47
NTHU-CS VLSI/CAD LAB TH EDA TH EDA Student : Da-Cheng Student : Da-Cheng Juan Juan Advisor : Shih-Chieh Advisor : Shih-Chieh Chang Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

  • View
    221

  • Download
    1

Embed Size (px)

Citation preview

Page 1: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

NTHU-CS VLSI/CAD LAB

TH EDATH EDA

Student : Da-Cheng JuanStudent : Da-Cheng JuanAdvisor : Shih-Chieh ChangAdvisor : Shih-Chieh Chang

Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

Page 2: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

2

OutlineOutline

Sleep Transistor Sizing ProblemSleep Transistor Sizing Problem

Maximum Instantaneous Current EstimationMaximum Instantaneous Current Estimation

Time-Frame PartitioningTime-Frame Partitioning for Sizingfor Sizing

Experimental ResultsExperimental Results

ConclusionsConclusions

Page 3: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

3

Trend of Low Power DesignsTrend of Low Power Designs

Leakage increases exponentiallyLeakage increases exponentially– reachesreaches more than 50% of total power in 65nm technology.more than 50% of total power in 65nm technology.

Low power design is a must-have, not an optional.Low power design is a must-have, not an optional.

Power dissipationPower dissipation– Active power (active mode)Active power (active mode)– Leakage power (sleep mode)Leakage power (sleep mode)

drainsource

gate

Sub-threshold leakage

Page 4: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

4

Power GatingPower Gating

Power GatingPower Gating– One of the most effective ways to reduce leakage. reduce leakage.

Low Vth Logic Devices

VDD

GNDuse high Vth Sleep Transistorto reduce the leakage current

SLVGND

GND

ModeMode SLSL Sleep Sleep TransistorTransistor

ActiveActive 00 ONON

SleepSleep 11 OFFOFF

Page 5: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

5

C1 C2 C3

Implementation of Power GatingImplementation of Power Gating

Distributed Sleep Transistor Network (DSTN)Distributed Sleep Transistor Network (DSTN)

VDD

VGND

Low Vth Logic Device

SL SL SL

Page 6: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

6

Leakage SavingLeakage Saving

In sleepIn sleep mode:mode:– Leakage: Leakage: proportionalproportional to the ST’s size. to the ST’s size.– Small ST to reduce leakage.Small ST to reduce leakage.

Ileakage

VDD

VGND

Ileakage Ileakage

Page 7: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

7

Voltage Drop across Sleep TransistorVoltage Drop across Sleep Transistor

In active mode:In active mode:– Voltage drop across a ST degrades the performance.Voltage drop across a ST degrades the performance.– Voltage drop: Voltage drop: inversely proportionalinversely proportional to the ST’s size. to the ST’s size.– Large ST to bind the voltage drop.Large ST to bind the voltage drop.

VST

VDD

VGND

VST VST

Page 8: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

8

Sleep Transistor (ST) SizingSleep Transistor (ST) Sizing

Dilemma scenario:Dilemma scenario:– SmallSmall ST to reduce leakage. (sleep ST to reduce leakage. (sleep mode)mode)– LargeLarge ST to bind the voltage drop. (active mode) ST to bind the voltage drop. (active mode)

ObjectiveObjective: : minimize ST size (leakage) under a specified minimize ST size (leakage) under a specified voltage-drop constraint, voltage-drop constraint, VVSTST**..

VST* VST*VST

VDD

VGND

VST VSTVST*

Page 9: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

9

C1 C2 C3

Voltage Drop Estimation with MICVoltage Drop Estimation with MIC

Maximum Instantaneous Current (MIC)Maximum Instantaneous Current (MIC) through a ST through a ST– determines the worst case IR drop.determines the worst case IR drop.

Estimating the upper bound of Estimating the upper bound of MICMIC((STST))– to size ST properly to meet the voltage-drop constraint.to size ST properly to meet the voltage-drop constraint.

MIC(ST1)

VDD

VGNDMIC(ST2) MIC(ST3)

MIC(ST): MIC across a ST.

Page 10: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

10

C1 C2 C3

Voltage Drop Estimation with MICVoltage Drop Estimation with MIC

MICMIC((CC) (MIC of a cluster) is easy to measure.) (MIC of a cluster) is easy to measure. Due to current balancing effectDue to current balancing effect

– MICMIC((STST) (MIC through a) (MIC through a ST) is hard to predict.ST) is hard to predict.

