2C6601, 3/2t6511 and 5/2C6421 (72LoO4). # From mul,tipolarity of deexciting X-rays.

P+,E Data from 153Gd E Decay 63Gr09,74Se08,78He21

Other Imeasurements: 76GuO2, 75Ba69, 74Ma27, 71Kr19, 70Me26, 67Bol1, 64Ew04, 64Cr08, 64A109, 63Hol5, 62Bll1, 60Le06, 58An34, 54Mc10, 50He18, 49KeOl.

The decay scheme shown in the drawings is from 74Se08. ‘ssGd-‘I,,,: from 72EmOl. ‘s3Gd-Q(s): recent work by 81GrZZ appears to remove the discrepancy between published values of

Q(E) for the ‘ssGd decay. 77WaOE adopted the value Q(c)=243 keV derived from measurements of the K-capture probability to the 172.85-keV level in IssEu, whereas 73Kr24 and 70Ma05 adopted the ‘ssGd(d,p) and ‘s4Gd(d,t) reaction Q values and adjusted the ‘s3Gd Q(c) value accordingly. The value for S(n)(‘=Cd) deduced by 81CrZZ from measurements of the prompt y-ray spectrum resulting from E-keV neutron capture in ‘ssGd is in excellent agreement with the value S(n)(‘ssGd)=6240 keV 70 derived from the ‘ssGd(d,p) reaction, thus confirming the choice of reaction data (73Kr24 and 70Ma05) over the c data as the basis for deducing the Q(E) value for the sdecay of ‘s3Gd. The newest mass adjustment yields 484.6 24 (82WaZZ).

Es E( level) I,? Log ft Comments

(311.7 24) 172.851 15.3 70 7.93 5 sK=0.8036 77; sL=O.1511 7.3; ~M+=0.0453 5. (333.0 24) 151 ,622 0.28 15 9.8 3 cK=0.8068 74; zL=O.1487 II; &Mi-=0.0445 4. (381.4 24) 103.181 39.2 29 7.72 4 ~K=0.8124 77; cL=O.1446 8; cM+=0.0431 3. (387.2 24) 97.432 36.0 20 7.77 6 cK=0.8129 70; sL=O.1442 8; &M+=0.0429 3. (484.6 24) 0.0 9.5 46 8.56 22 cK=0.8202; cL=O.1388 5; rM+=0.04103 76.

Is: deduced by 74Se08 from measured K X-ray intensities

t For intensity per 100 decays, multiply by 1.00

551

‘;;Gd,,-4 NUCLEAR DATA SHEETS ‘;iGd,,-4

Y(‘~~Eu) from 15kd c Decay 63Gr09,74Se08,78He21

Iy-normalization: based on the 9.5% 46 g.s. feeding deduced by 74Se08 from I(K X-ray)/ly. Ice: normalized to give a(K)(97.43y)=0.258 (El theory),

Eyt

14.1

19.82 2 103.181 E2 3290

54.19 68.23 69.67340 22

75.42256 30

83.36765 29

89.48647 31

97.43156 33

103.18072

151 .61 172.85407 48

E(level) IYS Mult. so a# 97.432 0.06 2 El 11.2

151.622 (0.1 151 .622 -0.04 172.851 8.4 3

172.851 0.26 8

83.367 0.70 7

172.851 0.23 7

97.432 100

103.181 71.0 15

151.622 CO.6 172.851 0.10 1

(Ml) (El)

El 0.611

MltE2 0.81 3.82

Ml+EZ 0.20 2.83

El

Ml+E2 0.127 1.73

(El) 0.093 Ml+EE 0.77 0.38

il. 1 0.798

0.138 5.42

0.307

Comments

ce(M)=O.li? (63Gr09). Iy: calculated from Ice and

theoretical values of a(L) and

1,+*,6”t1’ 1.8 5. Ll:L2:L3:M= <0.061:0.418:0.561:0.194. Ey: from 63Gr09. Iytce: from intensity balance at the

83.4 level. Ey: from 64A109. Ey: from 64A109. K:Ll:L2:L3:M:N:0=38.4:5.19:0.826:0.489:

1.37:0.35. K:L1:M=0.126:0.0234:0.0071. Iy: from 64AI09. K:L1:L2:L3:M:N+=1.78:0.210:0.339:0.377:

0.165:0.057. K:L1:L3:M=0.734:0.116:0.0082:0.0316. 6: calculated from subshell ratios. K:Ll:L2:L3:M:N+=25.8:2.65:0.54:0.70:0.84:

0.22. K:Ll:L2:L3:M:N=l02:12.87:1.59:0.653:3.28:

0.806. Ey: from 64AlO9. K:L1:L2:L3=0.044:0.0048:0.0019:0.0015.

t From 78He21 unless otherwise indicated 1: For absolute intensity per 100 decays, multiply by 0.276 15. 9 Listed values have been calculated by the evaluator from the subshell ratios of 63Gr09. # Listed values are theoretical values for the indicated multipolarities (68Ha53).

153Gd Levels from 153Gd IT Decay (76.1 ps) 70Bo02,67Co20

Sources produced by ls3Eu(d,2n) (70Bo02) and by lJ3Eu(p,n) (87Co20) using enriched targets Other measurements: 67Bo05, 681001, 72LoO4, 79Ka16.

E(level) J,t T,,2 Comments

0.0 42 93.4 95.2

170 -172

3/2- 5/2- 7/2- E(IeveI): from 72LoO4. (g/2)+ 3.5 ps 4 E(leve1): from 72LoO4.

T,,,: from 79Ka16, y(t) delay. (9/2-j (11/2-l 76.1 ps 16 T,,,: weighted average of 75.6 ps 20 (79Kal6), 79 /LS 5 (7OBoOZ),

76 15 (681001), 85 jts fis 17 (681001), 75.8 ps 20 (67Co20). Other measurement: 67Bo05.

t From adopted levels.

552

';;Gd8,-5 NUCLEAR DATA SHEETS

y(153Gd) from 153Gd IT Decay (76.1 ps) 70Bo02,67Co20

Additional information relevant to Iy and mult for some of the transitions has been taken from ‘=Gd E decay and ‘%3m(a,3ny).

Ice: the values of 7OBoO2 have been normalized by the evaluator to give n(L)(94y)=1.45 (E2 theory).

BY

(1.8) (=2)

42

52 77

79?

94

128

E( level) --

95.2 172

42

93.4 170

172

93.4

170

IY

9.2

5 2 25.5

2.5

1.1 I

0.7 4

Mult.

MliE2

MltE2

E2

E2

Comments

ce(L)=73.8 72; ce(M)=19.7 72. Iy: calculated from w(L) to give a(L)(42y)=E.O, by using 6=0.28 as

indicated by w(L) values of 62Ha24 in ls3Tb c decay. ce(L)=l2.9 18; ee(M)=4.2 4. ce(L)=3.7 12; ce(M)=1.2 12. Iy: calculated from Iy values of 72LoO4 and normalized to

Iy(77y)+Iy(79y)=28 as reported by 70Bo02. ce(L)=9.8 72; ce(M)=3.1 7. Iy: calculated from ly values of 72LoO4 and normalized to

Iy(77y)+Iy(79~)=28 as reported by 70Bo02. mult from 153Tb E decay. ce(L)=l&O 25; ce(k4)=0.49 25. Mult: from y and Ice measurements of 70Bo02.

153Gd Levels from 153Tb E Decay 75Vy01,74TuOl

Sourws produced by spallation of Ta by 660-MeV protons and spallation of Gd by IZO-MeV protons (75VyOl); by irradiation of natural Gd by 50-MeV protons (74TuOl), followed by chemical separation and mass separation. Other measurements: 78Cr02, 78Wal4, 76Al09, 75Se16, 74Pe16, 88Ni04, 62Ha24, 61St15, 60Ab03. 59To26.

The decay scheme shown in the drawings is based on 75VyOl and 74TuOl. %4+=0.063 9 (78Cr02)

E(level) Jr

0.0 41.55 5 88.36 13 93.34 4

109.76 2 129.16 2 183.46 3 195.19 5 212.03 2 249.57 3 303.59 3 315.42 6 316.09 6 361.35 9 368.73 6 420.55 9 436.32 4 442.21 7 448.45 6 484.04 17 508.82 5 530.46 8 541.35 If 548.69 6 615.69 14 617.99 14

3/2- 2/2-

7/2- 5/2- 3/2- 5/2+

(l/2-) 3/2+ 5/2- 5/2+

(3/2-j 5/2+ 3/2-

(5/2-)

l/2- 5/2+ 5/2- 1/2+ -

3/2-

5/2- +

E( level) Jll comments

636.03 9 698.75 23 709.25 14 727.72 17 731.62 7 782.66 7 821.20 8 857.62 5 865.49 7 937.42 8 945.18 3 955.43 7

1024.95 I2 1035.20 5 1037.02 24 1043.50 3 1066.19 14 1070.57 45 1101.62 3 1107.62 45 1131.77 9 1180.53 II 1272.70 11 1328.03 9 1401.57 17 1422.22 16

+

5/2+

3/2- 3/2+ + 3/2+ 5/2+

5/2+ + 3/2- Jr: from 78Wa14 yy(8)

+ 3/2+

(+I + + 5/2+

553

';;GdBg-6 NUCLEAR DATA SHEETS ';iGdB9-6

ls3Gd Levels from 152Sm(cx,3ny) 72Lo04,72Re04

Measured Ey, I-y(e). yy-coin. Deduced angular distribution coefficients. Ea=32-43 MeV (72LoO4); Ea=27-32 MeV (72Re04). Other measurements: 68EjOl.

AE: calculated by the evaluator by assuming the uncertainty in Ey is 0.1 keV.

E( 1eveI)t J?l Comments

0.02 41.6t: 1 93.4% 1 95.2# 2

109.9 1 134.7# 3

3/2- 5/2- 7/2- (9/2+) (5/2-l Jr: possibly the 5/2C5231 Nilsson state. (‘3/z+) E(Ievel): 72Re04 reported an energy of 140 keV 1 for this level. Their energy

values for the higher spin levels of the mixed positive-parity band are correspondingly higher than those of 72LoO4.

(9/2-j (11/2-J Jn: possibly the 11/2[5051 Nilsson state. (5/z+) (‘l/2+) 3/2-, 5/2- (17/2+) (13/2-j (15/2+) (15/2-) (21/2+) (17/2-) (‘g/2+) (‘9/2-j (25/z+) (21/2-) (23/2-) (29/2+) (25/2-) (27/2-j E(Ieve1): misprinted as 2186.0 keV in 72LoO4. (33/2+)

168 4?5 2 171 25 2 183 5 1 221 3?# 3 249 6 1 361 of 3 363 44 3 555 9?# 3 575 05 3 723 s# 4 804 78 3 975 5?# 4

1050 75 3 1190 5# 4 1311 85 3 1586 35 3 1740 7# 5 1872 36 4 2168 05 4 2356 9# 5

t From 72LoO4 unless indicated otherwise. $ 3/2C5211 band member. 5 ll/BE5051 band member. # Mixed positive-parity band member.

y(‘53Gd) from 15%m(a,3ny) 72Lo04,72Re04

68EjOl have measured ce intensities for some transitions by using Ea=40 MeV and 36 MeV. Listed values are for relative Ice(K) in arbitrary units.

Angular distribution coefficients are from 72LoO4.

wt E( level) IY+ Comments

(1 8) (39 5)

41 6 51 8 68 2

“,75 2? 76 0 77 9 86 7 89 8 93 4

Xl00 8

109 126 139 141

X151

95 2 134 7

41 6 93 4

109 9 166 4 171 2 171 2 221 3 183 5

93 4

28 4 A,=-0.17 13.

15 “1

2 “0

3 0 0 2 4 0 0 0 0 0 0

9 8

7 2 8 8 7 9 8 8 9 9 8 8

A,=-0.04 3; A,=0.05 4.

A,=-0.20 10.

A,=O.OO 7. A,=0.34 26. A,=0.34 26. A,=-0.13 7. A,=-0.27 4. A,=-0.06 15. A,=-0.01 76. A,=-0.15 30. A,=-0.15 30.

A,=-0.42 21

Continued on next page (footnotes at end of table)

554

'EQGdeg-7 NUCLEAR DATA SHEETS

EY+ E(leve1) 1-Y+ Comments

‘174.6 x178.2? x181 .2?

183.9 192.2 3

xl95.2? 211.6

2.0 A,=-0.04 12; A,=0.22 77.

183.5 1.2 A,=-0.23 60. 363.4 22.9 A,=-0.66 3; A,=0.05 4.

575.0 16.5

226.3 361 .o 100. 229.7 3 804.7 9.6

‘238.9 x241.1

246.0 249.7

x258.2 261.1 274.5

x279.0 ‘282.2

286.0 X291.7

295.7 x298.2

334.6

5.9

1050.7 249.6

1311 .8 1586.3

1872.3

2168.0

555.9

7.1 4.6 1.4 4.3 3.3 1.5 1.4 2.6 2.2 1.2 1 1 9.1

‘336.4 362.6 723.6

4.2 72.5

ce(K)=Z.Z 3. A,=-0.61 3; A,=-0.05 4. A,=0.30 3; A,=-0.07 4. ce(K)=E.Z 5. A,=-&77 4. A,=-0.28 72. A,=O.Ol 5. A,=-0.75 13. A,=0.09 8. A,=-0.61 75. A,=-0.70 6. A,=-0.60 12. A,=O.lO II. A,=0.17 70. A,=-0.66 10. A,=0.18 10. A,=-0.89 23. A,=-0.10 13. ce(K)=0.4 7. A,=0.27 4; A,=-0.10 6. A,=0.36 7. ce(K)=1.25 10. A,=0.31 3; A,=-0.09 4.

‘382.7? ‘385.6? ‘390.6

403.7 x405.7

419.6 ‘422.1 ‘427.8? ‘428.6? x437.7

441 .o x445.4 ‘448.8? x458.2 x459.7 x463.9?

466.9

575.0

975.5

1 .8 A,=O.ZO 7. 4.4 A,=0.19 6. 1.1 A,=0.23 75. 9.7 A,=0.32 4; A,=-0.08 6. 1.9 A,=0.37 9.

804.7 2.4 A,=%33 7. 6.9 A,=0:28 3. 4.4 A,=0.26 4.

1190.5

2.0 4.5 1.7

37.6

476.0 ‘480.2 x482.9 x503.7

507.7? ‘522.0? X533.9

535.3 x537.5 x542.7

550.2

1050.7 9.9 2.2

-1 .o 7.3

A,=0.36 9. A,=0.33 6. A,=0.04 10. ce(K)=0.5 I. A,=0.29 3; A,=-0.10 4. A,=0.45 3. A,=0.44 7.

1311.8 A,=0.34 6; A,=0.04 70. ce(K)=O.4 7.

1586.3

1740.7

1 .a 5.2 1 .8 4.0

16.5

A,=0.32 20. A,=0.32 1.2. A,=0.21 7.2. A,=O.Zl 7. ce(K)=0.3 1. A,=0.29 3; A,=-0.14 5.

560.3 I609.2 ‘611.9

616.2

1872.3

2356.9

1.7 7.6 8.2

A,=0.62 4; A,=0.06 8. ce(K)=0.15 5. A,=O.30 5; A,=-0.23 8.

x62O.l 6.2 ‘627.7 0.9 ‘669.4 3.6

A,=O.lO 22. A,=0.08 13.

y(‘53Gd) from ‘%m(a,3ny) 72Lo04,72Re04 (continued)

+ From 72LoO4 unless Indicated otherwise. x y-ray not placed in level scheme.

555

';;Gd,,-8 NUCLEAR DATA SHEETS ';iGd,,-8

153Gd Levels from ‘52Gd(d,p) 6i’T jO1

E=lZ.l MeV. Magnetic spectrometer resolution=13 keV. Measured proton intensities at 60’, 90” and 125’.

Measured Q(d,p)=4015 keV 70. Band assignments are those proposed by 67TjOl. For adopted band assignments see lJ3Gd adopted

levels.

E( level) Jnt do/dot E( level)

0.0 43 3 93 3

110 3 1386 3 (11/2-) 182 3 217# 3 (3/2+) 315 3 328@ 3 (l/2+ 363& 3 (3/z- 435 3 507 3 530 3 548 3 575 3 606 3 634 3 648 3 678 3 721 3 736 3 772 3

25 25

369 369 189 189 136 136

65 65 10 10 24 24 14 14 29 29 37 37 71 71 11 11

147 147

94 6

630 60 52 23

110 31

856a 3 876 3 889 3 905 3 943a 3 960a 3 994 3

1034 5 1052 5 1081 5 1099 5 1115 5 1143 5 1155a 5 1171 5 1194a 5 1235 5 1251 5 1296 5 1339 5 1361 5 1384 5

J,t - do/dOz -

(l/2-) 427 27 28 52

(3/2-) 55 (5/2-) I75

89 19 84

9 22

8 24

(7/e-) 92 193

(Q/2-) 12 27 27 60 19

139 76

E(Ievel) da/dRt

1400 5 67 1421 5 65 1448 5 58 1482 5 49 1496 5 37 1509 5 43 1533 5 42 1548 5 71 1564 5 39 1584 5 51 1597 5 28 1615 5 47 1631 5 13 1655 5 51 1669 5 22 1686 5 34 1701 5 18 1720 5 65 1738 5 47 1755 5 69 1772 5 34

t Deduced from consideration of absolute cross-section values and probable Nilsson states. t Listed values are for do/dR at 60”, in pb/sr. 5 11/2C5051 band member. # 3/2C4021 band member. @ 1/2C4001 band member. & 1/2C5301 band member. a 1/2C5211 band member.

‘53Gd Levels from 15*Gd(d,t) 73Lo14,67TjOl

E=l5 MeV (73Lol4); E=12.1 MeV (67TjOl). Magnetic spectrograph.

E( level) Ji?

0.09 438 2 948 2

109 2 129 2 138 2 172# 2 183 2 2l2@ 2 250 2 303@ 2 315 328& 2 362 2 395 2 413&

~436 z442@

483a 2 5o4b 2 530 2 549 2 578 2 606 2

3/2- 5/2- 7/2- (5/2-) (3/2-l (13/2+) (11/2-) (5/2+) (3/Z+-) (5/2-) (5/2+)

(l/2+)

(3/2+)

(5/2+) (l/2+) (3/2+) (3/2-j (5/Z-,7/2-j

Lt -

1 3 3,4

1 6 5 2 2 293 2 1 0 1

2,3 (1) (2) 0 2 1

3,4

da/dClt

207 7

335 72

9 45 63 29

646 46 27

“40 1063

361 29 71

~65 “40

23 112

21 5

26 3

Comments

Jr: likely the 3/2C5213 Nilsson state.

Jr: likely the 11/2C5053 Nilsson state.

Jr: probably the 3/2[4021 Nilsson state.

Jr: possibly the 1/2C4001 Nilsson state.

Jr possibly the 1/2C6601 Nilsson state. Jr possibly the 3/2C6517 Nilsson state.

Continued on next page (footnotes at end of table)

556

1;iGdgg-9 NUCLEAR DATA SHEETS lgGd8g-9

153Gd Levels from ‘54Gd(d,t) 73Lo14,67TjOl (continued)

E( level) Jr L+ da/dDt Comments

633 2 647 2 682 2 773 2 857 2 884 904 2 932 2 986 2

1035 2 1062 2 1096 2 1116 2 1152 2 1250 1280 1298 1366 1380 1389 1400 1455 1474

5.6 3 10 12

-3 35 10

1 35 8

10 24

6 15

8 2 53 2,s 113

7 4 da/do: listed value is for angle of 40”.

13 8 do/dR: listed value is for angle of 50”. 6 7 5

12

(11/2-) 5 16 Jr: possibly the 11/2- member of the 9/2C5141 band. The bandhead has not been identified.

-4 46 Jr: possibly the 7/X4041 Nilsson state. 1509

+ Deduced from DWBA analysis of angular distributions and ratio of (3He,u) and (d,t) cross sections. $ Listed values are for do/dfl (in wb/sr) at 45” (73Lo14). 5 3/2C5211 band member. # 11/2[5051 band member. @ 3/2[4021 band member. 8~ 1/2C4001 band member. a 1/2C6601 band member. b 3/2C6511 band member.

153Gd Levels from ‘54Gd(3He,a) 73Lo14

Ea=24, MeV. Magnetic spectrograph

E(leve1) Jr

0.05 405 5 95 5

139 5 171# 5 217@ 5 248 5 300@ 5 328& 5 367 5 395 5 417& 5 436 5 512b 5 575 5 632 5 777 5 856 5 889 5 931 5 987 5

1033 5 1082 5 1113 5 1158 5

3/2- 5/2- 7/2-

(13/z+) (11/2-) (3/2+) (5/2-j (5/2+) 1/2+

L+ -

1 3

3,4 6 5 2 2,s 2 0 1

2,3 (1) 2 3,4 586 3=:

1

2

223

"0.0 -1 45

135 96 76

-5 -5 15 "8 -2 =5 "4

7 18 19

9 3 4

-1 5 2 5

10 14

Comments

Jr: 3/2C5211 Nilsson state.

Jr: configuration=11/2C5051 Jr: configuration=3/2C40;?7.

Jr: configuration=1/2C4001

Jr: configuration=3/2[6511

page Continued on next

557

‘;iGd,,-10 NUCLEAR DATA SHEETS

153Gd Levels from ‘54Gd(3He,a) 73Lo14 (continued)

E( level) Ja Lt du/dRz Comments ---

1293 5 5 1363 5 9 1477c 5 (11/2-) 5 48 JR: possible member of the 9/2C5141 band. The bandhead has not been

identified. 15o6d 5 (7/2+) 4.z %20 Jr: configuration=7/2[4041. 1530 5 18 1562 5 22

t Deduced from DWBA analysis of angular distributions and ratio of (3He,a) and (d,t) Cross SectiOnS.

