Notas-1-Mecanica-Cuantica-Postgrado.pdf

Embed Size (px)

Citation preview

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    1/28

     

       

    1. FundamentalConcepts

    1.1 Introduction

    Theoreticalframeworkof classicalphysics:

    ∗  state(atfixedt)isdefinedbyapoint{xi, pi} inphasespace

    ∂F   ∂G −∂F  ∂G∗  Poisson bracket {xi, p j} = δ ij {F G} = i ∂xi ∂pi ∂pi ∂xi (flat space, symplecticmfld)

    2∗  ObservablesarefunctionsO(xi, p j)onphasespace [ex: x   +y2+z 2, p2/2m , . . .] ∗

     HamiltonianH (x, p)definesdynamics 

    q ˙ =

    {q, H 

    }forq =xi, p j, . . .  

      

        

      

          

      

        

        

         q  q M 

    z

     q  q M 

    I

    B  I

    phasespace

    (x, p)

    Frameworkdescribesallof mechanics. E&Mincludingfluids,materials,etc. ...

    • 

    Simple,

    intuitive

    conceptual

    framework

    •  Deterministic•  Time-reversibledynamics

    Example: Classicalsimpleharmonicoscillator(SHO)

    1 2H =k

    x2 +  p2 2m

     p 

         !

    x

    X   �$ X   "

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    2/28

    1ẋ = {x,H }=  p

    m ṗ = { p,H }=−kx

    (=mẍ)

    Theoreticalframeworkof quantumphysics

    ∗ statedefinedby(complex)vector |vinvectorspaceH. (Hilbertspace)

    ∗ ObservablesareHermitianoperatorsOdagger =O∗ Dynamics: |v(t)=e−iHt/�|v(0)(H  hermitian,� constant)

    ∗ “Collapsepostulate”

    [(subtleties:

    degeneracy,

    (simpleversion) cts.spectrum)]If |φ= αi|λi,

    withA|λi=λi|λi,λi, measure A = λi,

     jλ=Thenwithprob.|αi|2

    |φ=| λiaftermeasurement

    This

    framework

    [(with

    suitable

    generalizations,

    i.e.

    field

    theory)]

    describes

    all

    quantum

    systems,andallexperimentsnotinvolvinggravitationalforces.

    Atomic

    spectra

    (quantization

    of 

    energy)

    – Semiconductorstransistors,(quantumtunneling)

    • Counterintuitiveconceptualframework• Nondeterministic

    • Irreversibledynamics

    Bothclassical&quantumconceptualframeworksusefulincertainregimes. 

    Classical

    picture

    not

    fundamental

    replaced

    by

    QM. 

    IsQMfundamental? 

    Perhapsnot,butdescribesallphysicsof currentrelevancetotechnology&society. 

    Simpleexampleof QM:2-statesystem(spin 1 particle)2

    3

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    3/28

          S   �  � 

    Stern&Gerlach1922

     -  -  - 

     -  -  -  -  - 

     - 

     

     � 

     �  � I    B            -  -  - 

     -  - 

                              

     -  - 

          

    Agatoms �  �  �  �  �  �  �  �  �  �  �  �  �  � 

                                

     �  �  �  �  �  �  �  �  �  �  �  �  �  � 

                                �Oven

    Silver: 47 electrons, angular momentum =⇒electron.

    Energy U  =

    F z =

    Givesforcealong ẑ dependingonµz.

    Classically,expect

    screen

    µ (mag. dipole moment) from spin of  47th

    −µ

    ·B

    ∂U 

    ∂Bz−

    =

    µz∂Z  ∂Z 

      &

      

    Actuallysee

      #  %

      #

      %

    4

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    4/28

    � 

     �  �  �  �  �  �  �  �  �  � 

     �  �  �  �  �  �  �  �  �  � 

    e�  eµz

    ≈ ±

    ≈ S z

    2mc mc

    S z = ± [� = 1.0546× 10−27 ergs]2

    So

    measuring

    S z =⇒  discrete

    values

    (2

    states) 

    CanbuildsequentialS − Gexperiments, usingcomponents 

    S z = + splitter Z 

    S z =−

    S z = +

     �    �  �  �  �  �  �  �  �  �                   

     �    �  �  �  �  �  �  �  �  �                    Z  

    filters

      S z =−

    (Canalsoformsplitter,filtersonx-axis,etc.)

