23
Notes on combinatorial graph theory Keith Briggs [email protected] more.btexact.com/people/briggsk2/cgt.html CRG meeting 2004 Jan 19 Monday 15:00 comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLAT E X on a linux system Combinatorial graph theory 1 of 14

Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Notes on combinatorial graph theory

Keith Briggs

[email protected]

more.btexact.com/people/briggsk2/cgt.html

CRG meeting 2004 Jan 19 Monday 15:00

comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system

Combinatorial graph theory 1 of 14

Page 2: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

The inspiration

Bruno Salvy: Phénomème d'Airy et combinatoire analytiquedes graphes connexes (INRIA seminar 2003 Dec 15)

algo.inria.fr/seminars/seminars.html

e.g. number of labelled (étiquetés) connected graphs: withexcess (edges-vertices) = k > 1 is

Ak(1)√

π(n

e

)n (n

2

)3k−12

[1

Γ(3k/2)+

A′k(1)/Ak(1)−1Γ((3k−1)/2)

√2/n+O

(1n

)]

Ak(1) given in terms of Airy functions:A1(1) = 5/24, A2(1) = 5/16 etc.

Airy in Playford:www.ast.cam.ac.uk/∼ipswich/History/Airys Country Retreat.htm

Keith Briggs Combinatorial graph theory 2 of 14

Page 3: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Definitions for graphs

(simple unlabelled undirected) graph:

Page 4: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Definitions for graphs

(simple unlabelled undirected) graph:

(simple unlabelled undirected) connected graph:

Page 5: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Definitions for graphs

(simple unlabelled undirected) graph:

(simple unlabelled undirected) connected graph:

(simple undirected) labelled graph:

0 1 2

3 4

Keith Briggs Combinatorial graph theory 3 of 14

Page 6: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Definitions for generating functions

generating function (gf):

a1, a2, a3, . . . ↔∞∑

k=1

akxk

exponential generating function (egf):

a1, a2, a3, . . . ↔∞∑

k=1

ak

k!xk

Euler transform (b = ET (a)):

1+∞∑

k=1

bkxk =

∞∏i=1

(1−xi)−ai ↔ log(1+B(x)) =∞∑

k=1

A(xk)/k

Keith Briggs Combinatorial graph theory 4 of 14

Page 7: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Exponential generating functions

exponential generating function for all labelled graphs:

g(w, z) =∞∑

n=0

(1+w)(n2)zn/n!

exponential generating function for all connected labelledgraphs:

c(w, z) = log(g(w, z))

= z+wz2

2+(3w2+w3)

z3

6+(16w3+15w4+6w5+w6)

z4

4!+. . .

Keith Briggs Combinatorial graph theory 5 of 14

Page 8: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

egfs for labelled graphs [jan]

rooted labelled trees

T (z) = z exp(T (z)) =∑n>1

nn−1zn

n!= z+ 2

2!z2+ 9

3!z3+· · ·

unrooted labelled trees

U(z) = T (z)−T (z)2/2 = z+ 12!z

2+ 33!z

3+164!z

4+. . .

unicyclic labelled graphs

V (z) =12

log[

11−T (z)

]−1

2T (z)−1

4T (z)2 = 1

3!z3+15

4!z4+222

5! z5+36606! z6+. . .

bicyclic labelled graphs

W (z) =T (z)4

(6−T (z)

)24

(1−T (z)

)3 = 64!z

4+2055! z5+5700

6! z6+. . .

Keith Briggs Combinatorial graph theory 6 of 14

Page 9: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Unlabelled graphs with n nodes [slo]

no simple exact formula available - use group theory

g = 1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864,165091172592, 50502031367952,29054155657235488,31426485969804308768,64001015704527557894928,245935864153532932683719776,1787577725145611700547878190848,24637809253125004524383007491432768

Page 10: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Unlabelled graphs with n nodes [slo]

no simple exact formula available - use group theory

g = 1, 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, 12005168, 1018997864,165091172592, 50502031367952,29054155657235488,31426485969804308768,64001015704527557894928,245935864153532932683719776,1787577725145611700547878190848,24637809253125004524383007491432768

gn = 2(n2)

n!

[1+n(n−1)

2n−1 + 8n!22n(n−4)!(3n−7)(3n−9)+O

(n5/25n/2

)]

5 10 15 20 250

20

40

60

80

100

120

140

n

log

exac

t and

asy

mpt

otic

exact asymptotic

Keith Briggs Combinatorial graph theory 7 of 14

Page 11: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Unlabelled connected graphs with n nodes [slo03]

c = 1, 1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565,164059830476, 50335907869219, 29003487462848061,31397381142761241960, 63969560113225176176277,245871831682084026519528568, 1787331725248899088890200576580,24636021429399867655322650759681644

Page 12: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Unlabelled connected graphs with n nodes [slo03]

c = 1, 1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565,164059830476, 50335907869219, 29003487462848061,31397381142761241960, 63969560113225176176277,245871831682084026519528568, 1787331725248899088890200576580,24636021429399867655322650759681644

g = ET (c)