MIC(ST1)

VDD

VGNDMIC(ST2) MIC(ST3)

MIC(C1)

Finding the MIC of a cluster is

fast.

Finding the MIC across a ST is time-

consuming.

Page 11: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

11

Temporal Perspective of Cluster’s MICTemporal Perspective of Cluster’s MIC

ConventionalConventional wayway– ST sizes are determinedST sizes are determined with with MICMIC

of the of the entire clock periodentire clock period..

(Time Unit : 10ps)

Cluster 1Cluster 2

MIC(C2) occurs at T9.

one clock cycle

MIC(Ci) waveform

(Curr

ent)

MIC(C1) occurs at T6.

Page 12: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

12(Time Unit: 10ps)

Curr

ent

(mA

)

Cluster 1Cluster 2

Temporal Perspective of Cluster’s MICTemporal Perspective of Cluster’s MIC

one clock cycle

MIC(Ci) waveform

Smaller time frames lead to:Smaller time frames lead to:– a more accurate MIC estimation.a more accurate MIC estimation.– but high computation complexity.but high computation complexity.

Page 13: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

13

DifficultiesDifficulties

Current balancing effectCurrent balancing effect complicates the sizing problem. complicates the sizing problem.

Time-frame partitioningTime-frame partitioning leads to high computation complexity. leads to high computation complexity.

MIC MIC MIC

MIC

one clock cycle

Page 14: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

14

ContributionsContributions

More accurate MIC prediction from More accurate MIC prediction from temporal perspective.temporal perspective.

Variable-length Variable-length partitioning to reduce computation complexity.partitioning to reduce computation complexity.

Algorithm to minimize the sizes of sleep transistors.Algorithm to minimize the sizes of sleep transistors.

Achieving 21% area reduction in total sleep transistor sizes Achieving 21% area reduction in total sleep transistor sizes compared with [2]compared with [2].

- [2] Chiou et al. DAC’06

Page 15: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

15

OutlineOutline

Sleep Transistor Sizing ProblemSleep Transistor Sizing Problem

Maximum Instantaneous Current EstimationMaximum Instantaneous Current Estimation

Time-Frame PartitioningTime-Frame Partitioning for Sizingfor Sizing

Experimental ResultsExperimental Results

ConclusionsConclusions

Page 16: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

16

Resistance NetworkResistance Network

I(ST1) I(ST2) I(ST3)

I(C1) I(C2) I(C3)

R(ST1) R(ST2) R(ST3)

RV RV

C1 C2 C3

VGND

Page 17: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

17

The discharging ratio can be calculated byThe discharging ratio can be calculated by– Kirchhoff’s Current LawKirchhoff’s Current Law– Ohm’s LawOhm’s Law

Discharging RatioDischarging Ratio

9Ω 8Ω 10Ω

2Ω 2Ω

C1 C2 C3

0.43* I(C1) 0.34* I(C1) 0.23* I(C1)

I(C1)

VGND

Page 18: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

18

Discharging Matrix Ψ (SAI )Discharging Matrix Ψ (SAI )

)(

)(

)(

)(

)(

)(

3

2

1

3

2

1

CI

CI

CI

Ψ

STI

STI

STI

333231

232221

131211

ψψψ

ψψψ

ψψψ

Ψwhere

I(ST1) I(ST2) I(ST3)

I(C1) I(C2) I(C3)

C1 C2 C3

VGND

Page 19: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

19

MIC(ST) Estimation MechanismMIC(ST) Estimation Mechanism

)(

)(

)(

)(

)(

)(

3

2

1

3

2

1

CMIC

CMIC

CMIC

Ψ

STMIC

STMIC

STMIC

MIC(ST1) MIC(ST2) MIC(ST3)

MIC(C1) MIC(C2) MIC(C3)

C1 C2 C3

333231

232221

131211

ψψψ

ψψψ

ψψψ

Ψwhere

Page 20: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

20

OutlineOutline

Sleep Transistor Sizing ProblemSleep Transistor Sizing Problem

Maximum Instantaneous Current EstimationMaximum Instantaneous Current Estimation

Time-Frame PartitioningTime-Frame Partitioning for Sizingfor Sizing

Experimental ResultsExperimental Results

ConclusionsConclusions

Page 21: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

21

Temporal Perspective of Cluster’s MICTemporal Perspective of Cluster’s MIC

Different MIC(Ci) occurs at different time points.