    Single

    particle

    experiments

    i) S z = +

    Z Z 

                        

    S z

    = + 100%

    0%

    ii)

    S z = +

    Z X 

    S x = +

    50%

    50%

                         S x

    =−

    5

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    5/28

     �  �  �  �  �  �  �  �  �  � 

     �  �  �  �  �  �  �  �  �  � 

     �  �  �  �  �  �  �  �  �  � 

    iii)  S z

    = +   S x = +

    Z  X Z  100% 

    S z

    = +

    0%                      S x =− S z =−

    BUT

    iv)  S z = + S x = +

    Z  X Z 

    S z = + 50%

    50%

     �    �  �  �  �  �  �  �  �  �                                        S z =−

    v)  S z

    S z

    = += +

    Z  

      �    �  �  �  �  �  �  �  �  �           

               50%

     

    50%  Z 

     

                         S x =− S z =−

    Cannot

    simultaneously

    measure S z

    , S x

    “incompatibleobservables” S zS x   S x=   S zAnalogousto2-slitexperiment forphotons.

    In

    iii),

    not

    measuringS x. 

    in

    iv),

    v)

    measuring

    S x. 

    iii)needs“interference”of probabilitywave—noclassical interpretation. 

    iii),iv)=⇒Irreversible,nondeterministicdynamics(assuming locality) 

    1.2 MathematicalPreliminaries

    1.2.1

    Hilbert

    spaces

    Firstpostulateof QM:

    ∗  Thestateof aQMsystemattimetisgivenbyavector(ray)|αinacomplexHilbertspaceH. [[willstatemorepreciselysoon.]]

    Vector

    spaces

    Avector space V  isacollectionof objects(“vectors”)|αhavingthefollowingproperties:

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    6/28

    A1: |α+|β givesauniquevector|γ inV . A2: (commutativity) |α+|β =|β +|α A3:

    (associativity)

    (|α+|β ) + |δ  = |α + (|β  + |δ )  A4:

    ∃vector

    suchthat

    +

    =

    ∀|α

     

    A5:

    For

    all

    in

    ,

    −|α

    is

    also

    in

    so

    that

    + (−|α) =

    |φ. 

    [(A1–A5): V  isacommutativegroupunder+] 

    ForsomeFieldF  (i.e.,R,C, with +, ∗ defined)scalar multiplication  of anyc∈F  withany|α ∈ V givesavectorc|α ∈ V . Scalarmultiplicationhasthefollowingproperties

    M1: c(d|α) = (cd)|αM2: 1|α=|αM3: c(

    |α+

    |β ) = c

    + c|β 

    M4: (c+d)|α=c|α+d|α. V  iscalleda“vectorspaceoverF .” F  = R: “realv.s.” F  = C: “complexv.s.” 

    Examples

    of 

    vector

    spaces

    a1

    .a) EuclideanD-dimensionalspace isarealv.s. .

    .aD

    b) Statespaceof spin 1 particle is 2D cpx

    v.s.

    2states:

    c+|++c−|−,c± ∈ C [[note: certainstatearephysicallyequivalent]]c) spaceof functionsf � : [0, L] → C

    Henceforth

    we

    always

    take F  =C

    Subspaces

    V  ⊂W  isasubspace  of av.s.W  if V  satifiesallpropsof av.s.and isasubsetof W .

    [suffices

    for

    to

    be

    closed

    under

    +,

    scalar

    mult.]

    Ray

    A ray in V  isa1Dsubspace{c|α}.

    7

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    7/28

    Linear

    independence

    &

    bases

    |α1, |α2, . . . , |αn are linearly independent  iff c1|α1 +c2|α2 +· · · + cn|αn = 0

    has

    only

    c1 =

    c2 =

    · · ·

    =

    cn =

    0

    as

    a

    solution.

    If  |α1, . . . , |αn in V  are linearly independent, but all sets of  n+1 vectors are linearlydependent,then

    • V  isn-dimensional  (nmaybefinite,countably∞,oruncountably∞.)• |α1, . . . , |αn formabasis  forthespaceV .

    If  |α1, . . . , |αn formabasisforV ,thenanyvector |β canbeexpanded inthebasisas|β = ci|αi . (Thm.)

    i

    Unitary

    spaces

    AcomplexvectorspaceV  isaunitary space  (a.k.a.innerproductspace)

    if 

    given

    |α, |β  ∈ V  there is an inner product α|β  ∈ C with the followingproperties:

    ∗I1: α|β =β |α I2:

    α

    |(

    |β 

    +

    |β �

    ) =

    α

    |β 

    +

    α

    |β �

     

    I3:

    α|(c|β ) =

    cα|β  

    I4: α|α ≥ 0  I5: α|α= 0 iff |α = |0  

    α|β  isasesquilinear  form(linearinβ ),conj.lin.in|αExamples:

    z1

    .a) V  =CN ,N -tuples |z = ..   ,z i ∈C.

    zN ∗ ∗

    |w

    =z I 

    ∗w1 +z 2w2 +

    · · ·+ z N wN 

    b) V  ={f  : [0, L] → C} Lf |g = f ∗(x)g(x) dx

    0

    Terminology:

    ⎧ α|β = norm  of |α(sometimes,|α 

    if α|β = 0, |α, |β  areorthogonal  

    8

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    8/28

    Dual

    Spaces

    ∗Fora(complex)vectorspaceV , the dual space V    isthesetof linearfunctionsβ | :V  → C.Giventheinnerproductβ |α,canconstruct isomorphism.

    |α ←→ α|∗V  ←→ V ∗note: c|α ←→ c α| .

