7
ELSEVIER Journal of Materials Processing Technology 54 (1995) 186-192 J~lrmlhff Materials Processing Technology Shear spinning technology for manufacture tubes of small bore Rajnish Prak ash a'*, R.P. Singhal b Punjab Engineering College, Chandigarh, India b National Physical Laboratory, New Delhi, India Received 1 April 1994 of long thin wall Industrial summary Metal spinning is a process in which the deformation stresses are localized to a small region. The material is made to flow and move over the rotating mandrel with the help of a spinning tool mounted on a saddle and moving along the profile of the mandrel. The process has been in use for a long time to produce axi-symmetric shapes and tubular products with small L/D ratio. However, the conventional process fails to produce long, thin-wall, small-bore tubes. The process has been modified to spin long, small-bore, thin-tubes in hard-to-w ork materials such as CP titanium, Incoloy 825, Inconel 600 and Stainless steel AISI-304. The technology of making tubes in the above materials has been developed. The effect of feed, roller profile, perce ntage reduction and lubricants used on the surface finish and the power consumption when working with AISI-304 is reported. It is observed that the mechanical properties of the product improve considerably, close dimensional tolerances are obtained on outside and inside diam eters and the wall thickness, and high reductions are possible without intermediate annealing. The new process is economically viable for producing tubes in high-strength materials,-particularly when the volume of produ ction is not high. The special features of the modified machine are given also. I. Introduction The philosophy of moving the metal rather than re- moving it and simultaneously reducing the forming forces and thus press capacity led the metal-working industry to localize the deformation zone to a small volume of the workpiece, thereby effecting savings in materials and energy for securing the required final shape. Spinning is one such process, in which the stresses are localized to a small region and the material is made to flow and move over the mandrel with the help of a spin- ning tool i.e. roller. The process has been in use for a long time for produ- cing conical and axy-sym metrical shapes and tubular products with a large diameter-to-length ratio [1-5]. In the case of cone spinning the axial thickness of the prod- uct changes as per the Sine law, which states: t = tosin~, ( 1) where t is the spun thickness, to is the thickness of the blank and a is the semi-cone angle of the mandrel. How- * Corresponding author. ever, this law does not apply in the case of tubular products, as the semi-cone angle of the mandrel is zero, and the percentage reduction in the wall thickness being given by t o -- t - - x 100%. (2) to 2. Conventional tube spinning Two processes in the shear spinning of tubes are recognized, these being: (i) the Forward or Draw ing type; and (ii) the Backward or Extruding type; of tube spinning, both being well described, with forw ard spinning usually being preferred E6 10]. The main features of the process are shown in Figs. l(a) and (b). However, this conventional tube spinning process is not suitable for the shear spinning of long thin-wall, small-bore tubes, as the mandrel in this case has to be long and thin, and will therefore tend to sag when held between the head-stock and the tail-stock. Due to sag- ging it will not be possible to rotate the workpiece alon- gwith the mandrel, making the conventional spinning process unworkable. 0924-0136/95/ 09.50 © 1995 Elsevier Science S.A. All righ ts reserved SSDI 0924-0136(95)01940-G

NPL TUBE FORMING

Embed Size (px)

Citation preview

Page 1: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 1/7

E L S E V I E R

Journal o f Mater ia ls P rocess ing Techno logy 54 (1995) 186-192

J~lrmlhff

M a t e r i a l s

P r o c e s s i n g

T e c h n o l o g y

S h e a r s p i n n i n g t e c h n o l o g y f o r m a n u f a c t u r e

t u b e s o f s m a l l b o r e

Ra jn i sh P ra k a sh a '* , R .P . S in g h a l b

Punja b Engineering Col lege , Chandigarh, Ind ia

b Nat ional Phys ica l Labora tory , New Delh i , Ind ia

Received 1 April 1994

o f l o n g t h i n w a l l

I n d u s t r i a l s u m m a r y

Me tal sp inn ing is a p rocess in which the defo r mat io n s t resses are local ized to a smal l reg ion . The mate r ia l i s ma de to f low and m ove

o v er t h e ro t a t i n g m an d re l w i th t h e h e lp o f a sp in nin g to o l m o u n ted o n a s ad d le an d m o v in g a lo n g th e p ro f il e o f t h e m an d re l . T h e

p ro cess h as b een in u se fo r a l o n g t im e to p ro d u ce ax i - sy m m et r i c sh ap es an d tu b u la r p ro d u c t s w i th sm a l l L/D ra t io . However , the

conven t ional p rocess fa i l s to p roduce long , th in -wal l , smal l -bore tubes . The p rocess has been modif ied to sp in long , smal l -bore ,

th in - tubes in hard - to -w ork m ater ia ls such as CP t i tan ium, Inco loy 825 , Inconel 600 and S tain less s teel AISI-304 . The tec hno logy o f

ma k ing tubes in the abo ve mater ia ls has been developed . The effect o f feed, ro l ler p rof i le , perce n tage reduct ion and lubr ican ts used on

the su rface fin ish and the pow er consum pt ion whe n work ing wi th AISI-304 is repor ted . I t is observed that the me chan ical p roper t ies

o f the p rodu ct im prove considerab ly , c lose d imensional to lerances are ob tained on ou ts ide and ins ide d iam eters and the wal l

th ickness , and h igh reduct ions are possib le wi thou t in te rmed iate anneal ing . The new process i s economical ly v iab le fo r p roducing

tubes in h igh-s t reng th m ater ia ls , -par t icu lar ly when the vo lum e o f p rodu ct ion is no t h igh . The special featu res o f the modif ied mac h ine

are given also.