2 Listed values are for do/dD (in fib/w) at 40”. § 3/2C5211 band member. # 11/2C5051 band member. @ 3/2E4023 band member. & 1/2C4001 band member. b 3/2C6511 band member. C 9/2C5141 band member. d 7/2[4041 band member.

‘53Gd Levels from ‘=‘Gd(p,t) i’3LoO8

E(p)=18 MeV. Magnetic spectrograph. Measured cross sections at e(lab)=lO”. 25” and 40”.

E( level) J,t

0.05 42.4 2 95.5 2

111 2 129 2 216.= 2 321 2 330.@ 2 362 2 414 2 429 2 448 2 509.a 2 531. 549 .& 579. 607 2 636 2 648 2 663 2 675 2 684 2

1116 2

3/2- 5/2- 7/2-

(5/z)- 3/2- 3/2+

1/2+

5/2- 3/2- 3/2- 5/2-

da/dQS Comments

268 Jn: 3/2C5211 Nilsson state. 27

8 10 88 19 Jr: configuration=3/2C4021,

4 2 Jr: configuration=1/2C4001. 8

-2 4

10 82 Jr: possibly the P-vibration based on the 3/2C5211 ground state. 96

8 8

13

13

6 2 8

t Adopted values $ Listed values are for do/dD (in pb/sr) at 25”. 5 3/2C5211 band member. @ 1/2C4001 band member. & /.-vibrational band member. a 3/2[4021 band member.

558

NUCLEAR DATA SHEETS

153Tb Adopted Levels

Q(fi-)=-2170.0 20; S(n)=8518 16; S(p)=3886 4; Q(a)=2711 7 82WaZZ.

E( level)

o.o$

Jnt T,,,

5/2+ 2.34 d I

80.775 3 7/2+

147.48# 3 (3/2)+

163.31& 4 (11/2)-

213.79@ 3 (7/2)- 218.60 6 3/2+ 5/2+ )

240.54# 4 (5/2)+ 254.228 3 (7/2)+ 262.97a 4 (Q/2)-

325.018 4 (Q/2)+

371.58 4

389.56# 4 444.741: 4

510.39 5 511.4381 II 529.419 5 535.57a 10 537.51 4 543.24 7 571.90# 5 597.47 5

624 4 630.59$ 5 651.74 12 660.09 6

-710 722.47 7 725.62 5

726.91 5 740.72 4 755.41+ 7 767 4 772.83 790.04 2 790.98# 16 799.95 8 807.63 6

648.62$ 8 876.92? 13 683 4 957.60 8

+

(7/2)+ (Q/2)+

0.49 ns 2

0.84 ns 3

186 ps 4

0.22 ns 2

(15/2-) (11/2+) 0.60 ns 3

(13/2-)

3/a+, 5/2t (Q/2)+ 9/2-

S5/2

(11/E)+

3/e+, 5/2+ s5/2 r5/2

(Q/2)-

(7/2)+ (13/2+) (I/2,3/2)

(11/2)+

Q/2-

13/2$

(9/Z-,11/2-)

Comments

Jrr: atomic beam magnetic resonance (70AdO9). L=2 in (sHe,d) and (a,t).

T ,,e: from 70ChOQ. Other measurements: 2.6 d (57Mi67), 2.3 d 3 (58An38), 2.31 d 5 (60La09), 2.36 d 5 (62St26), 2.50 d 2f (72F109).

Jr: Ml component in 80.8~ to 5/2+ $.s. L=4 in (aHe,d) and (a,t).

T,,,: from 77A129 (delayed coincidence). Jr: Ml component in 147.4~ to 5/2+ g.s. T,,,: from 77Al29 (delayed coincidence). Jr: L=4,5 in (3He,d) and (a,t). 82.57 to 7/2+ state at

60.8 keV is M2. T,,,: weighted average of 187 @s 6 (77KoZH), 174 MS 35

(681001), 190 j~s 6 (67Co20), 173 MS 10 (65Gr04). Jr: El transitions to 5/2+ and 7/2+ states. Jr L=2 in (aHe,d) and (a,t). Jr Ml transitions to g.s. and 3/2+ state at 147.48 keV. Jr Ml transitions to g.s. and 7/2+ state at 80.77 keV. Jr Ml+E2 transition to 11/2- state at 163.31 keV. T ,,a: from 77A129 (delayed coincidence). Jr: there is some disagreement concerning the spin assignment

for this level. 72Ha41 and 75ZuZZ favor a 7/2+ assignment. 72Ha41 based this choice on their Ml multipolarity for the 325~ deduced from their measured a(K)exp. 77Al28 deduced E2 multipolarity for the 325~ from their measured a(K)exp and thus favor the Q/2 assignment. In the in-beam experiments of 78WiO2, the 325-keV level is interpreted as the Q/2+ member of the 7/X4041 band. The evaluator tentatively adopts the Q/2+ assignment.

Jr: rr=+ indicated by Ml(tE2) transition to 7/2+ state at 80.77 keV.

Jrr: Ml transitions to 5/2+,7/2f. Jrr: E2 transition to g.s. Ml transitions to 7/2+ states at

80.77 keV and 254.22 keV.

T,,,: from 77A129 (delayed coincidence).

Jr: L=2 in (sHe,d) and (a,t). Jr: Ml transition to 7/2+ level at 389.57 keV. Jr: Ml transitions to 7/2- level at 213.79 keV, Q/2- level at

262.97 keV and 11/2- ievel at 163.31 keV. log Pt=7.1 from 7/2(-h

Jr: L=1,2 in (sHe,d) and (a,t).

Jr: L=2 in (3He,d) and (a,t). Jr L=1,2 in (3He,d) and (a,t). Jr L=1,2 in (3He,d) and (a,t). Jr: Ml transitions to 9/2- levels at 597.47 keV and 262.97 keV

and to 11/2- level at 163.31 keV. log ft=7.1 from 7/2(-).

Jr: Ml(+E2+EO) transition to 7/2t state at 80.77 keV.

Jrr: L<2 in (aHe,d).

Jr: Ml transition to Q/2+ level at 571.98 keV.

Jr: Ml transitions to 7/2- level at 213.79 keV, to g/2- level at 262.97 keV and to 11/2- level at 163.31 keV.

Jr: L=(5) in (3He,d) and (a,t).

Continued on next page (footnotes at end of table)

559

';;Tb,,-2 NUCLEAR DATA SHEETS

E( level)

959.98 6 988.98a II 988.134 8 978.97& 13 989.14 6

1010.35 10 1084 4 1087.24$ 10 1083.31 7 1102 4 1130.87 9 1151.39 8 1170 4 1187 4 1199.425 8 1219 4 1228.49 6 1238.12 8 1240.51 70 1283 4 1305 4 1341.37 8 1385.21 5 1391 4 1422.844 10 1429.58 6 1495.03a 13 1532.86& 15 1803 4 1827.38 15 1881.598 11 1745 4 1782.27 9 1779.49 11 1791.43 7 1822.87 7 1824.98 8 1835.95 8 1858.39 9 1912.52 5 1923.80§ 12 1939.98 9 2012.04 Ii 2024.32 14 2088.74 17 2095.15a 75 2121.13 13 2155.56& 18 2211.225 13 2487.368 14 2740.053 I8 2828.98& 21 3493.5’/& 23

‘53Tb Adopted Levels (continued)

Jr? Comments

(17/z-) (15/z+) (19/2-l

(15/2+)

1/2+

(17/2+)

(1/z+)

(19/2+)

(21/2-) (23/z-)

(21/2)+

(23/2+)

(25/2-j

(27/Z-) (25/2+) (27/2+) (29/2-j (31/2-) (35/2-)

Jr: L=O in (3He,d).

Jx: L=(O) in (3He,d).

Jr: misprinted as 15/2 in 78WiO2.

t With few exceptions the Jrr assignments have been listed as tentative. Listed assignments are based on reaction data and transition multipolarities together with probable band assignments.

z 5/X4021 band member. 5 7/2C4041 band member. # 3/2C4111 band member. @ Negative-parity band member. & Favored Coriolis-decoupled hll/Z-related band member. a Unfavored Coriolis-decoupled hll/Z-related band member.

560

"gzTb,,-3 NUCLEAR DATA SHEETS ';zTb,,-3

p+,c Data from 153Tb c Decay 75Vy01,74TuOl

Sources produced by spallation of Ta by 660-MeV proton s and spallation of Gd by 120-MeV protons (75VyOl); by irradiation of natural Gd by 50-MeV protons (74TuOl), followed by chemical separation and mass separation. Other measurements: 78Cr02, 78Wa14, 76AI09, 75Sel6, 74Pe16, 68Ni04, 62Ha24, 61St15, 60Ab03, 59To26.

The decay scheme shown in the drawings is based on 75VyOi and 74TuOl. %p+=O.O63 9 (78Cr02).

EE Jz(level)

(157 4) 1422.22 (177 4) 1401.57 (251 4) 1328.03 (306 4) 1272.70 (398 4) 1180.53 (447 4) t131.77

(471 4) L107.62 (477 4) 1101 .62 (508 4) 1070.57 (513 4) LO66.19 (536 4) 1043.50 (542 4) 1037.02 (544 4) 1035.20 (554 4) 1024.95 (624 4) 955.43 (634 4) 945.18 (642 4) 937.42 (714 4) 865.49 (721 4) 857.62 (758 4) 821.20 (796 4) 782.66 (847 4) 731.62 (851 4) 727.72 (870 4) 709.25 (880 4) 698.75 (943 4) 636.03 (961 4) 617.99 (963 4) 615.69

(1030 4) 548.69 (1038 4) 541.35 (1049 4) 530.46 (1070 4) 508.82 (1095 4) 484.04 (1131 4) 448.45 (1137 4) 442.21 (1143 4) 436.32 (1158 4) 420.55 (1210 4) 368.73 (1218 4) 361.35 (1263 4) 316.09 (1275 4) 303.59 (1329 4) 249.57 (1367 4) 212.03

(1384 4) (1396 4) (1450 4)

(1469 4)

195.19 0.75 8 9.48lU 5 183.46 1.59 10 8.32 3 129.16 0.09 9 9.6 5

109.76 0.0061 15 3.3 8 8.05 f0

(1486 4) 93.34

IP+ IE Log ft Comments

0.08 I 7.47 7 cK=0.731 5; cL=O.204 4; cM+=0.0642 72. 0.077 8 7.63 6 cK=0.750 4; ~L=O.1909 23; &M+=0.0593 9. 0.23 2 7.53 5 cK=0.7847 13; tL=0.1651 9; ~M+=0.0502 4. 0.11 I 8.06 5 cK=0.7976; rL=0.1556 6; rM+=0.04680 20. 0.14 1 8.21 4 cK=0.8100; ~L=O.l464 3; ~M+=0.04361 II. 0.16 2 8.27 6 cK=0.8141; rL=0.14333 2.3; .cM+=0.04253 8. 0.031 9 9.03 13 rK=0.8158; zL=O.14206 20; &M+=0.04209 7. 2.68 74 7.11 3 rK=0.8162; cL=O.1417’7 20; cM+=0.04199 7. 0.05 1 8.89 9 cK=0.8181; ~L=O.l4038 17; cM+=0.04151 6. 0.17 2 8.37 6 rK=0.8184; cL=O.14020 77; ~M+=0.04145 6. 0.45 4 7.99 4 rK=O.8195; cL=O.13932 15; zM+=0.04114 6. 0.09 2 8.7 1 zK=0.8199; cL=O.l3908 15; rMi=0.04106 5. 1.01 6 7.65 3 cK=0.8200; cL=O.l3901 75; ~M+=O.04104 5. 0.17 2 8.44 6 cK=0.8204; zL=O.13865 14; ch4+=0.04091 5. 0.46 3 8.12 3 ~K=0.8233; cL=O.l366; cM+=0.04018. 3.03 76 7.32 3 zK=O.8236; cL=O.l363; cM+=0.04009. 0.33 3 8.29 4 ~K=O.8239; ~L=O.1361; rM+=0.04002. 0.45 3 8.26 3 ~K=0.8260; rL=0.1345; ~M+=0.03947. 0.74 5 8.05 3 cK=0.8262; ~L=O.l343; ~M+=0.03942. 0.36 3 8.41 4 cK=0.8271; zL=O.1337; cM+=0.03919. 0.51 4 8.30 4 cK=O.8280; cL=O.l330; ~M+=0.03897. 0.59 4 8.30 3 cK=0.8290; cL=O.1323; rrM+=0.03872. 0.22 2 8.73 4 cK=0.8291; rL=0.1322; ~M+=0.03870. 0.37 4 8.52 5 cK=0.8294; cL=O.l320; zM+=0.03861. 0.12 2 9.02 8 cK=0.8296; cL=O.l319; ~M+=O.O365’i’. 0.46 4 8.50 4 cK=0.8306; &L=O.1311; ~M+=0.03832. 0.10 2 9.18 3 cK=O.8308; cL=O.1309; cM+=O.O3825. 0.18 2 8.93 5 cK=0.8308; cL=O.1309; rM+=0.03824. 0.07 3 9.40 19 ~K=0.8317; cL=O.l303; ~!.+=0.03802. 0.22 3 8.91 6 cK=0.8318; ~L=O.1302; cM+=0.03800. 0.06 3 9.48 22 cK=0.8319; ~L=O.l301; cM+=O.O3796. 0.53 5 8.56 5 rK=0.8322: cL=O.lZQQ; cM+=0.03790. 0.08 3 9.40 77 cK=0.8324; zL=O.l297; cM+=O.O3783. 0.02 2 10.0 5 cK=0.8328; cL=O.l295; rM+=O.O3774. 0.55 5 8.60 4 cK=0.8329; EL=O.1294; ~M+=0.03772. 0.07 3 9.50 19 cK=0.8329; cL=O.l294; cM+=O.O3771. 0.28 5 8.91 8 cK=0.8331; zL=O.1292; cM+=0.03767. 0.20 6 9.09 18 cK=0.8335; cL=O.l289; cM+=O.03?55. 0.009 9 10.4 5 cK=0.8336; rL=0.1288; cM+=0.03753. 0.23 7 9.07 14 cK=0.8339; zL=O.1286; rM+=O.O3743. 5.0 3 7.74 3 rK=0.8339; cL=O.1285; ch4+=0.03741. 2.59 20 8.06 4 cK=0.8342; cL=O.1282; cM+=O.O3730.

0.032 3 51 3 6.79 3 avg E/3=169.1 18; EK=0.8342; cL=O.1279;

3.2 4 8.07 6

EP: 78CrO2 reported 339 5. From Q(r)-value, E/3=345 4.

I@+: from 78CrO2. Sum Ip+ determined to be 0.063 9. Authors quote IP+ ratios of 345/3+: 447~+:514~+:557~+=100.0 48:35.0 36: 18.0 +756-707:10.8 +r70-88.

cK=0.8242; ~L=O.1358; cM+=O.O3QQ5. cK=0.8342; ~L=O.1278; cM+=O.O3716. =“g E/3=206.1 78; CK=0.8340; ~L=O.l274;

cM+=0.03705. a”g 38-214.7 18; rK=0.6338; ~LzO.1273;

zM+=0.03701. EP: 78CrO2 reported 460 70. From Q(t)-value,

EP=447 4. I@+: from 78CrO2. Authors quote

iP+/I(345P+)=35.0 36/100.0 48. a”g EP=222.0 78; rK=0.8337; rL~O.1272;

cM+=0.03698.

Continued on next page (footnotes at end of table)

561

';;Tb,,-4 NUCLEAR DATA SHEETS 1;;Tbg8-4

EE

(1491 4)

(1537 4)

(1579 4)

/3+,c Data from ‘53Tb E Decay 75Vy01,74TuOl (continued)

E( level) IP+ Ic Log ft

88.36 1.60 8.4

41.55 0.0445 13.5635 7.5

Comments

avg EP=224.2 18; cK=0.8336; ~L=O.1272; cM+=0.03697.

avg EP=244.9 18; cK=0.8330; cL=O.1269; cM+=0.03687.

0.0 0.007 7 1.5 I4 8.5 4

EP=520 is (78Cr02) from Q(c)-value. Efl=515 4. Ip+: from 78Cr02. Authors quote

Ifl+/I(345/3+)=18.0 +756-707/100.0 4. I(c+/?+): 1.5 74. avg E/3=263.2 78; cK=0.8322; &L=O.1265;

rM+=0.03677. EP=570 +50-20 (78Cr02). From Q(c)-value,

E/3=557 4. IO+: from 78Cr02. Authors quote

Ifi+/I(345/3+)=10.8 +77O-88/100.0 48.

y(153Gd) from 153Tb c Decay 75Vy01,74TuOl

Ice: from 75VyOl. I-y-normalization: based on g.s. c+p+ branch of 1.4 73 (780-02) and requiring intensity balance at

each level. Authors’ value is 0.9 ~78-0.8 based on 1/3/I(ce(K) 212~).

lb+ E(level) I,+$ Mult. cs+ a Comments

19.36 129.16 E2 4030. Iy+cek 130 26. 41.56 2 41.55 123 72 Ml+E2 0.26 9.61 Iy+cek 1300 730.

ce(L1)=389 60; ce(L2)=288 45; ce(L3)=345 50; ce(h4)=250 30; ce(N)=60 70.

Iy: from I(y+ce) and a. Iy+ce: average of

values of 74TuOl (1100) and 75VyOl (1500).

6: from 62Ha24. 93.34 12.1 8 MI+E2 0.18 14.5 Iy+ce*: 75 70.

ce(L1)=32 5; ce(L2)=9.7 20; ce(L3)=6.0 70; ce(M)=l2 2; ce(N)=3.0 5.

01: calculated from 6 of 75vyoi.

51.80 5

54.28 8 183.46 3.0 5 66.24 20 249.57 1.0 5 68.20 3 109.76 11.8 6 Mi+E2 0.23

82.858 75 212.03 167 9 El

87.62 3 129.16 42.5 23 Ml+E2 0.032

6.45

0.488

3.01

ce(K)z40; ce(Ll)=lO 2; ce(L2)=2.0 2; ce(M)=3.0 3; ce(N)=l.O 2.

e(K)=68 7; ce(Ll)=9 7; ce(L2)=1.8 3; ce(L3)=3.0 4; ce(M)=4.0 5; ce(N)=l.O 2.

a(K)exp=0.41 7. ,x(K)=104 20;

ce(Ll)=14.8 20; ce(L2)=1.3 2; ce(M)=4.0 4; ce(N)=l.OO 75.

a(K)exp=2.45 60.

Continued on next page (footnotes at end of table)

562

1;;Tb,,-5 NUCLEAR DATA SHEETS

y(‘53Gd) from 153Tb E Decay 7’5Vy01,74TuOl (continued)

EY+ _ E(leve1) I,+$ Mult. 6+ a

88.30 10 88.36 12.8 8 E2+Ml 2.19 3.86

90.15 4 183.46 8.2 5 El 0.389 91.54 7 303.59 5.7 3 Ml 2.65

93.43 7 93.34 3.4 2 E2 3.26

102.263 15 212.03 192 10 El 0.277

106.78 15 195.19 1.2 3 E2 2.01

109.758 15 109.76 208 I7 Ml 1.57

126.09 6 442.21

129.185 30 129.16

132.53 6 316.09 5.6 4 MltE2 0.62 +38-62 0.92

139.86 7 249.57 4.3 3 (Ml) 0.789

141.95 2 183.46 34.9 79 El 0.114

4.0 3 Ml

17.8 9 Ml

147.61 15 508.82 '151.79 10

%152.48 20 166.76? 15 361.35

1.5 5 2.5 5

I.5 5 2.0 5 E2

1.06

0.988

Comments

ce(K)=22.5 56; ce(L1)=1.5 2; ce(L2)=8.0 8; ce(L3) ~8; ce(M)=4.0 5.

ce(N)=1.0 2; a(K)exp=i.76 50.

6: calculated from a(K)exp of 75VyOl.

CX: calculated from 6=2.19.

ce(L1)=1.1 2; ce(L2)=1.0 2; ce(L3)=1.0 2; ce(M)=1.00 15.

w(K)=65 6; ce(L1)=0.7 I; ce(L2)=2.2 2; ce(L3)=2.8 3; ce(M)=1.40 16.

a(K)exp=l.91 29. ce(K)=60 8; ce(Ll)=‘l.O 6;

ce(L2)=1.0 2; ce(L3)=2.0 2; ce(M)=3.0 3.

ce(N)=l.O 2; a(K)exp=0.31 6.

ce(K)=l.O 2; a(K)exp=0.83 38.

ce(K)=294 25; ce(L1)=27 3; ce(L2)=3.0 3; ce(L3)=0.7 1; ce(M)=7 1; ce(N)=2.0 4.

a(K)exp=1.41 20. ce(K)=3.1 3;

ce(L1)=0.30 5; ce(M)=O.lO 3.

ce(K)=14.4 75; ce(Ll)=l.S 2; ce(L2)=0.20 4; ce(M)=0.40 5; a(K)exp=34 3.

ce(K)=4.0 10; ce(L2)=0.50 8; ce(L3)=0.50 8; ce(M)=0.30 8; a(K)exp=0.71 23.

6: calculated from ol(K)exp.

a: calculated by assuming 6=0.62.

ce(K)=3.5 5; ce(Ll)=0.40 6; a(K)exp=0.81 77.

ce(K)=5.0 5; ce(Ll)=0.7 I; ce(L2)=0.5 7; ce(L3)=0.6 7; a(K)exp=0.143 22.

ce(K)=l.O 2; a(K)exp=O.40 IS.

ee(K)<0.4. a(K)exp=O.25 70. 0.415

Continued on next page (footnotes at end of table)

563

';;Tb,,-6 NUCLEAR DATA SHEETS ';;TbB8-6

Eyt E(leve1) 1,tt Mult.