    Physicsnotation(Dirac”bra-ket”notation)

    |α ∈ V  ketβ | ∈ V ∗ bra

    Hilbert

    space

    A space

    is

    complete 

    if 

    every

    Cauchy

    sequence

    {|αn}

    converges

    in

    V ∀�∃N  :|αn − |αm < � ∀m, n>N  (i.e.,∃|α :limn→∞|α − |αn = 0.)

    Acompleteunitaryspaceisa(complex)Hilbert space .

    Note: anexampleof anincompleteunitaryspaceisthespaceof vectorswithafinitenumberof nonzeroentries. Thesequence { (1, 0,

    12

    ,0, . . . ),

    (1, 0, 0, . . . ), (1, 1

    2

    , 13

    , 0, . . . ) . . .

    }isCauchy,butdoesn’tconvergeinV . This is not  aHilbertspace.

    A

    Hilbert

    space

    can

    be:

    a) Finitedimensional(basis1Ex.spin

    |α1, . . . , |αn)  particleinStern-Gerlachexpt. 

    2

    b) Countably infinitedimensional(basis|α1, |α2, . . .)  Ex.QuantumSHO 

    c) Uncountably infinitedimensional(basis|αx,x∈ R)[Technicalaside:

    ¯A space

    is

    separable 

    if 

    countable

    set

    D

    ⊂ V 

    so

    that

    D

    =

    V .

    (Ddense inV : ∀�,|x ∈ V ∃|y ∈ D : |x − |y < � ) (a),(b)areseparable,(c)isnot.

    non-separableHilbertspacesareverydiceymathematically.

    Generally, separability implicit in discussion — e.g., label basis |αi, i takes discretevalues ]

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    9/28

    Orthonormal

    basis

    Anorthonormalbasisisabasis|ϕiwithϕi|ϕ j=δ ijAnybasis |α1, |α2, . . .can be made orthonormal by Schmidt orthonormalization 

    |φ1 = ⎧ |α1α1|α1|α� = |α2 − |φ1φ1|α22

    2|φ2 = ⎧ |α�α�|α�2 2|α� = |α3 − |φ1φ1|α3 − |φ2φ2|α33

    ...

    Gives|φi

    with

    φi

    |φ j

    =δ ij. 

    If {|φi}areanorthonormalbasisthenforall|α, 

    |α= ci|φi, ci =φi|α.i

    Canwriteas|α= |φiφi|α. (Completenessrelation)i

    Schwartz

    inequality

    α|αβ |β  ≥

    |α|β |2

    ∀|α,

    |β 

    .

    Proof: write|γ =|α+λ|β 

    γ |γ  = α|α+λα|β +λxβ |α+|λ|2β |β −β |α

    setλ = β |β |α|→ γ |γ  = α|α − |β  ≥0β |β 

    [Second

    postulate

    of 

    QM:

    ∗ Observablesare(Hermitian)operatorsonH[self-adjoint]

    10

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    10/28

    1.2.2

    Operators

    Linear

    operators

    AlinearoperatorfromaVSV  toaVSW  isatransformationsuchthat

    A|α +

    |β  =

    A|α +

    A|β 

    ∀|α,

    |β  .

    We write A=B iff A|α =B|α ∀|α. ∗A acts on

    V  through(β | ∀A)|α = β |(A|α)(actsonrightonbras.)

    Outer

    product

    Asimpleclassof operatorsareouterproducts|β α|(|β α|)|γ  =|β α|γ 

    Adjoint

    ∗V  ↔ V Recallcorrespondence |α ↔ α| Given an operator A,defineA† (adjointof A)(Hermitianconjugate)byA†|α ↔ α|A

    ∗Example(|β α|)† =α|β |. Followsthatα|A†|β  = (β |A|α) .