I . I n t r o d u c t i o n

T h e p h i l o s o p h y o f m o v i n g t h e m e t a l r a t h e r t h a n r e -

m o v i n g it a n d s i m u l t a n e o u s l y r e d u c i n g t h e f o r m i n g

f o r c e s a n d t h u s p r e s s c a p a c i t y le d t h e m e t a l - w o r k i n g

i n d u s t r y t o l o c a l i z e t h e d e f o r m a t i o n z o n e t o a s m a l l

v o l u m e o f t h e w o r k p i e c e , t h e r e b y e f f e c t i n g s a v i n g s i n

m a t e r i a l s a n d e n e r g y f o r s e c u ri n g t h e r e q u i r e d f i na l

s h a p e .

S p i n n i n g i s o n e s u c h p r o c e s s , i n w h i c h t h e s t r e s s e s a r e

l o c a l iz e d t o a s m a l l r e g i o n a n d t h e m a t e r i a l i s m a d e t o

f l o w a n d m o v e o v e r t h e m a n d r e l w i t h t h e h e l p o f a s p i n -

n in g t o o l i . e . r o l l e r .

T h e p r o c e s s h a s b e e n i n u s e f o r a l o n g t i m e f o r p r o d u -

c i n g c o n i c a l a n d a x y - s y m m e t r i c a l s h a p e s a n d t u b u l a r

p r o d u c t s w i t h a l a r g e d i a m e t e r - t o - l e n g t h r a t io [ 1 - 5 ] . I n

t h e c a s e o f c o n e s p i n n i n g t h e a x i a l t h i c k n e ss o f t h e p r o d -

u c t c h a n g e s a s p e r t h e S i n e l a w , w h i c h s t a t e s :

t = t o s i n ~ , ( 1)

w h e r e t i s t h e s p u n t h i c k n e s s , t o i s t h e t h i c k n e s s o f t h e

b l a n k a n d a is th e s e m i - c o n e a n g l e o f t h e m a n d r e l . H o w -

* Correspo nding aut hor.

e v e r , t h is l a w d o e s n o t a p p l y i n t h e c a s e o f t u b u l a r

p r o d u c t s , a s t h e s e m i - c o n e a n g l e o f t h e m a n d r e l i s z e r o ,

a n d t h e p e r c e n t a g e r e d u c t i o n i n t h e w a l l t h ic k n e s s b e i n g

g i v e n b y

t o - - t

- - x 1 0 0 % . ( 2 )

to

2 . C o n v e n t i o n a l t u b e s p i n n i n g

T w o p r o c e s s e s i n t h e s h e a r s p i n n i n g o f t ub e s a r e

r e c o g n i z e d, t h e s e b e i ng : (i) t h e F o r w a r d o r D r a w i n g

t y p e ; a n d ( i i) t h e B a c k w a r d o r E x t r u d i n g t y p e ;

o f t u b e s p i n n i n g , b o t h b e i n g w e l l d e s c r i b e d , w i t h

f o r w a r d s p i n n i n g u s u a l l y b e i n g p r e f e r r e d E 6 1 0 ].

T h e m a i n f e a t u r e s o f th e p r o c e s s a r e s h o w n i n F i gs . l (a )

and (b ) .

H o w e v e r , t h i s c o n v e n t i o n a l t u b e s p i n n i n g p r o c e s s i s

n o t s u i t a b l e f o r t h e s h e a r s p i n n i n g o f l o n g t h i n - w a l l ,

s m a l l - b o r e t u b e s , a s t h e m a n d r e l i n t h i s c a s e h a s t o b e

l o n g a n d t h i n , a n d w i l l t h e r e f o r e t e n d t o s a g w h e n h e l d

b e t w e e n t h e h e a d - s t o c k a n d t h e t a i l - s t o c k . D u e t o s a g -

g i n g it w il l n o t b e p o s s i b l e t o r o t a t e t h e w o r k p i e c e a l o n -

g w i t h t h e m a n d r e l , m a k i n g t h e c o n v e n t i o n a l s p i n n i n g

p r o c e s s u n w o r k a b l e .

0924-0136/95/ 09.50 © 1995 Elsevier Science S.A. All righ ts reserved

S S D I

0 9 2 4 - 0 1 3 6 ( 9 5 ) 0 1 9 4 0 - G

Page 2: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 2/7

R. Prakash, R.P. Singhal / Journal o f Materials Processing T echnology 54 (1995) 186-192

187

a)

r -

ER TR VE

2

b)

= 2

:~ . ' . . _ . 1 ~

. . . ~

Fig. 1. Spinning of tu bul ar products: (a) forward tu be spinning;

(b) backw ard ube spinn ing 1, mand rel; 2, workpiece;3, followerblock;

4, antifrictioncentre; 5, form ing rollers).