170.504 20 212.03 219 72 El

174.440 25 303.59 50.7 27 (El) 0.066

178.18 361.35 4.0 5 El 0.062 183.51 3 183.46 32.7 18 El 0.057

166.06 20 315.42 0.8 4 Ml 0.356

166.86 15 316.09 4.9 5 El 0.0546

193.84 7 303.59 10.8 6 El 0.0495

195.22 3 195.19 25.6 74 Ml 0.31

197.02 15 727.72 206.19 10 316.09

208.11 7 249.57

210.39 8 303.59

212.038 1.5 212.03 1000 50 El 0.0391

'216.00 75 X223.65 15 x224.6 3 x229.5O 25 '232.70 25

233.84 15 X238.4O 25

782.66

1.6 5 2.2 4 0.45 30 0.9 4 0.9 4 2.8 7 1.10 30

239.2 4 368.73 0.7 4 241.6 4 436.32 0.63 30 249.508 25 249.57 76 4

858.89 10 262.00 5 267.06 If

'268.2 4 273.7 6

368.73 303.59 636.03

2.6 6 18.0 16

2.0 5 0.40 20 1.7 5

Ml 0.145 (El) 0.0225

Ml 0.133

315.42 E2 0.0807

275.22 10 368.73 7.8 16 Ml 0.123

x277.6 6 0.30 20 '278.65 15 2.2 6

280.6 4 291.60 15

X292.8O 30 X295.OO 30

298.3 4 299.57 8 303.517 30

368.73 541.35

782.66 615.69 303.59

0.36 20 1.8 6 0.7 3 0.5 3 0.9 4 4.3 5

28.2 20

310.10 30 1131.77 0.6 3

y(153Gd) from 153Tb E Decay 75Vy01,74TuOl (continued)

2.0 5 7.4 7

19.3 14

50.0 30

6t a

0.0697

El El

0.0474 0.042

Ml 0.262

El 0.0399

Ml 0.160

Ml+EZ 1.09 0.0777 El 0.0155

Comments

ce(K)=12.6 73; ce(L2)=0.30 6; a(K)exp=0.058 9.

ce(K)=8.3 10; ce(Ll)=l.OO 15; ce(L2)=0.40 6; a(K)exp=0.164 28.

a(K)exp=0.075 60. ce(K)=1.6 2;

ce(L1)=0.30 5; ce(L2)=0.20 3; a(K)exp=0.049 9.

ce(K)=0.23 5; a(K)exp=0.30 21.

ce(K)=0.23 5; a(K)exp=0.047 75.

ce(K)=0.4 70; a(K)exp=0.037 II.

ce(K)=5.0 5; ce(Ll)=O.E 7; a(K)exp=0.20 3.

a(K)exp=0.04 2. ce(K)=0.30 5;

a(K)exp=0.04 1. ce(K)=4.4 5;

a(K)exp=0.23 4. ce(K)=l.2 3;

ce(L1)=0.15 4; a(K)exp=0.024 7.

ce(K)=34; ce(Ll)=3.24 50; ce(L2)=0.40 5; ce(L3)=0.50 5; a(K)exp=0.034.

ce(K)nO.OE.

ce(K)=O.OQ 2; a(K)exp=0.082 49.

ce(K)=Q.E 10; ce(Ll)=l.O 2; a(K)exp=0.13 2.

a(K)exp=O.llO 55. a(K)expCO.OBQ. a(K)exp=0.136 68.

ce(K)=O.OE 2; a(K)exp=0.047 26.

ce(K)=O.EO 5; ce(L1)=0.13 3; a(K)exp=O.lOO 27.

ce(K)=0.30 5; u(K)exp=0.136 60.

a(K)exp=0.056 35.

a(K)exp=0.063 19. ce(K)=0.40 4;

a(K)exp=0.014 2

Continued on next page (footnotes at end of table)

564

'g;Tb,,-7 NUCLEAR DATA SHEETS 'g;Tb,,-7

y(‘53Gd) from 153Tb E Decay 75Vy01,74TuOi (continued)

ET’+ _ x310.90 30

312.6 4 315.24 8

tz(level) 1,tt MuIt. *

615.69 315.42

0.5 3 0.4 2

15.1 15 Ml 0.0854

316.08 9 316.09 13.2 13 El 0.014

X318.60 20 319.95 5 325.50 30 327.20 5

636.03 508.82 368.73 420.55

2.1 4 9.3 8 1.4 5 6.2 13 6.2 13 0.7 4 4.7 8 0.9 5

Ml 0.0821 El 0.013 Ml 0.0774 Ml 0.0774

'328.6 4 332.70 10

X338.9 5 442.21 E2 0.0442

340.53 12 346.31 15 348.58 15

'352.10 30 '353.2 5

354.90 10 ‘356.9 4

361.30 20 362.50 30

'364.55 20

709.25 541.35 442.21

Ml 0.0696 Ml 0.0666 E2 0.0385

448.45 Ml 0.0624 a(K)exp=0.058 73.

361.35 731.62

7.6 8 1.9 3 1.5 3 0.6 5 0.3 3 6.8 7 0.5 3 5.1 12 1.5 5 0.8 4

Ml 0.0596 a(K)exp=0.078 28.

368.48 12 368.73 1.5 5 E2tMl 1.43 0.041

'371.14 8 379.28 30 420.55

508.82

3.1 4 0.9 3 0.9 3 0.6 3 1.1 4 0.5 3 4.0 10 1.0 6 1.0 6

E2tMl E2tMl

1.13 1.13

0.95

1.39

0.0399 0.0399

'382.5 4 390.75? 30

x392.1 5 393.22? II 395.06 40

'398.4 4

484.04 EEtMl 0.038 a(K)exp=0.032 77.

709.25 484.04

E2tMl 0.0342 a(K)exp=0.028 14

400.52 12 442.21 5.4 10

x404.7 5 406.72 17

'410.36 14 '412.8 5 '417.27 20

418.9 6 420.63 15

448.45 Ml 0.0437 a(K)exp=0.040 16.

548.69 420.55 530.46

0.8 3 2.5 5 1.10 20 0.5 3 1.1 7 0.4 3 1.7 6 1.7 6 0.4 2 0.30 20

12.4 6 5.2 5 3.0 16 0.5 5 0.6 3

10.0 6 10.0 6

0.60 30 0.30 20 0.30 20 0.55 20 1.9 2 1.50 16 2.4 5 2.4 5 2.4 5

Ml+E2 0.67 0.0346 a(K)exp=Q.O29 22. MltE2 0.67 0.0346 a(K)exp=O.O29 22.

'423.40 30 x433.5 4

436.330 25 442.17 7 448.67 27 455.376 30 462.50? 21 467.246 30

436.32 442.21 448.45 548.69

1328.03 508.82 782.66

Ml E2 Ml Ml E2tMl E2tMl EZtMl

x471.2 4 x473.5 6 x477.0 6 '479.71 23

462.06 II 484.06 11 488.82 8

1.05 0.97 0.968

0.0365 a(K)exp=0.031 4. 0.0195 a(K)exp=0.019 6. 0.0341 a(K)exp=0.033 24. 0.0327 a(K)exp=0.035 8. 0.024 a(K)exp=0.020 15. 0.0239 a(K)exp=0.020 5. 0.0239 a(K)exp=0.020 5.

731.62 484.04 530.46 617.99 857.62

El 0.00512 a(K)exp=0.0032 19. El 0.0051 a(K)exp=0.0040 25.

Comments

ce(K)=1.25 75; ce(L1)=0.10 2; a(K)exp=0.083 78.

ce(K)=O.20 3; a(K)exp=0.015 4.

a(K)exp=0.086 78.

a(K)exp=0.097 25. a(K)exp=0.097 25.

a(K)exp=0.036 13. ce(K)=O.lO 3;

a(K)exp=O.ll 10. a(K)exp=O.063 20. a(K)exp=0.037 21.

ce(K)<0.07.

w(K)=05 7; a(K)exp=0.063 44.

a(K)exp=0.033 24. 6: calculated from

a(K)exp. ce(K)<O.lO. a(K)exp=0.039 23. a(K)exp=0.039 23.

ce(K)=0.05 1; a(K)exp=0.05 4.

ce(K)=0.03 I; a(K)exp=0.0056 29.

ee(K)=O.O2 1.

-

Continued on next page (footnotes at end of table)

565

';;Tb,,-8 NUCLEAR DATA SHEETS 'E;Tb,,-8

EY+ E(leve1) 1y+t MuIt.

494.38 12 496.52 7

499.83 23 X501.5 4

502.82 25 504.67 25 507.13 15 508.87 8

'511.00 25 x512.5 4 x513.73 20

1024.95 857.62 945.18 541.35

698.75 1035.20

548.69 508.82

1.8 2 6.8 5 6.8 5 0.75 20 0.4 2 1.6 4 1.6 4 3.6 5 5.6 8 2.0 4 0.7 4 1.50 30

515.95 23 '523.8 4 '525.67 6

530.45 8 533.14 12 541.35 8 542.5 5

698.75

548.40 If

530.46 782.66 541.35 636.03 857.62 548.69 731.62

X550.3 5 552.98 74 554.3 6

'555.6 5 557.26 9 565.0 4

'566.20 30 X57O.2 5

571.28 8 573.7 5

x576.8 4

1101.62 857.62

1066.19 1422.22

821.20 615.69

617.99 '579.88 4

0.95 20 0.60 30 4.0 4 3.3 4 2.8 3 2.96 0.7 4 0.7 4 4.0 4 4.0 4 0.6 4 3.6 2 0.4 3 0.50 30 1.90 15 0.9 3 1.1 3 0.5 4 2.0 4 0.6 4 0.50 30 0.5 3 4.10 30

'581.8 6 '586.20 30 x591.2 4 x594.6O 30

598.15? 20 599.3 2 605.45 25

X6O7.5 4

727.72 709.25 698.75

0.50 40 0.70 30 0.8 4 1.0 4 2.0 4 0.4 3 0.8 4 0.8 4

x61O.2 5 X613.1 5

616.2 4 617.8 4 621.98 20 629.70 4 636.32 72 638.31 f0

615.69 617.99 731.62 945.18 636.03 731.62 821.20

'646.80 30

0.40 30 0.40 30 0.6 3 0.6 3 0.8 2

11.6 5 2.7 6 3.2 7 3.2 7 0.80 30

653.20 4 665.34 4

x667.9O 30 X671.8 5

673.80 30 X678.6 2

1101.62 1101.62

1035.20

4.78 24 10.0 6

1.6 4 0.7 4 3.1 6 1.90 30

682.10 30 1043.50 1.50 30 689.99 6 731.62 8.1 4 696.34 30 945.18 0.7 4 698.6 4 698.75 0.7 4

y(153Gd) from 153Tb E Decay 75Vy01,74TuOl (continued)

El Ml Ml

l5+ a

0.00484 0.0262 0.0262

Comments

a(K)exp<0.0056. a(K)exp=0.029 8. a(K)exp=0.029 73.

Ml 0.0256 a(K)exp=0.025 19. Ml 0.0253 a(K)exp<0.038. Ml 0.0250 a(K)exp=0.028 9. Ml 0.0246 a(K)exp=O.027 6.

Ml 0.0239

ce(K)=0.03 1; a(K)exp=0.020 77.

a(K)exp<0.053.

Ml 0.0223 a(K)exp=0.030 10. EZ+Ml 1.031 0.0168 a(K)exp=0.014 9. E2+Ml 1.5 0.015 a(K)exp=0.012 9.

Ml 0.0205 a(K)exp=0.015 6. Ml 0.0205 a(K)exp=0.015 6.

El 0.00380 u(K)exp=0.0014 9.

El 0.00373 a(K)exp=0.0026 79. a(K)exp=0.0056 52.

Ml 0.0185 a(K)exp=0.030 16.

ce(K)=O.OlO 3; a(K)exp=0.0024 9.

ce(K)=0.007 3. ce(K)=0.005 2.

E2 0.00865 a(K)exp=0.0075 60. ce(K)=O.OlO 3;

a(K)exp=0.012 10.

Ml+E2 0.94 0.0119 a(K)exp=O.OlO 8. E2 0.00810 a(K)exp=0.0063 40. E2 0.00786 a(K)exp=0.006 2. E2 0.0077 a(K)exp=0.0074 40.

El 0.00266 El,EZ 0.0097

ce(K)=O.OlO 3; a(K)exp=O.OlZ 8

a(K)exp=0.0023 70. a(K)exp=0.0040 72.

El 0.00249

El 0.0024 El 0.00237

a(K)exp=0.0019 70. ce(K)=0.021 4;

a(K)exp=O.Oll 4. ce(K)=0.005 7. a(K)exp=0.0026 70.

El 0.00231 a(K)exp<0.0014.

Continued on next page (footnotes at end of table)

566

'z;Tb,,-9 NUCLEAR DATA SHEETS 'iijTb,8-9

y(‘53Gd) from 153Tb c Decay 75Vy01,74Tu01 (continued)

MuIt. 67 4 1ytt E-Y? IE(1evel)

x7O4.O 6 706.16 14 711.43 8

X713.6 5 718.62? 14 721.44 a 727.82 7 731.6 8

'733.0 6

955.43 821.20

035.20 024.95 727.72 731.62

0.34 15 1.23 27 3.42 24 0.5 4 1.50 15 2.9 4 3.2 3 0.5 4 1.1 4

736.42 20 865.49 4.2 4 739.68 6 043.50 10.9 9

742.0 6 x743.7 a X745.5 5

748.0 5 '750.2 5 X754.0 4

937.42

857.62

1.4 7 0.2 2 0.6 4 0.8 4 0.5 3 2.2 4

755.84 16 761.81 9

'765.12 30

865.49 945.18

3.9 5 2.6 3 0.60 30

X771.4 4 0.80 30

x774.4 4 776.8 6 779.51 10 782.0 8 785.65 3

'788.8 6 795.2 5

'796.8 6

865.49 821.20 782.66

1035.20

1043.50

1.4 3 0.8 4 3.2 3 0.4 4 8.9 4 0.8 3 0.96 25 0.70 25

'798.96 10 2.25 25

x8O7.7 4 X812.2 4

816.00 a 821.50 25

X824.5 5 826.0? 4 827.69 75 835.42 3 842.51? 25 845.65 4 848.7 5 851.96 4 857.58 4 860.88 12

857.62 821.20

955.43 937.42 945.18

1037.02 955.43 937.42

1101.62 857.62

1043.50

0.72 30 0.62 30 8.7 7 1.1 4 0.6 4 2.0 5 4.0 7

33.0 14 1.16 22

11.5 6 0.36 20 8.6 6 5.9 5 1.9 3

Comments

a(K)exp=0.004123. a(K)exp=0.0012 7.

n(K)exp=0.0053 25 a(K)exp=0.0016 9. a(K)exp=0.0012 7.

ee(K)=0.007 2; a(K)exp=0.0064 40.

u(K)exp=0.0029 72. ce(K)=O.OlO 3;

a(K)exp=0.0009 3.

El 0.00222

E2 0.00574 El 0.00216 El 0.00212

El 0.00207

El 0.00197 Ml 0.00906

ce(K)=0.006 2; a(K)exp=0.0027 14.

a(K)exp=0.0013 7. a(K)exp=0.0077 32. ee(K)=0.0020 17;

a(K)exp=0.0033 25. ce(K)=0.005 2;

a(K)exp=0.0063 48.

01) 0.00185 a(K)exp<0.0006.

E2 0.00468 a(K)exp=0.0031 13.

ce(K)=0.0055 10; a(K)exp=0.0079 42.

ce(K)=0.0029 10; cx(K)exp=0.0013 6.

EZ+Ml 1.36 0.00554 u(K)exp=0.0046 15.

E2 0.00418 a(K)exp=0.0040 25.

El 0.00161 a(K)exp=O.0015 1. El 0.00159 a(K)exp=0.0043 25. El 0.00157 a(K)exp=0.0012 4.

El 0.00155 Ml 0.00679 E2tMl 1.2 0.0050

El

El

0.00150

0.00149

a(K)exp=0.0019 6. a(K)exp=0.0068 22. ee(K)=0.008 3;

a(K)exp=0.0042 22. 6: calculated from

a(K)exp=0.0042 (75VyO1).

a(K)exp=0.0018 7. ce(K)=O.OOZ 1;

a(K)exp=O.OOZO 76. a(K)exp<O.OOli.

882.2 4 1131.77 1.3 4 (El) 0.0025 II

ee(K)=0.005 2; a(K)exp=0.0033 22.

a(K)exp=0.0023 15. MuIt.: from u(K)exp

mult.=El,EZ. From decay scheme mult.=EZ is ruled out.

Continued on next page (footnotes at end of table)

865.48 4 '869.0 4

871.2 4 875.8 6

'878.8 6 x8ao.6o 30

865.49 6.8 4 0.98 30

0.9 3 0.30 15 0.35 PO 1.5 4

1066.19 1070.57

567

NUCLEAR DATA SHEETS ';;Tb,,-10

y(153Gd) from 153Tb c Decay 75Vy01,74TuOl (continued)

Eyt E(leve1) 1ytt Mult. Comments

x~83.6 4 885.60? 30

‘890.8 6 895.99 20

‘899.3 6 903.60 8 905.89 9 912.40 30

‘914.7 6 x916.5 5

917.90 20 925.51 6

x929.8 5 x934.1 6

935.7 5 937.41 5 945.23 3 948.30 30

x951.6 6 955.3 4 956.7 4

x958.O 6 964.4 3

‘967.2 6 972.53 4

X979.33 12 982.1 4

X989.0 5 991.78 4 997.42 23

‘1012.03 75 x1O15.O9 6 X1O16.8 6 x1019.5 6

1022.06 6 1024.7 6

x1O3O.9 6 X1033.3 8

1035.4 4 1036.75 20 1051.43 8

x1054.94 13 1060.13 6

X1O61.8O 30 1066.60 20

'1068.65 30 1070.5 4

XlO76.6 4 1078.23 10 1085.60 14 1090.03 11

X1O98.9O 50 1101.59 4

'1106.00 12 1107.7 5

x1111.40 18 1118.54 10 1132.4 4

x1136.O 6 1138.80 10 1144.24 15

'1153.25 25 x1157.2 4 X1173.24 22

1328.03

937.42

945.18 1035.20 1107.62

1101.62 1035.20

1024.95 937.42 945.18

1037.02

955.43 1066.19

1401.57

1101.62

1070.57

1101.62 1180.53

1131.77 1024.95

1035.20 1037.02 1180.53

1101.62

1066.19

1070.57

1328.03 1401.57 1131.77

1101.62

1107.62

1422.22 1131.77

1180.53 1328.03

0.9 4 1.2 4

0.5 4 1.16 15 0.30 15

19.9 1.2 14.6 9

0.68 20 0.48 20 0.7 4 3.5 5 3.89 20 0.40 20 0.26 20 0.7 4 4.1 3

27.8 II 0.7 4 0.5 4 0.8 3 1.3 4 0.45 20 0.96 20 0.46 20

11.1 7 1.14 20 0.5 2 0.8 5

33.7 17 0.89 20 0.82 15 2.39 17 0.58 30 0.42 20 2.53 20 0.5 3 0.35 20 0.20 15 0.5 3 1.3 4 1.64 20 1.23 23 4.4 4 1.27 25 1.55 30 1.2 4 0.8 4 0.52 20 1.98 30 0.62 12 0.75 15 0.4 3

10.9 5 1.71 17 0.37 20 0.48 12 1.64 12 0.16 8 0.28 74 2.25 74 0.48 6 0.23 4 0.20 5 0.34 10

El 0.00144

El 0.00141

ce(K)=O.OOlO 3; a(K)exp=O.OOll 8. a(K)exp=0.0008 5. Mult.: assignment not consistent with

Jr=5/2+ for 1327-keV level and 442-keV level, so placement is tentative.

ce(K)=0.0035 10; a(K)exp=0.0070 40. a(K)exp=0.0009 4.

El,E2 0.0024 10 a(K)exp=0.0019 6. El 0.00138 a(K)exp=0.0008 3. El,E2 0.0024 10 a(K)exp=0.0022 14.

Ml 0.00576 a(K)exp=0.0057 25. El 0.00132 a(K)exp=0.00040 75.

El 0.00129 a(K)exp=0.0013 6. El 0.00127 a(K)exp=0.0014 4.

El 0.00125 a(K)exp=0.0013 8. El,E2 0.0041 11 a(K)exp=0.0015 9.

El 0.00120

E2 0.00288

a(K)exp=O.OOlO 3. ce(K)=0.0015 5; a(K)exp=0.0013 7. a(K)exp=0.0020 14.

El 0.00116 Ml 0.00472

a(K)exp=O.OOll 4. a(K)exp=0.0045 30. ce(K)=0.004 2; a(K)exp=0.0049 30. ce(K)=0.0055 30; a(K)exp=0.0023 14.

El 0.0011 a(K)exp=O.OOlO 5. E2 0.00263 a(K)expn0.002.

El 0 00107 El,EX 0 0018 7

El 0 00102

E2 0 0242

El 0 00101

a(K)expC0.0009. a(K)exp=0.0015 3. ce(K)=0.0024 70; a(K)exp=0.002 1. a(K)exp=0.0007 3. ce(K)=O.OOlO 3; a(K)exp=O.OOOE 4. a(K)exp=0.0018 70. ce(K)=O.O013 4; a(K)exp=O.OOll 7. a(K)exp=0.0012 70.

El E2 El

00099 a(K)exp=O.OOll 5. 00234 a(K)exp=0.0016 8. 00097 a(K)exp=O.0013 7.

El 00096 a(K)exp=O.OOll f. ce(K)=0.0026 70; a(K)exp=0.0015 7.

El 0.00093 ce(K)=0.0015 5; a(K)exp=0.0031 18. a(K)exp=0.0008 4.

