53
С П И С Ъ К от забелязани цитати на научните трудове на д-р Николай Стоянов Божков No. 60. N. Boshkov, “Galvanic Zn-Mn alloys - electrodeposition, phase composition, corrosion behaviour and protective ability”, Surface and Coatings Technology, 172, 2-3, 217-226, 2003. 1. Touazi, S., Bucko, M., Makhloufi, L., Legat, A., Bajat, J.B., “The electrochemical behavior of Zn-Mn alloy coating in carbonated concrete solution”, (2016), Surface Review and Letters, 23, (4), art. no. 1650030. 2. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R., “Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate”, (2016), Surface and Coatings Technology, 298, 73-82. 3. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R., “Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy coatings”, (2016), MA2016-01, 229-th ECS Meeting, San Diego, CA, Meeting Abstract. 4. Guo, J., Guo, X., Wang, S., Zhang, Z., Dong, J., Peng, L., Ding, W., “Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid”, (2016), Applied Surface Science, 365, 31-37. 5. Li, Q., Lu, H., Cui, J., An, M., Li, D., “Understanding the low corrosion potential and high corrosion resistance of nano-zinc electrodeposit based on electron work function and interfacial potential difference”, (2016), RSC Advances, 6, (100), 97606-97612. 6. Tsakova, V., “The bulgarian physicochemical tradition and the Institute of Physical Chemistry "Academician Rostislaw Kaischew", (2016), Chemistry, 25, (1), 35-67. 7. Liu, S., Zhao, X., Zhao, H. et al., “Corrosion performance of zinc coated steel in seawater environment”, (2016), Chinese Journal of Oceanology and Limnology, doi:10.1007/s00343-016- 5269-9. 8. Abou-Krisha, M.M., Assaf, F.H., Alduaij, O.K. et al.,”Deposition Potential Influence on the Electrodeposition of Zn–Ni–Mn Alloy“, (2016), Transactions of the Indian Institute of Metals, doi:10.1007/s12666-016-0859-y.

No. 60. N. Boshkov, “Galvanic Zn-Mn alloys ...ipc.bas.bg/media/ZaUpLoad/Prof_NBojkov/NBojkov_Citations.pdf · complex on Zn-Mn electrodeposition and on the morphology, chemical

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

С П И С Ъ К

от забелязани цитати на научните трудове на д-р Николай Стоянов Божков

No. 60. N. Boshkov, “Galvanic Zn-Mn alloys - electrodeposition, phase composition, corrosion

behaviour and protective ability”, Surface and Coatings Technology, 172, 2-3, 217-226, 2003.

1. Touazi, S., Bucko, M., Makhloufi, L., Legat, A., Bajat, J.B., “The electrochemical behavior

of Zn-Mn alloy coating in carbonated concrete solution”, (2016), Surface Review and Letters, 23, (4),

art. no. 1650030.

2. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium

thiocyanate”, (2016), Surface and Coatings Technology, 298, 73-82.

3. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings”, (2016), MA2016-01, 229-th ECS Meeting, San Diego, CA, Meeting Abstract.

4. Guo, J., Guo, X., Wang, S., Zhang, Z., Dong, J., Peng, L., Ding, W., “Effects of glycine and

current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films

prepared in ionic liquid”, (2016), Applied Surface Science, 365, 31-37.

5. Li, Q., Lu, H., Cui, J., An, M., Li, D., “Understanding the low corrosion potential and high

corrosion resistance of nano-zinc electrodeposit based on electron work function and interfacial

potential difference”, (2016), RSC Advances, 6, (100), 97606-97612.

6. Tsakova, V., “The bulgarian physicochemical tradition and the Institute of Physical

Chemistry "Academician Rostislaw Kaischew", (2016), Chemistry, 25, (1), 35-67.

7. Liu, S., Zhao, X., Zhao, H. et al., “Corrosion performance of zinc coated steel in seawater

environment”, (2016), Chinese Journal of Oceanology and Limnology, doi:10.1007/s00343-016-

5269-9.

8. Abou-Krisha, M.M., Assaf, F.H., Alduaij, O.K. et al.,”Deposition Potential Influence on the

Electrodeposition of Zn–Ni–Mn Alloy“, (2016), Transactions of the Indian Institute of Metals,

doi:10.1007/s12666-016-0859-y.