3 . M o d i f i e d s h e a r s p i n n i n g

T o b r i n g t h e l o n g , t h i n - w a l l a n d s m a l l - b o r e t u b i n g s

w i t h i n t h e c a p a b i l i t y o f t h e s h e a r s p i n n i n g p r o c e s s , t h e

e x i s t in g p r o c es s h a s b e e n m o d i f i e d a n d a n e w m a c h i n e

d e v e l o p e d ( c o u r t e s y U N D P ) . T h i s is c a p a b l e o f s h e a r

s p i n n i n g t h i n - w a l l ( 0 . 7 5 - 1 . 0 0 m m ) , s m a l l - b o r e ( 2 5 -

3 0 m m ) t u b e s i n l o n g l e n g t h s ( 10 m ) w i t h h i g h d i m e n -

s i o n a l t o l e r a n c e s . S i n c e t h e m a n d r e l h u g s t h e w o r k p i e c e

d u r i n g s p i n n i n g, n o r m a l l y i t c a n n o t b e r e m o v e d f r o m t h e

t u b e m a n u a l l y . T h e r e f o r e , a m a n d r e l r e m o v e r s i m i l a r to

the low-power hydrau l i c d raw-bench has been deve loped

a l so . The m odi f i ed ve rs ion of the m achine has the fo l lowing

bas ic features , and is shown in F igs . 2 and 3. ( i ) The tube

(12) wi th the m an dre l (13) (com pos i te ) m ove s l inea r ly and

the spinn ing tools , i . e . the rol lers (4), rota te . ( i i ) Th e rol lers

(4) a re m o unt ed o n a hy drau l i ca l ly ac tua ted th ree - jaw

chuck (3) replacing i ts original three jaws. ( i i i ) The work-

piece (12) is s l id and clamped over the well- lubricated

m an dre l (13) . ( iv ) The m achine i s adequa te ly ins t rum ented

so tha t the va r ious pa ram ete rs can be recorded and op t i -

mized. (v) Tube s in th e s ize range o f 15-3 2 m m outs ide

d iam ete r , and of 0 . 75-1 .00 m m wal l th ickness and 7000 m m

length can be p roduced on the m achine . (v i ) A th ree- ro ll e r

sys tem ins tead of the usua l two-ro l l er sys tem has been used

to ensure self-a l ignment of the assembly and good concen-

tr ic i ty in the sp un produ ct . (vi i ) A hyd raul ical ly actua ted

6

Fig. 2. Schematic view of the shear spinning machine (1, gripper 3 -jaw chuck; 2, slides; 3, h ydraulic chuck; 4, spinning rollers; 5, ball screw;

6, ball screw nu t; 7, rotatin g cylinder; 8, contr ol pane l; 9, instrum ent panel; 10, loa d cell; 11, cover guard (splash guard)).

Page 3: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 3/7

188

R. Prakash , R .P. S inghal / Journal o f Materia ls Processing Technology 54 (1995) 18 6-192

c h u c k ( 3 ) i s u s e d s o t h a t t h e r o l l e r s a r e c l o s e d o n t h e

c o m p o s i t e ( w o r k p i e c e ) a f t e r t h e c h u c k h a s a t t a i n e d f ul l

s p e e d . T h i s r e d u c e s t h e i n s t a n t p u l l i n g l o a d i . e . t h e a x i a l

f o r c e , a t t h e s t a r t a n d m a k e s t h e s p i n n i n g o p e r a t i o n

s m o o t h .

3.1. Technical speci fications o f the mach ine

S iz e r a ng e O D

I D

W a l l t h i c k n e s s W T :

L e n g t h

S p e e d o f t h e c h u c k :

P u l l i n g s p e e d ( f e e d )

( 8 0 - 2 0 0 r p m v a r i a b l e )

R e v e r s e s p e e d

C h u c k d i a m e t e r

C l a m p i n g f o r c e

H y d r a u l i c p o w e r p a c k

P r e s s u r e

4 0 m m m a x . ( 1 5 m m t o

3 2 m m )

1 2 m m m i n .

2 5. 5 m m m a x .

1 0.5 m m

0 .7 5 m m

1 0 00 0 m m m a x .

1 52 8 r p m m a x . ( 1 5 00 r p m

n o r m a l )

5 0 8 r p m m i n .

7 50 m m p e r m i n u t e m a x .

2 8 m m p e r 2 8 r a i n m a x .

( 0 . 2 5 - 2 m m p e r r e v o l u t i o n )

5 m / m i n f i x e d (2 0 0 r p m )

4 0 0 m m ( 1 6 i n )

1 0 0 0 k g f

4 0 H P , 1 8 0 0 r p m , m o t o r

s u i t a b l e f o r 4 4 0 V , 3 p h a s e ,

5 0 c / s A C s u p p l y

2 .0 5 M P a ( 3 0 00 p si ) m a x .