El 0.00090 a(K)exp=0.0008 3.

ce(K)=0.0005 2; n(K)exp=0.0022 12. ce(K)=0.0005 2; a(K)exp=0.0025 16. ce(K)=0.0005 2; a(K)exp=0.0015 10.

Continued on next page (footnotes at end of table)

568

1;;Tb,8-ll NUCLEAR DATA SHEETS ";;Tb 8~3-l~

y(153Gd) from 153Tb c Decay ‘75VyO1,74TuOl (continued)

E-Y+ _ 1179.63 13 1199.09 8

X1203.3 4 1210.2 5

xl212.8 6 1218.38 14 1231.06 9

‘1233.7 8 i272.60 12

X1294.53 20 ‘1299.9 4

1314.1 3 x1322.9o 20 X1332.90 20 X1343.0 2 x135O.6O 30

1359.74 20 1381.6 4 1401.6 4

+ Fro-m 75Vylll a

E(leve1) I,+$

1272.70 0.96 8 1328.03 2.32 12

0.15 4 1422.22 0.22 8

0.14 7 1328.03 1.16 8 1272.70 1.3 2

0.24 12 1272.70 1.53 8

0.48 5 0.18 5

1401.57 0.09 4 0.34 7 0.12 5 0.14 2 0.11 2

1401.57 0.82 7 1422.22 0.048 24 1401.57 0.12 3

unless indicated otherwise.

Mult.. a comments

El 0.00084 El 0.00081

Ml 0.00298

El 0.00080

a(K)exp=O.OOlO 3. a(X)exp=0.0010 3. ce(K)=0.0006 2; a(K)exp=0.0040 24. a(K)exp=0.0027 79. ce(K)=0.0006 2; a(K)ex~=0.0043 36. a(K)exp=O.OOlO 5.

El 0.00074 a(K)exp=0.0007 2.

ce(K)=0.0003 I; a(K)exp=0.0017 10

El 0.00066 a(K)exp=0.00040 15

4 For absolute intensity per 100 decays, multiply by 0.030 1 x y-ray not placed in level scheme.

153Tb Levels from 153Tb IT Decay (186 ,ss)

Sources produced by ‘S’Eu(a,2n), 77KoZH; Eu(u,xn), 681001; 15”Gd(p,2n), 67Co20; ‘54Gd(p,2n) and lS5Gd(p,3n), 65Gr04.

E(leve1) Jr+ T, ,? Comments .~

0.0 5/z+ 2.34 d 1 80.8 I 7/2+

163.3 1 1 l/2- 186 /As 4 T,,,: weighted of average 187 6 (77KoZH), us 172 ps 35 (681001), 190 KS 6 (67Co20), 173 /As 70 (65~~04).

t Adopted va:ues.

y(‘53Tb) from 153Tb IT Decay (186 ,us)

E-Y E(level) Mult. Comments -- ~

80.8 I 80.8 Ey: from 61Dz04. Other measurements: 78 keV 5 (65Gr04), 80.9 keV (67Co20). 83 keV 8 (681001). The 80.8~ observed in the lS3Dy i decay is presumed to be the same y as observed in the IT decay. The ce-ce coincidence observed by 61Dz04 of the 80.8-keV and 82.SkeV transitions and the lifetime of the isomer suggest that the 163.3-keV level is the isomerie state, rather than the 80.8-keV level as suggested by 65Gr04. The 82.5-keV M2 transition is strongly converted and, therefore, was not reported.

82.5 I 163.3 M2 Mult.: from ‘=Dy E decay.

569

‘:;Tb,,-12 NUCLEAR DATA SHEETS ‘;;Tb,,-12

‘53Tb Levels from ‘53Dy c Decay 72Ha41,77De05,78Gr13

The decay scheme shown in the drawings is primarily from 77De05. Sources obtained from ‘54Gd(3He,4n). Measured Ey, Iy, Ice, y-y-coin, fly-coin. Other measurements: 77A129, 77A128, 75ZuZZ.

E( level) Jnt E(level)

0.0 80.78 3

147.47 3 163.30 5 213.79 3 218.60 6 240.54 4 254.21 3 262.98 4 325.00 4 371.58 6 389.56 4 444.71 5 510.39 5 529.35 6 537.51 4 543.24 7 571.88 6

5/2+ 7/2+ 7/2+ 11/2- 7/2- 3/2+,5/2+ (5/2)+ (7/2)+ (Q/2)- (Q/2)+

(7/2)+ 9/2+

(11/2+)

3/2+,5/2+ (Q/2+)

597.47 5 630.39 8 651.74 12 660.09 6 722.46 7 725.62 5 726.91 5 740.72 4 772.83 8 790.04 7 799.95 8 807.63 6 957.60 8 959.98 6 989.14 6

1083.31 7 1130.87 9 1151.39 8

Jat

9/2-

(11/2+)

3/2+,5/2+

9/2-

7/2+

9/2-

E(level)

1226.49 6 1238.12 8 1240.51 10 1341.37 8 1365.21 5 1429.58 6’ 1762.27 9 1779.49 If 1791.43 7 1822.67 7 1824.98 8 1835.95 8 1858.39 9 1912.52 5 1939.98 9 2012.04 11 2024.32 14 2121.13 13

t Values suggested by 72Ha41

‘53Tb Levels from ‘5’Eu(a,2ny),‘53Eu(a,4ny) 78Wi02,78De27

78WiO2: “‘Eu(a,2ny) E=23-27 MeV and ‘53Eu(a,4ny) E=39-51 MeV, Iy(e), yy-coin. A,,A, from y-ray aneular distributions QO”-160” at Ea=27 MeV in (n,2ny).

78Deg7: ‘=Eu(a,4ny) E=45-55 MeV, Iy(6), yy-coin.

E( level) JH E( level) Jr Comments

o.ot 80.77

147.6@ 163.3% 213.8# 218.6 240.56 254.3& 262.95 325.0a 389.6@ 444.8% 511.48 529.5a 535.51 572.0@ 597.4# 630.8% 755.4a 791.?@ 848.7*

5/2+ 7/2+ 3/2t 1 l/2- 7/2-

5/2+ 7/2t 9/2- 9/2t 7/2+ 9/2+ 15/2- 11/2+ 13/2- 9/2+ (7/Z-,9/2-) 11/2+ 13/2+

877. ? 966.95 968.la 979.0$

1010.3# 1067. 1199.4a 1422.6a 1495.06 1532.9% 1627.3 1681.6a 1923.8a 2086.7 2095.15 2155.6 2211.2a 2467.3a 2740. 2827.0$ 3493.6?a

17/2- 15/2+ 19/2- (11/2-,13/2-) (15/2f) 17/2+

21/2- 23/2-

21/2+ 23/2t

13/2t

25/2- 27/2- 15/2+ 27/2+ (29/z-) 31/z- (35/2-j

E(leve1): from 78De27.

t Ground-state band member. $ Favored Coriolis decoupled hll/2-related band member. 5 Unfavored Coriolis decoupled hll/2-related band member. # Negative-parity band member. @ 3/X4111 band member. 8~ 5/2C4021 band member. a 7/2C4041 band member.

570

‘;zTb,,-13 NUCLEAR DATA SHEETS ‘;;Tb,,-13

EY+ 80.7 82.6 93.0 99.6

147.6 149.0 173.5 182.4 186.0 190.5 204.5 212.7

(213.8) 217.9 218.6

ZlQ.? 223.3 225.9 231.3 240.5 242.2 244.3 254.3 256.2 259.0 272.6 287.5 305.8 310.7 325.0 334.6 337.4 348.1 350.8 364.1 367.8 372.2 376.5 383.6

y(‘53Tb) from 151Eu(a,2ny),‘53Eu(a,4ny) 78Wi02,78De27

E(level) I,* Comments -- -

240 . 5 2.7 2:GZ.Q 14. 147.6 (8.9 389.6 2.5 2154.3 1.2 572.0 2.6 630.8 6.4 4-44.8 9.6 529.5 7.7 968.1 6.1 i113.8 14. 2148.7 2.9 2118.6 (4.4 067. 4.4 791 4722.6 3.1 755.4 6.8 199.4 4.1 2140.5 0.6

lQ23 3 2 5 2 5 4

2467 1681

5 3 5 2211

fi 3 0 7 5 5 3 2 5 5 9 7 9 6 8 5 1 1

1:.99 444 fI 3 0 5 3 5 fj30 5 9 7

8 0 3 3 6 5 2 8 4 0 4

1.7 27. 27.

0.4 1.2

13. 0.5 2.8 1 1 4.0 1.2 4.5

100. 0.8 3.1 1.3

28. 5.7 1.1

EY+ 389.6 403.8 413.0 430.3 431.4 434.2 436.5 438.6 444.0 444.8 448.8 454.5 455.5 467.6 474.7 482.1 498.9 501.2 516.1 528.0 529.6 543.5 553.9 562.3

'584.85 591.7 600.1 614. 622.7 644.9

'658.58 660.4 666.6 671.4

'779.05

E( level) IYS Comments

389.6 848.7

1010.3 755.4 966.9 597.4

1067. 968.1

1199.4 444.8 529.5

1422.6 966.9 979.0

1010.3 1681.6 1010.3 1923.8 1495.0 1495.0 2211.2 2467.3 1532.9 2095.1

2086.7 2095.1

877. 2155.6 2740.

1627.3 3493.6 2827.0

80.7 85. 163.3 4.6

3.2 3.4 3.2

16. 18.

6.0 5.2

14. 11.

4.1 19. 11. 12. 48.

3.9 6.8 3.4 6.1 6.3

10. 2.0 2.9

19.

4.8 1 6.1 4.9 Iy: measured in (a,4ny)

4.9 Iy: measured in (a,4ny). 12. Iy: measured in (a,4ny).

t 78WiO2 estimated AE=O.l-0.3 keV. y Listed values are those measured at 125” in (n,2ny) at

IY.

1 Ea=27 MeV. 78WiO2 state AIy=5% to 30% depending on

5 Assignment to ‘53Tb uncertain. x y-ray not placed in level scheme.

153Tb Levels from ‘52Gd(3He,d) 76StlO

E=24 MeV. Magnetic spectrometer, measured angular distribution of deuterons, DWBA analysis. do/do: listed values are in @b/sr at 30”.

E( level) LT ST Comments _- -

0.0 2 1 80 4 4 1

165 4 4 , 5 6 222 4 2 2 375 4 s: 3 542 4 2 0 626 4 I,2 0 659 4 2 0

-710 1,E 0 -725 1,2

767 4 c: 2 885 4 1: 5 ) 1

63 38 16 18

8

du/dD=279. du/dR=41. da/dD=84. da/dO=457. du/dD=19. dg/dD=104. du/dR=65. du/dD=22. dcr/dRz43. du/dD”44. du/dD=25. du/dO=25.

1;;Tb8,-14 NUCLEAR DATA SHEETS ‘;;Tb,,-14

E( level)

962 4 1064 4 1102 4 1126 4 1170 4 1187 4 1219 4 1242 4 1283 4

~1308 1346 4 1391 4 1603 4 1745 4 1791 4 1827 4

Lt -

a3 <3 53 a3 0 13 (3 <3

(0) (4 2 52

ls3Tb Levels from ‘52Gd(3He,d) 76StlO (continued)

53%

0.21

0.41

0.42

Comments

do/dfl=8. do/dR=33. da/dD=13. do/d0=46. du/dR=63. do/dR=23. du/dD=24. da/dD=ll. do/dR=l%. da/dDz39. do/dD=80. do/dR=38. da/dR”BO. da/dR=lO. do/dR=Zl. do/dR=55.

t Values were deduced by 76StlO from comparison of ratios of experimental (a,t) to (3He,d) cross sections with DWBA predictions.

$ Calculated by using normalization factor N=6.0.

153Tb Levels from ‘52Gd(a,t) 76StlO

Ea=27 MeV, magnetic spectrometer, DWBA analysis. do/do: listed values are given in pb/sr measured at 40”.

E(level) Lt St Comments --

0. 80

162 219

~230 260 530 544 622 661

“709 ~722

881 1305 1338

4 4 4

2 1 4 1 4,5 5 2 2

(5) 0 >3 >3 2 0

I,2 2

1,2

t;; 1 14 2 0

9 3 4 0 34

49

4

42

da/dfk24. du/dRnl7. do/dR=98. du/dD=lO. do/d&5 da/dRzl. da/dR”2. du/dDa6. du/dR<l. do/dR=E. do/dD<l. do/dD<l. do/dD=l’l. du/dD=2. do/dD=3.

t Values were deduced by 76StlO from comparison of ratios of experimental (a,t) to (3He,d) cross sections with DWBA predictions.

t Listed values calculated by 76St10, using N=lll.

572

%DYE,-1 NUCLEAR DATA SHEETS %DY,7-l

153Dy Adopted Levels

Q(p-)=-4189 34; S(n)=7091 6; S(p)=5566 16; Q(a)=3560 4 82WaZZ.

E(leve1) _ Jr?

0.0 Y/Z(-)

T, ,e

6.4 h I

108.8

270.6 295.95 500.9 565.8 636.7 712.4# 837.15

1040.6@ iO67.8$ i160.2# 1272.8 1304.1 1321 .2$ 1454.66 1521 .6@ 1584.21: 1648.4# 1753.6 1822.6 1861 ,4* 1892. !963.0@ 2151 .6$ 2180.7# 2194.8 2231 2285.2 2453.31 2523.2@ 2686.4 2746.4 2762.2# 2763.03: 3075.0@ 3079.5$ 3389. lt 3415.6 4063. l# 4134?

1:5/2-)

I: Q/2-)

1: 1:/2-) ‘: 13/2+) (13/Z-) (11/2+) (11/2-) (17/z+) (15/Z-) (15/z+) (13/Z-) (17/2-) (15/2+)

1.35 ns 10 Jr: deduced by 78An25 from E2 character of 108.8~ and

~0.25 ns

co.2 ns

systematics of first-excited states of N=87 isotones. T,,,: from 78An25 (delayed coincidence in jS3Ho E decay). T,,,: from 78An25 (delayed coincidence in ls3Ho t decay). Jr: Ml transition to g.s.; probable configuration=(v Ih,,,). T,,,: from 78An25 (delayed coincidence in 153Ho E decay).

11.6 ps 72

comments

p=-0.71 9; Q=-0.14 8 (72R036); %a=0.0094 74; %z+%pt=99.9906 74. Jr: from 70Ro21 atomic-beam magnetic resonance. Probable

configuration=(v 2f,j,). T,,,: weighted average of 6.4 h 2 (64MaiQ), 6.75 h 15 (65Ma51).

5.8 h 9 (67Go32), 6.29 h 10 (70ChOQ). Other measurements: 58An39, 58Do61, 58Go86, 58To27, 60Ba31, 61Dz04, 62RyO3, 70r021.

Jr: transition to 7/2- g.s. is stretched E2. Jr: El transition to 11/2- level at 636.7 keV. Jr: E2 transition to Q/Z- level at 295.9 keV.

Jr: probable configuration=(v lh,,,,). TIIZ: from 77Ba77 recoil-distance, plunger method.

(15/2-j (21/2+) 7.1 ps 6 T 1,2: from 77Ba77 recoil-distance, plunger method (17/2-,19/Z-) Jr: E2 transition to 15/2- state at 1272.8 keV. (lQ/2+) (17/2-)

(lQ/2+) (19/Z-)

25/2+)

23/2+ 21/2- 23/2+

(27/2+

(29/2+ (23/2- (27/2-t (25/2- (33/2t

2.1 ps 4 T,,,: from 77Ba77 recoil-distance, plunger method

Jr: E2 transition to 19/2-t level at 1822.6 keV.

JT: transition to 23/2+ ievel at 2285.2 keV is probably E2.

Jr: E2 transltion to 25/2+ level at 2180.7 keV.

(37/2+) Jr: 674~ to 33/2+ Ievel at 3389.1 keV 1s probably E2.

7 Listed J values for band members are shown as tentative because of uncertainty in Jr assignments for bandheads. The AJ=l or 2 characters of the various bands are well establlshed by angular distribution measurements and observation of crossover transitions, but the Jn assignments of the bandheads are based on weak arguments and, consequently, must be regarded as tentative.

t hll/2-related band member. Angular distrlbutron results and observation of CI‘OSS~YBP transitions suggest AJ=l character for this band.

5 h9/2-related band member. Angular distributions suggest AJ=2 for intra-band transitions. # il3/2-related b and member. All intraband transitions are of stretched E2 character. @ il3/2-related band member. AI1 intraband transitions are of stretched E2 character.

573

153 66DY87-2 NUCLEAR DATA SHEETS 153D

66 Ya7-2

P+,f Data from ‘53Dy f Decay 72Ha41,77De05,78Gr13

The decay scheme shown in the drawings is primarily from 77De05. Sources obtained from '5*Gd(3He,4n) Measured EY, Iy, Ice, yy-coin, PY-coin. Other measurements: 77A129, 77A128 75zuzz.

Ect E(leveI) 1ptt IE1: LOi2 ft Comments

(48.9 (145.7 (158 2 ) (230 2 (257.5

(

(

311.6 334.1 345 2 ) 347.3 378.6 390.5 407.7 740.4 804.8 828.6 929.5 931.9 943.5 018.6

039.1 086.7 180.9

20) 20)

20) 20) 20)

20) 20) 20) 20) 20) 20) 20) 20) 20) 20) 20)

20) 20) 20)

210 2) (1212.4 20) (1362.4 20) (1370.1 20) (1380 2) (1397.2 20) (1429.3 20)

(1443.1 20)

(1444.4 20)

(1447.5 20)

(1509.9 20)

(1518.3 20)

(1598.1 20)

(1626.8 20)

(1632.5 20)

(1640.7 20)

(1659.6 20)

(1725.3 20)

(1780.4 20)

(1798.4 20)

(1845 2)

(1907 2)

(1915.8 20)

(1929.5 20)

2121.13 0.61 8 4.08 9 2024.32 0.47 5 5.73 6 2012.04 0.85 9 5.56 6 1939.98 1.12 9 5.86 4 1912.52 3.71 28 5.45 4 1858.39 1.20 10 6.14 4 1835.95 0.93 9 6.32 5 1824.98 1.89 18 6.04 5 1822.67 1.70 17 6.09 5 1791.43 2.76 24 5.97 4 1779.49 0.93 9 6.47 5 1762.27 0.96 10 6.50 5 1429.58 1.92 18 6.75 5 1365.21 2.06 17 6.80 4 1341.37 1.04 9 7.12 4 1240.51 0.56 8 7.50 7 1238.12 1.34 16 7.12 6 1226.49 0.99 9 7.26 4 1151.39 0.48 7 7.65 7

1130.87 1.29 15 7.24 6 1083.31 1.12 11 7.34 5

989.14 0.07 6 8.6 4 959.98 0.77 20 7.60 12 957.60 0.16 7 8.28 19 807.63 1.71 16 7.36 5 799.95 0.90 20 7.64 10 790.04 0.60 8 7.82 6 772.83 0.005 5 9.9 5 740.72 2.06 19 7.32 4

726.91 0.03 3 9.2 5

725.62 3.6 3 7.09 4

722.46 0.3 1 8.17 15

660.09 0.10 3 8.68 13

651.74 0.28 4 8.24 7

571.88 0.33 7 8.22 10

543.24 0.31 9 8.26 13

537.51 0.027 3 4.5 5 7.10 5

529.35 0.015 15 9.6 5

510.39 0.58 14 8.01 II

444.71 0.8 3 7.90 17

389.56 0.0111 22 0.83 16 7.91 9

371.58 0.0101 1.2 0.69 8 8.00 5

325.00 0.016 6 0.9 4 7.91 16

262.98 0.39 5 16.6 20 6.67 6

254.21 0.038 19 1.6 8 7.70 22

240.54 0.022 5 0.87 20 7.96 10

cK=O.OO 3; cL=O.720 19; EMt=0.278 12. rK=0.715 4; cL=O.216 3; cM+=0.0689 11. cK=0.730 4; ~L=O.2054 24; zMt=0.0651 9. cK=0.7749 12; zL=O.1721 9; tM+=0.0531 3. cK=0.7839 9; rL=0.1654 7: rM+=0.05069 23. cK=0.7961; ~L=O.1564 4; cMt=0.04749 15. cK=0.7998; cL=O.1536 4; rM+=0.04652 12. ~K=0.8014; ~L=O.1525 4; cM+=0.04611 12. cK=0.8018; cL=O.1522 4; cM+=0.04602 11. cK=0.8057; cL=O.1493 3; cMt=0.04500 9. zK=0.8070; cL=O.14836 24; &Mt=0.04466 9. cK=0.8087; cL=O.14709 22; &M+=0.04422 8. cK=0.8251; cL=O.1350; rMt=O.03997. cK=0.8266; zL=O.1339; zM+=O.O3959. cK=0.8270; zL=O.1335; zM+=0.03946. cK=0.8288: rL=0.1322: rM+=0.03900. zK=0.8289; cL=O.1322; cM+=0.03899. EK=O.8290; ~L=O.1320; rM+=O.O3895. a"g EP=13.0 18; &K=0.8301; cL=O.1312;

cM+=0.03868. ~K=0.8303; ~L=O.1311; cM+=O.03861. cK=0.8309; ~L=O.1306; cM+=0.03847. rK=0.8318; cL=O.1299; cMt=0.03822.

