23
AFW L-TR-76-244 AFWL-TR- I N c) 76-244 I NON - EQUILIBRIUM RADIATION FOR THE HULL CODE October 1976 Fina l Report Approved for public release; distribution unlimited . I Doc ~ J ~~ 7 ~~ ~~~~~~ , . AIR FORCE WEAPONS LABORATORY [ Air Force Systems Command Kirt lond Air Force Bose , NM 87117

NON EQUILIBRIUM RADIATION FOR THE HULL CODE NON-EQUILIBRIUM RADIATION FOR THE HULL CODE ... reasons we have incorporated a treatment of non-equilibrium radiation ... • where Cv is

Embed Size (px)

Citation preview

AFW L-TR-76-244 AFWL-TR-I Nc) 76-244 I

NON-EQUILIBRIUM RADIATION FOR THE HULL CODE

October 1976

Final Report

Approved for public release; distribution unlimited .

ID o c

~J~~7~~

~~~~~~

•,. AIR FORCE WEAPONS LABORATORY[ Air Force Systems Command

Kirt lond Air Force Bose, NM 87117

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL-TR-76-244j

• \

This report was prepared by the Air Force Weapons Laboratory, Kirtland AFB ,

NM , under an In-House program. The Job Order number is 88091816. Capt Mark A.

Fry (DYT) was the Laboratory Project Officer-in-Charge .

When US Governmen t draw ings , specifications, or other data are used forany pur pose other than a def initely rel ated Governme nt procurement operation ,the Government thereby incurs no responsibility nor any obligation whatsoever,and the fact that the Government may have formulated , furnished , or in any waysupplied the said drawings, specifications, or other data is not to be regardedby implication or otherwise as in any manner licensing the holder or any otherperson or corporation or conveying any rights or permission to manufacture,use , or sel l any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (01) and is releasa-ble to the National Technical Information Service (NTIS). At NTIS, it will beavailable to the general public , including foreign nations.

This technic report has been reviewed and is approved for publication .1&a U~1~’~Captain , (JSAF (Project Officer

—. FOR THE COMMANDER

DONALD B. MITCHELL OHN S. DeWITT,LtColonel , USAF tColonel , USAFChief, Theore tical Branc h Ch ief, Technolo gy Div i s ion

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFIEDSI CU U.I T’V CLASS IFICATION OF THIS PAGE (WI,.,, O.,a E,,t., .d)

~~e~~t’~~~~r ~~~~~~~~~~~~~~ i~~~~~i#~~i ~~~~~~~~ READ INSTRUC~ tONS

i%~~ r Vr~ I i.#~n.,.um~r’ ~~ t IW ” I- ?~ ‘J~~ BEFORE COMPL.ETflJG FORMREPORT

~~~~~~ ~~. GOVT ACCES51OM NO. 3. RECIPIEr4 1” S CAT ALOG NUMBER

Yj W L_i.TR_76_244 ~ ______________________________

,TL~~~~~i~~ beael.) S. Xf D.Lu~O &&BIOP COVERED( Q I Flnal ,,Rep~~iON-EQUILIBRIUM RADIATION FOR THE HULL CODE ___________________________

~ 1. PERFORMING ORG. ~~~POR1’ NUMBER

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________________________

/ ~ _ , ~• 3. CON TR A C T OR GRANT NUMBER(S)

‘,~,ç Marvin L . /Al me(i~ Cydney/%~estmor~land ~Mark A.)Fry _______________________

~~ WtRcoB~ IMG ORGAN IZATION NAM E AND ADDRESS t O. PROGRA M ELEME’~IT. PROJECT , t ASK

Air Force Weapons Laborato ry ( DYT) A REA & WO RX UNIT NUMSERS

Kirt land AFB, NM 87117 62704H(~~~~~~~~ l8l6

~‘ /~~

I t . COMTROLI..ING OFFICE NAME AND ADDRESS ,,..