(Time Unit: 10ps)

Cluster 1Cluster 2

MIC(C2) occurs at T9.

one clock cycle

MIC(Ci) waveform

(Curr

ent)

MIC(C1) occurs at T6.

Page 22: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

22

Temporal Perspective of Cluster’s MICTemporal Perspective of Cluster’s MIC

)(

)(

)(

)(

)(

)(

3

2

1

3

2

1

CMIC

CMIC

CMIC

Ψ

STMIC

STMIC

STMIC

Different MIC(Ci) occurs at different time points within a clock period.

Traditional way to estimate MIC(STi) is over pessimistic.

over-estimated !

Page 23: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

23

Time-Frame Partitioning for MIC(ST) EstimationTime-Frame Partitioning for MIC(ST) Estimation

Expand MIC(Ci) into MIC(Ci,Tj).

(Time Frame)

Cluster 1Cluster 2

one clock cycle

MIC(Ci,Tj) waveform

(Curr

ent)

MIC(C1,T1)

MIC(C2,T1)

MIC(C1,T3)

MIC(C2,T3)

MIC(C1,T6)

MIC(C2,T6)

Page 24: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

24

For each time frame Tj, use MIC(Ci,Tj) to obtain MIC(STi,Tj).

( , ) ( , )

( , ) ( , )

( , ) ( , )

1 1 1 1

2 1 2 1

3 1 3 1

MIC ST T MIC C T

MIC ST T Ψ MIC C T

MIC ST T MIC C T

Time-Frame Partitioning for MIC(ST) EstimationTime-Frame Partitioning for MIC(ST) Estimation

Page 25: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

25

Time-Frame Partitioning for MIC(ST) EstimationTime-Frame Partitioning for MIC(ST) Estimation

For ST1, the maximum MIC(ST1,Tj) among all Tj is the upper bound of MIC(ST1) after partitioning.

Cluster 1Cluster 2

(Time Frame)

one clock cycle

MIC(STi,Tj) waveform

MIC(ST1)

ST 1ST 2

(Curr

ent)

MIC(ST2)

Page 26: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

26

Notation ReviewNotation Review

MICMIC((CCii))– Maximum Instantaneous Current of Maximum Instantaneous Current of iith th ClusterCluster

MICMIC((STSTii))– Estimated MIC upper bound Estimated MIC upper bound flowing through flowing through iith th sleep transistorsleep transistor

MICMIC((CCii,T,Tjj))– MIC of MIC of CCi i in in jjthth time frame time frame

MICMIC((STSTii,T,Tjj) =) =Ψ * MICΨ * MIC((CCii,T,Tjj))– Estimated MIC upper bound Estimated MIC upper bound through through STSTi i in in jjthth time frame time frame

MICMIC((STSTii) = ) = Ψ * MICΨ * MIC((CCii))– WithWith time-frame partitioning time-frame partitioning

MICMIC((STSTii) = max{ ) = max{ MICMIC((STSTii,T,Tjj) for all ) for all j j }}– WithoutWithout time-frame partitioning time-frame partitioning

Page 27: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

27

Time-Frame Partitioning for MIC(ST) EstimationTime-Frame Partitioning for MIC(ST) Estimation

Cluster 1Cluster 2

(Time Frame)

one clock cycle

MIC(STi,Tj) waveform

MIC(ST1)

ST 1ST 2

MIC(ST2)

(Curr

ent)

ORIGINAL_MIC(ST1

) 37% larger!

ORIGINAL_MIC(ST2

)27% larger!

Time-Frame Partitioning leads to a better MIC(ST) estimation!

Page 28: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

28

Reduce the Computation ComplexityReduce the Computation Complexity

More time frames lead toMore time frames lead to– more accurate voltage-drop estimation.more accurate voltage-drop estimation.– but higher computation complexity.but higher computation complexity.