2

9. Loukil N., Bensaleh W., Feki M., “Electrodeposition and Characterization of Zn-Mn

alloys for corrosion protection of steel”, (2015), The 6th International Congress Design and

Modelling of Mechanical Systems CMSM’2015, Hammamet 23-25.3.2015, Tunisia.

10. Popov, B.N., (2015), Corrosion Engineering: Principles and Solved Problems, 1-774.

11. Bedir, M., Korkmaz, D., Bakkaloglu, O.F., Oztas, M., Karahan, I.H., Haciibrahimoglu, M.Y.,

“Effect of pH values on the characterization of electrodeposited Zn-Mn coatings in chloride-based

acidic environment”, (2015), International Journal of Electrochemical Science, 10, (6), 4513-4522.

12. Assaf, F.H., Abou-Krisha, M.M., Alduaij, O.K., El-Seidy, A.M.A., Eissa, A.A., “The effect

manganese concentration on the corrosion resistance and physical properties of Zn-Ni-Mn alloy films

produced by electrodeposition”, (2015), International Journal of Electrochemical Science, 10, (8),

6273-6287.

13. Wasekar, N.P., Jyothirmayi, A., Hebalkar, N., Sundararajan, G., “Influence of pulsed current

on the aqueous corrosion resistance of electrodeposited zinc”, (2015), Surface and Coatings

Technology, 272, 373-379.

14. Rafiee, A., Raeissi, K., Golozar, M.A., “Effect of pH on nucleation mechanism of Zn-Mn

coatings electrodeposited at different deposition potential”, (2015), Surface Engineering, 31, (6), 439-

445.

15. Nayana, K.O., Venkatesha, T.V.,”Bright zinc electrodeposition and study of influence of

synergistic interaction of additives on coating properties“, (2015), Journal of Industrial and Engineering

Chemistry, 26, 107-115.

16. Li, Q., Feng, Z., Liu, L., Xu, H., Ge, W., Li, F., An, M., “Deciphering the formation

mechanism of a protective corrosion product layer from electrochemical and natural corrosion

behaviors of a nanocrystalline zinc coating”, (2015), RSC Advances, 5, (41), 32479-32490.

17. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., Tu, J.P., “Electrodeposition,

Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic

Solvent”, (2015), Journal of Materials Engineering and Performance, 24, (1), 434-444.

18. Yonghai F., Wuping X., Henqbo Y., Minjia M., Aili W., Shuxin L., “Selective oxidation of

1,2-propanediol to lactic acid catalyzed by hydroxyapatite-supported Pd and Pd–Ag nanoparticles”,

(2015), RSC Advances, 5, 106918-106929

3

19. Zhongbao F., Qingyang L., Jingiu Z., Peixia Y., Maozhong A., “Studies on the enhanced

properties of nanocrystalline Zn–Ni coatings from a new alkaline bath due to electrolyte additives”,

(2015), RSC Advances, 5, 58199-58210.

20. Ahmido A., El Hajaji S., Ouaki B., Sabbar A., Sebbahi S., “Corrosion behavior of Sn-9Zn-

xBi lead-free solder alloysin NaCl 3% solution”, (2015), Materials Science An Indian Journal MSAIJ,

13 (2), 069-076.

21. Assaf H.F., Abou-Krisha M.M., Alduaij O.K., El-Seidy A.M.A., Eissa A.A., “The Effect

Manganese Concentration on the Corrosion Resistance and Physical Properties of Zn-Ni-Mn Alloy

Films Produced by Electrodeposition”, (2015), International Journal of Electrochemical Science, 10,

6273 – 6287.

22. Wang, Y., Zeng, J., “Effects of manganese addition on microstructures and corrosion

behavior of hot-dip zinc coatings of hot-rolled steels”, (2014), Surface and Coatings Technology, 245,

55-65.

23. Ganesan, S., Prabhu, G., Popov, B., “Electrodeposition and characterization of Zn-Mn

coatings for corrosion protection”, (2014) Surface and Coatings Technology, 238, 143-151.

24. Wykpis, K., Bierska-Piech, B., Kubisztal, J., “Electrodeposition of Zn-Mn coatings from a

sulphate bath in the presence of complexing additives”, (2014), Surface and Interface Analysis, 46, (10-

11), 740-745.