:1 Air Force Weapons Laboratory (DYT) //~ ~~October 1176 IKirtland AFB , NM 87117 ‘—

~~~4. MONITORING AGENCY NAME B AOORESS(i i dIfl. ,.nI 1,o~,, Conuolt1n~ Offlc•) . ~1~~’1 35. (~~

th is ~.por e)

UNCLASS I Ft EDIS.. DECLASSI FICATION/ DOWNORA CI NG

SCHEDULE

IS. DISTRIBUTION STATEM ENT (at this Rep ort )

Approved for public release ; distri bution unlimited .

17. DISTRIBUTION STATEMENT (of th~ .b.t ~.cC .nt.r.d in Block 20, ii dS(1.,.ne Ira., R.pon)

13. SUP~~L EMEM T A RY NOTES

4

13. KEY WORDS /C~øti,n,~ on rev,,.. lid. it n~c.s.arv ond id.nt11~ by block n,m~b.z)

Non Equ ilibrium Radiation Diffusion ; Diffusion Limiter; Implicit Di fferenceTechnique ; Operator Splitting ; Two Dimensional

ft . “ ~5O. ABST RACT rCornlnu . on r.v,rs. aids it i•e~as.r, ed Id.nttfy by block numb. r)

~A treatment of flux-lim ited radiation diffusion is incorporated into the HULLcode. The differential equations Involved in the non-equilibrium radiationdiffusion model are discussed , as well as the flux limiters . The differenceequations used are also derived . The code has been exercised on several testproblems and results from two of these test prcblems are reported .~~

(~/3 f~~

DO ~~~ 1473 EDITION Ø~ NOV 31 IS OS$OL!TC

S~~C~~PITY CLASSIFICA TION OF THIS PAGE ~~~~~~ D.c.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL TR-76-244

TABLE OF CONTENTS

Sect ion Page

I Introduction 1II The Diffusion Equation in Cyl indrical Coordinates 2

T III Difference Equations 5IV Test Problems 9

I .L~’ ttr ,

~hI1s Seslill-

~ Sin sictIs ~~

I ,~~~~~~,,flAIU$It~U O1~$

-

3114. ~~~~~~~

~~~~~~~~~~~~~~~~~~~~~

I \.e11

1

AFWL TR-76-244

I LLUSTRATIONS

Figure Page

1. Comparison of HULL Non-Equilibri um to 1-D Code 102. Initial Configuration for Material Energy Density 113. Initial Configuration for Radiation Energy Density 124. Material Energy Density After 150 Cycles 135. Radiation Energy Density After 150 Cycles 146. Material Energy Density After 250 Cycles 157. RadiatIon Energy Density After 250 Cycles 16

.

~

Ii I

~

. -~~~~~~~~-

_______________________________________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

it ~~~~~~~

—.-.-- - ~

. - — — —AFW L TR-76-.244

PREFACE

We would like to thank Dr. Cl iffo rd Rhoades for hel pfu l di scussion s andassistance with the programming. Computer time was made available fromLaboratory Di rector’s Funds .

S

S

li i/lv

________ ~~~~~~~~~~~~~~~~ ~~~~~~~~~ _________ _________ -.-

~.-. -

~

A FWL TR-76—244

SECTION I

INTRODUCTION

• HULL is a computer code that sol ves, with in an Eulerian mesh, the hydro-dynamic equations of continu ity, momentum, and energy with a finite difference

• scheme (ref. 1). The code has an equil ibrium radiation diffusion treatment.However, the assumption of equilibrium diffusion severely limits the types ofproblems that can be addressed. Moreover, the manner in wh ich the equilibriumdiffusion is implemented requires an unacceptably small timestep. For thesereasons we have incorporated a treatment of non-equilibrium radiation diffusionthat includes a flux-lim iter for optically thin regions.

Non-equil ibrium diffusion relaxes the assumption that the material andradiation must have the same temperature. However, we have not included a multi-frequency treatment, so we are still forced to assume the radiation fiel d has ablack body distribution , although the black body temperature is not required tobe equal to the material temperature. The flux-limiters have been added toextend the diffusion theory to optically thin regions. The diffusion coeffi-cient is modified so that the flux goes over to the free-streaming results whenthe mean-free-path becomes long.

