19
Non-equilibrium dynamics in the Dicke model Izabella Lovas Supervisor: Balázs Dóra Budapest University of Technology and Economic 2012.11.07.

Non-equilibrium dynamics in the Dicke model

  • Upload
    adanna

  • View
    70

  • Download
    0

Embed Size (px)

DESCRIPTION

Non-equilibrium dynamics in the Dicke model. Izabella Lovas Supervisor : Balázs Dóra. Budapest University of Technology and Economics 2012.11.07. Outline. Rabi model Jaynes-Cummings model Dicke model Thermodynamic limit Quantum phase transition Normal and super-radiant phase - PowerPoint PPT Presentation

Citation preview

Page 1: Non-equilibrium dynamics in the Dicke model

Non-equilibrium dynamics in the Dicke model

Izabella Lovas

Supervisor: Balázs Dóra

Budapest University of Technology and Economics2012.11.07.

Page 2: Non-equilibrium dynamics in the Dicke model

Outline

•Rabi model•Jaynes-Cummings model•Dicke model•Thermodynamic limit•Quantum phase transition•Normal and super-radiant phase•Experimental realization

•General formula for the characteristic function of work•Special cases -Sudden quench -Linear quench

Page 3: Non-equilibrium dynamics in the Dicke model

† †1 11 2 22 12 212

H a a E S E S a a S S

The Rabi model

fbozonic field

interaction between a bosonic field and a single two-level atom

:iE energies of the atomic states

: vacuum Rabi frequency:ijStransition operators between atomic states j and i

Page 4: Non-equilibrium dynamics in the Dicke model

The Jaynes-Cummings model

rotating-wave approximation: † 21 12,a S aS are neglected

† †1 11 2 22 12 212JCH a a E S E S a S aS

conservation of excitation: † 22a a S

JCH is exactly solvable:infinite set of uncoupled two-state Schrödinger equations

2 10

, ,22n E EH n n n

n

for n excitations: 1 2, 1n n basis states

if the initial state is a basis state, we get sinusoidal changes inpopulations: Rabi oscillations

Page 5: Non-equilibrium dynamics in the Dicke model

The Dicke model

bosonic field N atomsgeneralization of the Rabi model: N atoms, single mode field

( ) ( )

1 1

,N N

i iz z

i i

J S J S

collective atomic operators

† †0 zH J a a a a J J

N

1N -level system

pseudospin vector of length / 2j N

Page 6: Non-equilibrium dynamics in the Dicke model

Thermodynamic limitQPT at critical coupling strength 0 / 2c

0 1, 0.5c /zJ j

normal phase super-radiant phase

phot

on n

umbe

r

atom

ic in

vers

ion

normalnormal

super-radiant

super-radiant

photon number

atomic inversion

parameters:

:c :c

† /a a j

Page 7: Non-equilibrium dynamics in the Dicke model

Thermodynamic limitHolstein-Primakoff representation:

† † † †2 , 2 , zJ b j b b J j b b b J b b j

†, 1b b

Normal phase:

† † † †0 0H b b a a a a b b j

two coupled harmonic oscillators

22 2 2 2 2 20 0 0

1 162

real 0 / 2 c † †i a a b b

e

parity operator: , 0H

ground state has positive parity

Page 8: Non-equilibrium dynamics in the Dicke model

Super-radiant phasemacroscopic occupation of the field and the atomic ensemble

† † † †,a c A b d B † † † †,a c A b d B or

linear terms in the Hamiltonian disappear

22 1 , 12jA B j

where

2

2c

22 22 2 2 2 20 0

02 2

1 42

mean photon number: † 2 ( )a a A O j

global symmetry becomes broken

new local symmetries: † †(2) i c c d d

e

Page 9: Non-equilibrium dynamics in the Dicke model

Phase transition

parameters:

0 1, 0.5c

second-order phasetransition

0 :E ground-state energy

critical exponents: 0

photon number grows linearly nearc12

cA 1 1, 32

mean field exponents

Page 10: Non-equilibrium dynamics in the Dicke model

Experimental realization

even sitesodd sites

spontaneous symmetry-breakingat critical pump power crP

•constructive interference•increased photon number in the cavityK. Baumann, et al. Nature 464, 1301 (2010)

Page 11: Non-equilibrium dynamics in the Dicke model

Experimental results

The relative phase of the pump and cavity field depends on thepopulation of sublattices:

Page 12: Non-equilibrium dynamics in the Dicke model

Statistics of workDefinition: 0W E E

:f iE E difference of final and initial ground-state energiesprobability density function: 0

|,

m n m nn m

P W W E E p Fourier-transform characteristic function:

0HiuH iuHiuWG u e P W dW e e

P(W

)

f iW E E

i ground state

M. Campisi, et al. Rev. Mod. Phys. 83, 771 (2011)

:E eigenvalue of H 0 :E eigenvalue of 0H

P W appears in fluctuation relations:Jarzynski-inequalityTasaki-Crooks relation

Page 13: Non-equilibrium dynamics in the Dicke model

Determination of G(u) for the normal phase

effective Hamiltonian:

† † † †0 0H b b a a a a b b j

diagonalization with Bogoliubov-transformation:† †

0

0

cosh sinh , tanh2 2

a b a bc r r r

eigenfrequencies: 00

21

protocol: t t the Hamiltonian contains only the following terms:

2 2† † † 2 † 2, , , , ,c c c c c c c c

Page 14: Non-equilibrium dynamics in the Dicke model

Determination of G(u) for the normal phaseHeisenberg equation of motion:

2 2 †r rc t i t e c t i t e c t

differential equations for the coefficients with initial conditions

†0 0c t t c t c

0 1, 0 0 2( ) ,

uiG u e G u G u

where

1

cos sin

G ui t

t u t ut

t can be expressed in terms of ,t t

Page 15: Non-equilibrium dynamics in the Dicke model

The characteristic function

1

ln!

n

nn

iuG u

n

cumulant expansion: :n nth cumulant of the distributionexpected value: 1

12

E W t t

variance: 2 2 2 2 2212

D W t t t t

12

iuWP W e G u du

inverse Fourier-transform

simple special case: adiabatic process

,f iiu E Ef iG u e P W W E E

, :f iE Efinal and initial ground state energies

Page 16: Non-equilibrium dynamics in the Dicke model

Sudden quench:

0 1, 0 0 0

position of peaks:

2 2k l

,k l

parameters:

0 1, 0,0.495

1.41

0.1

Page 17: Non-equilibrium dynamics in the Dicke model

Linear quenchch

arac

teri

stic

tim

esca

les

adiabatic regime

diab

atic

reg

ime

tt

transition between adiabatic and diabaticlimit

0 diabatic limit: sudden quench adiabatic limit: P Wconsists of a single Dirac-delta

Page 18: Non-equilibrium dynamics in the Dicke model

Small far from c,

cumulant expansion nth cumulant, expected value, variance

approximate formula for the solution of the differential equation

adiabatic limit: 1 , 0 2f i nE E n

0 1, 0.3, 0.005

approximate formula approximate formulanumerical result numerical result

Page 19: Non-equilibrium dynamics in the Dicke model

Summary

•Quantum-optical models: -Rabi model -Jaynes-Cummings model•Dicke model -Quantum phase transition -Normal and super-radiant phase -Experimental realization•Statistics of work•Characteristic function for the normal phase•Special cases -Sudden quench -Linear quench