25. Boonyongmaneerat, Y., Saengkiettiyut, K., Saenapitak, S., Sangsuk, S., “Corrosion behavior

of reverse-pulse electrodeposited Zn-Ni alloys in saline environment”, (2014), Journal of Materials

Engineering and Performance, 23, (1), 302-307.

26. Li, W.-P., Zuo, X.-L., Liang, J.-H., He, J.-H., Zhang, S.-T., “Effect of acetate on

electrodeposition of manganese from chloride electrolyte with SeO2 additives”, (2014), Advanced

Materials Research, 937, 193-199.

27. Ranganatha, S., Venkatesha, T.V., “Fabrication and electrochemical characterization of Zn-

halloysite nanotubes composite coatings”, (2014), RSC Advances, 4, (59), 31230-31238.

28. Rafiee, A., Raeissi, K., Golozar, M.A., “Characterisation and corrosion resistance of Zn-Mn

coatings electrodeposited from acidic chloride bath”, (2014), Transactions of the Institute of Metal

Finishing, 92, (2), 115-120.

4

29. Marín-Sánchez, M., Ocón, P., Conde, A., García, I., “Electrodeposition of Zn-Mn coatings on

steel from 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid”, (2014),

Surface and Coatings Technology, 258, 871-877.

30. Rosalbino, F., Scavino, G., Macciò, D., Saccone, A., “Influence of the alloying component on

the corrosion behaviour of zinc in neutral aerated sodium chloride solution”, (2014), Corrosion

Science, 89, (C), 286-294.

31. Maclej A., Simka W., Nawrat G., Dercz G., “Badania wstępne nad anodowym utlenianiem

galwanicznych powłok stopowych Zn-Ni oraz charakterystyka korozyjna wytworzonych powłok

tlenkowych”, (“Preliminary studies on the anodic oxidation of galvanic coatings Zn-Ni and

characteristics of corrosion produced oxide coatings”), (2014), Ochrona przed Korozja, 5, 168-173.

32. Wykpis K., Niedbala J., Kubisztal J., Bierska-Piech B., “Otrzymywanie elektrolitycznych

powłok Zn-Mn w obecności związków kompleksujących”, (“Preparation of electrolytic Mn-Zn in the

presence of complexing agents”), (2014), Rudy i Metale Niejelazne Recycling, 59, 11, 533 – 536.

33. Nayana, K.O., Venkatesha, T.V., Chandrappa, K.G., “Influence of additive on

nanocrystalline, bright Zn-Fe alloy electrodeposition and its properties”, (2013), Surface and Coatings

Technology, 235, 461-468.

34. Bučko, M., Lačnjevac, U., Bajat, J., “The influence of substituted aromatic aldehydes on the

electrodeposition of Zn-Mn alloy”, (2013), Journal of the Serbian Chemical Society, 78, (10), 1569-

1581.

35. Bučko, M., Rogan, J., Stevanović, S.I., Stanković, S., Bajat, J.B., “The influence of anion

type in electrolyte on the properties of electrodeposited ZnMn alloy coatings”, (2013), Surface and

Coatings Technology, 228, 221-228.

36. Sun, H., Liu, S., Sun, L., “A comparative study on the corrosion of galvanized steel under

simulated rust layer solution with and without 3.5wt% NaCl”, (2013), International Journal of

Electrochemical Science, 8, (3), 3494-3509.

37. Niaz A., “Complementary use of electrochemical testing techniques to study corrosion

processes of HVOF Inconel 625, CoNiCrAIY and WCCoCr coatings”, (2013), PhD Thesis, University

of Nottingham, p.288.

38. Popczyk M., Wykpis K., Bierska-Piech B., “Optymalizacja składu chemicznego kąpieli

galwanicznej w procesie elektroosadzania powłok Zn-Mn”, (“Optimization of the chemical

5

composition of the plating bath in the process of electrodeposition Zn-Mn”), (2013), Inzynieria

Powierzchni, 4, 45-49.

