28
Norway

Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Norway

Page 2: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3-dim. QGP Fluid 3-dim. QGP Fluid Dynamics and Flow Dynamics and Flow

ObservablesObservables

3-dim. QGP Fluid 3-dim. QGP Fluid Dynamics and Flow Dynamics and Flow

ObservablesObservables

László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Page 3: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

IntroductionIntroductionIntroductionIntroduction

Strong flow is observedStrong flow is observed => =>

- Early, local eq., - EoS- Early, local eq., - EoS

- nnqq scaling – QGP flows scaling – QGP flows

- no flow in hadronic matterno flow in hadronic matter > simultaneous hadronization and FO > simultaneous hadronization and FO (HBT, high strangeness abundance) (HBT, high strangeness abundance)

Page 4: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Relativistic Fluid DynamicsRelativistic Fluid Dynamics

Eg.: from kinetic theory. BTE for the evolution of phase-space distribution:

Then using microscopic conservation laws in the collision integral C:

These conservation laws are valid for any, eq. or non-eq. distribution, f(x,p). These cannot be solved, more info is needed!

Boltzmann H-theorem: (i) for arbitrary f, the entropy increases, (ii) for stationary, eq. solution the entropy is maximal,

P = P (e,n) Solvable for local equilibrium!

EoSEoS

Page 5: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Relativistic Fluid DynamicsRelativistic Fluid DynamicsFor any EoS, P=P(e,n), and any energy-momentum tensor in LE(!):

Not only for high v!

Page 6: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Two theoretical problemsTwo theoretical problemsTwo theoretical problemsTwo theoretical problems

• Initial state – Initial state – - Fitted initial states > moderate insight- Fitted initial states > moderate insight

• Final Freeze OutFinal Freeze Out

- - Realistic Model, Continuos FO, Realistic Model, Continuos FO,

ST layer, Non-eq. distribution ST layer, Non-eq. distribution

Page 7: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Local Equilibration, Fluids

Fluid components, Friction

-------------- One fluid >>> E O E O SS -------------- One fluid >>> E O E O SS

Hadronization, chemical FO, kinetic FO

Freeze Out >>> Detectors

Stages of a CollisionStages of a CollisionStages of a CollisionStages of a Collision

Collective flow reveals the EoS ifwe have dominantly one fluid with local equilibrium in a substantial part of the space-time domain of the collision !!!

Page 8: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

QGP EoS QGP EoS One fluidOne fluid

HadronizatiHadronizationon Chemical Freeze Chemical Freeze

OutOut Kinetic Freeze OutKinetic Freeze Out

Initi

al st

ate

time

Heavy Colliding SystemHeavy Colliding SystemHeavy Colliding SystemHeavy Colliding System

IdealizatioIdealizationsnsFO LayerFO Layer

FO HSFO HS

Page 9: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Fire streak picture - Only in 3 dimensions!Fire streak picture - Only in 3 dimensions!

Myers, Gosset, Kapusta, Westfall

Page 10: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

String rope --- Flux tube --- Coherent YM field

Page 11: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Initial state

3rd flow component

Page 12: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3-Dim Hydro for RHIC (PIC)3-Dim Hydro for RHIC (PIC)

Page 13: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3-dim Hydro for RHIC Energies

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=0.0 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

EoS: p= e/3 - B/3,

B = 397 MeV/fm3

8.7 x 4.4 fm

Page 14: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=9.1 fm/c, Tmax= 417 MeV, emax= 19.6 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

20.3 x 5.8 fm

Page 15: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Au+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=18.2 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

34.8 x 8.7 fm

Page 16: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Global Flow patterns:Directed

Transverse flow

Elliptic flow

3rd flow component(anti - flow)

Squeeze out

Page 17: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

3rd flow component

Hydro

[Csernai, HIPAGS’93]

[Phys.Lett.B458(99)454]Csernai & Röhrich

Page 18: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

“Wiggle”, Pb+Pb, Elab=40 and 158GeV [NA49]

A. Wetzler

Preliminary

158 GeV/A

The “wiggle” is there!

v1 < 0

Page 19: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Flow is a Flow is a diagnosticdiagnostic tool toolFlow is a Flow is a diagnosticdiagnostic tool tool

Impact Impact par.par.

Transparency – Transparency – string tensionstring tension

EquilibrationEquilibrationtimetime

Consequence:Consequence:vv11(y), v(y), v22(y), …(y), …

Page 20: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

FOHS - Movies:FOHS - Movies:

B=0, T-fo = 139MeV

B=0, T-fo = 180MeV

B=0.4, T-fo = 139MeV

B=0.4, T-fo = 180MeV

[Bernd Schlei, Los Alamos, [Bernd Schlei, Los Alamos, LA-UR-03-3410]

Freeze OutFreeze OutFreeze OutFreeze Out

Page 21: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

• (B) - Freeze out over FOHS- post FO distribution?= 1st.: n, T, u, cons. Laws != 2nd.: non eq. f(x,p) !!! -> (C)

• (Ci) Simple kinetic model• (Cii) Covariant, kinetic F.O. description• (Ciii) Freeze out form transport equation

• Note: ABC together is too involved!B & C can be done separately -> f(x,p)

Page 22: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The Boltzmann Transport Equation and Freeze OutThe Boltzmann Transport Equation and Freeze Out

Freeze out is :

• Strongly directed process: • Delocalized:• The m.f.p. - reaches infinity • Finite characteristic length

Modified Boltzmann Transport Equation for Freeze Out

description

The change is not negligible in the FO direction

Page 23: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The invariant “ Escape” probability in finite layer

The escape form the int to free component

• Not to collide, depends on remaining distance

•If the particle momentum is not normal to the surface, the spatial distance increases

Early models:

1

Page 24: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

The invariant “ Escape” probabilityThe invariant “ Escape” probability

Escape probability factors for different points on FO hypersurface, in the RFG. Momentum values are in units of [mc]

A B C

D E F

t’

x’

[RFG][RFG]

Page 25: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Results – the cooling and retracting of the interacting matterResults – the cooling and retracting of the interacting matter

Space-Like FO Time-Like FO

cooling

retracting

Cut-off factor flow velocity No Cut-off

[RFF] [RFF]

Page 26: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Results – the contour lines of the FO distribution, f(p)Results – the contour lines of the FO distribution, f(p)

Space-Like FO Time-Like FO

jump in [RFF]

With different initial flow velocities

[RFF] [RFF]

Page 27: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)

Recent open, flow related issuesRecent open, flow related issuesRecent open, flow related issuesRecent open, flow related issues

• Is QGP a “perfect fluid” ? – Is QGP a “perfect fluid” ? – - Small (?) viscosity, but strong interaction (?)Small (?) viscosity, but strong interaction (?)- Laminar flow, not turbulent -> large viscosity- Laminar flow, not turbulent -> large viscosity- Cascades need high cross section to reproduce flow- Cascades need high cross section to reproduce flow

• Comprehensive flow assessmentComprehensive flow assessment

- - v1, v2, v3 … should be evaluated on equal footing v1, v2, v3 … should be evaluated on equal footing - There is one reaction plane, - There is one reaction plane, , (not , (not 11 22 33 … ) … ) - y, - y, , pT correlations are equally important (y ?), pT correlations are equally important (y ?)

• Solution:Solution: Event by Event flow evaluationEvent by Event flow evaluationEvent by Event flow evaluationEvent by Event flow evaluation

Page 28: Norway. 3-dim. QGP Fluid Dynamics and Flow Observables László Csernai (Bergen Computational Physics Lab., Univ. of Bergen)