37
Radar Course_1.ppt ODonnell 10-26-01 MIT Lincoln Laboratory Introduction to Radar Systems Clutter Rejection MTI and Pulse Doppler Processing

No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

Radar Course_1.pptODonnell 10-26-01

MIT Lincoln Laboratory

Introduction to Radar Systems

Clutter Rejection MTI and Pulse Doppler Processing

Page 2: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_2.pptODonnell (2) 6-19-02

Disclaimer of Endorsement and Liability

• The video courseware and accompanying viewgraphs presented on this server were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor the Massachusetts Institute of Technology and its Lincoln Laboratory, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, products, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors or the Massachusetts Institute of Technology and its Lincoln Laboratory.

• The views and opinions expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or any of their contractors or subcontractors

Page 3: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_3.pptODonnell (2) 6-19-02

MTI and Doppler Processing

Transmitter

PulseCompression

Recording

Receiver

Tracking &ParameterEstimation

Console /Display

Antenna

PropagationMedium

TargetCross

Section DopplerProcessingA / D

WaveformGenerator

Detection

Signal Processor

Main Computer

Page 4: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_4.pptODonnell (2) 6-19-02

How to Handle Noise and Clutter

Page 5: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_5.pptODonnell (2) 6-19-02

How to Handle Noise and Clutter

If he doesn’t take his arm off

my shoulder I’m going to hide

his stash ofHershey Bars !! Why does Steve

always talk me into doing ridiculous

stunts like this ?

Page 6: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_6.pptODonnell (2) 6-19-02

Ground Clutter

Sea Clutter

Rain ClutterChaff

Naval Air Defense Scenario

MIT Lincoln LaboratoryMTI_RadSys2001-6

JW 7/31/2008

• Moving Target Indicator (MTI) and Pulse-Doppler (PD) processing use Doppler to reject clutter and enhance detection of moving targets

• Smaller targets require more clutter suppression

Birds

Page 7: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_7.pptODonnell (2) 6-19-02

Outline

• Introduction

• Moving Target Indicator (MTI) Techniques

• Pulse Doppler Processing Techniques

• Summary

Page 8: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_8.pptODonnell (2) 6-19-02

Terminology

• Just separate moving targets from clutter

• Use short waveforms (two or three pulses)

• Do not provide target velocity estimation

• Separate targets into different velocity regimes in addition to canceling clutter

• Provide good estimates of target velocity

• Use long waveforms -- (many pulses, tens to thousands of pulses)

Moving Target Indicator (MTI)Techniques

Pulsed Doppler (PD) Techniques

Page 9: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_9.pptODonnell (2) 6-19-02

Doppler Frequency

1 10 100 100010

100

1000

10000

Radial Velocity (m/s)

Dop

pler

Fre

quen

cy (H

z)

150 MHz450 MHz

3 GHz10 GHz35 GHz At S-Band (2800 MHz)

fd ~ 1 kHz / 40 m/s

fdV

=2λ

DopplerFrequency

Page 10: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_10.pptODonnell (2) 6-19-02

Example Clutter Spectra

0 50 100 150 200-20

-10

0

10

20

30

40

50

60

70

Radial Velocity (m/s)

Rel

ativ

e Po

wer

(dB

)

Land Clutter

Sea Clutter

Rain Clutter

Chaff Clutter

• Clutter comes from same range/angle cell as a target

• Clutter RCS can be much larger than targets of interest (>50 dB)

• Characteristics vary with terrain (land/sea), weather, etc.

PPI Display of Heavy Rain

Aircraft

Birds

Page 11: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_11.pptODonnell (2) 6-19-02

MTI and Pulse Doppler Waveforms

Tc = MTrTr

T

Time

T = Pulse lengthB = 1/T Bandwidth

Tr = Pulse repetition interval (PRI)fr = 1/Tr Pulse repetition frequency (PRF)δ

= T /Tr Duty Factor

Tc = MTr Coherent processing interval (CPI)M = Number of pulses in the CPI

M = 2, 3, or sometimes 4 for MTIM usually much greater for Pulse Doppler

T = Pulse lengthB = 1/T Bandwidth

Tr = Pulse repetition interval (PRI)fr = 1/Tr Pulse repetition frequency (PRF)δ

= T /Tr Duty Factor

Tc = MTr Coherent processing interval (CPI)M = Number of pulses in the CPI

M = 2, 3, or sometimes 4 for MTIM usually much greater for Pulse Doppler

Page 12: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_12.pptODonnell (2) 6-19-02