39. Wykpis K., Popczyk M., Bierska-Piech B., Kubisztal J., “Charakterystyka elektrolitycznych

powłok Zn-Mn otrzymywanych w kąpieli chlorkowej”, (“Characteristics of electrolytic coatings of Zn-

Mn obtained in the chloride bath”), (2013), Inzynieria Powierzchni, 4, 39-44.

40. Ganesan S., Prabnu G., Popov B.N., “Development of Zn-Mn alloy based sacrificial

coatings”, (2013), Corrosion, Passivity and Energy: A Symposium in Honor of Digby D. Macdonald,

Book Series: ECS Transactions, 50, (31), 405-424, Editors U. Macdonald, Taylor C.D., Haruna T.

41. Guo-liang Z., Jian-cheng L., Ye-qiang M., Chong M., Zheng-xun Z., Wei-shan L.,

“Corrosion resistance of alkaline Zn - Fe alloy coatings with different iron concentrations in three kinds

of solutions”, (2012), Materials Protection, 45, 12, 7-11.

42. Ganesan, S., Prabhu, G., Popov, B.N., “Development of Zn-Mn alloy based sacrificial

coatings”, (2012), ECS Transactions, 50, (31), 405-424.

43. Ranganatha, S., Venkatesha, T.V., Vathsala, K., Kumar, M.K.P., “Electrochemical studies on

Zn/nano-CeO2 electrodeposited composite coatings”, (2012), Surface and Coatings Technology, 208,

64-72.

44. Shang, X.-L., Zhang, B., Han, E.-H., Ke, W., “The effect of 0.4 wt.% Mn addition on the

localized corrosion behaviour of zinc in a long-term experiment”, (2012), Electrochimica Acta, 65,

294-304.

45. Brito, P.S.D., Patrício, S., Rodrigues, L.F., Sequeira, C.A.C., “Electrodeposition of Zn-Mn

alloys from recycling Zn-MnO2 batteries solutions”, (2012), Surface and Coatings Technology, 206,

(13), 3036-3047.

46. Rubin, W., De Oliveira, E.M., Carlos, I.A., “Study of the influence of a boric-sorbitol

complex on Zn-Mn electrodeposition and on the morphology, chemical composition, and structure of

the deposits”, (2012), Journal of Applied Electrochemistry, 42, (1),11-20.

47. Bakhtiari A., “Effects of a small addition of mn on modifying the coating thickness, structure

and corrosion resistance of hot-dip galvanized coatings”, (2012), Metallurgical & Materials

Engineering, 18, 1, 1-7.

48. Wykpis K., Panek J., Bierska-Piech B.,”Otrzymywanie i właściwości korozyjne powłok

stopowych Zn-Mn“, (“Preparation and properties of corrosion coatings Zn-Mn”), (2012), Ochrona

przed Korozia, 11, 544-546.

6

49. Zhan Guo-liang, Luo Jian-cheng, Mo Ye-giang, Ma Chong, Zuo Zheng-xun, Li Wei-shan,

“Corrosion Resistance of Electroplated Zinc-Iron Alloy Coatings Containing Different Content of

Iron”, (2012), Materials Protection, China, 12.

50. Popczyk M., Wykpis K., “Właściwości korozyjne powłok Zn-Mn elektroosadzanych w

kąpieli siarczanowej zawierającej tiomocznik”, (“Corrosion properties of electyrodeposited Zn-Mn

from sulfate bath containing thiourea”), (2012), Inzynieria Materialowa, 33, 584-587.

51. Galvanauskaite, N., Sulcius, A., Griskonis, E., Diaz-Arista, P., “Influence of Te(VI) additive

on manganese electrodeposition at room temperature and coating properties”, (2011), Transactions of

the Institute of Metal Finishing, 89 (6), 325-332.

52. Bučko, M., Rogan, J., Stevanović, S.I., Perić-Grujić, A., Bajat, J.B., “Initial corrosion

protection of Zn-Mn alloys electrodeposited from alkaline solution”, (2011), Corrosion Science, 53 (9),

2861-2871.

53. Bučko, M.M., Stevanović, S.I., Tomić, M.V., Pavlović, M.G., Bajat, J.B., “The peculiarities

of electrochemical deposition and morphology of Zn-Mn alloy coatings obtained from pyrophosphate

electrolyte”, (“Specifičnosti elektrohemijskog taloženja i morfologija Zn-Mn prevlaka dobijenih iz

pirofosfatnog elektrolita”), (2011) Hemijska Industrija, 65 (3), 295-303.