1. HULL Hydrodynamic Computer Code, AF1~L TR 75-183, Air Force WeaponsLabora tory, Kirtland AFB , NM 87117 , (1976).

1

w — .~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFW L TR-76-244

SECTION II

THE DIFFUSION EQUATION IN CYLINDRICAL COORDINATESWe write the diffusion equation in cylindrical coordinates as

aE l a a+ ~ ~~ (RF~) +

~y Fz

= PKac(aT4 - E)

and the associated change in the material energy density as

3E 4— PKaC(aT - E)

Here E Is the radiation energy density, p is the material density, ca is theabsorption opacity , c is light velocity, a is the radiation constant , T is thematerial temperature, Em is the material energy density, and FR and F1 are theradiation fluxes In the R and Z directions, res pectively. This equationincorporates the non-equilibrium diffusion approximation ; the radiation energy

S density is not assu— ~o be aT4, the black body energy density. We note that

no material radiation energy exchange due to Compton scattering is incl uded.While we do not incorporate the Compton energy exchange, Compton scattering Is‘Included ‘In the diffusion coefficients and hence In the computation of theradiation fluxes .

The material-radiation energy exchange is done with the operator spl ittingmethod as discussed , for example, by Richtsnyer (ref.2). Operator spl itting Isalso used to solve the diffusion equation ; we do the R diffusion separatelyfrom the Z diffusion.

FR and F1 are taken to beI

,

cA 3EFR * _ f R~~.~~

• 2. Rlchtmyer, R., and Morton, K., Difference Methods for Initial-ValueProblems, Interscience Publishers , New York, 1967.

2

_ _ —

AFWL TR-76-244

and

F = ~~

cA 9Ez ~~~~~where A is the total mean free path (absorption and scattering), and

~R are

are the “flux—limiters ” in the R and Z directions , respectively. ~R

andare computed as

• ~R =

1 + ~~~

a E (1

1+3 exp a E

and

F

= a Zn E 1 (1 + 3 exP {-~~A l a Zn E

We see that our expressions for FR and F1 are the standard diffusion fluxesexcept for the flux l imi ters. For small A (when diffusion should apply), theflux l imiters are near unity , and we have ordinary diffusion theory. When Abecomes sufficiently large (which depends on the scale of the problem) so thatthe diffusion approximation breaks down , the flux l imiters reduce the diffusioncoefficients so that the radiation flux cannot exceed the product of lightvelocity and the energy density , which is the maximum physically allowabl e flux.

• To see this limiter behavior , consider FR with A large . We neglect theexponential term since it has a negative argument of large absolute value. Thenwe have

- c A l 1FR~~~~~~~ 1 aL n E 15ffi~~~~ A

or

F — cAR 1 ~E 5ff

Assuming A is sufficiently large so that we may neglect the 3 in the denominator ,we have

3L ~

_ _

1

AFW L TR-76-244

F — aE/3R ER faEIawU c

That is, IFR I = CE, wi th the direction of flow determined by the direction ofthe gradient In E.

Our discussion has been slightly misleading in that we have concentrated onthe val ue of A. Of more importance Is the size of A compared with where

1 _ E

3R

is a radiation scale l ength (or scale height). If A >> ~E’ then the flux

limiters become operational . However, if >> A, ~~~ ~1 ~

1 , and we havenormal diffusion.

A more complete description of flux limited diffusion theory is given byWinslow (refs. 3 and 4). As indicated by Winslow , much of the flux l imiterdevelopment has been done by LeBlanc and Wilson of the Lawrence Livermo reLaboratory.

3. Winslow , A.M. , Improved Flux Limiter for Asymptotic Neutron Diffusion Calcu-lations, UCIR-378 , Lawrence Livermo re Laboratory, Livermore , CA,April 1969.

4. Winslow , A .M., “Extensions of Asymptotic Neutron Diffusion Theory,”Nuclear Science and Engineering, 32 , pp 101-110, 1968.

4

- • - -—-~~~~~-~~~~~~~ --~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—i———- -

AFI4L TR-76-244

SECTION I I I

DIFFERENCE EQUATIONSWe adopt operator spl itting methods (e.g., ref. 2) to separate our diffu-

• sion equation into a radial component and an axial component , each of which isseparately solved numericall y. Hal f of the radiation-material coupling is donewith each radiation sweep. That is, we assume

3E _ 3E ~~aE~~~R ~t Z

and

a E aE aEm m , + mat at ‘ R at Z

where

• ~‘t ‘R = —

~ ~~~~~ (RF~) +

~~~ ~~a~~1~T4

- E)