.zK=0.8321; rL=0.1297; cMt=0.03815. cK=0.8321; EL=O.1297; zzM+=0.03814. cK=0.8329; cL=O.1288; rM+=0.03782. zK=0.8329; cL=O.1287; zMt=0.03780. cK=0.8329; cL=O.1287; cM+=O.03778. &K=0.8329; cL=O.1285; cM+=O.O3775. avg E/3=199.3 14; cK=0.8328; cL=O.l283;

rMt=0.03768. avg EP=205.4 14; cK=0.8327; rL=0.1283;

cMt=0.03765. a"g E/3=206.0 14; ~K=0.8327; cL=O.1283;

cMt=0.03765. a"g EP=207.4 14; cK=0.8327; cL=O.1282;

cM+=0.03764. a"g E/?=235.1 14; cK=0.8322; ~L=O.1278;

cM+=0.03751. avg E/3=238.7 14; cK=0.8321; ~L=O.l278;

cMt=0.03749. avg EP=274.0 14; cK=0.8307; rL=0.1272;

.cMt=0.03730. a"~ EP=286.6 14; ~K=O.8301; cL=O.1270;

rM+=O.O3723. avg EP=289.1 14; zK=O.EEQQ; EL=O.l269;

rMt=0.03722. avg E/?=292.7 14; rK=0.8297; cL=O.1268;

cM+=0.03719. avg E/3=301.0 14; ~K=0.8292; cL=O.1267;

rM+=0.03714. a"&! EP=329.8 14; cK=0.8269; cL=O.l261;

cM+=0.03695. a"&! E/3=354.0 74; r-3(=0.8245; cL=O.1255;

cM+=0.03678. a"~ EP=361.9 74; eK=0.8235; zL=O.1253;

cM+=0.03672. avg E/3=382.3 74; cK=0.8209: cL=O.1247;

&M+=0.03655. avg E/3=409.6 14; rK=0.8168; aL=0.1239;

cM+=0.03630. avg E/3=413.4 14; ~K=0.8162; cL=O.1238;

zM+=0.03626. a"~ EP=419.4 14; cK=0.8152; zL=O.1236;

cM+=0.03620.

Continued on next page (footnotes at end of table)

574

%DYw~ NUCLEAR DATA SHEETS ';;Dy,,-3

p+,& Data from 153Dy E Decay 72Ha41,77De05,78Gr13 (continued)

EC+ E(level) 1pt?: IES Log ft Comments

(1951 4 20) 218 60 0 022 4 0 78 14 8 02 8 avg EP=429.0 14; cK=0.8135; zL=O.l233; cM+=0.03610.

(1956 2 20) 213 79 0 01 1 0 3 3 8 4 5 avg E/3=431.2 14; cK=0.8131; ~L=O.1232; cM+=O.03608.

(2006 7 20) 163 30 0 03 3 0 9 9 8 0 5 avg EP=453.3 14; cK=0.8087; cL=O.1224; cM+=0.03584.

(2022 5 20) 147 47 0 020 14 0 6 4 8 2 3 avg EP=460.3 14; cK=0.8072; cL=O.l222; rM+=O.03576.

(2089 2 20) 80 78 0 34 16 7 4 7 10 21 avg E/3=489.6 14; cK=0.8005; ~L=O.l210; cM+=0.03540.

(2170 2) 0 0 1 2 3 21 5 6 69 IO avg EP=525.2 14; cK=0.7910; zL=O.1193; cM+=0.03492.

+ Measured values of E,B+ include 1069 10, 886 2 and 427 22 by 78Grl3 (magnetic spect); 980 40 and 670 20 by 77De05 (plastic scin in Py coin) 78Gr13 suggest that their observed branches populate levels in lS3Tb at 80.8(7/Z+), 262.9(9/e-) and 725,6(9/Z-) or 740,7(7/Z+), respectively. From the decay scheme an intense branch to the g.s. should be present, but none has been reported.

$ For intensity per 100 decays, multiply by 1.00.

y(‘53Tb) from 153Dy E Decay 72Ha41,77De05,78Gr13

oc(K)exp: for transitions with E<175 keV. the listed a(K)exp values were calculated from the Ice measurements of 72Ha41. Other listed values are from 77De05.

Ir-normalization: calculated from absolute Iy measured by decay)=30% 1.

E-Y

70.8 I 71.1 1

‘78.4% 2 80.82 5 82.5 1 88.1 2

‘88.9 2 93.06 4

X94.3 2 X94.9 2 x96.O$ 2 ‘96.i’t 2

99.71 5

‘124.4$ 2 125.0 2

‘127.2 1 128.2 1 133.0 I 143.4 2

‘144.2 2 147.44 5 149.0 I 157.6 2 159.7 3 162.8?$ 5 173.3 I 182.4 2 185.4 2 165.7 2

x189.5t: 5 190.5 1 191.9 4 193.8 1 204.3 2 209.9 2 213.77 5 218.6 I

E( level)

325.00 218.60

80.78 163.30 660.09

240.54

262.98

722.46

725.62 213.79 740.72

147.47 389.56 371 .58 240.54

1151.39 254.21 571.88 510.39 630.39

444.71 1429.58 1151.39

529.35 807.63 213.79 218.60

lY+

9 2 4 2 8 3

1410 70 100 10

23 3 42 5

118 6 30 3 44 4

9 3 9 3

1260 SO

14 3 27 3 38 2 34 2 32 2 20 3 30 4

420 30 95 10 14 2

7 2 3 2

42 3 32 3 15 2

9 2 6 3

110 6 9 4

47 5 35 6 17 4

1320 60 175 10

Mult.# a@

Ml Ml

Ml+E2 0.11 M2

Ml

Ml+EZ 0.16 2.27

Ml 1.10 a(K)exp=l.l 2. El 0.140 a(K)exp=0.17 3.

MlfE2 0.45 0.73 a(K)exp=0.51 8. Ml 0.721 u(K)exp=0.63 70.

Ml 0.473 a(K)exp=0.45 7. Ml 0.41 a(K)exp=O.44 9. CM’) 0.39 a(K)exp=0.33 8.

Ml 0.363 a(K)exp=0.31 3.

El MltE2 1.50

El Ml

0.0513 a(K)exp=0.05 2. 0.249 a(K)exp=O.l9 5.

0.0396 a(K)exp=0.032 2. 0.249 a(K)exp=0.21 2.

70ChO9 relative to Iy(212y in lS3Tb

a& Comments

6.08 a(K)exp=6 I. 6.01 a(K)exp=5 2; ce(K)=lB.

4.16 a(K)exp=2.7 4. 44.8 a(K)exp=32 5.

2.75 a(K)exp=2.1 3

cx(K)exp=1.6 2. 6: from 72Ha41.

Continued on next page (footnotes at end of table)

575

153D 66 Y07-4 NUCLEAR DATA SHEETS %DY,,-4

y(153Tb) from 153Dy E Decay 72Ha41,77De05,78Gr13 (continued)

EY E(leve1) I,+ Mult.# cs@ 235.4 1 240.5 7 242.0 2 244.25 5 247.4 1 254.23 5

'258.0 3 260.9?$ 5 262.4 I 264.0?$ 4 269.8?$ 3 271.0 2 272.3 2 274.5 1 281.2 2 283.1 2 289.0 1 290.8 1

x295.5 1 296.0 2 296.6 1 297.6 2 299.5 4 302.6 2 305.6 3 306.2?$ 5 308.7 2 317.5 2 323.8 7 325.0 1 326.6?$ 3 331.6 2 332.9 2 334.5 1 335.1 2 337.4 2 340.6?f: 4 350.9?$ 2 362.0?f 4 363.0?$ 3 363.9 1 365.9 2 367.4 4 368.9 4

x370.3$ 2 371.6 1

'374.2 I 376.1 1 376.2 1 3?8.4?$ 3 383.6 2

'384.7 2 389.61 7 395.9 2 397.5 2 400.7 2 403.8?1: 4 405.9 1 408.7 4 410.8 4 415.75 6 419.0 3 420.1 I

'424.6 4 425.9 3 429.6 434.2 1 438.2 2

772.83 240.54 389.56 325.00 510.39 254.21

Ml 0.189 Ml 0.184 El 0.0271 Ml 0.165

790.04 799.95 807.63 510.39 799.95 597.47 537.51 725.62 537.51 543.24 371.58

24 3 43 3 16 2

480 30 60 5

1000. 25 5

5 3 110 25

6 3 7 3

22 4 21 3

830 40 25 3 16 3 27 7 67 4 El 4 23 5

140 14 22 3

8 3 24 5 15 2

5 2 7 7

19 2 145 15

80 10 9 3

15 2 9 2

25 3 10 2 11 2

3 1 6 1 2 1 42

40 5 5 2 8 2 8 2 9 2

98 a 22 5 20.5 3 20.5 6

6 2 25 3 15 3

165 a 11 4 11 2 14 2

3 2 50 5 14 4 10 3

130 15 8 2

65 8 4 1

13 3 33.

160 20 18 3

Ml 0.152 n(K)exp=0.13 7.

E2 0.0827 a(K)exp=0.059 5.

(Ml) Ml

740.72 510.39 957.60 959.98 543.24 630.39 957.60 389.56 571.88 537.51 325.00 651.74 571.86 722.46 597.47 660.09 726.91

1130.87 722.46

1791.43 510.39 444.71 529.35 630.39 740.72

(El)

(Ml)

Ml 0.0865 a(K)exp=0.09 1. Ml 0.0856 a(ti)exp=0.08 7.

Ml

Ml 0.0636 n(K)exp=0.07 2.

371.58 E2

1365.21 630.39

1151.39 597.47

389.56 543.24 651.74 725.62

1130.87 660.09

1130.87 651.74 740.72

1226.49 957.60

Ml

(E2) 0.0257 a(K)exp=O.O26 71.

MltE2 0.195 0.0415

(Ml) 0.0437

1791.43 510.39 597.47 651.74

(Ml) 0.0413 a(K)exp=0.054 78. (Ml) 0.0402 a(K)exp=0.059 78.

Comments

a(K)exp=0.19 5. a(K)exp=O.l9 7. a(K)exp=0.19 7. a(K)exp=0.03 2. a(K)exp=O.i4 7.

a(K)exp=0.09 4. a(K)exp=0.09 2.

a(K)exp<0.04 2.

0.117 0.115

0.017

0.104 a(K)exp=0.08 4

0.0794 a(K)exp=0.08 3.

0.0331 u(K)exp=0.03 7.

0.0583 a(K)exp=0.04 2. 0.0583 a(K)exp=0.04 2.

0.0554 a(K)exp=0.04 2.

0.0532 a(K)exp=0.044 7.

a(K)exp=0.035 7.

a(K)exp=0.041 15.

Continued on next page (footnotes at end of table)

576

%DYW5 NUCLEAR DATA SHEETS

E-Y E(level) 1-Y+ 441.6 I 444.7 1 448.8 I 451.6 7 456.7 1 462.6 7 465.6 2 467.7 2

'468.7 2 471.4 1

'473.6$ 4 x477.9 2 '480.6 2

482.0 2 485.7 1 491.2 3

660.09 444.71 529.35 989.14 537.51 725.62

1238.12 1240.51

725.62

500.0 1 503.6 3 506.8 4 511.9 1 513.1 1 514.9 3 515.6 3

x.518.6$ 2 522.0 3 527.3 2 532.7 3 535.8 I 537.5 1 543.2 2 544.6 I 553.4 I 557.6?$ 2 562.3 1 570.9 3 571.8 1 574.1?$ 4' 576.3 2 579.3 1 581.0 3 582.2 2 593.8 I

x597.4$ 2 601.0?$ ii

'604.62 5 609.5 I SlO.S?l: ;? 614.3 I

'618.6 2 "623.1$ 4

626.5 4 635.3?5 4

'637.31 4 638.1 3 640.0 3 641.5 3 643.2 3 644.5 2 647.0 4 652.7 3

'653.4 3 654.8 3

x657.7 3 660.0 673.8 2 681.5 2 685.7 2

722.46 1226.49

571.88 1151.39

740.72 722.46 722.46 725.62 726.91

1240.51 1238.12

740.72 790.04 772.83 790.04 537.51 543.24 607.63 607.63

1365.21 725.62

1912.52 571.88

1939.98 790.04 726.91 799.95

2012.04 607.63

1130.87

1635.95 1762.27 1341.37

790.04 959.98

1365.21 1365.21

722.46 1240.51

807.63 2012.04

799.95

1226.49

740.72 1624.98 1341.37 1912.52

44 5 150 40 130 15

57 4 23 5 95 14 15 3 10 2 26 4

150 8 7 2

24 3 44 5 26 3 40 5

8 4 7 4

35 5 11 4 40 7

290 40 75 10 26.4 8 26.5 8 18 3 16 3 64 5 17 4 23 3

150 25 30 6 60 8 30 7

9 2 70 10 13 3 40 6

8 3 26 6 55 5 13 3 45 a

140 15 12 3

3 2 a 3

21 4 8 2

60 6 16 3

7 2 7 2 7 2 5 2

15 5 38 5 11 2 11 3 36 6

7 2 26 5 12 3 10 2

9 2 140.

33 3 20 3 14 2

y(‘53Tb) from 153Dy E Decay 72Ha41,7i’De05,78Gr13 (continued)

Muit.#

(Ml) E2 E2 Ml

Ml

&@ a& Comments

0.0385 a(K)exp=0.029 72. 0.020 a(K)exp=0.014 4. 0.0195 a(K)exp=0.016 5. 0.0363 a(K)exp=0.03 7.

0.0341 a(K)exp=0.035 8.

El 0.0056 a(K)exp=0.0064 26.

(Ml) 0.0279 a(K)exp=0.041 20.

MltE2 1.29 0.0194 a(K)exp=O.OlS 3. (El) 0.0047 u(K)exp<0.004.

(El)

Ml El

Ml

Ml

MltE2

MltE2 1.90 0.0133 a(K)exp=O.Oil 3

Ml 0.0182 o(K)exp=0.013 3.

(Ml) 0.017 a(K)exp=0.013 5

0.0044 a(K)exp=0.0062 15.

0.0236 a(K)exp=0.028 9. 0.0042 a(K)exp=0.0044 19.

0.0226 a(K)exp=0.025 8.

0.0209 a(K)exp=0.024 7.

0.018 u(K)exp=0.015 5.

(Ml) 0.0148 a(K)exp=0.016 8.

(E2) 0.00755 a(K)exp<O.OO&

Ml(+EE+EO) a(K)exp=0.025 5.

Continued on next page (footnotes at end of table)

153D 66 YE?-6 NUCLEAR DATA SHEETS 1::DY,,-6

E-Y E(level)

686.3 4 695.0 4 697.4 3 704.0 I 705.8 I 709.0 4

711.0 4 X714.0 2

719.4 2 722.2 2

‘725.6 2 726.9 1 740.8 1

‘744.8 2 746.2 2 752.9 4

‘754.6 4 756.3 3 762.0 3

‘766.2 3 779.9 2 781.6 2 783.9 2 785.6?$ 4 788.4 3 790.0 2 793.3 2

1130.87 1238.12 1226.49 1429.58

959.98 790.04

1238.12 1341.37

959.98 722.46

726.91 740.72

959.98 1835.95

1083.31 1151.39

796.O?t: 4 802.4 3 804.8 2 820.4 2 827.7 2 629.6 3 831.4 2 836.0 2

841.7 2 843.0 3 846.4 2 848.7 3 850.8 3 857.7 2 864.4 3 869.5 2

‘871.5 2 ‘873.0 3

878.9 2 886.3 2 891.8 2 896.5 3 900.4 2 920.0 2

x921.9$ 3 928.8?f 3 937.6 2

X939.4 2 x941.5 2 X944.2 2 x945.8 3

950.9 2 952.7 2 954.4?t: 4 960.0 2 963.4 2

x966.1 2 972.4 2

1151.39 1226.49 2024.32 2012.04 1939.98

790.04 1238.12 1365.21 1240.51 1762.27 1762.27 1083.31 1365.21 1063.31 1791.43 1365.21 1824.98

989.14 1083.31 1835.95 1238.12 1240.51 1429.58 1083.31 1083.31

959.98 1429.58 1429.58 1341.37 1429.58 1083.31

2012.04 1151.39

1939.98 1912.52 1762.27

959.98 1226.49

1226.49

y( 153Tb) from ‘53Dy E Decay 72Ha41,77De05,78Gr13 (continued)

I,+ Mult.# a% Comments

9 3 12 3 16 3 32 5 70 20 (Ml) 0.0118 a(K)exp=0.09 4

4 2 4 2

15 4 28 4 10 3 30 6 14 3 30 10 36 6 14 2 28 4 22 6 22 6 18 2 22 4 16 3 32 5 19 3 14 3

3 2 12 3 20 4

9 3 9 3 5 2

10 3 21 4 18 3 35 4 30 4 22 3

7 3 7 3

14 4 22 4 11 3 17 3 16 4 22 3 16 3 14 3 38 4 16 3 18 4 22 3 20 3 24 4 26 3 21 3

8 3 7 2 9 3

18 3 22 4 18 3 11 3 26 5 18 3

7 3 80 20 16 3 14 2 28 4

Continued on next page (footnotes at end of table)

153D 66 Y07-7 NUCLEAR DATA SHEETS 153D

66 Ya7-?

E-Y

X974.3 3 ‘978.2 3

979.7 2 989.4 4

1000.0 3 1002.5 1 1006.8 3 1012.7 I

x1014.2 2 1015.7?$ 5

1024.2 I 1026.7 2

x1031.2 3 x1033.7 4

1035.3 2 1040.0 2 1040.2 1 1050.1 1 1056.8 2 1058.5 2

x1O62.7 2 1068.4 2 1075.5?$ 5

‘1077.6s 4 1082.3?$ 4 1087.4 2 1096.8 4 1099.3 2 1102.5 2

1104.6 1 1110.9 2 1118.1 3 1119.6 3 1122.5 2

x1129.O 2 1131.5 3

1132.7 2 i140.3 3

‘1142.0$ 5 x1147.51: 5

1151.2 2 x1153.5f: 4 X1159.0f 5

1161.0 2 1161.1 2 1166.5 3 1175.6 3 1176.0 3

X1183.8$ 4 1185.7?$ 4 1187.2?$ 4

x1191.4$ 4 1194.2 3 1199.4 4 1201.5 2 12bs.1 3 1210.6?$ 5 1215.0 3 1217.5?$ 5 1225.1 2

‘1230.4 4 1252.0 3 1254.0 2 1266.0 3

X1268.1 3

y(153Tb) from 153Dy c Decay 72Ha41,77DeCJ5,78Gr13 (continued)

E(level)

1939.98 989.14

1240.51 1083.31 1779.49 1226.49

1822.67 1238.12 1240.51

1762.27 1429.58 1365.21 1130.87 1779.49 1858.39

1858.39 1238.12

1822.67 1341.37 1822.67 1824.98 1365.21 1824.98 1429.58 1365.21 1858.39 1779.49 1912.52

1762.27 1791.43 1858.39 1858.39 1939.98

1365.21

1791 .43 2121.13 1429.58 1429.58 1835.95

1912.52 1912.52

1341.37 1939.98 1365.21 1835.95 1429.58 1429.58 1939.98 1822.67

1762.27 1791.43 1429.58

rY+

10 3 12 3 35 4

6 2 8 3

65 10 14 4 55 5 20 4

4 2 130 20

25 6 16 4 11 3 30 4 20 5 75 16

170 20 30 4 25. 4 27 4 24 4

6 3 9 3 8 3

29 4 9 3

25 4 1.5 4 15 4

130 20 20 4 14 4 21 4 29 4 21 4

7 3 7 3 6 4

24 4 22 4

6 3 5 3

26 4 11 3

7 3 17.5 5 17.5 5 20 4 10 4 19 4

5 2 6 2 6 2 8 3

26 4 15 3 55 8 21 4

3 2 20 4

3 2 55 7 10 3 17 3 55 7 13 3 17 4

EY E( level) I,+

x127O.1 3 1271.6 3

x1274.2 4 1279.4 4 1261.1 2 1284.2 3 1285.3 3 1287.2 4 1293.3 3 1295.7 2 1297.6 3 1299.8?$ 5 1301.5 3 1306.3 3

‘1308.4% 4 1310.2 4 1315.0 I 1325.6?1: 4 1340.5 4

‘1344.6% 4 1347.6 3 1375.0 1 1380.2 2 1383.1 3 1369.8 2 1399.0 4 1402.1 2 1410.6 2

x1422.6 4 1426.5 5

X1431.1 3 1433.1 I 1446.4 3 1453.3 3 1454.8 3 1461.1 4 1466.6 3 1467.8 3 1486.6 4 1495.1?$ 5 1497.3 5

x15oo.o$ 5 1508.0 2 1510.9 4 1516.5 4

“1518.7t 5 1523.2 4

x1526.5 4 1528.4 2 1533.3 5 1537.2 2 1549.0 5

2012.04

1822.67 1791.43 1365.21 2012.04 1824.98 1822.67 1824.98 2024.32 2024.32 2024.32 1835.95

1939.98 1912.52 1835.95 1912.52

1858.39 1912.52 1824.98 1912.52 1779.49 2121.13 1912.52 1939.98

2024.32

1822.67 1835.95 1824.98 1779.49 2121.13 1791 .43 1912.52 1858.39 1939.98 1822.67

1762.27 1835.95 1779.49

1912.52

1791.43 1858.39 1791.43 1762.27 2121.13

‘1553.8$ 5 ‘1556.4 4

1559.7 4 1561.5 4 1566.1?$ 5 1570.7 2 1572.6 4 1577.7 2 1583.6 2 1595.3 3 1608.9 2 1615.2 4 1617.6?$ 5 1627.8?$ 5

x1632.9 3

1822.67 1824.98 1779.49 1824.98 1791.43 1791.43 2121.13 1858.39 1822.67 1939.98 1858.39 1791 .43

15 4 16 4 11 3

9 3 50 10 25 4 35 6

9 3 11 3 22 4 19 3

6 3 16 3 15 3

8 3 10 3

100 15 5 2 9 3 7 3

27 5 90 15 80 20 50 10 35 7

9 3 79 8 13 3

9 3 7 3

19 4 22 4 21 4 26 4 30 5 11 4 125 4 il.6 4

8 3 4 2 7 3 4 2

45 10

10 3 9 3 5 2

14 4 10 3 57 10

8 3 80 15

5 3 4 3 6 3

12 4 15 4 10 4

6 3 65 8 13 4

100 20 55 9 25 6 85 78 13 4

5 2 4 2

28 7

Continued on next page (footnotes at end of table)

579

NUCLEAR DATA SHEETS

E-7

‘1637.7s 5 1645.0?$ 5 1649.5 2 1658.3 2 1659.3 2 1672.2 5

‘1675.8 5 1694.1?$ 5 1699.3 4 1710.8?$ 5

‘1737.9 5 1742.0 3 1749.3 2

‘1765.2$ 6 1771.3?$ 6

y(153Tb) from 153Dy E Decay 72Ha41,77De05,78Gr13 (continued)

E(IeveI)

1858.39 1912.52 1912.52 1822.67 1912.52

1912.52 1912.52 1858.39

1822.67 1912.52

2012.04

I,? 5 2 4 2

50 15 35 10 25 6

6 3 9 3 4 2

15 4 4 2 8 3

15 3 30 IO

4 2 <2.