    Hermitian

    operators

    A is

    Hermitian 

    if 

    A

    =

    A† (∼  self-adjoint)⎛

    Technicalaside: mathematically,Hermitiancalled”symmetric”. Self-adjointiff symmetric

    +A&A† havesamedomain of definition ,relevanttoi.e.,Diracop.inmonopolebackground(symmetricop.withseveralself-adjointextensions)more: Reed&Simon,Jackiw

    ∗Exampleof domainof def: ConsiderH =L2(R) = {funsf  :R→ C: 0 f f < 0 e−x2 ∈ H,−∞2xO = mult

    bye ⎞

    Oe−x2 /∈ H, so e−x2 notindomainD(O).LinearoperatorsAformavectorspaceunderaddition(+commutative,associative)

    (A+B)|α =A|α +B|αMult.definedby

    (AB)|α =A(B|α)GenerallyAB  BA=But(AB)C =A(BC )Note: (XY )+ = Y +X +

    11

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    11/28

    Identityoperator: 11 11|α=α|.Functionsof oneoperatorf (A) = C nA

    ncanbeexpandedaspowerseries(mustbecareful

    outsideROC—candoingeneralif diagonalizable)

    Diagonalizableoperators: canalwayscomputef (A) if  f  definedfordiagonalelements(evalues)

    Functions f (A,B) must have definable ordering prescription. (e.g. eABe−A =B+AB−BA +· · · ) Inverse  A−1 satisfiesAA−1 =A−1A= 11 Doesnotalways exist. (Ex. if Ahasanev. =0.) Note: BA = 11 does not imply  AB = 11 (Ex.later)

    Isometries

    U  isanisometry  if U +U  = 11,sincepreserves innerproduct(β |U +)(U |α) = β |α

    Unitary

    operators

    U  isunitaryif U † =U −1.

    Example: non-unitaryisometries. (HilbertHotel) Consider the shift  operator S |n = |n+ 1 acting on H with countable on basis {|n, = 0, 1, . . . }  S = |n + 1n|satisfiesS +S = 11butnot  SS + = 11. (SS + = 11 − |00|). S  hasno(2-sided)inverse. 

    Projection

    operators

    Aisaprojection  if A2 =A.

    Ex.A=|αα|forα|α= 1.

    Eigenstates

    &

    Eigenvalues

    If A|α=a|αthen|αisaneigenstate  (eigenket)of Aandaistheassociatedeigenvalue .

    Spectrum

    Thespectrumof anoperatorAisitssetof eigenvalues{a} [technical aside: this is the “point spectrum”, mathematically, spectrum of  A = set of   λ : A − λ11 isnot invertible] 

    12 

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    12/28

    =�

    Important

    theorem 

    If A=A†,thenalleigenvaluesai

    of Aarereal,andalleigenstatesassociatedwithdistinctai areorthogonal.

    Proof:

    ∗A|a=a|a ⇒ a|A† = a|a ⇒ b|(A − A+)|a = (a − b ∗ )b|a = 0

    ∗if  a = b , a = a isreal.if 

    Consequence

    of 

    theorem:

    a  b , b|a = 0

    For

    any

    Hermitian

    A,

    can

    find

    an

    O.N.

    set

    of 

    eigenvectors

    |ai

    A|ai=ai|ai , (ai notnecc.distinct— can be degenerate )

    [Proof: useSchmidtorthog.foreachsubspaceof fixedevaluea—OKaslongascountable#of 

    (indep.)

    states

    for

    anya (e.g.inseparableH)[caution: thissetspansspaceof eigenvectors,

    butmay not  becompletebasis]

    Completeness

    relation

    If φi areacompleteonbasisforH.

    |α= |φiφi|α ∀|α ,i

    so |φiφi|= 11 (completeness )i(sumof projectionsonto1Dsubspaces)

    Matrix

    and

    vector

    representations

    If 

    H

    is

    separable,

    a

    countable

    on

    basis,

    |φi

    φ1|αcanwrite|α= |φiφi|α ⇒ φ2|α i ...

    β |= β |φiφi| ⇒ (β |φ1β |φ2 · · ·) i

    13

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    13/28

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    14/28

     

    Trace

    Thetraceof anoperatorAis

    TrA = φi|A|φi, |φi ONbasisi

    = ai

    = Aii

    .i i

    (ai

    =eigenvaluesof A)

    Unitary

    transformations

    If  |ai,|biaretwocompleteONbases, [(Ex.eigenketsof 2Hermitianoperators)]candefineU  sothatU |ai=|bi(since |aiabasisdefinesU  onallof H).sobi|=ai|U †.

    We

    have

    U  = U 11 = U  |aiai|i

    = |biai|iU † = |aibi|i

    soUU † = |biai|a j

    b j

    |=δ ij

    |bib j

    |= 11 and UU † = 11,soU −1 =U +,U  unitary.i,j  ij

    –  AnalogoustorotationsinEuclidean3-spaceM  :M +M  =MM + = 11. U  aresymme

    triesof H.

    Unitary

    transforms

    of 

    vectors

    &

    operators

    Avector|αhasrepresentations intwobasesas

    |α= ci|ai= di|bi.

    How

    are

    these

    related?

    d j

    |b j

    = d j

    U |a j

     j

    = d j

    |ai

    ai

    |U 

    |a j

    i,j

    soci

    =U ij

    d j

    , U ij

    =ai|U |a j

    aremtxelementsof U  inarep.Similarly,X =|aiX ij

    a j

    |=|bk

    Y k�b�|givesX ij

    =U ik

    Y k�U †lj.