1 .5 M P a (2 2 0 0 p s i )

R e v e r s in g m o t o r

L u b r i c an t m o t o r

M a n d r e l r e m o v e r

: 2 H P g e a r e d m o t o r s u i t a b l e

f o r 4 4 0 V , 3 p h a s e , 5 0 c / s A C

s u p p l y

: 2 H P , 3 0 0 0 r p m s u i t a b l e f o r

4 4 0 V , 3 p h a s e , 5 0 c / s A C

s u p p l y

: D r i v e n b y th e s a m e h y d r a u -

l ic p o w e r p a c k a s m a i n m a -

c h i n e

A s c h e m a t i c v i e w o f t h e m a c h i n e i s s h o w n i n F i g. 2 , t h e

s p i n n i n g a r r a n g e m e n t i s s h o w n i n F ig . 3 a n d t h e r o l l e r

a s s e m b l y w i t h f e e d s c r e w i s s h o w n i n F i g . 4 .

4 . E x p e r i m e n t a l s e t - u p

W i t h t h e p r e s e n t s e t - u p i t i s p o s s i b l e t o s h e a r s p i n a n

i n i ti a l w a l l t h i c k n e s s o f 4 m m s a t i s f a c t o r i l y , th e t u b e

b e i n g i n t h e a n n e a l e d c o n d i t i o n a t t h e c o m m e n c e m e n t o f

t h e o p e r a t i o n . A n a r e a r e d u c t i o n o f 7 0 8 0 % w a s p l a n -

n e d , te s t p ie c e s a t r e d u c t i o n s o f a b o u t 4 0 , 6 0 a n d 8 0 %

b e i n g c ut a n d e v a l u a t e d f o r m e c h a n i c a l p r o p e r t i e s , s u r -

f a c e f in i sh a n d a c t u a l d i m e n s i o n s . T h e w o r k w a s c o n d u c -

t e d o n s t a i n l e s s s t e e l A I S I - 3 0 4 u s i n g d i f f e r e n t l u b r i c a n t s ,

t h e l a t t e r b e i n g u s e d s o a s t o b e a b l e t o o p t i m i z e t h e

l u b r i c a n t w i t h r e s p e c t t o t h e s u r f a c e f i n i s h a n d p o w e r

c o n s u m p t i o n .

C

C h u c k r o t a fe a b o u t

i t s ax i s Z

I I -- I'/ /15.~ -L,.~--)---~.

II ROLLE

-

D)

Fig. 3. Tube -spinn ing arran gem ent (1, grippe r chuck ; 4, rolle r; 10, load cell; 12, work piece ; 13, ma ndre l; 14, key; 15, clam ping ring).

Page 4: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 4/7

R. Prakash, R .P. Singhal / Journal o f Materials Processing Tec hnology 54 (1995) 186-192 189

4.

[ - -

/ ( ~ 4.1. Set-up or spinning

/ @ (i) P re f o r m

t ; i

i i q

, I ~ [ ,

~ J / / / / ~ (ii) P e r ip h e r a l sp eed

of ro l lers

] i I ; ' , , , , ' - ~ 5 2 f f ( ii i) F eed ( P u l l in g s p eed )

L_. '- - ( iv) Lu br ic ant

I

Fig . 4 . Rol ler asse mb ly with the feed screw. (2 , f ixed s lide; 2a, move abl e

s l ide; 4 , ro l ler w ith brg; 12 , workp iece; 13 , screw for feed) .

( v i ) M an d r e l

L e n g t h

I n s id e d i a m e t e r

Wal l t h i ck n es s

Surface f in ish

C o n c e n t r i c i t y

M a n d r e l

T u b e

M a t e r i a l

H a r d n e s s

D i a m e t e r

N u m b e r

D i a m e t e r

L e n g t h

H a r d n e s s

Surface f in ish

8 0 0 m m

1 8 m m

4 m m

as mach in ed ( 3 to

5 g in)

w i th in 0 . 2 mm

1 3 0 m/min .

7 5 0 m m / m i n , m a x .

N ev e r s e i ze

( co mmer c ia l n ame)

S i l i con g r eas e w i th

g r a p h i t e p o w d e r

a d m i x e d 1 0 % s o l u b l e

o i l i n w a te r

A I S I D 2

58 Rc

8 0 m m

th r ee a t 1 2 0 ° i n t e r v a l

1 7 .8 mm

1 0 0 0 0 m m

5 5 R c ( b y co ld w o r k in g )

0 .5 gm

T h e f o l l o w i n g l u b r i c a n t s , i n a d d i t i o n t o t h e N e v e r

s e iz e o n t h e m a n d r e l a n d t h e 1 0 % s o l u b l e oi l o n r o l l er s ,

were iden t i f i ed .

( 1) L u b k o t e ( p r o p r i e t a r y i t e m , g r a p h i t e p o w d e r i n

mineral oi l ) .