Data Collection for Doppler Processing

Samples at same ‘range gate’

Sample No.Range - >

Puls

e N

umbe

r(S

low

tim

e)

11 L

M

TimeRange

A/DIn-phase andQuadratureSampling

Complex I / Q samples

(the complexenvelope of

receivedwaveform)

Pulse 1Sample 12e.g. 8.3 km

Pulse 3Sample 12e.g. 8.3 km

Pulse 2Sample 12e.g. 8.3 km

Page 13: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_13.pptODonnell (2) 6-19-02

Outline

• Introduction

• Moving Target Indicator (MTI) Techniques

• Pulse Doppler Processing Techniques

• Summary

Page 14: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_14.pptODonnell (2) 6-19-02

Moving Target Indicator (MTI) Processing

• Notch out Doppler spectrum occupied by clutter

• Provide broad Doppler passband everywhere else

• Blind speeds occur at multiples of the pulse repetition frequency

– When sample frequency (PRF) equals a multiple of the Doppler frequency

0 fr = 1/T 2fr

Clutter Notch Blind Speeds

Clutter Spectrum

MTI Filter

Page 15: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_15.pptODonnell (2) 6-19-02

Two Pulse MTI Canceller• Fixed Clutter echoes

– If one pulse is subtracted from the previous pulse, fixed clutter echoes will cancel and will not be detected

• Moving targets– Moving targets change in amplitude from one pulse to the next

because of their Doppler frequency shift. – If one pulse is subtracted from the other, the result will be an

uncancelled residue

DelayTr =1/PRF Subtract

Input Output

Voutput = Vi+1 - Vi

Block Diagram

Figure by MIT OCW.

Page 16: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_16.pptODonnell (2) 6-19-02

MTI Improvement Factor

• Sin and Cin - Input target and clutter power per pulse

• Sout (fd ) and Cout (fd ) – Output target and clutter power from processor at Doppler frequency, fd

• MTI Improvement Factor = I(fd ) =

0 50 100 150 200-20

0

20

40

60

Radial Velocity (m/s)

Rel

ativ

e Po

wer

(dB

) Land ClutterRain Clutter

Aircraft

(Signal / Clutter)out

(Signal / Clutter)in fd

I(fd ) = xfd

CinCout Sin

Sout

ClutterAttenuation

SignalGain

MTI Improvement Factor

Page 17: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_17.pptODonnell (2) 6-19-02

MTI Improvement Factor Examples

Spread Clutter (σv =1 m/s, σc =10 Hz )

0 200 400 600 800 10000

10

20

30

40

50

60

Doppler Frequency (Hz)

Impr

ovem

ent F

acto

r (dB

)

2 Pulse MTI3 Pulse MTI2 Pulse MTI3 Pulse MTI

Voutput = Vi - Vi-1

Voutput = Vi - 2Vi-1 + Vi-2

3-Pulse MTI

2-Pulse MTI

Frequency = 2800 MHzCNR = 50 dB per pulsefd = 1000 Hz

Three-pulse canceller provides wider clutter notch and greater clutter attenuation

Page 18: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_18.pptODonnell (2) 6-19-02

Staggered PRFs to Increase Blind Speed

0 100 200 300 400 500 600 700 800

-20

-10

0

Radial Velocity (m/s)

SNR

Rel

ativ

e to

Sin

gle

Puls

e (d

B)

0 100 200 300 400 500 600 700 800

-20

-10

0

Radial Velocity (m/s)

Fixed 2 kHz PRI at S-Band

Staggered 2 kHz, 1.754 kHz PRI

321-00423HGT 03/04/98

• Staggering or changing the time between pulses will raise the blind speed

• Although the staggered PRF’s remove the blind speeds that would have been obtained with a constant PRF, there will be a new much higher blind speed

MTI Frequency Response

Page 19: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_19.pptODonnell (2) 6-19-02