    15

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    15/28

    Diagonalization

    of 

    Hermitian

    operators

    Theorem.AHermitian matrix (finite dim)H ij =φi|H |φ jcan always be diagonalized by 

    a unitary  transformation.

    Proof.

    if 

    |φi

    a

    general

    ON

    basis,

    ON

    eigenvectors

    |hi

    related

    to

    |φi

    through

    |hi = U |φi, unitary.hi|H |h j = δ ijhi =φi|U †HU |φ j

    soU +H k�U �j

    isdiagonal.ik(generalizestoanyobservable)

    Algorithmforexplicitdiagonalizationof amatrixH  (finitedimensional):

    1) Solvedet(H −λ11)=0forN ×N  matrices,N  solutionsareeigenvaluesof H .2) SolveH ijc j =λci forci’sforeachλ. N  lineareqns. inN  unknowns.

    Giveseigenvalues&eigenvectors.

    Invariants

    Somefunctionsof anoperatorAareinvariantunderU :

    TrA = φi|A|φi, |φi ONbasisU †TrU †AU  = ij

    A jk U kj =δ  jk A jk = Tr A i,j,k

    [Technical

    note:

    careful

    for

    matrices

    need

    all

    sums

    converging.] 

    Anotherinvariant: detA: det(U  †AU ) = det U  detAdetU † = det UU † detA= det A  

    [Note: fullspectrumof ev’sis invariant!] 

    Simultaneous

    diagonalization

    Theorem.Twodiagonalizable operators A,B are simultaneously diagonalizable iff 

    [A,B] = 0

    ⇒ say A

    |αi

    = ai

    |αi

    , B

    |αi

    =bi

    |αi

     

    AB|αi

    =

    BA|αi

    =

    aibi|αi

    ⇐  Say AB=BA , A|αi=ai|αi. 

    AB|αi=aiB|αi, 

    so B keeps state in subspace of  e.v. ai. Thus, B is block-diagonal, can be diagonalized ineachai subspace

    16

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    16/28

    1.3 Therulesof quantummechanics

    [[Developedovermanyyearsinearlypartof C20. Cannotbederived— justifiedbylogicalconsistency&agreementwithexperiment.]]

    4basicpostulates:

    1) Aquantumsystemcanbeput intocorrespondencewithaHilbertspaceHsothatadefinitequantumstate(atafixedtimet)correspondstoadefiniterayinH.

    so |α ≈ c|α representsamephysicalstateconvenienttochooseα|α =1,leavingphasefreedomeiφ|α

    •  Note: stillaclassicalpictureof statespace(“realistapproach”). Pathintegralapproachavoidsthispicture.

    •  “state”reallyshouldapplytoanensembleof identicallypreparedexperiments(“pure

    ensemble”=purestate.)Ex.statescomingoutof SGfilter

    S z   = +   Z  

    |α =|+ .  �    �  �  �  �  �  �  �  �  �                   

    2) ObservablequantitiescorrespondtoHermitianoperatorswhoseeigenstates forma

    complete

    set.

    Observablequantity=somethingyoucanmeasure inanexperiment.

    [[Note: book constructs H from eigenstates of  A: logic less clear as HA = HB for someA,B.]]

    3) AnobservableH =H † definesthetimeevolutionof thestateinHthrough 

    i� d|ψ(t) =i�  lim |ψ(t+ ∆t) − |ψ(t)  = H |ψ(t) . dt ∆t

    →0

    ∆t

    (Schrödinger

    equation)

    17

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    17/28

    4) (Measurement&collapsepostulate)

    If anobservableAismeasuredwhenthesystemisinanormalizedstate|α, where A hasanONbasisof eigenvectors |aiwitheigenvaluesai.

    a)

    The

    probability

    of 

    observing

    A

    =

    a

    is

    |a j|α|2 =α|P a|α j:aj

    =a

    whereP a =  j:aj

    =a|a ja j|istheprojectorontotheA=aeigenspace.b) If A=aisobserved,afterthemeasurementthestatebecomes|αa=P a|α=   ⎧ 

    ˜|a ja j|α(normalizedstateis|αa=|αa/ αa|αa). j:aj

    =a

    Discussionof rule(4): 

    Simplest

    case:

    nondegenerate

    eigenvalues 

    |α= ci|ai, ai

    =  a j

    .

    Thenprobabilityof gettingA=ai is|ci|2.Normof α|α= 1 ⇔ |ci|2 = 1.

    ˜AftermeasuringA=ai,statebecomes|αi=|ai.

    This postulate involves an irreversible ,nondeterministic , and discontinuous  change in the

    state

    of 

    the

    system.

    – sourceof considerableconfusion

    – lesstroublesomepicture: pathintegrals.