EY

1777.7 4 1792.2?$ 6 1798.1 4 lsoQ.s?t 6 1824.5?$ 7

x1833.1 5 1859.9 4

x1913.8t 8 ‘1924.4$ 8 x1935.3 5 ‘1949.8 6 ‘1978.4t 7

2012.5 8 2023.7 6

E(leve1) I,?

1858.39 1939.98 2012.04 2024.32 1824.98

1939.98

2012.04 2024.32

14 4 5 2

16 4 5 2 3 2 8 3 9 2 2 1 2 1 8 2 4 2 2 1 2 1 7 2

For absolute intensity per 100 decays, multiply by 0.0064 3. Transition is tentatively assigned to lJ3Dy t decay. Part of an unresolved multiulet. The listed intensity has been divided equally among the multiple placements. Listed values are those given by 77De05 deduced from Ice and Iy. Calculated from a(K)exp values of 77De05 unless otherwise indicated. Listed values are theoretical values from 68Ha53 for the listed multipolarities and mixing ratios.

y-ray not placed in level scheme.

a-radiations from 153Dy a Decay 74To07

Source produced by ““Nd(“C,n). Measured Ia, Ka X-ray, Iy, Ey, a-decay branching ratio. Other measurements: 67Go32, 65Ma51, 64Ma19, 62Ry03, 60To05, 58To27.

Ea E(leve1) 1at Comments

3305 5 164.5 0.02 I Ea: from 67Go32. Ia: calculated by 74To04 from observed ratio Ia(3305a)/1(3464a)=2x10-4 1.

3464 5 0.0 100. Ea: from 67Go32.

7 For a intensity per 100 decays, multiply by 9.4x1O-5 14.

153Dy from 143H~ E Decay (2.0 m) 74sc19

Sources produced in 147Sm(‘oB,4n) at E=53 MeV. Measured Ey, ly, la, I(Ka X-ray) (74SclQ). Data of 74Sc19 disagree markedly from those of 78An25 and 77ZuZV in 9.3-m 153H~ decay. The Iy

data for the 2-m ls3Ho are inconsistent with the 9.3-m decay scheme for those -y’s that appear to be common to the two decays.

lJ3Ho-J: possible configuration=(r lh,,,,). l=Ho-T,,,: from 71ToOl. ‘53Ho-Q(~): from 77Wa08.

580

l~~Dye.+’ NUCLEAR DATA SHEETS

153Dy Levels from 153H~ E Decay (9.3 m) 78An25

Sources produced by spallation of Ta target with 660-MeV protons followed by mass separation. Measured E-y, 1-y. yce-coin, Ge(Li), magnetic spectrometer. Measured level T,,, with magnetic spectrometer and plastic scintillator in delayed cey coincidence.

Other measurements: 74Sc19, 77ZuZV. ?ssHo-E: estimated by 74Sc19 from measured a-decay energies and level energy of ~40 keV for the

4.2-m, hl1/2 state in “gTb. ‘s3Ho-J: possible configuration=(r 2d,,,). ‘=Ho-T,,,: from 67Ha34. Other measurement: 63Ma17. l(Ka, X-ray)=190 23; I(Kae X-ray)=262 30 (relative to Iy(366 y)=lOO.).

E(leve1) Jll T, ,e

0.0 7/2- 108.6 (5/Z-) 1.35 0s IO 270.6 so.25 ns 500.9 so.2 0s 565.8

153Dy Levels from Gd(a,3ny),Gd(a,5ny),Gd(a,Gny) 79Ja14,77K104

‘5eGd,‘53Gd,‘5’Gd(a,xny). x=3. E:=35-45 MeV. Measured o(Ea,Ey,B), yy-coin, y linear polarization (77K104). x=5,6. E=67-100 MeV. Measured Ey, I-y, yy(t), y(8,t), y(t), E(ce), Ice. Ce(Li), electron

spectrometer (79Ja14). The level schemes of 79Ja14 and 77KlO4 are mainly in good agreement but there are some

significant differences. See 79Ja14 for a discussion, The level scheme shown in the drawings is from 79Ja14 with the addition of some levels proposed by 77KlO4.

E(level)

0.0 295.9 636.77 712.4$ 837.15

1040.6# iO67.8@ 1160.2$ 1272.8t 1304. lk 1321 .2@ 1454.6@ 1521.6# 1584.2@ 1648.4$ 1753.61 1822.6& 1861 .4@ 1892.?

(7/2)- (9/2-l (11/Z-) (13/z+) (13/2-) (11/2f) (11/2-) (17/2f) 15/2-,13/a (15/2+) (13/2-j (17/2-) (15/Z+) (15/Z-) (21/2+) 19/2-,17/2 (19/2+) (17/2-)

E( level)

1963.0# 2151.60 2160.7$ 2194.6t 2231 .?§ 2285.2& 2453.3@ 2523.2# 2686.a 2746.47 2762.2$ 2763.0@ 3075.0# 3079.5@ 3389.1% 3415.67 4063. lx 4134.?7

JH

(19/2+) (19/2-j (25/z+) 21/2-,19/2

(29/2+) (23/2-) (27/2+) 25/2- 33/2+

(37/z+)

t Possibly a member of band based upon (11/2-) level at 636.7 keV Character of band is uncertain.

$ il3/2-related band member. § h9/2-related band member. # il3/2-related band member. @ hll/2-related band member. & Possibly a member of band based upon (15/2+) level at 1304 keV.

Character of band is uncertain.

581

153D 66 Y67-l” NUCLEAR DATA SHEETS ';;Dy8,-10

EY+

75.70 5 253.1 262.4 277.5 5 290.1 4 295.9 3 301.7 5 309.7 316.5 328.2 366.7 393.2 5 401.2 3 403.9 441.1 2 441.4 447.8 1 462.4 4 467.1 2 480.8 481 .O 488.2 515. 518.5 532.3 I 540.1 541.2 4 551.6 3 551.8 560.2 560.4 3 568.0 581.5 2 591.6 2 592. 612. 617.5 5 626. 626.9 3 636.1 636.7 2 662.4 5 669.2 7 674.0 4 718.1? 3 731.6 10 771.9 10 776.

Y(‘~~D~) from Gd(cr,3ny),Gd(cx,5ny),Gd(cu,Gny) 79Ja14,77K104

E(leve1)

712.4 1321 .2 1584.2 1861 .4 2151 .6

295.9 2453.3 2763.0 3079.5 1040.6 1822.6 2265.2 2686. 1040.6 2194.8 1963.0 1160.2 2285.2 1304.1 1753.6 1521 .6 1648.4 1584.2 1822.6 2180.7 1861 .4

837 1 2746.4 3075.0 2523.2 1272.8 2151 .6 2762.2 1304.1 2453.3 2763.0 1454.6 3079.5 3389.1 1272.8

636.7 1822.6 3415.6 4063.1 4134. 1892. 1067.8 2231.

1YS

72 2

Mult. Cl4 Comments

(El) 0.652

4 2 4 1 2.4 5

36 2 3.1 5

(Ml) 0.119

9 2 (El) a(K)exp=0.031 70. 6 2 CEO) a(K)exp=0.24 6.

13 2 (E2) a(K)exp=0.018 6.

19 2

100. 18 2

-4.

E2 0.0204 u(K)exp=0.0165. E2 0.0187 Cx(K)exp=0.016 4.

E2 0.0169 a(K)exp=0.0122 75.

79 3 E2 0.0162 a(K)exp=0.0121 15.

14 3 49 7 E2 0.0130 a(K)exp=0.008 1.

26 2 13 4

(E2) 0.0125

16 3

34 2 11 3

E2 0.0104 a(K)exp=0.0071 15

21 1

21 1 33 8

165 6 5 1

11 2 10 2

~8. 8 2 7 2

“5.

(E2)

E2

E2

0.0101 20

0.00868 a(K)exp=0.0066 75. Ey: calculated from the level scheme.

0.00837 a(K)exp=0.0058 5.

02) a(K)exp=0.0085 3.

ly: estimated by 79Ja14 from coincidence data

t From 79Ja14 unless indicated otherwise. z Listed values are from ‘54Gd(a,5ny), measured at @(lab)=125”. e Listed values are theoretical values from 68Ha53 for the multipolarities suggested by the a(K)exp values of

79Ja14.

582

';;HoB6-l NUCLEAR DATA SHEETS li;HO&-l

‘53H~ Adopted Levels

Q(P-)=--4350 SY; S(n)=9320 100; S(p)=2119 35; Q(a)=4055 30 82WaZZ.

E(ievel) JTT T,,, Comments

(11/2-) 2.0 m I %a=0.051 25; %z+%/3+=99.949 25. a branching deduced by 74SclQ from measured Ka X-ray intensity, corrected

for direct feeding of excited states in ls3Dy. Jr: possible configuration=(n lh,,,,). T ,,a: from 71ToOl.

(s/2) 9.3 m 5 %0=0.18 8; %&+%/3+=99.82 8; %IT=O (74Sc19). a branching deduced by 74Sc19 from measured Ka X-ray intensity, corrected

for direct feeding of excited states in ls3Dy. E(leve1): estimated by 74SclQ from measured a-decay energies for the 2.0-m

and 9.3-m activities and the level energy of E ~40 keV for the h11/2 state in 14’Tb.

Jrr: possible conflguration=(rr 2d,,,). T ,,2: from 67Ha34. Other measurement: 63Ma17.

Y(‘~~D~) from 153H~ E Decay (2.0 m) 74sci9

Source:; produced in “‘Sm(‘oB,4n) at E=53 MeV. Measured Ey, l-y, Ia, I(Ka X-ray) (74Sc19). Data of 74SclQ disagree markedly from those of 78An25 and 77ZuZV in 9.3-m ls3Ho decay. The Iy

data for the 2-m ls3Ho are inconsistent with the 9.3-m decay scheme for those y’s that appear to be common to the two decays.

‘53Ho-Ji: possible configuration=(rr Ih,,,,). 153Ho-T,,,: from 71ToOl. ‘53Ho-Q(~): from 77Wa08.

EY IY

x109.0 5 2 I ‘162.0 5 3 2 x295.8 1 100. X334.6 1 45 10 X366.1 1 4 1

E-Y 1-r

‘438.1 1 16 2 ‘638.3 I 29 5

‘1087.2 2 5 2 ‘1277 1 10 3

7. y-ray not placed in level scheme.

a-radiations from ‘53H~ cy Decay (2.0 m) 74sc19

Source produced in ‘47Sm(‘CB,4n) reaction with E=53 MeV. Measured Ia, I(Ka X-ray), i-y, Ey, a-decay branching ratio. Other measurements: 71ToOl. See also ls3Ho a decay (9.3 m).

64MalO have tentatively assigned a 27-m a activity to 153H~ as a precursor of an observed 5-d activity assumed to be 145E~.

‘53Ho-T,,,: This assignment has not been adopted by the evaluator.

from 71ToOl.

Ea E(level) 1J -~ -

3910 5 40. 100

7 For a int’ensity per 100 decays, multiply by 5.1~10-~ 25

583

's5;Hoe6-2 NUCLEAR DATA SHEETS ';;Ho,,-2

Y(‘~~D~) from 153H~ E Decay (9.3 m) 78An25

Sources produced by spallation of Ta target with 660-MeV protons followed by mass separation. Measured Ey, ly, yce-coin, Ge(Li), magnetic spectrometer. Measured level T,,, with magnetic SpeCtrOmeter and plastic scintillator in delayed cey coincidence.

Other measurements: 74Sc19, 77ZuZV. ‘53Ho-E: estimated by 74.9~19 from measured a-decay energies and level energy of a40 keV for the

4.2-m, h11/2 state in IrgTb. ‘53Ho-J: possible configuration=(r 2d,,,). ‘S3Ho-T,,,: from 67Ha34. Other measurement: 63Ma17. I(Ka, X-ray)=190 23; I(Ka, X-ray)=282 30 (relative to Iy(366y)=lOO.).

EY E(leve1) IY Mult.

108 8 1 108 8 108.7 40 E2 161 8 1 270 6 91 5 MlfE2

‘198 9 2 8 2 230 2 1 500 9 58 4 Ml

x259 0 1 z

270 7 1 270 6 78 4 E2 295 6 5 565 8 $

‘366 0 1 100. 391 7 2 500 9 13 3

‘420 1 1 1:

456 6 1 565 8 t

X553 7 2 29 4 565 8 2 565 8 22 7

$ Unresolved from y-ray transition following lS3Dy E decay. ’ y-ray not placed in level scheme.

584

NUCLEAR DATA SWEETS

‘53Er Adopted Levels

Q(P-)=--6750 SY; S(n)=8240 SY; S(p)=4189 SY; Q(a)=4796.6 31 82WaZZ. Q(a): from 77Wa08. 79Ha29 reported an isomeric state with J>lO at an estimated energy of 3200 keV 400.

E(level) T, ,2 comments

0.0 36 s 1 T,/,: weighted average of 35.1 s 20 (EIODaOS), 40 s 2 (77Ha48), 36 s 1 (70To16), 36 s 2 (63Ma18).

a-radiations from 153Er a Decay 79Ho10,77Ha48,74To07

Sources, produced by bombardment of ““Ag and natural Pd with ‘*Ni projectiles at E=215-275 MeV (79HolO); by spallation of Ta by 600-MeV protons followed by mass separation (77Ha48); by bombarding 14’Sm target with 12C ions (74To07).

“53Er-Q(a): from 77Wa08 with assumption that (x group feeds g.s. of daughter.

ECK E( level) la7 Comments -- -

4518? 157+x Ea: the 4518-keV a group was reported by 80DaOQ and was assigned to 153Er from their measured T ,,2=35.1 s 20. This a group was not observed by 7YHolO nor by 74To07.

4672 3 0.0+x 100. Ea: weighted average of 4674 keV 10 (79HolO), 4675 keV 10 (77Ha48), 4671 keV 3 (73BoXL).

r For a intensity per 100 decays, multiply by 0.53 3

153Er Levels from 157Yb a Decay 77Ha48,70To16

Q(p-)=--4640 SY; S(n)=7970 SY; S(p)=3890 SY; Q(a)=276 5 77Wa08.

Assignment: 70To16: ‘B’Er(3He,8n) E(3He) = 85.2-100.0 MeV semi measured T ,ie=34 s 3; Ea=4500 10; Ea yields.

77Ha48 : Ta(p,spallatzon) E(p) = 600 MeV ms,semi measured T ,,e=38.6 s 10; Ea=4507 10

15”ib-T,,,: adopted value from 77Ha48. 15’Yb-Q(cr): adopted value deduced from average of Ea values in 70To16 and 77Ha48. Q(a)=4618 10

77Wa08.

E( level) T, ,2

0.0 36 s I

585

%PmE4 NUCLEAR DATA SHEETS %Tm84

‘53Tm Adopted Levels

Q(P)=-6850 SY; S(n)=10420 SY; S(p)=715 SY; Q(a)=52402 37 82WaZZ. Q(a): from 77Wa08.

E(leve1) T, ,2 Comments

0.0 1.59 s 8 %a=95 t5-8 (79HolO). Other: %a=90 +lO-20 (77Ha48). T L,2: weighted average of 1.58 s 7.5 (64Ma45), 1.6 s 1 (77Ha48).

a-radiations from ‘53Tm a Decay 79Ho10,77Ha48

Sources produced by bombardment of “‘Ag and natural Pd targets with “Ni ions at E=215-275 MeV (79HolO); by spallation of Ta by 600-MeV protons followed by mass separation (77Ha48).

‘=Tm-T,,,: weighted average of 1.58 s 15 (64Ma45), 1.6 s 7 (77Ha48). ls3Tm-Q(a): from 77Wa08 with assumption that a group feeds of g.s. of daughter.

ECf E( level) 1,t Comments

5110 4 0,0+x 90. Ea: weighted average of 5109 keV 5 (79HolO), 5112 keV 70 (77Ha48).

7 For a intensity per 100 decays, multiply by 0.95.

‘53Tm from ‘53Yb E Decay 77Ha48

Source produced by 600-MeV proton spallation of Ta, followed by mass separation. ls3Yb identified as parent of ‘53Tm. Measured T,,,. Observed no a activity.

153Tm Levels from 157Lu o( Decay 77Ha48,79Ho10,79A116

Q(p-)=-6440 SY; S(n)=10130 SY; S(p)=740 SY; Q(a)=5240.2 37 77Wa08.

Assignment: 77Ha48: Ta(p,spallation) E(p)=600 hiev ms,semi assignment of Ea=4980 20 to 15’Lu decay was based on observation of Ea=5110 20, ls3Trn a group in the same spectrum.

79Ho10: “‘Ag( “Ni,xnyp) E(‘*Ni)=263,275 MeV velocity filter, ion implantation in Si(surface- barrier % position-sensitive) detectors.

79A116: Ta,W(p,spallation) E(p)=1 GeV data not given, reported Ea=4995 10,

T,/z( ‘5’Lu)=5.5 s 3.

ls7Lu-Q(a): deduced from 79HolO measured Ea. Note: 77Wa08 Q(a)=4970 syst “‘Lu-T,,,: 79A116, data not given.

E( level) T, ,2 Comments

0.0 1.59 s 8 T,,,: adopted value.

586

NUCLEAR DATA SHEETS 'j;Yb 83

153Y b Adopted Levels

Q(fl-)=-9150 SY 82WaZZ. Assignment: daughter ls7Hf a decay. Decay of ‘=Yb has not been observed.

153Yb Levels from 157Hf (r Decay 79Ho10,73Ea01,65Ma14

Assignment: 65Ma14: ‘44Sm(“oNe,7n) E(““Ne)=130-1?0 MeV Semi 1. This activity was not observed in ‘44Sm(‘9F,xn). 2. Measured excitation function agrees with (Hl,?n).

73EaOl : ‘44Sm(‘oNe,7n) E(zoNe)=110-204 MeV

79HolO: ‘0’Ag(58Ni,xnyp) E(“Ni)=263,275 MeV ion-implanted detectors.

semi

semi

Note: 65Ma14 also observed this activity in the ‘*4Sm(3’S,xnyp) reaction, E(%)=300 MeV.

‘S’Hf-‘l(a): if E(a)=5735 5 keV. “‘Hf-T,,,: 79HolO; =120 ms 30, 65Ma14

lS3Lu Adopted Levels

Assignment: daughter 15’Ta a decay. Decay of 153Lu has not been observed

15’Lu Levels from ‘j7Ta tr Decay 79HolO

Assignment: 79HolO: ‘07Ag(SBNi,xnyp) E(5BNi)=263,275 MeV. Velocity filter, ion implantation in Si(surface-barrier & position-sensitive) detectors.