Outline

• Introduction

• Moving Target Indicator (MTI) Techniques

• Pulse Doppler Processing Techniques– Pulse Doppler Filtering Concept

• Basic Concepts

• Example - Moving Target Detector (MTD)

– Range Doppler Ambiguities

– Airborne Radar

• Summary

Page 20: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_20.pptODonnell (2) 6-19-02

Data Collection for Doppler Processing

Samples at same ‘range gate’

Sample No.Range - >

Puls

e N

umbe

r(S

low

tim

e)

11 L

M

TimeRange

A/DIn-phase andQuadratureSampling

Complex I / Q samples

(the complexenvelope of

receivedwaveform)

Pulse 1Sample 12e.g. 8.3 km

Pulse 3Sample 12e.g. 8.3 km

Pulse 2Sample 12e.g. 8.3 km

Page 21: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_21.pptODonnell (2) 6-19-02

Pulse Doppler Processing

• Coherent integration of all pulses of a CPI• Clutter rejection• Resolving targets into different velocity segments and allowing for fine-

grain target radial velocity estimation

Filter 1(f1 , v1 )

Filter 2(f2 , v2 )

Filter 3(f3 ,v3 )

Filter M(fM ,vM )

Doppler Filter Bank

M pulses in

M Doppler velocity‘bins’ out

Doppler FrequencyDoppler Velocity

Page 22: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_22.pptODonnell (2) 6-19-02

Moving Target Detector (MTD)

• Pulse Doppler filtering on groups of 8 or greater pulses with a fine grained clutter map.

• Aircraft are detected in ground clutter and / or rain with the Doppler filter bank & use of 2 PRFs.

• Birds and ground traffic are rejected in post processing, using Doppler velocity and a 2nd fine grained clutter map

PostProcessing

Thresholding

8 or GreaterPulse Doppler

Filter Bank

Clutter MapFilter

AdaptiveThresholding

ZeroVelocityFilter

Digitized RadarEchoes From

Each Range Cell

OutputDetections

Page 23: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_23.pptODonnell (2) 6-19-02

ASR-9 8-Pulse Filter Bank

0 20 40 60 80 100-70-60

-50-40-30

-20

-100

10

Radial Velocity (kts)

Mag

nitu

de (d

B)

ASR-9 Filter Bank

0 20 40 60 80 100-70-60

-50-40-30

-20

-100

10

Radial Velocity (kts)

Mag

nitu

de (d

B)

ASR-9 One Doppler Filter

RainEcho

Aircraft

Courtesy of Northrop GrummanUsed with permission.

Page 24: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_24.pptODonnell (2) 6-19-02

Unprocessed Radar Returns

0 + 60 Kt– 60 KtDoppler Velocity

Doppler Spectrum of Rain

80

60

40

20

0Rec

eive

d Po

wer

(dB

)MTD Performance in Rain

Time History of Radar Tracker Output August 1975, FAA Test Center

Page 25: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_25.pptODonnell (2) 6-19-02

Doppler Ambiguities

• Pulse Doppler waveform samples target with sampling rate = PRF

• Sampling causes aliasing at multiples of PRF

• Two targets with Doppler frequencies separated by an integer multiple of the PRF are indistinguishable

• Unambiguous velocity

Vf

ur= λ

20 1 2 3

Time / PRI

Sample Times

Moving V=Vu

Moving V=3Vu

Stationary V=0

Page 26: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_26.pptODonnell (2) 6-19-02

Range Ambiguities

RcT

ur=

2

Unambiguous range

• Range ambiguities occur when echoes from one pulse are not all received before the next pulse

• Strong close targets (clutter) can mask far weak targets

True Range

RadarRange

Target 1

R1 R R Ru2 1= +

Target 2

Page 27: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_27.pptODonnell (2) 6-19-02

Unambiguous Range and Doppler Velocity

100 1000 10000 100000

10

100

1000

PRF (Hz)

Una

mbi

guou

s Ve

loci

ty (m

/s)

1500 150 15 1.5Unambiguous Range (km)

500 50 5

150 MHz

450 MHz

3 GHz

10 G

Hz

35 GHz

Vf

ur= λ

2

RcT

ur=

2c=

2 fr

Page 28: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_28.pptODonnell (2) 6-19-02

Sensitivity Time Control (STC)

0 dBsm Aircraft at 200 km-64 dBsm Mosquito at 5 km

Both “Targets” Give Returns with Same Signal-to-Noise ratio

• Attenuation of radar return by R-4 will result in constant SNR as a function of range for a constant cross section target

• STC cannot be used if the radar’s waveform is ambiguous in range

– Targets which are beyond the ambiguous range of the radar will be attenuated, because they folded over to close ranges

• Deliberately reduce radar sensitivity at short rangesWhy?