Page 13: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Unlabelled connected graphs with n nodes [slo03]

c = 1, 1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716571, 1006700565,164059830476, 50335907869219, 29003487462848061,31397381142761241960, 63969560113225176176277,245871831682084026519528568, 1787331725248899088890200576580,24636021429399867655322650759681644

g = ET (c)

Edge generating functions can be computed: e.g. for n = 5:

1+q+q2+2q3+6q4+6q5+6q6+4q7+2q8+q9+q10

Keith Briggs Combinatorial graph theory 8 of 14

Page 14: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Total numbers of unlabelled graphs

5 10 15 20 25100

1010

1020

1030

1040

1050

1060

1070

number of nodes

num

ber

of u

nlab

elle

d gr

aphs

Keith Briggs Combinatorial graph theory 9 of 14

Page 15: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Connected unlabelled graphs - 8 nodes and 9 edges

Connected graphs - 8 nodes, 9 edges Keith Briggs 2004 Jan 22 11:321 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

Keith Briggs Combinatorial graph theory 10 of 14

Page 16: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Unlabelled graphs - 10 nodes and 8 edgesGraphs - 10 nodes, 8 edges Keith Briggs 2004 Jan 22 11:31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

419 420 421 422 423 424 425 426 427 428

Keith Briggs Combinatorial graph theory 11 of 14

Page 17: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Probability of connectivity 1 [gil]

Bernoulli random graph model of Erd®s and Rényi: edgesappear independently with probability p = 1−q. Let P (n, p) =1−Q(n, p) be the probability that such a graph with n labellednodes is connected.

Page 18: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Probability of connectivity 1 [gil]

Bernoulli random graph model of Erd®s and Rényi: edgesappear independently with probability p = 1−q. Let P (n, p) =1−Q(n, p) be the probability that such a graph with n labellednodes is connected.

We have P (1, p) = 1 and P (n, p) = 1−∑n−1

k=1

(n−1k−1

)P (k, p)qk(n−k)

Page 19: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Probability of connectivity 1 [gil]

Bernoulli random graph model of Erd®s and Rényi: edgesappear independently with probability p = 1−q. Let P (n, p) =1−Q(n, p) be the probability that such a graph with n labellednodes is connected.

We have P (1, p) = 1 and P (n, p) = 1−∑n−1

k=1

(n−1k−1

)P (k, p)qk(n−k)

Thus P (2, p) = p = 1−q, P (3, p) = 1−3q2+2q3, etc.

Page 20: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Probability of connectivity 1 [gil]

Bernoulli random graph model of Erd®s and Rényi: edgesappear independently with probability p = 1−q. Let P (n, p) =1−Q(n, p) be the probability that such a graph with n labellednodes is connected.

We have P (1, p) = 1 and P (n, p) = 1−∑n−1

k=1

(n−1k−1

)P (k, p)qk(n−k)

Thus P (2, p) = p = 1−q, P (3, p) = 1−3q2+2q3, etc.

Gilbert [gil] gives bounds

Page 21: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Probability of connectivity 1 [gil]

Bernoulli random graph model of Erd®s and Rényi: edgesappear independently with probability p = 1−q. Let P (n, p) =1−Q(n, p) be the probability that such a graph with n labellednodes is connected.

We have P (1, p) = 1 and P (n, p) = 1−∑n−1

k=1

(n−1k−1

)P (k, p)qk(n−k)

Thus P (2, p) = p = 1−q, P (3, p) = 1−3q2+2q3, etc.

Gilbert [gil] gives bounds

P (n, p) ∼ 1−n qn−1 as n →∞

Keith Briggs Combinatorial graph theory 12 of 14

Page 22: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

Probability of connectivity 2

Exact enumeration, 10 unlabelled nodes

10 20 30 400.0

0.2

0.4

0.6

0.8

1.0

number of edges

rela

tive

freq

uenc

y of

con

nect

ed g

raph

s

Bernoulli rg model, 10 labelled nodes

10 20 30 400.0

0.2

0.4

0.6

0.8

1.0

mean number of edges

P(c

onne

cted

)

Keith Briggs Combinatorial graph theory 13 of 14

Page 23: Notes on combinatorial graph theory - Keith Briggs · comb-graph-th.tex typeset 2004 January 27 11:16 in pdfLATEX on a linux system Combinatorial graph theory 1 of 14. The inspiration

References

[slo] N J A Sloane, ed. (2003), The on-line encyclopedia of integersequences www.research.att.com/∼njas/sequences/

[roy] G Royle, Small graphswww.cs.uwa.edu.au/∼gordon/remote/graphs/

[jan] S Janson, D E Knuth, T Luczak & B G Pittel: The birthof the giant component Random Structures and Algorithms, 4,233-358 (1993)www-cs-faculty.stanford.edu/∼knuth/papers/bgc.tex.gz

[gil] E N Gilbert: Random graphs Ann. Math. Statist., 30, 1141-1144 (1959)

Keith Briggs Combinatorial graph theory 14 of 14