61
Nonideal complex Plasmas in the Universe and in the lab Michael Bonitz Institut für Theoretische Physik und Astrophysik Christian-Albrechts-Universität zu Kiel 2nd Summer Institute „Complex Plasmas“, Greifswald, 4 August 2010

Nonideal complex Plasmas in the Universe and in the labbonitz/si10/bonitz1.pdf · Plasma I. Langmuir/L. Tonks (1929): ionized gas - „plasma“ „4th state of matter“: solid Æfluid

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Nonideal complex Plasmasin the Universe and in the lab

    Michael BonitzInstitut für Theoretische Physik und Astrophysik

    Christian-Albrechts-Universität zu Kiel

    2nd Summer Institute „Complex Plasmas“, Greifswald, 4 August 2010

  • PlasmaPlasma

    I. Langmuir/L. Tonks (1929): ionized gas - „plasma“

    „4th state of matter“: solid fluid gas plasmaideal hot classical gas

    made of electrons and ions

    = System of many charged particles, dominated by Coulomb interaction

    Wikipedia: „More than 99 % of the visible matter in ouruniverse is in the Plasma state“

  • OccurencesOccurences of Plasmaof PlasmaContemporary Physics Education Project (CPEP)http://www.cpepweb.org/

    NonidealLaboratory & astrophysicalplasmas

  • PlasmaPlasma

    I. Langmuir/L. Tonks (1929): ionized gas - „plasma“„4th state of matter“: solid fluid gas plasma

    ideal hot classical gasmade of electrons and ions

    BUT: there exist unusual („complex“) plasmas which- are „non-ideal“, - often contain non-classical electrons,[- may contain other particles, chemically reactive]

    = System of many charged particles, dominated by Coulomb interaction

  • ContentsContents

    1. Introduction: Examples of nonideal plasmas

    3. Computer simulations of quantum plasmas

    - matter at extreme density

    - White dwarf and neutron stars

    2. Plasma physics approach to dense matter

  • Stars in Stars in thethe MilkyMilky wayway

    Milky Way Central Bulge, viewed from the inside. It is a vast collection of more than 200 billion stars,

    planets, nebulae, clusters, dust and gas.

  • Stars in Stars in thethe MilkyMilky wayway

    Milky Way, Southern part, red emission nebulae, bright star clouds Sagittarius and Scorpius, Red giant Antares

  • Stars Stars sortedsorted: : schematicschematic

    Hertzsprung-Russel-Diagram

  • Stars Stars sortedsorted: : observationsobservations

    22000 stars from the Hipparcos Catalogue together with 1000 low-luminosity stars (red and white dwarfs) from the Gliese Catalogue of Nearby Stars.

    Source: Wikipedia

  • WhyWhy therethere areare different Starsdifferent Stars

    • All Stars contain the same matter as we know on Earth

    • Origin of different Stars:

    - different mixture of elements (composition)- different physical state of matter (temperature, density)- different physical processes (nuclear fusion)

    • All Stars undergo similar evolution (only few options)

  • Compact Stars: Compact Stars: dwarfsdwarfs

    • There is a close connection between size R and mass M:

    Example water:

    R, M 2 R, 8 MconstRM

    3~

    Stars: The smaller a star, the larger its mass!

    R, MR/2, 8 M

    6

    3

    ~~

    RRM

    ρ

  • White White dwarfsdwarfs• Balance of gravity and Fermi pressure of electrons

    3~ −RM

    Relativistic electrons

    ChandrasekharLimiting mass

    Source: Wikipedia

    363 10~~

    −cmgRM

    EARTH

    SUNρ

    5000km

    10000km

    0.5M_sun 1.0M_s

  • Picture of a Picture of a whitewhite dwarfdwarf

    White dwarf in the planetary nebula NGC 2440 (“cocoon”)In center of Milky Way. The hottest star? Surface T~200,000KCredit: H. Bond (STSci), R. Ciardullo (PSU), WFPC2, HST, NASA

  • WhatWhat isis insideinside a a whitewhite dwarfdwarf??

    White Dwarf in NGC 2440. 250 time brighter than our Sun Image: Hubble Space Telescope.