~~~I Z~~~~~~FZ + KaC T

~~~~)

and

I I c ( T E)

We first derive the radial difference equation in detail. The fully• implicit difference equations are -

~t(Rcx E~ - E RCA E - E \ P1(

a~~t

(aT4 - E)2

andpKC~t 4• 5 Em

_ E~~

= _ a (aT - E )

S

~~T ~~~~~~~~‘~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~~~~~~~~~~~~~~

-

AFWL TR-76-244

where the E° , E~, and T~ denote the quantities at the beginning of the currenttime step . Unless otherwise indicated, the quantities are cel l centered. Here+ (-) refers to the adjacent cel l center at larger (smaller) radius. We use+1/2 (—1/2) to indicate the boundary between the current cell and the + (-)cell. Note that ~R(no subscript) is computed as L~R R÷112 - R_112. Theseequations, coupled with the equation of state, completely determine E, Em t andT. In order to cal culate these quantities , we fi rst make the approximation

E -E ° = C~~T - Tm m V t 0

• where Cv is the material specific heat. We are then faced with solving a 4thorder system in T. We choose to solve this system by linearizing the 4thorder term.

The linearization is taken to be

T4 = T~~+4T~~(T-T 0)

4T~T -3T~

Then~~ ~t iRc A-

~~~~~~~ +1/2

- 3~R L112 (E - E)}

PKaci~lt 3 4

2 {4aT0T - 3aT0 - E}

andp K C~t 4pC

~(T - T0) = - a

2 {4aT 0T - 3aT0 - E }Collecting terms , we have

6

-

~~iT~~ T~~i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AFWL TR- 76-244

( p K C~t pK CI~t ( 4T 1 + 2PC~

4aT0 ~ = T0 + ~ 3aT0 + E

Now define ~ as

E ~pc~

Then

1(1 + ~4aT~) = T0 + ~(3aT~ + E)

or solv ing for E,

E - T(l + ~4aT)~ - T0( l + 53aT)~

. =

(T - T0)(l + MaT3) + ~aT~

Ii +~~4a13 1 4

~ °J + a T 0

- =

i + ~~ai~ [E - aT~]

Concentrating on the material interaction terms , we haveI

Q KC~t 4E - E° = a

[4aT0(T — T0) + aT0 - E]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ::~~

AFWL TR-76-244

pic c~t F 4aT36 4 4 1= 2

L l + ~~~~~~(E_ aT

o)_ ( E_ a T

o)j F

~K cAt- 4 a 1

1 + 4aT0S

Then

I pK . cAt 1 ~K c t aT4E~~1

~~~~ 1 + 4aT36 )E + ~~~ 1

Adding the transport terms we have

~K cAtE (1 + ~~~~~~~~

~~I+l/2 ~~~ ~~ i_ 1/2 + a

~ +

= E At RcA At RcA+ •

~~ i+l/2 + E ‘

pic cAt aT4a 0

1 + 4aT0S

Finally,

-

~ i~—

~~~--~~-, - a T 0

where

6’ = 64aT~

Then

Em E~ + QC~ ~~~~

(E - aT4 )

8

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - — — .

AFWL TR-76-244

SECTION IV

• TEST PROBLEMS

We have run two classes of test problems. First , we have calculated thepropagation of plane waves parallel to the z axis and compared the resultswith an established one-dimensional code. Second , we have placed a sphericalsource in the center of the two-dimensional mesh and followed the radiationfront to test the symmetry characteristics of the difference equations.

As an example of the plane wave probl ems , we present resul ts from a calcu-lation with 40 cells in the z direction . The source region consisted of thefirst five rows with energies of 2 x io 14 ergs/gm while the remainder of themesh was filled with an ambient energy of ergs/gm. Reflective boundarycond itions were used on all boundaries . Cells were 250 cm square , and themean free path was 7500 cm (30 cells). Circles with dots in figure 1 indicatethe flux for each of the first 28 zones after 20 cycles . For our comparisonwe have chosen a one-d imensional code that employs a similar radiation flux-l imited diffusion scheme (ref. 5). Identical initial conditions were used inthi s code , and the results are shown as x ’s in figure 1. The agreement isexcellent - the slight differences in the flux for the outer cells is theresult of using a different procedure to calculate an average opacity for theouter boundary in the two codes.