T a b l e 1

Lu b r i can t : Lu b k o te ( g r ap h i t e ad m ix ed w i th m in e r a l o i l) (1 k g f /mm 2 = 0 . 1 M P a )

R e d u c t i o n H a r d n e s s U T S 0 . 2 % E l o n g a t i o n S u r fa c e

( % ) ( mV P N ) ( k g f /mm 2 ) p r o o f s t r e s s ( % ) f in i s h

(kgf /m m 2) (g in)

D i m e n s i o n s

( m m )

60 413 120.6 not reco rded 12.3 0 .8 OD 20.90

(42Rc) ID 17.78

75 440 138.9 9.4 0.6 O D 19.82

(44.5Rc) ID 17.85

90 460 64.0 4.3 0.6 O D 18.63

(46Rc) ID 17.93

Tab le 2

Lu b r i ca n t : Gr ap h i t e p o w d er in ca s to r o i l ( 1 k g f /mm 2 = 0 . 1 M P a)

R e d u c t i o n H a r d n e s s U T S 0 . 2 % E l o n g a t i o n S u r fa c e

( % ) ( mV P N ) ( k g f /mm 2 ) p r o o f s t r e s s ( % ) f in i s h

(kgf /mm e) (gm)

D i m e n s i o n s

( m m )

44 378.4 113.6 102.0 12 0.65

(38.5Rc)

50 395.2 118.4 104.6 12 0.80

(40.5Rc)

60 407 121.3 105.0 12 0.65

(41.5Rc)

70 438 132.9 110.0 11 0.80

(44.5Rc)

80 452 143.8 119.8 10 0.65

(45Rc)

OD 22.00

ID 18.10

OD 21.55

ID 18.12

OD 21.04

ID 18.14

OD 20.33

ID 18.22

OD 19.50

ID 18.30

Page 5: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 5/7

190 R. Prakash, R.P. Singhal / Journal o f Materials Processing Technology 54 (1995) 186-192

( 2) G r a p h i t e p o w d e r ( 3 2 5 m e s h ) c a s t o r o i l a d m i x e d t o

p r e p a r e a m i x t u r e i n t h e f o r m o f a p a s t e .

( 3) O x a l a t e c o a t i n g a c h i e v e d b y a c h e m i c a l r e a c t i o n a t

9 0 1 0 0 ° C w i t h k n o w n c h e m i c a l s ( b o u g h t f ro m M / s

P y r e n e R a i , B o m b a y ) h a v i n g l u b r i c i t y .

( 4 ) M o S 2

p o w d e r ( 3 2 5 ) a d m i x e d i n c a s t o r o i l t o p r e -

p a r e a m i x t u r e i n t h e f o r m o f a p a s t e .

( 5 ) C o p p e r c o a t i n g b y t h e e l e c tr o - d e p o s i t i o n m e t h o d .

T h e r e s u l ts a r e g i v e n i n T a b l e s 1 - 5 . T h e m i c r o h a r d n e s s

r e a d i n g s w er e t a k e n a t 1 0 0 g m l o a d a n d t h e s u rf a ce

f i n i s h e s a r e a l l s p e c i f i e d a s ' R a ' v a l u e s , t h e s u r f a c e r o u g h -

n e s s b e i n g m e a s u r e d o n p i e c e s c u t f r o m s p u n s a m p l e s

w i t h d i f f e r e n t r e d u c t i o n s u s i n g 2 P e r t h o m e t e r , a s t y l u s -

t y p e o f s u r fa c e - r o u g h n e s s m e a s u r i n g i n s t r u m e n t . T h e i n -

s i d e d i a m e t e r w a s m e a s u r e d w i t h a t h r e e - a n v i l i n t r a m i k

( i n s i d e m i c r o m e t e r ) , l e a s t c o u n t o f 0 . 01 m m , a n d t h e o u t -

s i d e d i a m e t e r w a s m e a s u r e d w i t h e x t e r n a l m i c r o m e t e r ,

a l s o o f le a s t c o u n t o f 0 . 01 m m . T h e d i a m e t e r s w e r e m e a s -

u r e d a t b o t h e n d s a n d t h e a v e r a g e d i a m e t e r p r e s e n t e d

i n d i c a t e d i n t h e r e s u l t s .

5 . O b s e r v a t i o n s

B a s e d o n t h e o b s e r v a t i o n s i t c a n b e s a i d t h a t t h e

m i c r o h a r d n e s s d o e s n o t c h a n g e a p p r e c i a b ly a ft er a r e-

d u c t i o n o f a b o u t 6 0 % . W i t h t h e u s e o f d if f er e n t lu b r i -

c a n t s t h e s ur f a c e f i n i s h o n O D o f t h e t u b e i m p r o v e d b u t

d i d n o t s h o w a n y r e a l l y s i g n i f i c a n t c h a n g e , r e m a i n i n g

b e t w e e n 0 . 5 a n d 0 . 8 l am ( R a v a l u e s ) . I t i s c o n c l u d e d t h e r e -

f o r e , t h a t a l u b r i c a n t i s d e s i r a b l e t o c a r r y a w a y t h e h e a t

g e n e r a t e d d u r i n g s p i n n i n g a n d t o i m p r o v e t h e s u r f a c e