321-00418HGT 03/04/98

Page 29: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_29.pptODonnell (2) 6-19-02

Classes of MTI and Pulse Doppler Radars

• Wind blown clutter may be a problem• Range eclipsing losses• Far out targets compete with near in clutter• Can’t use STC• Ambiguities hardest to remove

• Wind blown clutter may be a problem• Can use STC

• Range eclipsing losses• Far out targets compete with near in clutter• Can’t use STC

Low PRF Medium PRF High PRF

RangeMeasurement

VelocityMeasurement

Unambiguous

Unambiguous

Ambiguous

AmbiguousVeryAmbiguous

VeryAmbiguous

Low PRF Medium PRF High PRF

Page 30: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_30.pptODonnell (2) 6-19-02

Velocity Ambiguity Resolution

• Split dwell into multiple CPIs at different PRFs– Scan to scan, even pulse-to-pulse changes also possible

• Moves blind velocities to ensure detection of all non-zero velocity targets

• True target velocity is where best correlation across CPIs occurs

• Choose PRFs so that least common multiple occurs above desired maximum unambiguous velocity

f2

CPI #1PRF = f1

CPI #2PRF = f2

f1

2f2 3f2 4f2

2f1 3f1 4f1 5f1 Doppler(Velocity)

Doppler(Velocity)

Unfold detections out to some maximum velocity

Individual CPI unambiguous velocity

regions

Blind Zones

Page 31: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_31.pptODonnell (2) 6-19-02

Examples of Airborne Radar

E-2CAPS-125

F-18APG-65

F-16APG-66 , 68

JOINT STARS E-8AAPY-3

AWACSE-3A

APY-1

F-15APG-63 , 70

Page 32: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_32.pptODonnell (2) 6-19-02 MIT Lincoln Laboratory

Figure by MIT OCW.

Page 33: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_33.pptODonnell (2) 6-19-02

Airborne Radar Clutter SpectrumIllustrative example without Pulse Doppler ambiguities

Figure by MIT OCW.

Page 34: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_34.pptODonnell (2) 6-19-02

Airborne Radar Clutter Spectrum

Illustrative example without Pulse Doppler ambiguities

Figure by MIT OCW.

Page 35: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_35.pptODonnell (2) 6-19-02

Displaced Phase Center Antenna (DPCA) Concept

344334_2.pptRMO 9-01-00

If the aircraft motion is exactly compensated by the movement of the phase center of the antenna beam, then there will be no clutter spread due to aircraft motion, and the clutter can be cancelled with a two pulse canceller

T1

T2

Page 36: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_36.pptODonnell (2) 6-19-02

Summary

• Moving Target Indicator (MTI) techniques– Doppler filtering techniques that reject stationary clutter

• No velocity measurement– Blind speeds are regions of Doppler space where targets with that

Doppler velocity cannot be detected• Changing the PRF between sets of pulses can alleviate the blind

speed problem– MTI techniques have a limited capability to suppress rain clutter

• Pulse Doppler techniques– Used to optimally reject various forms of radar clutter

• Measurement of target radial velocity• Moving Target Detector techniques are an example of optimum Doppler

processing and associated adaptive thresholding

– Ambiguities in range and Doppler velocity can be resolved by transmitting multiple bursts of pulses with different PRF’s

– Airborne radars use multiple PRF waveforms to suppress clutter

Page 37: No Slide Title - MIT Lincoln Laboratory...Title No Slide Title Author PUBS Created Date 7/31/2008 7:56:09 PM

MIT Lincoln LaboratoryRadar Course_37.pptODonnell (2) 6-19-02

References

• Skolnik, M., Introduction to Radar Systems, New York, McGraw-Hill, 3rd Edition, 2001