NUCLEAR DATA SHEETS

42Ku03

46Bo25

46Mi06

49KeOl

50He18

50Hi 17

50Mc64

5OWiO6

52Ba49

52RulO

54Gr19

54Le08

54MclO

55Ma62

55Ma77

56Du3 1

56Go47

56He78

56Hu49

56Ve19

57Be56

57c144

575024

57Mi67

58An34

58An38

58An39

58Co76

58Do6 1

REFERENCES FOR A = 153

J.D.Kurbatov, D.C.MacDonald, M.L.Pool, L.L.Quill - Phys.Rev. 61, 106A (1942) Further Progress on the Study of the Radioactive Isotopes of the Nd-II-Sm Region W.Bothe - Z.Naturforsch. 1, 179 (1946) Die Aktivierung der Seltenen Erden durch thermische Neutronen II L.C.Miller, L.F.Curtiss - Phys.Rev. 70, 983 (1946) P and Y-Ray Energies of Several Radioactive Isotopes B.H.Ketelle - ORNL-229, p.34 (1949) Study Of the Active Isotopes of Gd and Tb R.E.Hein, A.F.Voigt - Phys.Rev. 79, 783 (1950) Radioactive Isotopes of Gadolinium J.M.Hill, L.R.Shepherd - Proc.Phys.Soc.(London) 63A, 126 (1950) Slow Neutron-Induced Activities in Europium and Samarium F.K.McCowan - Phys.Rev. 80, 482 (1950) A 3 x lo-’ sec. lsomeric State in Eu’~~ L.Winsberg - NNES 9, 1273 (1950) Study of 47h Sm’53 in Fission R.C.Bannerman - Proc.Phys.Soc.(London) 65A, 565 (1952) An Investigation of the Decay of 153Sm W.C.Rutledge, J.M.Cork, S.B.Burson - Phys.Rev. 86, 775 (1952) Gamma-Rays Associated with Selected Neutron-Induced Radioactivities R.L.Graham, J.Walker - Phys.Rev. 94, 794A (1954); Oral Report The Disintegration of Sm’53 M.R.Lee, R.Katz - Phys.Rev. 93, 155 (1954) Radioactivity of Sm153 and Eu’ss F.K.McGowan - Phys.Rev. 93, 163 (1954) Measurement of K-Shell Internal Conversion Coefficients with a Coincidence Scintillation

Spectrometer N.Marty - J.Phys.Radium 16, 458 (1955) Disintegration de ‘s3Sm H.Mark, G.T.Paulissen - Phys.Rev. 100, 813 (1955) Electric Excitation of Certain Rare-Earth Nuclei by Protons V.S.Dubey, C.E.Mandeville, M.A.Rothman - Phys.Rev. 103, 1430 (1956) Decay of Err’s’, Sm’53. Sn’e’, and Br*e C.Goldring, G.T.Paulissen - Phys.Rev. 103, 1314 (1956) Ratios of Transition Probabilities between Rotational States in Odd-A Nuclei N.P.Heydenburg, G.M.Temmer - Phys.Rev. 104, 981 (1956) Coulomb Excitation and Cascade Decay of Rotational States in Odd-Mass Nuclei T.Huus, J.H.Bjerregaard, B.Elbek - Kgl.Danske Videnskab.Selskab, Mat.-Fys.Medd. 30, No.17 (1956) Measurement of Conversion Electrons from Coulomb Excitation of the Elements in the Rare Earth Region M.Vergnes, N.Marty - J.Phys.Radium 17, 908 (1956) Half-Lives of the Excited Levels of Eu’s3 E.M.Bernstein, H.W.Lewis - Phys.Rev. 105, 1524 (1957) Internal Conversion Electrons Following Coulomb Excitation of Highly Deformed Nuclei C.M.Class, LJ.Meyer-Berkhout - Nuclear Phys. 3, 656 (1957) The Coulomb Excitation of Eu15i and Eu’~~ M.C.Joshi, B.N.Subba Rae, B.V.Thosar - Proc.Indian Acad.Sci. 45A, 390 (1957) Decay of Samarium-153 J.W.Mihelich, B.Harmatz, T.H.Handley - Phys.Rev. 108, 989 (1957) Nuclear Spectroscopy of Neutron-Deficient Rare Earths (Tb Through Hf) N.M.Antoneva, A.A.Bashilov, B.S.Dzhelepov, B.K.Preobrazhenskii - Izvest.Akad.Nauk SSSR, Ser.Fiz. 22,

135 (1958); Columbia Tech.Transl. 22, 134 (1959) Conversion Electron Spectra of Gd’s’ and Gd’ss N.M.Antoneva, A.A.Bashilov, B.S.Dzhelepov, B.K.Preobrazhenskii - Doklady Akad.Nauk SSSR 119, 241

(1958); Soviet Phys.Doklady 3, 289 (1958) Conversion Spectra of Neutron-Deficient Tb Isotopes N.Antonyeva, A.Bashilov, G.Gorodinsky, E.Grigoryev, K.Gromov, B.Dzhelepov, A.Zolotavin, O.Kraft,

L.Krizhansky, A.Murin, L.Peker, V.Pokrovsky, B.Preobrazhensky, I.Rogachev, V.Sergienko, P.Tishkin, V.Yakovlev - Proc.U.N.Intern.Conf.Peaceful Uses At.Energy, 2nd, Geneva 14, 193 (1958)

Research in Neutron-Deficient Isotopes of Rare Earths J.M.Cork, M.K.Brice, R.G.Helmer, R.M.Woods,Jr. ~ Phys.Rev. 110, 526 (1958) Additional Data on the Radioactive Decay of Ho’s6 (27 hr), Nd14’, and Sm’ss A.N.Dobronravova, L.M.Krizhanskii, A.N.Murin, V.N.Pokrovskii - Izvest.Akad.Nauk SSSR, Ser.Fiz. 22,

815 (1958); Columbia Tech.Transl. 22, 809 (1959) Mass Numbers of Neutron-Deficient Dy Isotopes

588

NUCLEAR DATA SHEETS

58Go86

58CuO9

58To27

59Be51

59De29

59To26

60Ab03

60Ba31

60Bell

60Be16

60Dr04

GOLaO

60Le06

600102

6OSuO8

60Wall

61Bill

61Dz04

6161-18

61Mo07

61Na06

61Rell

61RuOl

61Sc19

61St15

61Ve04

61WyOl

62Bi 16

REFERENCES FOR A = 153 (CONTINUED)

G.M.Gorodinskii, A.N.Murin, V.N.Pokrovskii, B.K.Preobrazhenskii - lzvest.Akad.Nauk SSSR, Ser.Fiz. 22, 811 (1958); Columbia Tech.Transl. 22, 805 (1959)

Mass Numbers of 52-Day Gadolinium and 4.3-Day Europium Isotopes G.Gueben, J.Govaerts - Inst.Interuniv.Sci.Nucleaires (Bruxelles), Monographie No.2 (1958) La Methode d’Analyse par Activation en Utilisant les Neutrons d’Une Source Ra-Be K.S.Toth, J.O.Rasmussen - Phys.Rev. 109, 121 (1958) Studies of Rare Earth Alpha Emitters P.Bergvall - Arkiv Fysik 16, 57 (1959) Precision Measurement of Ka X-Ray Lines from Rare Earth Elements J.de Boer, M.Martin, P.Marmier - Helv.Phys,Acta 32, 377 (1959); Erratum Helv.Phys.Acta 32, 658

(1959) Gammawinkelverteilungen bei elektrischer Anregung deformierter ug-Kerne K.S.Toth, J.O.Rasmussen - Phys.Rev. 115, 150 (1959) Nuclear Spectroscopic Studies of Neutron-Deficient Isotopes in the Rare Earth Region A.A.Abdubazakov, K.Y.Gromov, B.S.Dzhelepov, G.Y.Umarov - Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 1126

(1960); Columbia Tech.Transl. 24, 1130 (1961) Electron Conversion Spectra of Dysprosium Fraction A.S.Basina, K.Y.Gromov, B.S.Dzhelepov - Izvest.Akad.Nauk SSSR, Ser.Fiz. 24, 813 (1961) Conversion Electron Spectrum of the Dysprosium Fraction from Spallation of Tantalum P.BergvaIl - Arkiv Fysik 17, 125 (1960) Precision Measurement of Gamma Energies and Intensities by Crystal Diffraction E.M.Bernstein, R.Graetzer - Phys.Rev. 119, 1321 (1960) Internal Conversion Electrons Following Coulomb Excitation of Highly Deformed Odd-A Nuclei J.E.Draper, T.E.Springer - Nuclear Phys. 16, 27 (1960) Multiplicity of Resonance Neutron Capture Gamma Rays W.B.Law - Thesis, Ohio State University (1960); Dissertation Abstr. 21, 934 (1960) The Radioactivity of Some Terbium and Europium Isotopes H.Leutz - Z.Physik 159, 462 (1960) Der Zerfall des Gd’ss M.C.Olesen, B.Elbek - Nuclear Phys. 15, 134 (1960) Inelastic Scattering from Odd-Mass Rare Earths R.E.Sund, M.L.Wiedenbeck - Phys.Rev. 120, 1792 (1960) Level Structure of Eu’s3 T.J.Walters, J.H.Webber, N.C.Rasmussen, H.Mark - Nuclear Phys. 15, 653 (1960) Gamma Rays Following the Decay of Nd’47 and Sm’53 M.Birk, A.E.BIaugrund, G.Goidring, E.Z.Skurnik, J.S.Sokolowski - Proc.Conf.EIectromagnetic

Lifetimes and Properties Nuclear States, Gatlinburg, Tennessee (October 1961); NAS-NRC Pub. 974, p.70 (1962)

The Lifetimes of the Rotational Levels in Eu’~~ B.S.Dzhelepov, I.Zvolskii, M.K.Nikitin, V.A.Sergienko - Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 1246

(1961); Columbia Tech.Transl. 25, 1257 (1962) Coincidences between Conversion Electrons of the Dysprosium Fraction from Proton Bombarded Tantalum R.E.Green, W.H.Walker - Can.J.Phys. 39, 1216 (1961) The Half-Life of Sm’53 E.Monnand, A.Moussa - Nuclear Phys. 25, 292 (1961) Etude des Transitions Gamma et des Electrons Auger de ‘53Eu T.D.Nainan - Phys.Rev. 123, 1751 (1961) Half-Lives of Some Nuclear States in the Millimicrosecond Region P.Reyes-Suter, T.Suter - Arkiv Fysik 20, 399 (1961) Determination of the 3.3 +/- 0.2 nsec Half-Life of the 103.2 keV Level in Eui5a L.I.Rusinov, R.L.Aptekar, V.S.Gvozdev, S.L.Sakharov, Yu.L.Khazov - Zhur.Ekspt1.i Teoret.Fiz. 40, 79

(1961); Soviet PhysJETP 13, 55 (1961) On the Level Scheme of Eu’s3 O.W.B.Schult - Z.Naturforsch. 16a, 927(1961) Prazisionsmessung der niederenergetischen Neutronen-Einfang-Gammastrahlung bei Gdisa, Gdi5s, Smi50,

Sm’53 und Eu’se A.T.Strigachev, D.S.Novikov, A.A.Sorokin, V.A.Khalkin, N.B.Levetkova, V.S.Sbpinel -

Izvest.Akad.Nauk SSSR, Ser.Fiz. 25, 813 (1961); Columbia Tech.Transl. 25, 824 (1962) An Investigation of the Neutron-Deficient Isotopes of Tb M.Vergnes, J.Jastrzebski - J.Phys.Radium 22, 669 (1961) Periodes des Niveaux Excites de ‘55E~ E.I.Wyatt, S.A.Reynolds, T.H.Handley, W.S.Lyon, H.A.Parker - Nucl.Sci.Eng. 11, 74 (1961) Half-Lives of Radionuclides. II E.Bieber, T.v.Egidy, O.W.B.Schult - Z.Physik 170, 465 (1962) Das Neutroneneinfangspektrum von Sm 150

589

NUCLEAR DATA SHEETS

62Blll

62Ca24

62Go23

62Ha24

62Ha46

62Ko10

62Ry03

62St26

62SuOl

63Ch25

63Gr09

63Gr

63Ho

63Ma

63Ma

64Al09

64Cr08

64DeZY

64Ew04

64Ha43

64Ma19

64Ma45

64No08

65As03

65Gr04

65KeO9

65Ma 14

65Ma51

65Me08

66As03

66AtOl

REFERENCES FOR A = 153 (CONTINUED)

L.Blok, W.Coedbloed, E.Mastenbroek, J.Blok - Physica 28, 993 (1962) On the Decay of ‘53Gd M.J.Cabell - J.Inorg.Nuclear Chem. 24, 749 (1962) Neutron Capture Cross Section Data for Smi5e G.Goldring, H.M.Loebenstein, R.Barloutaud - Phys.Rev. 127, 2151 (1962) Branching Ratios and Magnetic Dipole Transition Probabilities in Odd-A Rotational Nuclei B.Harmatz, T.H.Handley, J.W.Mihelich - Phys.Rev. 128, 1186 (1962) Properties of Nuclear Levels in a Number of Odd-A Nuclei (151 < A < 191) R.Hardell, S.Nilsson - Nuclear Phys. 39, 286 (1962) Precision Energy Determination of Isomeric Levels and of Low-Lying Excited States in Deformed Nuclei K.Kotajima - Nuclear Phys. 39, 89 (1962) Decay of a New Nucleide Promethium 153 H.Ryde, L.Persson, K.Oelsner - Arkiv Fysik 22, 432 (1962) On the Decay of Some Neutron-Deficient Dysprosium Isotopes T.Stenstrom, T.Lindqvist - Arkiv Fysik 22, 437 (1962) Gamma Spectra of Mass-Separated Tb Isotopes T.Suter, P.Reyes-Suter, S.Gustafsson, I.Marklund - Nuclear Phys. 29, 33 (1962) Decay of Sm’53 to Euls3 P.Chedin, A.Moussa - J.Phys. 24, 930 (1963) Determination Absolue de Coefficients de Conversion Interne de Transitions de Basse Energie dans

ls3Eu R.L.Graham, G.T.Ewan, J.S.Geiger - Priv.Comm. (June 1963) Levels in Eu-153 Fed by Electron Capture in Gd-153 L.V.Groshev, A.M.Demidov, V.A.Ivanov, V.N.Lutsenko, V.I.Pelekhov - Nucl.Phys. 43, 669 (1963) Levels of the Nucleus Srn15’ Excited in the (n,y) Reaction D.C.Hoffman - J.Inorg.NucI.Chem. 25, 1196 (1963) Half-Lives of Some Rare Earth Nuclides R.D.Macfarlane, R.D.Griffioen - Phys.Rev. 130, 1491 (1963) Alpha Decay Properties of Some Holmium Isotopes Near the 82-Neutron Closed Shell R.D.Macfarlane, R.D.Griffioen - Phys.Rev. 131, 2176 (1963) Alpha-Decay Properties of Some Erbium Isotopes Near the 82-Neutron Closed Shell P.Alexander - Phys. Rev. 134, 8499 (1964) Properties of Gamma Transitions in the Decays of Srnis3 and Gd’53 into Eu’~~

T.Cretzu, K.Hohmuth, G.Winter - Nucl. Phys. 56, 415 (1964) Bestimmung der Zerfallsenergie von Gd’53 J.de Boer, G.D.Symons - Compt.Rend.Congr.Intern.Phys.Nucl., Paris, P.Gugenberger, Ed., Centre

National de la Recherche Scientifique, Paris, Vol. II, p.541 (1964) Magnetic Dipole Transition Rates in Deformed Odd-A Nuclei G.T.Ewan, A.J.Tavendale - Can.J.Phys. 42, 2286 (1964) High-Resolution Studies of Gamma-Ray Spectra Using Lithium-Drift Germanium Gamma-Ray Spectrometers W.D.Hamilton, K.E.Davies - Nucl.Phys. 58, 407 (1964) The Mean Life and Nuclear Deformation of the 98 keV Level in ls3Eu R.D.Macfarlane, D.W.Seegmiller - Nucl.Phys. 53, 449 (1964) Alpha Decay Properties of Some Terbium and Dysprosium Isotopes Near the 82-Neutron Closed Shell R.D.Macfarlane - Phys.Rev. 136, 8941 (1964) Alpha-Decay Properties of Some Thulium and Ytterbium Isotopes Near the 82-Neutron Closed Shell T.Novakov, J.M.Hollander - Nucl.Phys. 60, 593 (1964) Anomalous L Subshell Ratios in Mixed Ml-E2 Transitions D.Ashery, A.E.Blaugrund, R.Kalish, J.S.Sokolowski, Z.Vager - Nucl.Phys. 67, 385 (1965) E2/Ml Mixing Ratios and K Conversion Coefficients of Some Rotational Transitions V.T.Gritsyna, H.H.Forster - Nucl.Phys. 61, 129 (1965) New Short-Lived Isomeric Levels in T120’m and Tb’53m R.A.Kenefick, R.K.Sheline - Phys.Rev. 139, B1479(1965) Level Structure of the Odd-A Isotopes of Samarium R.D.Macfarlane - Phys.Rev. 137, B1448(1965) Alpha-Decay Properties of Some Lutetium and Hafnium Isotopes Near the 82-Neutron Closed Shell

I.Mahunka, T.Fenyes - Izv.Akad.Nauk SSSR, Ser.Fiz. 29, 1121 (1965); Bull.Acad.Sci.USSR, Phys.Ser. 29, 1126 (1966)

Investigation of the Alpha Spectrum of Dy Isotopes W.Meiling, F.Stary - Nucl.Phys. 74, 113 (1965) Messung von Nanosekunden-Lebensdauern an Niveaus deformierter Kerne D.Ashery, N.Assaf, G.Goldring, A.Sprinzak, Y.Wolfson - Nucl.Phys. 77, 650 (1966) Lifetime Measurements of Some Rotational Levels by a New Recoil Method U.Atzmony, S.Ofer - Phys.Rev. 145, 915 (1966) Mossbauer-Effect Studies of the 97-keV Level of Euis3

590

NUCLEAR DATA SHEETS

66B106

66Bo16

66GrZZ

66NeO6

67Be73

67BoO5

67Boll

67Co20

67Go32

67Ha34

67SeO9

67TjOl

68EjOl

68Ha53

681001

68Ma15

68Na21

68NiO4

68ReO4

69An19

69PaO3

59ReO4

69SmO4

69KJnO3

69UnO4

7OAdO9

7OBoO2

7OChO9

7OJo20

70MaO5

REFERENCES FOR A = 153 (CONTINUED)

P.H.Blichert-Toft, E.G.Funk, J.W.Mihelich - Nucl.Phys. 79, 12 (1966) Decay of 153Sm(47-h) to ‘53E~ F.Boehm, G.Goldring, G.B.Hagemann, G.D.Symons, A.Tveter - Phys.Letters 22, 627 (1966)

A Determination of the Gyromagnetic Ratios of Some Odd-A Deformed Nuclei from Branching Ratio Measurements

R.L.Graham, J.S.Geiger - Bull.Am.Phys.Soc. 11, No.3, 369, GBll (1966); Priv.Comm. (April 1966)

Mean Lives of Levels in is3Eu H.A.Neumann - Z.Naturforsch. 21a, 1328 (1966) Prazise Messung der y-Absolutintensitat Niederenergetischer Ubergange Bei (my)-Reaktionen und beim

Radioaktiven Zerfall mit einem Kristallspektrometer J.A.Bearden, A.F.Burr - Rev.Mod.Phys. 39, 125 (1967) Reevaluation of X-Ray Atomic Energy Levels J.Borggreen, L.Westgaard, N.J.S.Hansen - Nucl.Phys. A95, 202 (1967) ‘4 Spin 11/2 Isomer in 157Gd P.Boyer, P.Chedin, J.Oms - Nucl.Phys. ASS, 213 (1967) !,a Desintegration par Capture 153Gd + 153E~ T.W.Conlon - Nucl.Phys. AlOO, 545 (1967) Iligh-Resolution Studies of the Gamma Rays from Isomeric States with Half-Lives of 1Ops-30ms in

Nuclei with Z = 63-83 \J.A.Golovkov, K.Y.Gromov, N.A.Lebedev, B.Makhmudov, A.S.Rudnev, V.G.Chumin - izv.Akad.Nauk SSSR,

Ser.Fiz. 31, 1618 (1967); Bull.Acad.Sci.USSR, Phys.Ser. 31, 1657 (1968) Concerning Alpha Decay of Dy, Tb, Cd and Eu Isotopes R.L.Hahn, K.S.Toth, T.H.Handley - Phys.Rev. 163, 1291 (1967) Alpha Decay of Holmium Nuclei; New Isotope, ‘54Ho iG.G.Seaman, E.M.Bernstein, J.M.Palms - Phys.Rev. 161, 1223 (1967) Ml transition Probabilities in Odd-Mass Deformed Nuclei P.O.Tjom, B.Elbek - Kgl.Danske Videnskab.Selskab., Mat.-Fys.Medd. 36, No.8 (1967) A Study of Energy Levels in Odd-Mass Gadolinium Nuclei by Means of (d,p) and (d,t) Reactions H.Ejiri, M.Ishihara, M.Sakai, K.Katori, T.lnamura - J.Phys.Soc.Japan 24, 1189 (1968) Conversion Electrons from (a,xn) Reactions on Sm Isotopes and Nuclear Structures of Gd Nuclei R.S.Hager, E.C.Seltzer - Nucl.Data A4, 1 (1968) Internal Conversion Tables. Part I: K-, L-, M-Shell Conversion Coefficients for Z = 30 to Z = 103 A.Iordachescu, G.Pascovici, D.Plostinaru - Rev.Roumaine Phys. 13, 911 (1968) Nuclear Isomers with Half-Lives in the 20 ~~-15 ms Range S.G.Malmskog - Arkiv Fysik 35, 237 (1968) Absolute El, AK = 0 Transition Rates in Odd-Mass Pm and Eu-Isotopes H.Nabielek - Thesis, Physikinstitut, Reaktorzentrum Seibersdorf, Austria (1968); SGAE-PH-78/1968 Untersuchung von Obergangsraten Elektromagnetischer Ubergange durch Messung der Lebensdauer

Angeregter Kernniveaus nach Neutroneneinfang H.L.Nielsen, K.Wilsky - Nucl.Phys. A115, 377 (1968) Levels in the ES-Neutron Nucleus IssGd S.A.Reynolds, J.F.Emery, E.I.Wyatt - Nucl.Sci.Eng. 32, 46 (1968) Half-Lives of Radionuclides - III W.Andrejtscheff, W.Meiling, F.Stary - Nucl.Phys. A137, 474 (1969) Nanosecond Isomeric Transitions in the 89-Neutron Nucleus i53Gd Y.Patin - Compt.Rend. 268B, 574 (1969) Le Spectre de Rayons y Emis au Cours de la Desintegration du Samarium-153 en Europium-153 E.R.Reddingius, H.Postma - Physica 40, 567 (1969) A Study of Gamma-Ray Spectra of Thermal-Neutron Capture in “7Sm, 140Srn and ‘52Sm R.K.Smither, E.Bieber, T.von Egidy, W.Kaiser, K.Wien - Phys.Rev. 187, 1632 (1969) Level Scheme of 15%rn Based on (n,r), (n,e-), and P-Decay Experiments J.Ungrin, M.W.Johns - NucI.Phys. A127, 353 (1969) The Decay of ‘ssSm J.Ungrin, D.G.Burke, M.W.Johns, W.P.Alford - Nucl.Phys. A132, 322 (1969) A Study of Levels in 153Eu and issEu by the (3He,d) reaction K.E.Adelroth, H.Nyqvist, A.Rosen - Phys.Scr. 2, 96 (1970) Nuclear Spins of Neutron-Deficient Terbium Isotopes J.Borggeen, G.Sletten - Nucl.Phys. A143, 255 (1970) Isomeric States in Odd-N Isotopes of Sm, Gd, Dy and Er Ascribed to the 11/2- C5057 Y.Y.Chu, E.M.Franz, G.Friedlander - Phys.Rev. Cl, 1826 (1970) Half-Lives and Gamma-Ray Abundances of Several Rare-Earth Nuclides W.John, F.W.Guy, J.J.Wesolowski - Phys.Rev. C2, 1451 (1970) Four-Parameter Measurements of lsomeric Transitions in esaCf Fission Fragments J.D.Macdougall, W.McLatchie, S.Whineray, H.E.Duckworth - Nucl.Phys. A145, 223 (1970) Precise Atomic Mass Differences and Mass Systematics in the Region of 90 Neutrons