T a b l e 3

L u b r i c a n t : O x a l a t e c o a t i n g ( 1 k g f / m m 2 = 0 .1 M Pa)

R e d u c t i o n H a r d n e s s U T S 0 . 2 %

( % ) ( m V P N ) ( k g f / m m 2 ) p r o o f s t r e s s

( k g f / m m 2 )

E l o n g a t i o n S u r fa c e D i m e n s i o n s

{ % ) f i n i s h ( m m )

(p.m)

49 373 116.0 105.8 12.5 0.65 O D 21.72

(38.5R c) 1D 18.15

68 401 127.2 109.4 12.0 0.60 O D 20.44

(41Rc) ID 18 .16

83 432 136.7 116.0 11.0 0.50 O D 19.35

(43 .5Rc) ID 18 .30

T a b l e 4

L u b r ic a n t : M o S 2 a d m i x e d w i t h c a s t o r o i l ( 5 0 : 5 0 ) ( 1 k g f / m m 2 = 0 . 1 M P a )

R e d u c t i o n H a r d n e s s U T S 0 . 2 % E l o n g a t i o n S u r f a c e

( % ) ( m V P N ) ( k g f / m m z ) p r o o f s t r e s s ( % ) f i n is h

( k g f / m m 2 ) ( p m )

40 356 110.6 97 .0 13 0 .75 O D

( 3 6 . 5 R c ) I D

50 378 .3 113 .0 97 .8 12 0 .65 O D

( 3 8 . 5 R c ) I D

61 408 .0 122.4 98 .7 12 0 .70 O D

( 4 1 . 5 R c ) I D

73 438 .0 133.3 100.9 Sa mp le 0 .75 O D

( 4 4 .5 R c ) t e a r e d I D

D i m e n s i o n s

( m m )

22 .30

18.10

21 .67

18.16

20 .90

18.16

20 .06

18.25

T a b l e

5

L u b r i c a n t : C o p p e r c o a t i n g ~ ( t h i c k n e s s 0 . 0 1 m m ) ( 1 k g f / m m 2 = 0 . 1 M P a )

R e d u c t i o n H a r d n e s s U T S 0 . 2 % E l o n g a t i o n S u r f a c e

( % ) ( m V P N ) ( k g f / m m z ) p r o o f s t r e s s ( % ) f i n is h

(kg f /m m z) (p .m)

53 378.4 108.9 95.0 12 0.85

(38 .5Rc)

68 425.6 123.2 107.0 C o u l d n o t 0 .95

( 4 2 . 5 R c ) b e m e a s u r e d

81 438 .0 137.5 116.9 11 0.95

(44 .5Rc)

O D

I D

O D

I D

O D

I D

D i m e n s i o n s

( m m )

21.41

18.12

20 .37

18.15

1 9 . 4 2

18.36

Page 6: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 6/7

R. Prakash, R.P. Singhal / Journal of Materials Processing Technology 54 (1995) 186-192

191

f in is h . D i f f e r e n t l u b r i c a n t s d o n o t s h o w a n y c h a n g e i n t h e

r e s u l t s a n d s o a n y g o o d g r e a s e c a n b e u s e d a s l u b r i c a n t

o n t h e o u t s i d e d i a m e t e r o f t h e t u b e . T e n p e r c e n t s o l u b l e

o i l i s a d e q u a t e o n t h e r o l l e r s t o c o o l t h e m d u r i n g t h e

p r o c e s s .

T h e s u r f a c e f i n is h i s o f th e o r d e r o f 0 . 9 5 g m , w h i c h

i s c o m m e r c i a l l y a c c e p t a b l e a n d c a n b e o b t a i n e d e a s i l y .

T h e c o n c e n t r i c i ty w a s f o u n d t o b e 8 % o f th e w a l l th i c k -

n e s s o f t h e s p u n t u b e . T h e o u t s i d e d i a m e t e r c a n b e

c o n t r o l l e d t o w i t h i n 0 . 0 5 t o 0 . 0 8 m m w i t h t h e h e l p o f

t h e m i c r o m e t e r s c r e w s u s e d f o r d r i v i n g t h e r o l l e r s . T h e

p r e c i s i o n - g r o u n d m a n d r e l e n s u r e s t h a t t h e i n s i d e d i a -

m e t e r c a n b e m a i n t a i n e d w i t h i n t h e l im i t s o f c o m m e r c i a l

t o l e r a n c e s .

T h e m e c h a n i c a l p r o p e r t i e s w e r e i m p r o v e d c o n s i d e r -

a b l y , a s e x p e c t e d . T h e t e n s i l e s t r e n g t h o f t h e s t a i n l e ss

s te e l A I S I -3 0 4 i n c r e a s e d f r o m 6 5 k g f / m m 2 t o a b o u t

1 4 5 k g f / m m 2 a t a b o u t 8 0 % r e d u c t io n a n d t h e

y i e ld s t r e n g t h ( 0 . 2% p r o o f s t re s s) f o r m 4 4 k g f / m m 2

t o a b o u t 1 3 5 k g f / m m 2. T h e d u c t i li t y d e c r e a s e d t o

b e l o w 1 0 % .