Reduce the computation complexity:Reduce the computation complexity:– dominated time-frame removaldominated time-frame removal– variable length time-frame partitioningvariable length time-frame partitioning

Page 29: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

29

Dominated Time Frame RemovalDominated Time Frame Removal

TT33 is dominated by is dominated by TT66..– MICMIC((CC11,T,T66)) > MIC > MIC((CC11,T,T33),),– MICMIC((CC22,T,T66)) > MIC > MIC((CC22,T,T33).).

NeglectNeglect T T33

– MICMIC((STST11,T,T66)) > MIC > MIC((STST11,T,T33),),– MICMIC((STST22,T,T66)) > MIC > MIC((STST22,T,T33).). Cluster 1

Cluster 2MIC(C1,T6)

MIC(C1,T3)

MIC(C2,T6)

MIC(C2,T3)Cluster MIC

waveform

Page 30: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

30

((TTbb dominates dominates TTcc ) and () and (TTbb dominates dominates TTdd))=> the estimated upper bound of Fig(2) will be smaller.=> the estimated upper bound of Fig(2) will be smaller.

Variable-Length Time-Frame PartitioningVariable-Length Time-Frame Partitioning

Ta

uniform two-way partition Variable-length two-way partition

Tb TdTc

MIC(C1,Tb)

MIC(C2,Tb)

MIC(C1,Td)

MIC(C2,Td)

MIC(C1,Tc)

MIC(C2,Tc)

(1) (2)

Page 31: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

31

Variable-Length Time-Frame PartitioningVariable-Length Time-Frame Partitioning

WithWith all all MICMIC((CCii)s)s are separatedare separated

- MIC- MIC((STSTii) can be better estimated!) can be better estimated!

Example with the number of time frames = 3Example with the number of time frames = 3one clock cycle

T1 T2 T3

Cluster 1Cluster 2Cluster 3

Cluster MIC waveform

Page 32: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

32

Partition one clock period Partition one clock period – with the with the minimum time unit exhausivelyminimum time unit exhausively

Not efficientNot efficient Accurate Accurate MICMIC((STSTii) estimation) estimation

– with with limited number of variable-length time frameslimited number of variable-length time frames EfficientEfficient Only lose slight accuracyOnly lose slight accuracy

Variable-Length Time-Frame PartitioningVariable-Length Time-Frame Partitioning

Page 33: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

33

Problem Formulation of ST SizingProblem Formulation of ST Sizing

Inputs:Inputs:1.1. Voltage-drop constraint.Voltage-drop constraint.

2.2. MICMIC((CCii,,TTjj): Cluster’s): Cluster’s MIC information.MIC information.

Objective: Objective: 1.1. Minimize the total width of sleep transistors.Minimize the total width of sleep transistors.2.2. Voltage drops must meet the constraint.Voltage drops must meet the constraint.

Output:Output:1.1. A set of sleep transistor width.A set of sleep transistor width.

Page 34: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

34

ST Sizing AlgorithmST Sizing Algorithm

99Ω99Ω 99Ω99Ω

1. Initialize ST size with a large value.

MIC(STi,Tj)= . MIC(Ci,Tj)V(STi,Tj)=MIC(STi,Tj) . R(STi

)

3. Update MIC(STi,Tj) and voltage drops.

Ψ0.38 0.30 0.21 0.18

0.27 0.30 0.21 0.18

0.21 0.24 0.35 0.28

0.14 0.16 0.23 0.36

2. Update the discharging matrix.

Return ST size

Yes

Voltage drops ok?

No

4. Resize ST with the worst drop.

99 73 9999

kV

TSTMICW

ST

jiST )

*

),((*

Page 35: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

35

OutlineOutline

Sleep Transistor Sizing ProblemSleep Transistor Sizing Problem

Maximum Instantaneous Current EstimationMaximum Instantaneous Current Estimation

Time-Frame PartitioningTime-Frame Partitioning for Sizingfor Sizing

Experimental ResultsExperimental Results

ConclusionsConclusions

Page 36: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

36

Environment SetupEnvironment Setup

TSMC 130nm CMOS technology.TSMC 130nm CMOS technology.

Vdd = 1.3 volt.Vdd = 1.3 volt.

Specified tolerable voltageSpecified tolerable voltage drop: 5% of the ideal supply drop: 5% of the ideal supply voltage (0.065 volt.)voltage (0.065 volt.)