    – alternatives: non-localhiddenvariables(’tHooft?),stringtheory—newprinciples(?)

    Forpurposesof thiscourse,take(4)asfundamental,thoughcounterintuitive,postulate. 

    Todiscussprobabilities,needensembles . 

    Consequenceof (4): 

    Expectation 

    value 

    of 

    an

    observable

    A

    in

    state

    is 

    A= |ci|2ai

    =α|A|αsinceA= |aiaiai|.i i

    So

    for:

    4basicpostulatesof QuantumMechanics:

    18

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    18/28

    1) State=rayinH [incl.def of H  space]2) Observable=Hermitianoperatorwithcompletesetof eigenvectors

    3) i� d

    |ψ(t)

    =H 

    |ψ(t)

    dt

    4) Measurement&collapse 

    ProbabilityA=a: α|P a|α   ⎧ 

    ˜Aftermeasurement,system−→ |αa = P a|α/ α|P a|α

    P a = |a ja j

    | j:aj

    =a

    ⇒Expectationvalueof A: A=α|A|α= |ci|2ai

    if |α=

    ci|ai

    4

    Thesearetherulesof thegame.

    Restof thecourse:

    Examplesof physicalsystems,toolstosolveproblems.

    An

    example

    revisited

    in

    detail

    Backtospin- 12

    system.

    Statespace

    H

    =

    {|α

    =

    C +|+

    +

    C −|−

    , C ± ∈

    C}P 1 Unitnormcondition

    2

    α|α=|C +|2 +|C −|   = 1

    eiθ|α, |αarephysicallyequivalent

    Operators:

    2�

    2

    1 0 0 −1S    = σz measuresspinalongz -axis= z

    0 11 0

    �2

    �2S    =

    σx measures

    spin

    along

    x-axis

    x

    0 −ii

    0

    2�

    2S y

    = σy

    measuresspinalongy-axis =

    For

    general

    axisn̂:

    S n =S ·n̂ (HW#2)haseigenvalues±�2 .eigenstates |S n;±: S n|S n;±=±�2 |S n;±formcompletebasis.

    19

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    19/28

    |S x;± = √ 1 |+ ± √ 12 |−2|−

    2

    |S y;± = √ 1 |+ ± √ i inS z basis.2 |S z

    ;± = |+

    Some

    further

    properties

    of 

    S i:

    [S i, S  j ] = i�ijk� S k

    {S i, S  j

    } = S iS  j

    + S  j

    S i

    = 1� 2δ ij2

    S 2 =S ·S =S 2 +S 2 +S 2 = 3� 211 = 3�  2

    1 0

    x y z 0 14 4And

    [S 2, S i] = 0 .

    Measurement

    If  |α=c+|++c−|−, α|α= 1, 2+ | 

    | ||2

    prob.thatS   is = z 2

    c+c−−�prob.thatS    is =z 2

    Considersingleparticleexperiments fromlecture1.

    2�

    2S S = +   = +i) z z 100% S z

    S z

         �  �  �  �  �  �  �  �  �  �                    S z =− 0%�2

    |α=|+�

    2Repeatedmeasurementof S z gives+ 100%of thetime.

    ii) S z = + S x = + 50%

    S z   S x

         50% � 

     �  �  �  ��  � 

     �  �  �           

             S x =−

    =

    |+ 

    |S x;±= √ 12 (|+ ± |−)  so |α=|+= √ 1  [|S x; + + |S x; −]2

    is 12 (50%)so prob. S x = +�

    2

    prob. S x

    =−�2 is  12 (50%)

    20

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    20/28

      

        

      

        

      

      

      

      

    iii)  S  z

    = +   S x

    = + S z

    = +

    100% 

       

      S  S S 

    z x z           � 

     �  �  �  �  �  �  �  ��            0% B       S   =−  S   =−x z

    |−)

    1

    |α=|α++|α−=|+   |α+= 2 (|++|−)|α=

    |+

     

    1

    2

    (|α

    −=

    |+

    Combinedstate|α=|+enterslastmeasurementapparatus,sinceS x

    notmeasured.

    = +z�

    2GivesS    100%of time.

    iv)  S 

    z = +   S x = + S z = +

    50%

    x     

     �            ��  �  �  �  �  �  ��         

     S S   S z z           � 

     �  �  �  �  �  �  �  ��            50% S z

    =−

    |α+

    =

    √ 12

    (|+

    +

    |−)|α

    =

    |+

    state|α+= √ 12 (|++|−)enters lastapparatus.Prob. S   = +x

    Prob. S   =−x

    2

    2

    :

    (50%)

    : (50%)

    Compatible

    vs.

    incompatible

    observables

    ObservablesA, B are: 

    Compatible  if [A, B] = AB−BA = 0  incompatible  if [A, B] = 0.

    Examples:  S 2, S z arecompatibleS x, S y arenotcompatible.

