Notes 3 Print

Embed Size (px)

Citation preview

  • 8/20/2019 Notes 3 Print

    1/23

    Notes 3: From Geometry to Simplex Method

    IND E 513

    IND E 513   Notes 3 Slide 1

  • 8/20/2019 Notes 3 Print

    2/23

    Polyhedra in Standard Form

    Definition

    A polyhedron in standard form is given by  {x  ∈ R n

    |Ax  = b , x  ≥ 0},where A is an m × n matrix and b is a vector in R m.

     There are  m  equality constraints in  n  non-negative variables.

     No loss of generality (LOG) in assuming rows of  A  are linearlyindependent for a non-empty standard form polyhedron (page57). We will make this assumption all through. (m ≤ n).

    How can we tell whether a vector is a basic solution?

    TheoremA vector y  ∈ R n is a basic solution if and only if Ay  = b and there exist indices B (1), . . . , B (m)  such that 

    1.   AB (1), AB (2), . . . , AB (m)  are linearly independent;

    2.   If i  = B (1), B (2), . . . , B (m), then y i  = 0.

    This also hints at a procedure for constructing basic solutions.IND E 513   Notes 3 Slide 2

  • 8/20/2019 Notes 3 Print

    3/23

    Constructing a Basic Solution for Standard Form Polyhedra

    1.   Choose  m  linearly independent columns

    AB (1), AB (2), . . . , AB (m).2.   Let  x i  = 0 for all  i  = B (1), B (2), . . . , B (m).

    3.  Solve the system of  m  equations

    AB (1)

    x B (1)

     + AB (2)

    x B (2)

     + . . . + AB (m)x B 

    (m) = b 

    for m  unknowns  x B (1), . . . , x B (m).

    Example

    1 1 2 1 0 0 00 1 6 0 1 0 01 0 0 0 0 1 00 1 0 0 0 0 1

    x  =

    81246

    IND E 513   Notes 3 Slide 3

  • 8/20/2019 Notes 3 Print

    4/23

    Terminology

    If  x   is a basic solution

      AB (1), AB (2), . . . , AB (m)  are called basic columns. They arelinearly independent and form a basis for  R m.

      x B (1), x B (2), . . . , x B (m)  are called basic variables; the remainingvariables nonbasic.

     By arranging the  m  basic columns next to each other, weobtain an  m × m  matrix  B  called a basis matrix.   B   isinvertible.

    B    =

    | | |

    AB (1)   AB (2)   · · ·   AB (m)| | |

    ,   x B  = x B (1)

    ...x B (m)

    x B    =   B −1b 

    IND E 513   Notes 3 Slide 4

  • 8/20/2019 Notes 3 Print

    5/23

    Visualizing Standard Form Polyhedra

    Can we visualize and draw standard form polyhedra for  n ≥ 3?Yes, if  n − m = 2, the feasible region can be drawn as a

    two-dimensional region defined by  n  linear inequality constraints.

    Examplex 1 + x 2 + x 3  = 1x 1, x 2, x 3 ≥ 0

    IND E 513   Notes 3 Slide 5

  • 8/20/2019 Notes 3 Print

    6/23

    Existence of Extreme Points

    Back to general polyhedra  {x  ∈ R n|Ax  ≥ b }. Does a polyhedronalways have an extreme point, i.e., a basic feasible solution, i.e, a

    vertex?Of course not! Example: a halfspace in  R n for n  > 1.

    DefinitionA polyhedron P  ⊂ R n contains a line  if there exist a vector x  ∈ P and a nonzero vector d  ∈ R n such that x  + λd  ∈ P for all scalars  λ.

    IND E 513   Notes 3 Slide 6

  • 8/20/2019 Notes 3 Print

    7/23

    Theorem

    Suppose that the polyhedronP  = {x  ∈ R n|ai x  ≥ b i , i  = 1, 2, . . . , m}   is nonempty. Then, the following are equivalent 

    1.  P has at least one extreme point.

    2.  P does not contain a line.

    3.  There exist n vectors out of a1, a2, . . . , am, which are linearly independent.

    Corollary

    Every nonempty bounded polyhedron and every nonempty polyhedron in standard form has at least one extreme point.

    IND E 513   Notes 3 Slide 7

  • 8/20/2019 Notes 3 Print

    8/23

    Partial Proof of the Above Theorem

    Proof that (1) ⇒ (3): If  P  has an extreme point  x , then x  is also a

    basic feasible solution. Hence there exist  n  constraints that areactive at  x  and the corresponding vectors  ai  are linearlyindependent .Proof that (3) ⇒ (2): by contradiction. Suppose (WLOG) thatvectors  a1, a2, . . . , an  are linearly independent and yet  P   contains

    some line  x  + λd  for some vector  d  = 0. Hence  ai (x  + λd ) ≥ b i for all  i  and all scalars  λ. This implies that  ai d  = 0 for all  i .Specifically,

    n

    i =1

    d i ai  = 0.

    But this implies that  d  = 0 because the vectors  a1, . . . , an   arelinearly independent .Proof that (2) ⇒ (1): (page 63).