MICMIC((CCii) is obtained via 10,000-random-pattern ) is obtained via 10,000-random-pattern PrimePowerPrimePowerTMTM simulations. simulations.

Minimum time unit is set to 10 pico-second.Minimum time unit is set to 10 pico-second.

Page 37: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

37

Implementation FlowImplementation Flow

RTL netlist

SDF file

Gate Positioning

Gate location

VCD Partitioning

Partitioned VCD file

: Our tools

: Commercial tools

Synthesis

Gate-level netlist

MIC Estimation

Variable-length Partitioning (Optional)

ST sizeST Sizing

Simulation

VCD file

Placement

DEF file

Page 38: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

38

Experimental ResultsExperimental Results

Avg.

AES

des

t481

i8

frg2

dalu

C7552

C5315

C3540

C1355

C880

C499

C432

Circuit

1 8.09 1.06 1 1.26 1.70

35242837928137272293396544378

1180832181457850976611804

1514162895402502473899405

1080772081417836993113247

1367012255223228353632

48338162283211029043468

28961721625621242692950041016

21901383019534187852377329794

9421685620282186502302029808

422251411496105911305619352

3452561967692331129615050

568364472296684834710741

495426270866775849112817

V-TPTPV-TPTP[2][8]

Runtime (Sec.)Total Area (Width in μm)

Previous works: [2] Chiou et al. DAC’06, [8] Long et al. DAC’03

Page 39: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

39

OutlineOutline

Sleep Transistor Sizing ProblemSleep Transistor Sizing Problem

Maximum Instantaneous Current EstimationMaximum Instantaneous Current Estimation

Time-Frame PartitioningTime-Frame Partitioning for Sizingfor Sizing

Experimental ResultsExperimental Results

ConclusionsConclusions

Page 40: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

40

ConclusionsConclusions

Propose an efficient sleep transistor sizing method Propose an efficient sleep transistor sizing method for DSTN power-gating designs.for DSTN power-gating designs.

Present theorems based on Present theorems based on temporal perspectivetemporal perspective to to estimate a tight upper bound of voltage drop.estimate a tight upper bound of voltage drop.

Achieve 21% size as well as leakage reduction on Achieve 21% size as well as leakage reduction on average compared with [2]average compared with [2].

- [2] Chiou et al. DAC’06

Page 41: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

41

Thanks for your time.Thanks for your time.

Page 42: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

42

Q & AQ & A

Page 43: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

43

Backup SlidesBackup Slides

Page 44: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

44

Sleep Transistor (ST) SizingSleep Transistor (ST) Sizing

In the active modeIn the active mode– Sleep Transistors operate in Sleep Transistors operate in linear region.linear region.– WWST ST isis inversely proportionalinversely proportional to to R RSTST..

WWST ST = = kk / / RRSTST

Relations between Relations between WWSTST and and VVSTST..

kV

STIW

STST )

)((

VDD

VGND

GND

I(ST)

I(ST): the current through the sleep

transistor

VST

VST: the voltage drop across the sleep transistor

Page 45: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

45

Sleep Transistor (ST) SizingSleep Transistor (ST) Sizing

Determine the Determine the minimum required sizeminimum required size ( (WWSTST** ) ) based on:based on:1.1. MICMIC((STST))

2.2. VVSTST**:: IR-drop constraintIR-drop constraint

kV

STMICW

STST )

*

)((*

VDD

VGND

GND

MIC(ST)

MIC(ST): Maximum Instantaneous Current (MIC) through STk

V

STIW

STST )

)((

Smaller MIC(ST) leads to a better ST size!

Page 46: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

46

MIC WaveformMIC Waveform

Current

Time

Time

Time

Current

Current

Pattern 1

Pattern 2

Pattern 3

MIC waveform of 3 patterns

Page 47: NTHU-CS VLSI/CAD LAB TH EDA Student : Da-Cheng Juan Advisor : Shih-Chieh Chang Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization

47

RST Initialization RST Initialization

Physical limitationPhysical limitation– CMOS process limits the width of a sleep transistor.CMOS process limits the width of a sleep transistor.– Choose the minimum width as the initial Choose the minimum width as the initial RRSTST..