    Theorem.Compatible observables A, Bcan be simultaneously diagonalized,and have eigen

    vectors 

    |ai, bi

    with 

    A|ai, bi = ai|ai, bi B|ai, bi = bi|ai, bi .

    21 

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    21/28

    (Proof inlastlecture: AB|α =aB|αif A|α =a|αsoB=Ha

    → Ha,diagonalizeineachblock.)

    Acomplete set of commuting observables  (CSCO)isasetof observables{A, B, C , . . .} suchthatallobservables inthesetcommute:

    [A,

    B] = [A,

    C ] = [B,

    C ] =

    · · · = 0

    andsuchthatforanya, b , . . . atmostonesolutionexiststotheeigenvalueequations

    A|αB|α

    =

    =.

    a|αb|α

    ..

    Tensor

    product

    spaces

    usefulformany-particlesystems [+quantumcomputing, . . . ]bigr)

    Given two Hilbert spaces H(1), H(2), with complete ON bases |φ(1)i, |φ(2) j

    , the tensorproduct

    H =H(1)⊗ H(2)istheHilbertspacewithONbasis

    φ(1) ⊗ |φ(2)|φij =| i j

    and

    inner

    product φ

    (1)1,φ(2)|φ(2)φi,j|φk,� =φ(1)| 2.i   k

     j   �

    If H(1),H(2) havedimensionsN, M , then H = H(1)⊗ H(2) hasdimensionNM . If H(1),H(2) separable,H isseparable.[inparticular,if eitherorbothof H(1),H(2) havecountablebasis&bothcountableorfiniteHhascountablebasis.]

    Tensor

    product

    of 

    kets

    and

    operators

    Kets :

    If 

    |α =

    ci|φ(1)i ∈ H(1)

    |β  = di|φ(2) j

    ∈ H(2)

    22

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    22/28

    ,H(2)areketsinH(1) .then

    |α ⊗ |β  = cid j|φi,j ∈ H i,j

    is

    in

    H

    =

    H(1)

    ⊗ H(2)

    .

    [Note:

    not

    all

    vectors

    in

    H

    are

    of 

    tensor

    product

    form.

    Ex.

    |φ1,1 +|φ1,2 +|φ2,1]

    Operators:

    If A,BareoperatorsonH(1),H(2),thenwecanconstructA⊗ B asanoperatoronH =H(1)⊗ H(2) through

    (A⊗ B)|φi,j

    = (A|φ(1))⊗ (B|φ(2)).i j[defines

    A⊗

    B onallof H

    by

    linearity] 

    If A,Bareobservables,thenA⊗ B isanobservable. 

    Summary

    of 

    Tensor

    product

    spaces

    H

    dimHBasis: |φi,j

    φi,j

    C i|φ(1)Kets: |α |β i

    |α ⊗ |β 

    Brassame

    = H(1)⊗ H(2)= (dim H(1))(dimH(2))= |φ(1) ⊗ |φ(2) j=

    φ(1)

    | ⊗ φ

    (2)

    | j

    = d j|φ(2) j

    = C id j

    |φi,j

    φ(2))Operators

    (A⊗ B) C i,j|φi,j = C i,j(A|φ(1))⊗ (B|i j

    Simple

    class

    of 

    operators

    on

    H:

    A

    ⊗ 11 ,

    11 ⊗ B .

    If A,B actonH(1),H(2),willoftenrefertotheseas justA,Bwhencontext isclear.

    Useful

    relation:

    (A⊗ B)· (C ⊗ D) = (AC )⊗ (BD).

    23

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    23/28

    Note: [(A ⊗11), (11⊗B)]=0. Notation: inmanybooks,tensorproductsymbol isomitted 

    |α ⊗ |β  ⇒ |α|β A

    ⊗B

    ⇒ AB .

    CSCO’s

    in

    tensor

    product

    spaces

    If {A1, A2, . . . , Ak} areaCSCOforH(1), & {B1, . . . , B�} areaCSCOforH(2), then{A1, . . . , Ak

    , B1, . . . B�} areaCSCOforH(1)⊗ H(2) [[Ex.of notationA1 =A1⊗11.]] 

    Example

    of 

    tensor

    products:

    Two

    spin- 1

    particles2

    , H(2)Considertwospin- 1 particleswithHilbertspacesH(1)2 2 2 .Thetwo-particleHilbertspace is

    H

    =

    H(1)⊗ H(2)2 .2AbasisforH is:

    |++ = |+1⊗ |+2

    |+

    − =

    |+

    1

    ⊗|−2

    |−+

    =

    |−1⊗ |+2 |−− = |−1⊗|−2

    Operators:

    Acompletesetof commutingobservables is

    S (1) = S (1)⊗11z zS (1) = 11 ⊗ S (2).z z

    24

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    24/28

      

    Consideroperators 

    S z =(2)S +   z

    (1)S z   .