54. Zhu, P., Zhang, X., Wu, J., Xu, Y.F., Zhou, M., “Electroplating of Zn coating on AZ31

magnesium alloy in ZnF2 solution”, (2011), Advanced Materials Research, 146-147, 1390-1397.

55. Shang, X.-L., Zhang, B., Han, E.-H., Ke, W., “Effect of small addition of Mn on the

passivation of Zn in 0.1 M NaOH solution”, (2011), Electrochimica Acta, 56 (3), 1417-1425.

56. K. Wojczykowski, “New Developments in Corrosion Testing: Theory, Methods and

Standards”, 2011, Products Finishing (online - 1/31/2011), http://www.pfonline.com/articles/new-

developments-in-corrosion-testing-theory-methods-and-standards.

57. Wang J., Wu Z., Su X., Wu C., Liu Y., Hao T., “Analysis of morphology and growth kinetics

of Zn-Mn and Zn-0.2wt.%Al-Mn hot-dip galvanizing coatings”, (2011), Advanced Materials Research,

(291-294), 233-236.

58. Britto P.S.D., Patricio C., Rodriques L.F., Santos D.M.F., Sequeira C.A.C.,

“Electrodeposition of Zn-Mn alloys from recycling battery leach solutions in thye presence of amines”,

The SUstainable World, Editor: C.A. Brebbia, 2011, 367 – 377, ISBN 978-1-84564-504-5.

7

59. Jingfu L, Yan M., Jia C., Tong Y., “Research progress of effect of alloying and

microstructure on corrosion resistance of Zn alloy”, (2010), Material and Heat Treatment Technology,

39, 12, 9-11.

60. Mouanga, M., Berçot, P., Rauch, J.Y., “Comparison of corrosion behaviour of zinc in NaCl

and in NaOH solutions. Part I: Corrosion layer characterization”, (2010), Corrosion Science, 52 (12),

3984-3992.

61. Mouanga, M., Berçot, P., “Comparison of corrosion behaviour of zinc in NaCl and in NaOH

solutions; Part II: Electrochemical analyses”, (2010), Corrosion Science, 52 (12), 3993-4000.

62. Brito, P.S.D., Patrício, S., Rodrigues, L.F., Santos, D.M.F., Sequeira, C.A.C.,

“Electrodeposition of Zn-Mn alloys from recycling battery leach solutions in the presence of amines”,

(2010), WIT Transactions on Ecology and the Environment, 142, 367-378.

63. Bucko M.M., Tomic M.V., Stojanovic M.V., Pavlovic M.G., Bajat J.B., “Elektrohemijsko

taloženje i koroziona stabilnost prevlaka Zn-Mn legura”, (“Electrochemical deposition and corrosion

stability of Zn-Mn alloys”), (2010), Zaštita Materijala, 51, (2), 105-110.

64. Tomić M.V., Bučko M.M., Pavlović M.G., Bajat J.B., “Corrosion Stability of

Electrochemically Deposited Zn-Mn Alloy Coatings”, (2010), Contemporary Materials, I–1, 87 – 93.

65. Osuchowska E., Bielinski J., Lutze R., Kwiatkowski L., “Antykorozyjne powloki

elektrolityczne na baize cynku”, (“Anticorrosion electrolytic zinc-based coating”), (2010), Inzynieria

Powierzchni, 3, 40-47.

66. Zhu P., Zhang X.J., Wu J.H., Xu J.F., Zhou M., “Electroplating of Zn Coating on AZ31

magnesium alloy in ZnF2”, International Conference on Advances in Materials and manufacturing

Processes, Shendzhen, (2010), Book Series: Advanced Materials Research, 146-147, 1390-1397.

67. Meng, G., Zhang, L., Shao, Y., Zhang, T., Wang, F., Dong, C., Li, X., “Effect of refining

grain size on the corrosion behavior of Cr(III) conversion layers on zinc coatings”, (2009), Scripta

Materialia, 61, (11), 1004-1007.