    IND E 513   Notes 3 Slide 8

  • 8/20/2019 Notes 3 Print

    9/23

    Optimality of Extreme Points

    TheoremConsider the linear programming problem of minimizing c x over apolyhedron P. Suppose that P has at least one extreme point and that there exists an optimal solution. Then, there exists an optimal solution that is an extreme point of P.

    Proof: Let  Q  be the set of optimal solutions (assumed to benon-empty). Suppose  P  = {x  ∈ R n|Ax  ≥ b }  and let  v  be theoptimal value of the cost  c x . ThenQ  = {x  ∈ R n|Ax  ≥ b , c x  = v }, which is also a polyhedron. Since

    Q  ⊂ P   and  P  contains no line,  Q  contains no line and hence hasat least one extreme point. Let  x ∗ be an extreme point of  Q .Claim:   x ∗ is also an extreme point of  P .

    IND E 513   Notes 3 Slide 9

  • 8/20/2019 Notes 3 Print

    10/23

    Optimality of Extreme Points contd.

    Proof of Claim: by contradiction. Suppose  x ∗ is not an extremepoint of  P . Then there exist  y , z  ∈ P   such that  y  = x ∗,  z  = x ∗,and some  λ ∈ [0, 1] such that  x ∗ = λy  + (1 − λ)z . Thenv  = c x ∗ = λc y  + (1 − λ)c z . Furthermore, since  v   is the optimalcost,  c y  ≥ v   and  c z  ≥ v . This implies that  c y  = v   and  c z  = v and therefore  y  ∈ Q ,  z  ∈ Q . However, this contradicts the factthat  x ∗ is an extreme point of  Q .To conclude,  x ∗ is optimal to

    min c 

    x x  ∈ P 

    and is an extreme point of  P    .

    IND E 513   Notes 3 Slide 10

  • 8/20/2019 Notes 3 Print

    11/23

    Optimality of Extreme Points contd.

    Theorem

    Consider the linear programming problem of minimizing c x over apolyhedron P. Suppose that P has at least one extreme point.Then, either the optimal cost is equal to  −∞, or there exists anextreme point which is optimal.

    This implies that if  P  has an extreme point, and the optimal costis finite, then the problem has an extreme point optimal solution.Since a non-empty standard form polyhedron always has anextreme point, it has an extreme point optimal solution if theoptimal cost is finite.

    Corollary

    Consider the linear programming problem of minimizing c x over anonempty polyhedron P. Then, either the optimal cost is  −∞ or there exists an optimal solution.

    IND E 513   Notes 3 Slide 11

  • 8/20/2019 Notes 3 Print

    12/23

    Degeneracy

    DefinitionA basic solution x  ∈ R n is said to be  degenerate  if more than n of the constraints are active at x. x is said to be  non-degenerate otherwise.

    Example

    Suppose P  ⊂ R 3 is given by

    x 1 + x 2 + 2x 3   ≤   8

    x 2 + 6x 3   ≤   12

    x 1   ≤   4

    x 2   ≤   6

    x 1, x 2, x 3   ≥   0

    (4, 0, 2) is a degenerate basic feasible solution.(2, 6, 0) is a non-degenerate basic feasible solution.

    IND E 513   Notes 3 Slide 12

  • 8/20/2019 Notes 3 Print

    13/23

    C   is a degenerate basic feasible solution,  D  is a degenerate basicsolution (infeasible), E   is a nondegenerate basic feasible solution

    IND E 513   Notes 3 Slide 13

  • 8/20/2019 Notes 3 Print

    14/23

    Degeneracy in Standard Form Polyhedra

    DefinitionA basic solution x to a standard form polyhedron is  degenerate  if more than n − m of the components of x are zero.

    Example

    1 1 2 1 0 0 00 1 6 0 1 0 01 0 0 0 0 1 00 1 0 0 0 0 1

    x  =

    81246

    n = 7, m = 4.   A1, A2, A3, A7  are linearly independent. So setx 4, x 5, x 6  to zero, and solve the system  Ax  = b  to getx  = (4, 0, 2, 0, 0, 0, 6), a degenerate basic feasible solution.

    IND E 513   Notes 3 Slide 14

  • 8/20/2019 Notes 3 Print

    15/23

    Optimality Conditions

    Feasible Directions:Many optimization algorithms move from one feasible point to

    another until they find an optimal solution. At a point  x  ∈ P , weare contemplating moving away from it in the direction of vectord  ∈ R n. We should consider those choices of  d  that do not take usoutside the feasible region.

    DefinitionLet x be an element of polyhedron P. A vector d  ∈ R n is said to be a feasible direction at x, if there exists a positive scalar  θ   for which x  + θd  ∈ P.

    IND E 513   Notes 3 Slide 15

  • 8/20/2019 Notes 3 Print

    16/23

    Basic Directions for Standard Form Problems

    Throughout this section, we will focus on standard form problems.

    min c 

    x Ax  = b , x  ≥ 0.Let  x   be a basic feasible solution, and  B (1), . . . , B (m) be theindices of the basic variables. Let  B  = [AB (1), . . . , AB (m)] be thecorresponding basis matrix. Thus,  x i  = 0 for  i  = B (1), . . . , B (m),

    while  x B  = (x B (1), . . . , x B (m)) is given byx B  = B 

    −1b .