    • Spectroscopy: Core: carbon, oxygen, …

    • Seismology: core crystalline

  • In In thethe newsnews ((BBC 16 Feb 2004BBC 16 Feb 2004))„Diamond star thrills astronomers“

    „Twinkling in the sky is a diamond starof 10 billion trillion trillion carats, astronomers have discovered.“

    The cosmic diamond is a chunk of crystallisedcarbon, 4,000 km across, some 50 light-yearsfrom the Earth in the constellation Centaurus. It's the compressed heart of an old star that was once bright like our Sun but has since fadedand shrunk.

    Astronomers have decided to call the star "Lucy" after the Beatles song Lucy in the Sky with Diamonds.

    White Dwarf BPM 37093,T. Metcalfe, Harvard-Smithsonian

    „A diamond that is almost forever“

    „The diamond star completely outclassesthe largest diamond on Earth, the 546-carat Golden Jubilee (South Africa).“

  • DensityDensity of of compactcompact starsstars

    • How does matter behave at such extreme densities??

    363 10~~

    −cmgRM

    EARTH

    SUNWDρ

    The answer is given by plasma physics!

    White Dwarfs:(M

  • OccurencesOccurences of Plasmaof PlasmaContemporary Physics Education Project (CPEP)http://www.cpepweb.org/

    White dwarfs

  • Plasma theory of white dwarfs• Starting in the 1960s: Van Horn, DeWitt, Ichimaru, Chabrier…

    • Energy of electron-ion plasma (neutral) in thermodynamic equilibrium:

    K – kinetic energy, G – gravitation, U – Coulomb interaction

    eiiieeieei UUUGKKH +++++= +

    • At extreme densities matter is expected to be fully ionized… (?)

  • Plasma theory of white dwarfsK – kinetic energy, G – gravitation, U – Coulomb interaction

    eiiieeieei UUUGKKH +++++= +U (small)constMnH ≈)]([0

    • One-component plasma model (OCP, jellium), TD equilibrium:

    [ ]),(1),( ,0 nTKUKUHnTH iiiibacke Γ+=+=−−

    Plasma state defined by single „coupling“ parameter

    • Electrons exptected to be spatially homogeneous, quantum degenerate, weakly interacting

  • Thermodynamics of OCP

    Classical „one-componentplasma“ (OCP)

    Liquid-solid transition below criticaltemperature (above critical couplingstrength).

    2D MD simulation of OCP cooling/heating,Periodic b.c., Torben Ott

    See lectures by P. Hartmann and T. Ott

    rTke

    EU

    BKIN

    2||==Γ

    )137:2(175 Dcr ≈Γ

    Predicted by Wigner 1934 for theelectron gas in metals.

  • Wigner crystals in the laboratory

    Tne

    rTke

    EU

    BKIN

    3/122||∝==Γ

    Ways to achieve:

    1. cooling

    Need: crΓ≥Γ

    Ideal gas behavior

    Strongly

    coupled

    plasma

    Wigner

    (Coulom

    b) cryst

    al)

    White dwarfs

    Physically equivalent systems

  • Ion crystals in traps1987 first realization in Paul trap and laser cooling (Ca, Mg,…)Bollinger et al. (NIST), Walther et al. (true 1-component plasma)

    Today many active groups in Innsbruck (Blatt), Aarhus (Drewsen)…

    Ions in storage rings, U. Schramm, LMU München

    Drewsen

  • Ion crystals in traps (2)

    Applications: atomic physics, quantum optics, collective excitations, quantum computing…

    R. Blatt, Uni Innsbruck

    Measured oscillation of bi-crystal, Drewsen, Aarhus

  • Wigner crystals – solution 2

    Tne

    rTke

    EU

    BKIN

    3/122||∝==Γ

    2. Charge increase

    Ways to achieve:

    1. cooling

    Need: crΓ≥Γ

    Ideal gas behavior

    Strongly

    coupled

    plasma

    Wigner

    (Coulom

    b) cryst

    al)

    Trapped ions

    White dwarfs

    Physically equivalent systems

  • StronglyStrongly correlatedcorrelated CoulombCoulomb Systems Systems

    Trapped ions

    Tne

    rTke

    EU

    BKIN

    3/122||∝==ΓNeed: crΓ≥Γ

    Ways to achieve:

    1. cooling

    2. Charge increase

    „Dusty plasma“

    Lectures on Monday, Tuesday

  • WignerWigner crystallizationcrystallization byby compressioncompression

    Trapped ions

    Tne

    rTke

    EU

    BKIN

    3/122||∝==ΓNeed: crΓ≥Γ

    Ways to achieve:

    1. cooling

    2. Charge increase

    3. compression

    Dusty plasmas

    semiconductors

  • MesoscopicMesoscopic quantumquantum CoulombCoulombclustersclusters in in quantumquantum dotsdots

    quasi-2-dimensional system,

    Density increase quantum („cold“) melting of „crystal“

    Phys. Rev. Focus (April 2001), Sciences et Avenir, Scientific American, FAZ 1.8. 2001…

    First-principle path integral Monte Carlo results

    Prediction of electron crystallization: A.Filinov, MB, Yu. Lozovik, PRL 86, 3851 (2001)

    compression

  • Quantum Quantum couplingcoupling parameterparameter3/1

    3/2

    3/122

    ~|| −∝∝=Γ n

    nne

    rEe

    EU

    FKIN

    QNeed: crsB

    sQ r

    arr ≥∝=Γ

    DeBrogliewave length

    Tmkh Bπλ 2/=

    r

    λ

    3λχ n=

    Quantum degeneracy

    Wigner crystal)2(37...34 Dr crs ≈Ceperley et al.,A. Filinov, MB

    Ferm

    iliq

    uid

    Ferm

    igas

  • Universality of one-component plasmas

    OCP with same coupling parameter(s) show same behavior

    M. Bonitz, Physik Journal 7/8 (2002)

  • „Artificial atoms“ (electrons in quantum dots)

    Noneq.-Green functions-Simulation: Lasse Rosenthal (length 0.001mm, T=1K)

  • „Mendeleyevtable“

    Dusty plasmaexperiments byA. Melzer et al.

    Length: 10mm,T~300K

    Classical 2D finite Coulomb Clusters

  • Summary: Universal behavior of OCP

    • classical plasma described by single parameter• quantum OCP described by two parameters

    Application:

    Mapping of white dwarf properties on entirely different laboratory plasmas

    Γ

    But: does the OCP model apply to real plasmas in stars??

  • Phase diagram of 2-comp. plasmas

    Whitedwarfs

    Neutronstars

    157,000K~1 RydAtoms, molecules

    weakly correlated!

  • Plasma theory of white dwarfs (2)

    K – kinetic energy, G – gravitation, U – Coulomb interaction

    eiiieeieei UUUGKKH +++++= +

    Include: • Dynamics of electrons (no rigid background)• Formation of atoms, molecules; partial ionization• quantum and spin effects of electrons• quantum and spin effects of ions

    Need: Selfconsistent first-principle approach to equilibriumproperties quantum Monte Carlo

  • Ultradense neutral plasmas

    157,000K~1 RydAtoms, molecules

    Pressure ionizationof atoms (Mott effect)

    classical ion crystal +quantum electron gas

    Filinov, Bonitz, Fortov, JETP Letters 72, 245 (2000)

  • ConditionsConditions forfor TCPTCP CoulombCoulomb crystalscrystals

    I. strong ion coupling (OCP): )3(100,175 Drr crsshcr

    h ≅≥≅Γ≥Γ

    II. no Coulomb bound states:

    h

    e

    e

    h

    e

    h

    TT

    qqZ

    mmM =Θ== ,,

    Additional parameters in TCP: mass, charge and temperature asymmetry

    2.1/ ≅≤= MottsBese rarr,23 Be EkT ≥

    Analytical Results: Bonitz et al. PRL 95, 235006 (2005)

    1. Classical system:finite temperature range for crystal orminimum charge Z

    secr

    B

    e

    rZ

    EkT

    ΓΘ

    ≤≤3/22

    32

  • Quantum Quantum TCPTCP CoulombCoulomb crystalscrystals

    h

    e

    e

    h

    e

    h

    TT

    qqZ

    mmM =Θ== ,,mass, charge and temperature asymmetry

    AnalyticalAnalytical ResultsResults (2): Quantum system(2): Quantum system

    1)(

    )(3/4

    −=≥e

    Motts

    crs

    ecr

    TrZrTMM• Critical mass ratio:

    • Maximum temperature: crs

    crB

    eB

    rMZ

    ETk

    Γ+Θ

    =)1(4

    2

    • Finite density range: Mottcre

    Mott nMMnn

    3

    11⎟⎠⎞

    ⎜⎝⎛

    ++

    ≤≤

    Applies to White dwarf stars

  • White White dwarfdwarf starstar

    D. Schneider, LLNL

    classicalfluid and crystalin „quantum sea“of electrons

    Size ~ our EarthMass ~ our Sun

    density:

    ERDEρρ610≅

  • Diamond???Diamond???„Diamond star thrills astronomers“

    White Dwarf BPM 37093,T. Metcalfe, Harvard-Smithsonian

    „A diamond that is almost forever“

    Diamond:Melting point: 3820K

    35.3 −≈ gcmρ

    White dwarf:

    Crystal of bare C6+ nuclei!

    3610 −≈ gcmρ

    KT 610≈

  • WhatWhat happenshappens to to thetheplasmaplasma uponupon furtherfurther

    compressioncompression??

  • FromFrom whitewhite dwarfsdwarfs to to neutronneutron starsstars

  • Quantum Quantum meltingmelting of of ionion crystalcrystalReduce ion mass from M=1856 to M=100to simulate density increase 2/3

    3 ~m

    nnΛ=χ

  • Quantum Quantum meltingmelting of of ionion crystalcrystalReduce ion mass to M=25 and M=5

    to simulate density increase

    2/33 ~

    mnnΛ=χ

    Ion liquid Ion gas

  • Neutron Neutron starstarcrystal and quantum fluidof Fe-nuclei

    in „quantum sea“of electrons

    Radius ~ 10kmMass ~ our Sun

    31510 −≅ cmgρ

    Source: Coleman, UMD

  • Ato

    ms

    Elec

    tron

    -ion

    plas

    ma

    e &

    nuc

    lei

    (e &

    pro

    tons

    &) n

    eutr

    ons

    3

    17.0fmbaryons

    N =ρ

    MeVTcmfm

    C 175101 13

    == −

    Dwarfstars

    Neutronstars

    e &

    ion

    crys

    tal

    Compression, de-trapping:new states of charged matter

    T_c

    FromFrom nucleinuclei to to nuclearnuclear mattermatter

  • CanCan oneone reproducereproducethethe twotwo--componentcomponent plasmaplasmaof of compactcompact starsstars on Earth?on Earth?

    OurOur simulationssimulations predictpredictpossiblepossible systemssystems and and

    parametersparameters..

  • PredictedPredicted parametersparameters of of TCP TCP CoulombCoulomb crystalscrystals

    ][ 3max−cmn ][max KT][ 3min −cmn

    +6C Ions(white dwarfs)

    91026102 ⋅ 33106.3 ⋅

    Are there candidates for laboratory TCP crystals?

  • TCP TCP CoulombCoulomb crystalscrystals

    ][ 3max−cmn ][max KT

    Protons(hydrogen)

    ][ 3min−cmn

    +6C Ions(white dwarfs)

    91026102 ⋅ 33106.3 ⋅

    24105⋅ 28100.1 ⋅ 000,66

    Laser or ion beam compression experiments (?)

    Lecture by Dirk Gericke

  • TCP TCP CoulombCoulomb crystalscrystalsin in thethe laboratorylaboratory??

    ][ 3max−cmn ][max KT

    Protons(hydrogen)

    Semiconductors(M=100)

    ][ 3min−cmn

    +6C Ions(white dwarfs)

    91026102 ⋅ 33106.3 ⋅

    24105⋅ 28100.1 ⋅ 000,66

    0.920102.1 ⋅ 20101.2 ⋅

  • Phase Phase diagramdiagram of hole of hole crystalcrystal

    Bonitz, Filinov, Fortov, Levashov, and Fehske, Phys. Rev. Lett. 95, 235006 (2005)

    Re E

    kTT23

    =3/11 n

    ra

    r eB

    se

    ∝=

    11++

    = crMMK

    Θ= 2

    1Z

    α

    )2(60),3(83 DDM cr =• for Z=1 (e.g. electron-hole plasma):

  • Animation: G. Schubert, M=5,12,25,50,100

    Band structure& collective

    hole behavior

    Increase of M: Increasing hole localization

    Hole Fermi gas Fermi liquidWigner crystal

    Animation: G. Schubert, M=5,12,25,50,100

    Early predictions of hole crystal: Halperin/Rice, Abrikosov, ...PIMC simulations Filinov, Bonitz 2005

    Experimental verification?High temp. Superconductivity?