The second case used a mesh of 100 x 100 cells with cell dimensions equalto 50 cm. Our spherical source with an energy density of 2 x io 14 ergs/gmhad a radius of 25 zones. The mean free path was fixed at 1 000 cm (20 cells).Figures 2 and 3 show the initial conditions of this calculation for materialenergy density and radiation energy density . Figures 4, 5, 6, and 7 illustratethe expanding source.

5. Alme , M.L. and Wilson , J.R. , “Numerical Study of Accretion onto a NeutronStar ,” Astrophysical Journal, 186, p 101 5, 1 973.

• 9

— -.-•,•--—,-.----~~~.- _______ —— —- - -‘- ••———. ..

____ -— ~~~~

1 = 2

Z I GRP

0 HULL

-

-

H-

0

- . 9

Is I I I I I I I I I I I I _I_10 2 4 8 8 10 12 14 p~ 18 20 22 24 28 28

CELL HO.4 FIgure 1. Comparison of HULL Non-~qui11brium to 1-0 Code

10

T-~~ —-’~” ~~ -

~~~~~~~~~~~~~~~‘- ----

~~~~~~ ----——-—- - = :~~~ - -~—~~;--—-- -

ENERGY1 10 20 30 40 50 60 10 80 90

I I I I I

CONTOUR SCALE• 45.0 ERGS/GM 90

2 2.500E+1340.0 3 5 .000E +13 - 8 04 7 .5 0 0E + 13

5 1.000 E 4. 14350 . 6 1.250E 4 .14 - 7 0—

. 7 1 .500E + 14— 8 1.750E + 14

30.0 . 9 2.000 E + 14 -60DXI 5.000E +01

• MIN = 1 4 000E +1225.0 MAX =2. 0 0 4. 14 - 5 0

i— 20.0 - -40

15.0 - COOL -30

E = 1 0 1210.0 -

WAR”

~”\

-20

- E= 2.10 14 ’\

\ I

- 10

.0 5.0 10.0 15.0 20. 0 25.0 30.0 35.0 40.0 45.0 50.0• RADIUS M

AFWL NONE Q UILIBRIUM RA DIA f l ON CALCU LATIONTIME 0.000 NSEC CYCLE 0. PROBLEM 23.0071

FIgure 2. Initial Configuration for Material Energy Densi ty

11

_ _ _ -.--~~~~~- - - .~~~~— • - • - - ~-—~~~~~- .

RADIATION ENERGY1 10 20 30 40 50 60 70 80 90

50.0 I I I I I

CONTOUR SCALE45.0 - ERG /GM • 90

240.0 - 3 3.000E ÷10 - 804 4 .500E + 10

5 6.000E ÷1035 0 6 7.500E t lO

7 9.000 Ej 1O8 1.050E +11

30.0 - 9 1.200E + 11 60

OX I= 5.000E 401• MIN= 7.563 E +01

~ -25.0 • MAX~ 1.210E 4 1 1 - 50I-

20.0 - 40

H -

15.0 - - 3 0

H

:::— .0 5.0 10.0 .15.0 20.0 25.0 30.0 35.0 40.0 45.0 50 .0

• RADIUS MAFWL NONEQUILIBR IUM RADIATION CALCU LAT ION

TIME 0.000 NSEC CYCLE 0. PROBLEM 23.0070

FIgure 3. Initial Configuration for Radiation Energy Density

12

-~ -~

“ -~~--~~ - ~~~~~~~~~~~~~~~ - •

ENERGY1 10 20 30 40 50 60 70 80 90

50.0 I I I I I I I

CONTOUR SCA LE45.0 - ERGS/GM - 90

2 1.000E +1340 0 3 2 .000E +13 - 80U .