    �  0 0 0

    0 0 0 0 =

    0 0

    0

    0

    0 0 0 −�  = (S (1))z

    1⊗S (2))⊗11)(1(2)S z(1)S z(2)⊗S z

    (1)S z

    =

    2�

    2�

    2−

     

    2= �2

    2

    − 

    −�2

    2−

    +1

    � 2 −1 =

    4

    −1

    .

    +1

    Incompatible

    observables

    If  [A,B] .A,B=0,thencannotsimultaneouslydiagonize

    Experiments 

             �  �  � 

             �  �  �  � 

     �  �  �  �� 

     �  �  �  �     

            

    A

    =

    a   B

    =

    b1B=b2

      

    B=bk

    (AssumeA,B,C  nondegenerate)

    i) Allowallbi tocombinewithoutmeasuringB

    Probability

    (C 

    =

    c) =

    |c|a|2

    [B notmeasured]

    =

    c

    A B . C ..

    25 

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    25/28

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    26/28

    � �

    Example: Instate|+

    �2

    4∆S 2 = 1 0 �2

    1z 0

    4

    212=

    1 0 − � 02

    � 2 � 2

    = − = 0 . 4 4

    �2

    4∆S 2 = 1 0 �2

    1z 0

    4

    2� 0 � 12= − 1 0 � 0   0

    2

    � 2

    =

    .

    4

    Uncertainty

    relation

    If A,B areobservables,2∆A2∆B2 ≥ 1 |[A,B]|4

    Proof.

    Schwartz: (α|∆A)(∆A|α)(α|∆B)(∆B|α)(on

    ∆A|α,∆B|α)

    (α|∆A)(∆B|α)(α|∆B)(∆A|α)

    1 = α|�2

    [∆A,∆B] + 1 {∆A,∆B}|α22

    = 1 2[A,B] + {∆A,∆B}4 ↑ ↑imaginary real

    ([A,B]skew-Hermitian) ({∆A,∆B} Hermitian)[prob.1–1.]

    1 1 2=4|[A,B]|2+

    4|{∆A,∆B}|

    1

    4|[A,

    B]|2

    .

    Example: Instate|α=|+.

    ∆S 2 = 0 z� 2∆S 2 =x

    4

    27

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    27/28

    14 |[S z, S x]|2 = 14 |S y|2 = 0 .

    1.4 Position,momentumandtranslation

    Until

    now,

    all

    explicit

    examples

    involved

    finite-dimensional

    matrices. 

    Generalize

    tocontinuous degrees of  freedom . 

    Wanttodescribeparticlein3Dbywavefunctionψ(x,y,z ) 

    Simplyto1D:ψ(x) 

    Want |ψ(x)|2 dx=probabilityparticleisinregiondx. 

    x

    |ψ(x)|2

     �  �  �  �  �  �  �  �  � 

     �  �  �  �  �  �  �  �  � 

     �  �  �  �  ⎨⎩⎫⎬ 

    dx

    NaturalHilbertspace: L2(R): ∞

    Squareintegrablefunctions −∞|ψ(x)|2

  • 8/17/2019 Notas-1-Mecanica-Cuantica-Postgrado.pdf

    28/28

    in no way satisfies the requirements of  mathematical rigor — not even if  these arereducedinanaturalandproperfashiontotheextentcommonelsewhereintheoreticalphysics. Forexample,themethodadherestothefictionthateachself-adjointoperatorcan be put in diagonal form. In the case of  those operators for which this is notactually the case, this requires the introduction of  “improper” functions with self-

    contradictory

    properties.

    The

    insertion

    of 

    such

    a

    mathematical

    “fiction

    is

    frequently

    necessary in Dirac’s approach, even though the problem at hand is merely one of calculatingnumerically theresultof aclearlydefinedexperiment. Therewouldbenoobjection here if  these concepts, which cannot be incorporated into the present dayframework of  analysis, were intrinsically necessary for the physical theory. Thus, asNewtonianmechanicsfirstbroughtaboutthedevelopmentof theinfinitesimalcalculus,which,initsoriginalform,wasundoubtedlynotself-consistent,soquantummechanicsmight suggest a new structure for our “analysis of  infinitely many variables” — i.e.,the mathematical technique would have to be changed, and not the physical theory.But this is by nomeans the case. It should rather bepointed out that the quantummechanical “Transformation theory” can beestablished in amannerwhich is justasclear and unified, but which is also without mathematical objections. It should beemphasized

    that

    the

    correct

    structure

    need

    not

    consist

    in

    a

    mathematical

    refinement

    andexplanationof theDiracmethod,butratherthatitrequiresaproceduredifferingfromtheverybeginning,namely,therelianceontheHilberttheoryof operators.