  • Dec 2 2005Deutschlandfunk, NDR

    BBC FocusSuperconductor Weekca. 100 online Science pages.......

    New Scientist

    Our results in the news

    „The Hole crystal“

  • Ato

    ms

    Elec

    tron

    -ion

    plas

    ma

    e &

    nuc

    lei

    (e &

    pro

    tons

    &) n

    eutr

    ons

    3

    17.0fmbaryons

    N =ρ

    MeVTcmfm

    C 175101 13

    == −

    Dwarfstars

    Neutronstars

    e &

    ion

    crys

    tal

    Compression, de-trapping:new states of charged matter

    FromFrom nuclearnuclear matter to matter to quarksquarks

    Qua

    rk-g

    luon

    plas

    ma

    Nρ)10...5(deconfinement

    T_c

  • Big bang: Big bang: trappingtrapping of of chargedcharged mattermatter

    Source: RHIC web site

    Quark-gluon plasma realized at:Relativistic Heavy ion collider, BrookhavenLarge Hadron collider, CERN

    Crystal of nuclei, ions

  • Can one verify this experimentally ?

    To produce a quark-gluon plasmahuge densities and

    particle energies are needed

    big particle colliders in the U.S. and Europeaim at producing and studying the properties

    of the quark-gluon plasma

  • G. Baym

  • G. Baym

  • G. Baym

  • Quark-gluon plasma

    It is believed that of the quark-gluon plasmahas been seen at RHIC

    (Relativistic Heavy Ion Collider) and will soonbe produced at the LHC at CERN

    The particles in the QGP plasma interactvia the (color) Coulomb potential

    First results were surprising: the QGP is a non-ideal plasma, liquid-like

    New applications of non-ideal plasma physics!See e.g. V. Filinov et al., Contrib. Plasma Phys. 49, 536 (2009)

  • SummarySummary

    One-component plasma model: universal phase diagram, Similar plasma behavior in trapped ions, dusty plasmas etc.

    Coulomb crystal in neutral/Two-component plasmas:Ion crystal in Fermi sea of electronshole crystal in semiconductors (for M>80), superconductivity?

    http://www.theo-physik.uni-kiel.de/~bonitz

    Nonideal plasmas: exist in planets, white dwarf and neutron stars, quark-gluon plasma highly organized, collective particle behavior

  • SummarySummary

    Theoretical approaches to nonideal plasmas:Lecture this afternoon

    For more information see:

    „Introduction to Complex Plasmas“, M. Bonitz, N. Horing and P. Ludwig (eds.), Springer 2010

    http://www.theo-physik.uni-kiel.de/~bonitz

    PlasmaOccurences of PlasmaPlasmaContentsOccurences of PlasmaPlasma theory of white dwarfs Plasma theory of white dwarfs Thermodynamics of OCPWigner crystals in the laboratoryIon crystals in trapsIon crystals in traps (2)Wigner crystals – solution 2Strongly correlated Coulomb Systems Wigner crystallization by compression Mesoscopic quantum Coulomb clusters in quantum dots�Quantum coupling parameter Universality of one-component plasmas„Artificial atoms“ (electrons in quantum dots) „Mendeleyev table“ Phase diagram of 2-comp. plasmasPlasma theory of white dwarfs (2) Ultradense neutral plasmasConditions for TCP Coulomb crystalsQuantum TCP Coulomb crystalsWhite dwarf starFrom white dwarfs to neutron starsQuantum melting of ion crystalQuantum melting of ion crystalNeutron starFrom nuclei to nuclear matterPredicted parameters of �TCP Coulomb crystalsTCP Coulomb crystalsTCP Coulomb crystals�in the laboratory?Phase diagram of hole crystalBand structure �& collective �hole behaviorOur results in the newsFrom nuclear matter to quarksBig bang: trapping of charged matterCan one verify this experimentally ?Quark-gluon plasma