4 3.000E +13fl 5 4.000E +13

6 5.000 E +131 6.000E +13 08 7.000E +13

~ 30.0 . DXI 5.000E 4 01 - 60MIN 1.000 E +12MAX 7.622 E + 13

E25. 0 - - 5 0

~~~~~~~~~~~~~~~~~~~~ 6\5 ,4 3 2 , i I— .0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45. 0 50.0

RADIUS MA FWL NONEQUILIBR IUM RAD I ATION CALCULAT ION

TIME 1.500 USEC CYCLE 150. PROBLEM 23.007 0

Figure 4 MaterIal Energy After 150 Cycles

13V

___ — ~— ‘~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

RADIATION1 10 20 30 40 50 60 70 80 9050.0 I I I I I I I I

CONTOUR SCALE45.0 - ERG/GM -

2 2.500E+ 0840.0 - 3 5.000E+08 -

4 7.500E÷08-

5 1.000E +0935 ~ - 6 1.250E+ 09

4 .,J 1 1.500E + 09• 8 1.750E 4 O9

30.0 - 9 2.000E+ 09

-DXI= 5.000E + 01M-IN= 9.275E 4.01

~ 25.0 - MAX=2 .027E + 09 -

H ~~ 20.0 - -

O!,7 8 5 4 3 2 I I I

— .0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40 .0 45 .0 50.0RAD IUS M

AFWL NONEQL JILIBRIUM RADIATION CALCU LATIONTIME 1.500 USEC CYCLE 150. PROBLEM 23.0010

Figure 5. Radiation Energy Density After 150 Cycles

.4

14

______ ~~~~~~~~~~~~~~ -~~~~ ~~~ ‘~~‘“ ‘~~~“ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ENERGY1 10 20 30 40 50 60 70 80 90

50 .0 1 I

CONTOUR SCALE45.0 ERGS/GM -

2 8.000E+1240.0 - 3 1 .600E +13 80

4 2.400E -1-135 3 .200E

35.0 - 6 4.000E +13 - 707 4.800E +138 5.600E -i-13

30.0 - 9 6.400E +13 - 60DXI=5 .000E+O 1MIN 1 .000 E+ 1225.0 —_

~~

___

~~~~~~~~~~~~~~~~~~~~ MAX=6.496 E+13 - 50

20.0 - 40

15.0 30

H— .0 0 7~8 5 4 3 2

— 0 5.0 10.0 - 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0RAD IUS M

F AFWL NONEQU ILIBR IUM RADIATION CALCUUTIONTIME 2.500 USEC CYCLE 250. PROBLEM 23 ,0070

Figure 6. Material Energy Density After 250 Cycles

15

1~ --~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

~~~~ r~:- ~~~~~~~ .

- - - ~~~~~~~~~~~~~~~~~~~~~~~~ -~ • - —-—

RADIAT I ON50 o 1 10 20 30 40 50 60 10 80 90

I I I I I I

CONTOUR SCALE45.0 ERG / GM • 90

2 1.250E +083 2 .500E + 08

40.0 • 4 3.750E +08 805 5.000E +086 6 .25OE i- 08

35.0 - 7 7.500E +08 708 8.750E +089 1.000E i-O9

30.0 - - DXI = 5.000E ÷01 -60MI N=8 .752E +01MAX= 1 .0 86E 409

25.0 • - 50I—

I- _ _ _-J

~ 20.0 - %,.,

~~~~~ -40

15.0 -3 0 •

I I I I I

:~~~:

— .0 5.0 10.0 15.0 20.0 25.0 30.0 35 ,0 40 .0 45 .~ 50.0RADIUS M

AFWL NONEQUIL IBRIUM RADIATION CALCU LATIONTIME 2.500 USEC CYCLE 250. PROBLEM 23.0070

Figure 7. Radiation Energy Density After 250 Cycles

16

.—

~

- ~~~~~~~~~~~- .——• . - -

A FWL TR-76—244

REFERENCES

1. HULL Hydrodynarnic Computer Code, AFWL TR 76-183, Air Force Wea ponsLaboratory, 1976.

2. Richtmyer , R., and Morton , K., Difference Methods for Initial -Val ueProblems , Interscience Publ ishers , New York , 1967 .

3. Winslow , A.M., Improved Flux Limiter for Asymptotic Neutron DiffusionCalculations , UCIR-378, Lawrence Livermo re Laboratory, Livermore , CAApril 1969. •

• 4. Winslow , A.M. , “Extensions of Asymptotic Neutron Diffusion Theory,”• Nuclear Science and Engineering , 32, pp 101-110 , 1968.

5. Alme , M.L. and Wilson , J.R . , “Numerical Study of Accretion onto a Neutron —

Star ,” Astrophysical Journal , 1868 , p 1015 , 1973.

I

I—

17/18