A m a x i m u m r e d u c t io n o f 8 0 % m a y b e p l a n n e d

s a fe l y a n d m a y b e a c h i e v e d w i t h o u t i n t e r m e d i a t e a n n e a l -

i n g . A n 8 3 % r e d u c t i o n s a m p l e o f st a i n le s s s te e l

d e v e l o p e d c r a c k s i n o n e o f th e e x p e r i m e n t s . I f th e

f i n i s h e d s i ze o f t h e t u b e c a n n o t b e a c h i e v e d w i t h u p t o

8 0 % r e d u c t i o n , t h e t u b e s h o u l d b e r e m o v e d f ro m t h e

m a n d r e l a n d a n n e a l e d b e f o r e c o n t i n u i n g w i th t h e p r o c e s s

f u r t h e r .

T h e s p e e d , t h e f e ed a n d t h e r o l l e r p r o f i l e a r e o t h e r

f a c t o r s w h i c h , a p a r t f r o m a f f e c t i n g t h e s u r f a c e f in i s h o n

t h e s p u n t u b e , a f fe c t t h e p r o d u c t i o n c a p a b i l i t y o f t h e

m a c h i n e . T h e m a x i m u m s p e e d s a r e n o t c r i t i c a l i n t h e

s h e a r s p i n n i n g p r o c e s s , b u t f e e d h a s a m a r k e d e f f ec t o n

t h e s u r f a c e f i n i s h o f t h e s p u n t u b e . I f th e f e e d r a t e i s

i n c r e a s e d t h e s u r f a c e f i n i s h b e c o m e s c o a r s e r . T h e r e f o r e ,

a c o m p r o m i s e h a s t o b e e s t a b li s h e d b e t w e e n t h e f e e d , t h e

s p e e d a n d t h e r o l l e r p ro f il e s k e e p i n g t h e p r o d u c t i o n

c a p a b i l i t y , t h e s u r f a c e f i n is h o n t h e s p u n p r o d u c t a n d t h e

p r o d u c t m i x i n v i e w .

T h e t e c h n o l o g y is e c o n o m i c a l l y v i a b le , e s p e c ia l ly w h e n

t h e v o l u m e o f p r o d u c t i o n i s l o w , b e c a u s e o f t h e f lo w c o s t

o f e q u i p m e n t a s a g a i n s t t h e c o s t o f c o n v e n t i o n a l t u b e -

m a k i n g p r o c e s s e s , v i z . h o t e x t r u s i o n o r p i e r c i n g f o l l o w e d

b y d r a w i n g o r p i l g e r i n g , w h i c h a r e h i g h l y c a p i t a l i n t e n -

s iv e . F u r t h e r t h e y i e l d o f t h e f i n i s h e d p r o d u c t i n t h e c a s e

o f t h e c o n v e n t i o n a l p r o c e s s e s e s p e c ia l ly w h i ls t w o r k i n g

w i t h h a r d - t o - w o r k m a t e r i a l s , is v e r y l o w , r e s u l t in g i n

h i g h e r c o s t o f c o n v e r s io n . T h i s is s u b s t a n t i a t e d f u r t h e r

d u e t o : ( i) t h e r e d u c t i o n p e r p a s s i n t h e c a s e o f s p i n n i n g

b e i n g a s h i g h as 4 0 % a g a i n s t a r e d u c t i o n o f 1 0 - 1 5 % i n

c o n v e n t i o n a l p r o c e s se s , (ii) t h e m a x i m u m r e d u c t i o n b e -

f o r e i n t e r m e d i a t e a n n e a l i n g b e i n g a b o u t 8 0 % a g a i n s t

4 0 - 5 0 % i n th e c o n v e n t i o n a l p ro c e s s , r e s u lt i n g in a n

h i g h e r d i s c a r d o f t u b e a t t h e l e a d i n g e n d d u e t o s u c c e s si v e

p o i n t i n g ; a n d ( iii ) t h e n u m b e r o f d r a w i n g p a s s e s t o o b -

t a i n f in a l d i m e n s i o n s b e i n g g r e a t e r in t h e c a s e o f c o n v e n -

t i o n a l p r o c e s s e s t h a n i n s p i n n i n g r e s u l t i n g i n h i g h e r c o s ts

o f th e c o n v e r t i o n .

6. Conclus ions

W i t h t h e f o r e g o i n g d i s c u s s i o n o f t h e r e s u l t s, i t is c o n -

c l u d e d t h a t t h e t e c h n o l o g y o f m a n u f a c t u r i n g s e a m le s s,

l o n g , t h in - w a l l t u b e s h a s b e e n d e v e l o p e d f o r s p e c if i c

u s a g e . T h e m a i n f e a t u r e o f t h e t e c h n o l o g y a r e a s f o ll o w s .

(1 ) T h e m e c h a n i c a l p r o p e r t i e s o f t h e s h e a r s p u n t u b e

i m p r o v e c o n s i d e r a b l y .