    We consider the possibility of moving away from  x , to  x  + θd , byselecting a nonbasic variable  x  j  (which is currently at zero level),

    and increasing it to a positive value  θ, while keeping the remainingnonbasic variables at zero. Thus,  d  j  = 1, and  d i  = 0 for everynonbasic index  i  other than  j .The vector of basic variables  x B  changes to  x B  + θd B , whered B 

     = (d B (1)

    , . . . , d B (m)

    ).

    IND E 513   Notes 3 Slide 16

  • 8/20/2019 Notes 3 Print

    17/23

    We have  Ax  = b  and we also want  A(x  + θd ) = b   for θ > 0(why?). Thus, we must have  Ad  = 0.

    0 =   Ad  =n

    i =1

    Ai d i   =mi =1

    AB (i )d B (i ) + A j  = Bd B  + A j 

    ⇒   d B  = −B −1A j .

    The direction d  we just constructed is called the  j th basic direction.We ensured that the equality constraints hold. How aboutnon-negativity? Need to worry only about basic variables (why?)

    1.   If  x   is nondegenerate,  x B   > 0, and  x B  + θd B  ≥ 0 forsufficiently small  θ.

    2.  some complications if  x   is degenerate (see picture below).

    IND E 513   Notes 3 Slide 17

  • 8/20/2019 Notes 3 Print

    18/23

    E   F

    G

    x1=0

    x2=0

    x3=0

    x4=0

    x5=0

    IND E 513   Notes 3 Slide 18

    Ch i C Al B i Di i

  • 8/20/2019 Notes 3 Print

    19/23

    Change in Cost Along Basic Directions

    Rate of cost change along basic direction  d :   c (x  + d ) − c x  = c d .

    c d  =n

    i =1

    c i d i   =mi =1

    c B (i )d B (i ) + c  j  = c 

    B d B  + c  j  = c  j  − c 

    B B −1A j ,

    where  c B  = (c B (1), . . . , c B (m)).

    DefinitionLet x be a basic solution, let B be an associated basis matrix, and let c B  be the vector of costs of the basic variables. For each j, we 

    define  reduced cost  c̄  j  of the variable x  j  according to the formula

    c̄  j  = c  j  − c 

    B B −1A j .

    IND E 513   Notes 3 Slide 19

    R d d C t f B i V i bl A Z

  • 8/20/2019 Notes 3 Print

    20/23

    Reduced Costs of Basic Variables Are Zero

    Let  x B (i )  be a basic variable. Since  B  = [AB (1), . . . , AB (m)], wehave  B −1[AB (1), . . . , AB (m)] = I .   I   is the  m × m   identity matrix.In particular,  B −1AB (i )  is the  i th column of  I , denoted  e i . Then

    we have

    c̄ B (i ) = c B (i ) − c 

    B B −1AB (i ) = c B (i ) − c 

    B e i  = c B (i ) − c B (i ) = 0.

    IND E 513   Notes 3 Slide 20

    O ti lit C diti

  • 8/20/2019 Notes 3 Print

    21/23

    Optimality Conditions

    TheoremConsider a basic feasible solution x associated with a basis matrix 

    B, and let  c̄ be the corresponding vector of reduced costs.1.   If  c̄  ≥ 0, then x is optimal.

    2.   If x is optimal and  nondegenerate , then  c̄  ≥ 0.

    IND E 513   Notes 3 Slide 21

    Proof of Optimality Conditions

  • 8/20/2019 Notes 3 Print

    22/23

    Proof of Optimality Conditions

    Proof of the first part.

    y  be an arbitrary feasible solution. We show that  c 

    y  ≥ c 

    x , i.e.,c (y  − x ) ≥ 0. Let  d  = y  − x . We need to show  c d  ≥ 0.We must have  Ad  = 0 (why?). Therefore,  Bd B  +

    i ∈N 

    Ai d i  = 0,

    where  N  is the set of indices of the nonbasic variables

    corresponding to  B . This yields  d B  = − i ∈N B 

    −1

    Ai d i .

    c d  = c B d B  +i ∈N 

    c i d i  =i ∈N 

    (c i  − c 

    B B −1Ai )d i   =

    i ∈N 

    c̄ i d i .

    Now, for any  i  ∈ N ,  x i  = 0. Moreover,  y i  ≥ 0 for all  i  and inparticular, for  i  ∈ N . Thus,  d i   ≥ 0 for  i  ∈ N . In addition, c̄ i   ≥ 0for all  i , and in particular for  i  ∈ N . Thus,  c d  =

    i ∈N 

    c̄ i d i   ≥ 0 .

    IND E 513   Notes 3 Slide 22

    Proof of Optimality Conditions contd

  • 8/20/2019 Notes 3 Print

    23/23

    Proof of Optimality Conditions contd.

    Proof of the second part (by contrapositive).Suppose x   is a nondegenerate basic feasible solution and thatc̄  j