591

NUCLEAR DATA SHEETS

70Me26

70Mi 15

70Mu04

70PaZI

70Ra37

70Ro21

70SeZY

70To16

70VaZ0

70Za04

71Ba28

71Be41

71Bu16

71KiZC

71Kr19

71Le04

71ToOl

72Af 03

72De67

72EmOl

72F109

72Ha41

72Ho08

72Ka07

72Kr20

72LoO4

72Re04

72Ro36

72Th09

73EaO 1

REFERENCES FOR A = 153 (CONTINUED)

R.Y.Metskhvarishvili, M.A.Elizbarashvill, V.M.Gachechiladze, L.V.Bodokiya - Izv.Akad.Nauk SSSR, Ser.Fiz. 34, 2234 (1970);Bull.Acad.Sci. USSR, Phys.Ser. 34, 1993 (1971)

Determination of the Multipolarity of Some y Transitions in 153Eu J.Milanovic, R.Stepic, D.Drpic - Fizika 2, 109 (1970) M/L and (N + 0 + . ..)/M Conversion Ratios for Ml + E2 Transitions K.Muhlbauer - Z.Phys. 230, 18 (1970) Gammaspektrum nach Neutroneneinfang in Eu’sa (12,4a) und Niveauschema van Eu’~~ Y.Patin - Thesis, Paris Univ. (1970); NP-18835 (1970) Etude de la Desintegration du Samarium 153 en Europium 153 D.E.Raeside - Nucl.Instrum.Methods 87, 7 (1970) Gamma Ray Energies in the Energy Interval between 45 and 1275 keV A.Rosen, C.Ekstrom, H.Nyqvist, K.E.Adelroth - Nucl.Phys. A154, 283 (1970) Nuclear Ground State Spins of Neutron-Deficient Dy Isotopes K.-E.Seyb, K.Chayawattanangkur - BMBW-FBK-70-19, p.60 (1970) Eigenschaften kurzlebiger Neodym- und Promethium isotope unter Den Spaltprodukten K.S.Toth, R.L.Hahn, M.A.Ijaz, W.M.SampIe - Phys.Rev. C2, 1480 (1970) Production of Rare-Earth a Emitters with Energetic 3He Particles; New Isotopes: lslEr, ‘s6Yb, and 15’Yb Y.Vavryschuk, A.F.Novgorodov, T.M.Muminov, V.I.Razov, J.Sazinsky - JINR-P6-5526 (1970) Conclusions on the Structure of the ls3Gd States Drawn from the Results of the Life-Time Measurements D.A.Zavadil, R.Graetzer - Nucl.Phys. A146, 259 (1970) Energy Levels in 15’Eu and ‘53E~ S.Baba, H.Baba, H.Natsume - J.Inorg.Nucl.Chem. 33, 589 (1971) Half-Lives of Some Fission Product Nuclides M.J.Bennett, R.K.Sheline, Y.Shida - Nucl.Phys. A171, 113 (1971) Levels in ‘53Sm

M.E.Bunker, C.W.Reich - Rev.Mod.Phys. 43, 348 (1971); Erratum Rev.Mod.Phys. 44, 126 (1972) A Survey of Nonrotational States of Deformed Odd-A Nuclei (150 < A < 190) M.B.Kime - Thesis, Cornell Univ. (1971); Diss.Abstr.Int. 31B, 7511 (1971) K Forbidden Isomerism of the 11/2-C5051 Nilsson Orbital in the Odd A, N=91 Isotones K.S.Krane, C.E.Olsen, J.R.Sites, W.A.Steyert - Phys.Rev. C4, 1942 (1971) Parity Mixing and Nuclear Structure in the Decays from Oriented ‘s3,15’Gd and ‘s’Tb T.Lewis, R.Graetzer - Nucl.Phys. A162, 145 (1971) Gamma Rays from Coulomb Excitation of ‘slEu and 153Eu K.S.Toth, R.L.Hahn - Phys.Rev. C3, 854 (1971) Q Decay from High-Spin Isomers in ‘s3Ho and ‘s4Ho V.P.Afanasiev, I.I.Gromova, N.A.Lebedev, V.A.Morozov, T.M.Muminov, H.Fuia, A.B.Khalikulov,

F.S.Khamaraev - JINR-P6-6426 (1972) Measurement of Excited State Life-Times in Neutron-Deficient Nuclei of ‘s5Er, ls3Er, ‘s7Tb, 15sGd,

lslGd and 135La M.de Bruin, P.J.M.Korthoven - J.Radioanal.Chem. 10, 125 (1972) Low-Energy Gamma Rays from Isotopes Produced by (n,-y) Reactions J.F.Emery, S.A.Reynolds, E.I.Wyatt, G.I.Gleason - Nucl.Sci.Eng. 48, 319 (1972) Half-Lives of Radionuclides - IV G.N.Flerov, S.A.Karamyan, G.S.Popeko, A.G.Popeko, I.A.Shelaev - Yad.Fiz. 15, 1117 (1972);

Sov.J.Nucl.Phys. 15, 618 (1972) Compound Nucleus Production by Accelerated Xenon Ions B.Harmatz, T.H.Handley - Nucl.Phys. A191, 497 (1972); Priv.Comm. (1972) Nuclear Spectroscopy of Neutron-Deficient La, Dy and Er Activities F.F.Hopkins, J.R.White, G.W.Phillips, C.F.Moore, P.Richard - Phys.Rev. C5, 1015 (1972) Further Measurements of Gamma Transitions in Spontaneous-Fission Fragments of 25’Cf I.Kanestrom, P.O.Tjom - Nucl.Phys. A179, 305 (1972) The Level Structure of ‘s%rn D.Krpic, J.Milanovic, I.Bikit, R.Stepic - Z.Phys. 253, 71 (1972); Erratum Z.Phys. 254, 188 (1972) The Effective g(s) Factor for the Odd Proton ‘s%rn Nucleus Determined by the Internal Conversion

Processes G.Lovhoiden, S.A.Hjorth, H.Ryde, L.Harms-Ringdahl - Nucl.Phys. A181, 589 (1972) High-Spin States in ls3Gd and 15’Gd I.Rezanka, F.M.Bernthal, J.O.Rasmussen, R.Stokstad, I.Fraser, J.Greenberg, D.A.Bromley - Nucl.Phys.

A179, 51 (1972) High-Spin States in ‘53Gd and ‘54Gd from (a,xny) Studies A.Rosen, H.Nyqvist - Phys.Scr. 6, 24 (1972) Hyperfine Structure Investigation of ‘s3Dy, ‘55Dy and 15’Dy J.E.Thun, T.R.Miller - Nucl.Phys. A193, 337 (1972) Coulomb Excitation Studies of 151Eu and 153Eu D.A.Eastham, I.S.Grant - Nucl.Phys. A208, 119 (1973) Alpha Decay of Neutron-Deficient Isotopes of Tungsten

592

NUCLEAR DATA SHEETS

REFERENCES FOR A = 153 (CONTINUED)

73Kr24

73LoO8

73Lol4

73sco4 73st22

74Ma27

74Pe16

74sc 19

74Se08

74TuO 1

75Ba69

75Dr07

75Jal8

75Se 16

75VyOl

75zuzz

76A109

76Bu03

76Fu06

76Gu02

76Stlo

77A128

778129

77Ba63

77Ba77

77De05

7’7Ha48

77K104

77KoZH

L.A.Kroger, C.W.Reich - Nucl.Data Sheets 10, 429 (1973) Nuclear Data Sheets for A = 153 G.Lovhoiden, D.G.Burke, J.C.Waddington - Can.J.Phys. 51, 1369 (1973) Levels in ls3Gd and i5%d Studied with the (p,t) Reaction G.Lovhoiden, D.G.Burke - Can.J.Phys. 51, 2354 (197’3) P. Study of Levels in is3Gd Using the (d,t) and (sHe,a) Reactions C.Schult - Priv.Comm. (February 1973) F’.M.Starzyk, N.Sugarman - Phys.Rev. C8, 1448 (1973) Studies of the Recoil Properties of Products of the Interaction of asalJ with 11.5-GeV Protons E;.S.Macias, M.R.Zalutsky - Phys.Rev. AS, 2356 (1974) K-L X-Ray Angular Correlations in Cm, Pu, and Eu A.Peghaire, P.Aguer, J.-P.Torres - J.Phys.(Paris), Suppl.Lett. 35, L-207 (1974) The Decay of 153Tb to Levels in ie3Gd W-D.Schmidt-Ott, K.S.Toth, E.Newman, C.R.Bingham - Phys.Rev. ClO, 296 (1974) cc-Decay Branching Ratios for High- and Low-Spin Isomers in 151,152,153,i54H~ V.A.Sergienko, V.M.Lebedev - Izv.Akad.Nauk SSSR, Ser.Fiz. 38, 802 (1974); Bull.Acad.Sci.USSR,

Phys.Ser. 38, No.4, 122 (1974) Determining K-Capture Intensities for 153Gd + ls3Eu Decay T.Tuurnala, A.Siivola, P.Jartti, T.Liljavirta - Z.Phys. 266, 103 (1974) Low-Spin States of ie3Gd Observed in the Decay of ‘e3Tb J.A.Barclay, B.Perczuk - Hyperfine Interactions 1, 15 (1975) Nuclear Structure and the Hyperfine Interaction of Oriented i5eEu, is5Eu, and ieaGd in Goid C.D.Dracoulis, J.R.Leigh, M.G.Slocombe, J.O.Newton - J.Phys.(London) Gl, 853 (1975) Rotational Bands in isaEu M.Jaskola - Nukleonika 20, 909 (1975) A Study of the Single Particle Levels in Deformed Nuclei Excited in the (d,p) and (d,t) Reactions P.Sen, C.Burman, H.Bakhru, D.Howe - Z.Phys. A274, 343 (1975) Directional Correlations of Gamma Cascades in 153Gd T.Vylov, I.I.Gromova, K.Y.Gromov, V.V.Kuznetsov, N.A.Lebedev, M.Potempa, M.I.Fominykh,

V.S.Aleksandrov, A.S.Kahmidov, I.Kholbaev, T.Iskhakov - Izv.Akad.Nauk SSSR, Ser.Fiz. 39, 506 (1975); Bull.Acad.Sci.USSR, Phys.Ser. 39, No.3, 40 (1975)

Investigation of the Radiation from 153Tb K.Zuber, Ts.VyIov, I.I.Gromova, Ya.Zuber, Kh.G.OrtIepp, N.A.Lebedev - JINR-P6-8669 (1975) Investigation of the Excited States of Tb Isotope. III. Dy-153 - Tb-153 Decay B.A.Alikov, M.Budzinski, T.Bedike, Y.Vavrishchuk, V.Zhuk, R.Ion-Mikhai, V.V.Kuznetsov, G.I.Lizurei,

V.A.Morozov, T.M.Muminov, M.I.Fominykh, l.Kholbaev - Acta Phys.Pol. B7, 59 (1976) Gamma-Gamma Directional Correlations in 153Gd D.G.Burke, E.R.Flynn, J.D.Sherman, J.W.Sunier - Nucl.Phys. A258, 118 (1976) Studies of States in ‘53Eu and 155Eu with the (t.p) Reaction G.H.Fuller - J.Phys.Chem.Ref.Data 5, 835 (1976) Nuclear Spins and Moments C.Gunther, J.C.Soares - Nucl.Phys. A257, 1 (1976) Electromagnetic Transition Rates and Coriolis Coupling in Some Deformed Nuclei O.Straume, G.Lovhoiden, D.G.Burke - Nucl.Phys. A266, 390 (1976) Proton States in the N = 88 Nuclei i4’Pm, i51Eu and 153Tb Populated in The (r,d) and (a,t) Reactions 13.A.Alikov, Y.Vavryshchuk, K.Y.Gromov, V.Zhuk, R.Ion-Mikhai, T.A.Islamov, A.Karakhodzhaev, E.Krupa,

G.I.Lizurei, M.M.Malikov, T.M.Muminov, I.Kholbaev - Izv.Akad.Nauk SSSR, Ser.Fiz. 41, 1098 (1977); Bull.Acad.Sci.USSR, Phys.Ser. 41, No.6, 1 (1977)

The Study of the Quantum Characteristics of Low-Excited States of 153Tb 13.A.Alikov, Y.Vavryshchuk, K.Y.Gromov, R.Ion-Mikhai, N.Z.Marupov, T.M.Muminov, I.Kholbaev -

Izv.Akad.Nauk SSSR, Ser.Fiz. 41, 1108 (1977); BulI.Acad.Sci.USSR, Phys.Ser. 41, ~0.6, 8 (1977) Lifetimes of Low-Excited States of 153Tb T.Badica,D.Bogdan.C.Ciortea,S.Dima,A.Petrovici - Hyperfine Interactions 3, 423 (1977) Magnetic Moment Measurement of the 129.2 keV Level in ls3Gd G.Battistuzzi, B.Dainese, C.Signorini, A.M.Stefanini - Nucl.Instrum.Methods 146, 481 (1977) -4 Plunger Device for in-Beam Measurements of Nuclear Lifetimes lM.D.Devous,Sr., T.T.Sugihara - Phys.Rev. C15, 740 (1977); Erratum Phys.Rev. C16, 2098 (1977) IEvidence for Weak Deformation in the 88-Neutron Nucleus ls3Tb lE.Hagberg, P.G.Hansen, J.C.Hardy, P.Hornshoj, B.Jonson, S.Mattsson, P.Tidemand-Petersson, The

ISOLDE Collaboration - Nucl.Phys. A293, 1 (1977) .4lpha Decay of Neutron-Deficient Ytterbium Isotopes and their Daughters !?.Kleinheinz, A.M.Stefanini, M.R.Maier, R.K.Sheline, R.M.Diamond, F.S.Stephens - Nucl.Phys. ~283,

189 (1977) :Different Structure Collective Bands in the N = 87 Nuclei ‘49Sm, ieiGd And ie3Dy ‘T.Kobayashi, T.Numao, H.Nakayama, J.Imazato - UTPN-100, p.40 (1977) Lifetime Measurements in psec-nsec Region

593

NUCLEAR DATA SHEETS

77suzw

77VaZJ

77Wa08

77ZuZV

78An25

78Bu18

78Cr02

78De27

78Gr13

78He21

78LalO

78LeZA

78Wa 14

78WiO2

79A116

79Ha29

79HolO

79Ja14

79Ja23

79Ka16

79KelO

79Re04

80Da09

80Lall

81GrZZ

82WaZZ

REFERENCES FOR A = 153 (CONTINUED)

E.R.Sugarbaker - Diss.Abst.Int. 37B, 5176 (1977) PrOtOn Intrinsic States in ‘53Pm,163Tb, and “‘Ho Studied via the (d,3He) Reaction Ya.Vavrischuk, I.I.Gromova, V.Zhuk, R.Ion-Mikhai, E.Krupa, G.I.Lazurei, M.M.Malikov, T.M.Muminov,

V.Tanska-Krupa, I.Kholbaev - JINR-P6-10703 (1977) Investigation Of Perturbed Gamma-Gamma Angular Correlations in Odd Gadolinium Nuclei with A =

149-155

A.H.Wapstra, K.Bos - At.Data Nucl.Data Tables 19, 175 (1977); 20, 1 (1977) The 1977 Atomic Mass Evaluation (In Four Parts) Ya.Zuber, K.Zuber, A.Zelinski, A.Dyatuschinski, Kh.-G.Ortlepp, I.Penev, A.V.Potempa - Program and

Theses,Proc.27th Ann.Conf.NucI.Spectrosc.Struct.At.Nuclei,Tashkent, p.85 (1977) Investigation of the Decay of is3Ho and 153mHo V.Andreichev, G.I.Lizurei, M.M.Malikov, T.M.Muminov, S.Omanov, R.R.Usmanov - Izv.Akad.Nauk SSSR,

Ser.Fiz. 42, 2257 (1978); Bull.Acad.Sci.USSR, Phys.Ser. 42, No.11, 33 (1978) Decay of ls3Ho - 15sDy (T,/z = 9,3 min) D.G.Burke, G.Lovhoiden, E.R.Flynn, J.W.Sunier - Phys.Rev. C18, 693 (1978) Nuclear Structure of ‘ssPm Studied with the (t,or) Reaction T.Cretzu, V.V.Kuznetsov, G.I.Lizurei, V.M.Gorozhankin, G.Makarie - Izv.Akad.Nauk SSSR, Ser.Fiz. 42,

56 (1978); Bull.Acad.Sci.USSR, Phys.Ser. 42, No.1, 44 (1978) The Positron Emission of 153Tb M.D.Devous,Sr., T.T.Sugihara - Z.Phys. A288, 79 (1978) Negative-Parity Bands in the 88-Neutron Nuclei i5sTb and ‘s5Ho I.I.Gromova, T.Cretsu, V.V.Kuznetsov, G.Lizurei, N.A.Lebedev, V.M.Gorozhankin, G.Macarie - Yad.Fiz.

27, 1421 (1978); Sov.J.Nucl.Phys. 27, 749 (1978) Positron Decay of ‘asDy R.G.Helmer, R.C.Greenwood, R.J.Gehrke - Nucl.Instrum.Methods 155, 189 (1978) Reevaluation of Precise -y-Ray Energies for Calibration of Ge(Li) Spectrometers R.G.Lanier, L.G.Mann, G.L.Struble, I.D.Proctor, D.W.Heikkinen - Phys.Rev. C18, 1609 (1978) Deformation Change at N = 89: Proton Inelastic Scattering at 12 MeV on ‘51,‘52,153E~ C.M.Lederer, V.S.Shirley, E.Browne, J.M.Dairiki, R.E.Doebler, A.A.Shihab-Eldin, J.K.Tuli, A.B.Buyrn

- Table of Isotopes, 7th Ed., John Wiley and Sons, Inc., New York (1978) D.D.Warner, W.D.HamiIton, R.A.Fox, M.Finger, J.Konicek, V.N.PavIov, V.M.Tsupko-Sitnikov -

J.Phys.(London) G4, 1887 (1978) Directional Distribution of y Rays in ‘ssGd from the Decay of i5sTb

G.Winter, J.Doring, L.Funke, P.Kemnitz, E.Will, S.Elfstrom, S.A.Hjorth, A.Johnson, T.Lindblad - Nucl.Phys. A299, 285 (1978)

Evidence for Rotational Band Structures in the N = 88 Nuclide 153Tb G.D.Alkhazov, L.K.Batist, E.Y.Berlovich. Y.S.Blinnikov, Y.V.Yelkin, K.A.Mezilev, Y.N.Novikov,

V.N.Pantelejev, A.G.Poljakov, N.D.Schigolev, V.N.Tarasov, V.P.Afanasjev, K.Y.Gromov, M.Jachim, M.Janicki, V.G.Kalinnikov, J.Kormicki, A.Potempa, E.Rurarz, F.Tarkanyi, Y.V.Yushkievich - Z.Phys. A291, 397 (1979)

New Neutron Deficient Lutetium Isotopes D.C.J.M.Hageman, M.J.A.de Voigt, J.F.W.Jansen - Phys.Lett. 84B, 301 (1979)

Search for High-Spin Isomeric States in the Rare-Earth Region S.Hofmann, W.Faust, G.Munzenberg, W.Reisdorf, P.Armbruster, K.Guttner, H.Ewald - Z.Phys. A291, 53

(1979) Alpha Decay Studies of Very Neutron Deficient Isotopes of Hf, Ta, W, and Re J.F.W.Jansen, M.J.A.de Voigt, Z.Sujkowski, D.Chmielewska - Nucl.Phys. A321, 365 (1979) In-Beam y-Ray Studies of Complex Band Structures and of Isomeric States in ise,‘s3Dy Nuclei M.Jaskola, B.Elbek, K.Nybo, P.O.Tjom - Acta Phys.Pol. BlO, 137 (1979) Angular Distributions for (d,p) and (d,t) Reactions on ‘s4Sm, ‘a6Er, “‘Yb and i7sYb Target Nuclei

R.Katajanheimo, A.Siivola, T.TuurnaIa, E.Hammaren, E.Liukkonen - Phys.Scr. 20, 125 (1979) The Isomeric 9/Z+ and the Lowest 7/Z- State in the Weakly Deformed N = 89 Nuclei E.G.Kessler,Jr., R.D.DesIattes, A.Henins - PhysRev. B19, 215 (1979) Wavelength of the W Ka, X-Ray Line J.Rekstad, M.Guttormsen, T.Engeland, G.Lovhoiden, O.Straume, J.Lien, C.E.Ellegaard - Nucl.Phys.

A320, 239 (1979) The 153Sm Nucleus: An Experimental and Theoretical Study H.Dautet, G.Bischoff, J.M.D’Auria, B.D.Pate - Can.J.Phys. 58, 891 (1980) Yield of Deep Spallation Products of Medium to Heavy Mass Targets Bombarded with 480 MeV Protons R.G.Lanier, G.L.Struble, L.G.Mann, I.C.Oelrich, I.D.Proctor, D.W.Heikkinen - Phys.Rev. C22, 51

(1980) Evidence for Nuclear Shape Coexistence at N = 88: ‘saEu(d,p) and (d,t) Reactions R.C.Greenwood - Priv.Comm. (1981) The Neutron Separation Energy for IsaGd A.H.Wapstra, G.Audi, K.Bos - Priv.Comm. (February 1982)

594