(2 ) A t o t a l r e d u c t i o n o f 8 0 % c a n b e a c h i e v e d w i t h o u t

i n t e r m e d i a t e a n n e a l i n g . T h e r e d u c t i o n is , h o w e v e r , a c h -

i eved i n s eve r a l pas ses .

(3 ) C o o l a n t a n d l u b r i c a n t s a r e n e c e s s a ry f o r i m p r o v -

i n g t h e f i n i s h , a n d t o c a r r y a w a y t h e h e a t g e n e r a t e d

d u r i n g t h e p r o c e s s . D i f f e r e n t l u b r i c a n t s d o n o t h a v e s i g -

n i f ic a n t ef fe c ts o n t h e p o w e r c o n s u m p t i o n , t h u s a n y

g o o d - q u a l i t y g r e a s e c a n b e u s e d in a d d i t i o n t o t h e c o o l -

an t .

( 4 ) T h e d i m e n s i o n a l t o l e r a n c e s b o t h o n t h e o u t s i d e

a n d t h e i n si d e d i a m e t e r o f t h e s p u n t u b e a r e b e t t e r t h a n

t h o s e a c h i e v e d b y a n y o t h e r t u b e - m a k i n g p r o c e s s , a n d

t h e c o n c e n t r i c it y is w i t h in c o m m e r c i a l l y - a c c e p t a b l e

l imi t s .

Ac kno w l e dg e me nt s

T h e s e c o n d a u t h o r is g ra t e fu l t o t h e D i r e c t o r , N P L , f o r

p e r m i s s i o n t o p r e s e n t t h i s p a p e r . H e i s g r a t e f u l t o t h e l a te

D r . B . K . A g g a r w a l a , E x - d e p u t y D i r e c to r , N P L , N e w

D e l h i f o r h i s g u i d a n c e . H e w o u l d a l s o l i k e t o p l a c e o n

r e c o r d t h e h e l p r e n d e r e d b y s e v e r a l c o l l ea g u e s w o r k i n g i n

t h e w o r k s h o p , d e s i g n o f f ic e a n d m e t a l f o r m i n g s e c t i o n s o f

N P L . T h e a u t h o r s a r e th a n k f u l t o U N D P f o r p r o v i d in g

t h e s p in n i n g m a c h i n e f o r N P L , w i t h o u t w h i c h t h i s w o r k

w o u l d n o t h a v e b e e n p o s s i bl e .

References

[ 1 ] S . K a lp ak c io g lu , O n th e mech an ic s o f s h ea r s p in n in g ,

J. Eny.

Ind ., Trans. AS M E,

83 (1961) 125-130.

I -2 ] S . K a lp ak c io g lu , A n ex p e r ime n ta l s tu d y o f p l a s t i c d e f o r m a t io n in

p o w e r s p i n n in g , A n n u a l M e e t i n g , I n t e r n a t i o n a l I n s t it u t e o f P r o -

d u c t io n En g in ee r in g R es ea r ch ( C I R P ) , P r ag u e , C zech o s lo v ak ia ,

1961.

[ 3 ] S . K a lp ak c io g lu , M ax im u m r ed u c t io n in p o w er s p in n in g o f t u b es .

J . o f Eng . Ind ., Trans. A SM E,

86 (1964) 49 54.

[ 4 ] M e ta l s H a n d B o o k , V o l . I V , A m er ican S o c ie ty f o r M e ta l s , M e ta l s

Park , OH-44073, 8 th ed . , USA, 1969 p .p . 201-208 and 317-322.

[ 5 ] M e ta l s p in n in g , M ac h in e r y ' s Ye l lo w B ack S e r i e s N o . 7 , Th e M a-

ch in e r y P u b l i s h in g C o . L td . , Lo n d o n .

[ 6 ] T . R am M o h a n an d R . M is r a , S tu d ie s i n p o w er s p in n in g o f t u b es ,

Int. J. Prod. Res.,

10 (4) (1972) 351-364.

Page 7: NPL TUBE FORMING

8/12/2019 NPL TUBE FORMING

http://slidepdf.com/reader/full/npl-tube-forming 7/7

92

R. Prakash , R .P. S inghal / Journal o f Materia ls Processing Technology 5 4 (1995) 186-192

I-7] M. H aya ma an d H. Kudo, Experim ental s tudy of tube spinning,

B u l l . J S ME ,

22 (167) (1979) 769 775.

1-8] M. Ha yam a and H. Kudo , Analysis of d iametral g rowth an d

workin g forces, B u l l . J S ME , 22 (167) (1979) 776-784.

[9] B.K. Aggarwala , The shear spinning technology of tubes wi th

high dimensional precision,

Proc. Adv. Techn . Plast ic i ty ,

1 (1984)

pp. 401,409.

[10] R.P . S inghal, S .R. Das and Rajnish Prakash, Som e experimental

observat ions in the shear spinning of long tubes,

J . Me c h . Wo rk .

Techn . ,

14 (1987) 149-157.

[11] R.P . S inghal and R ajnish Prakash, An experimental s tudy of the

shear spinning of tubes of hard-to-work materia ls ,

Proc. Adv.

Tech . Plast ic i ty ,

2 (1990) 853 857.