68. Pistofidis, N., Vourlias, G., Stergioudis, G., Tsipas, D., Polychroniadis, E.K., “Hot-dip

galvanized and alternative zinc coatings”, (2009), Corrosion Protection: Processes, Management and

Technologies, 1-38.

69. Ortiz, Z.I., Díaz-Arista, P., Meas, Y., Ortega-Borges, R., Trejo, G., “Characterization of the

corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings”, (2009), Corrosion

Science, 51, (11), 2703-2715.

8

70. Zhang, B., Zhou, H.-B., Han, E.-H., Ke, W., “Effects of a small addition of Mn on the

corrosion behaviour of Zn in a mixed solution”, (2009) Electrochimica Acta, 54, (26), 6598-6608.

71. Mouanga, M., Ricq, L., Douglade, J., Berçot, P., “Corrosion behaviour of zinc deposits

obtained under pulse current electrodeposition: Effects of coumarin as additive”, (2009) Corrosion

Science, 51, (3), 690-698.

72. Díaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., Trejo, G., “Electrodeposition and

characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing

ammonium thiocyanate as an additive”, (2009), Surface and Coatings Technology, 203, (9), 1167-

1175.

73. Rubin W., “Estudo da influencia do complex borico sorbitol no processo de electrodeposicao,

morfologia e composicao da liga Zn-Mn”, (“Study of the influence of the boric acid sorbitol complex

on the electrodeposition process, morphology and composition of the Zn-Mn alloy”), Universidade

Federal de Sao Carlos, 2009, PhD Thesis, p. 8.

74. Hai-Bo, Z., Bo, Z., Li-Juan, Z., Jian-Qiu, W., En-Hou, H., Wei, K., “Effect of Mn on

corrosion behavior of Zn in a simulated solution for marine atmoshpere”, (2008), Corrosion Science

and Protection Technology, 20 (6), 395-399.

75. Li, H., Zhang, B., Wang, J., Han, E.H., Ke, W., “Effect of Sb and Mn additions on the

corrosion behaviour of Zn”, (2008), Journal of the Chinese Society of Corrosion and Protection, 28 (5),

257-264.

76. Malik, H., Bin Md Hamid, M.R., Haruman, E., “Effect of pH and temperature on the

performance of zinc anodes for a risk-based storage tank management approach”, (2008), Anti-

Corrosion Methods and Materials, 55 (5), 243-249.

77. Shivakumara, S., Arthoba Naik, Y., Achary, G., Sachin, H.P., Venkatesha, T.V., “Influence

of condensation product on electrodeposition of Zn-Mn alloy on steel”, (2008), Indian Journal of

Chemical Technology, 15 (1), 29-35.

78. Hong Li; Zhang Bo; Wang Jian-qiu; Han En-hou; Ke Wei, “Effect of Alloying Elements Sb

and Mn on Zn Corrosion”, (2008), Journal of Chinese Society for Corrosion and Protection, 28, (5),

257-264.

79. Simescu L., “Elaboration des revetements de phosphates de zinc sur armature a beton. Etude

de leur comportement a la corrosion en milieu neuter el alkalin”, (“Preparation of zinc phosphate

9

coatings on concrete reinforcement. Study of their corrosion behavior in neuter and alkaline

environments”), PhD Thesis, Institute Nacional des Sciences Appliques de Lyon, 2008, p. 180.

80. Junior J.M.F., “Obtencao e Caracterizacao de Revestimentos de Zn-Mn em Meio de Sulfato”,

(“Obtaining and Characterizing Coatings of Zn-Mn in Sulfate Medium”), Fortaleza 2008, Universidade

federal do Ceara, PhD Thesis, p. 14

81. Ganesan, P., Kumaraguru, S.P., Popov, B.N., “Development of compositionally modulated

multilayer Zn-Ni deposits as replacement for cadmium”, (2007), Surface and Coatings Technology,

201, (18), 7896-7904.

82. Mouanga, M., Ricq, L., Douglade, J., Berçot, P., “Effects of some additives on the corrosion

behaviour and preferred orientations of zinc obtained by continuous current deposition”, (2007),

Journal of Applied Electrochemistry, 37, (2), 283-289.

83. Mangolini, F., Magagnin, L., Cavallotti, P.L., “Pulse plating of sacrificial Mn-Cu alloys from

sulphate bath”, (2007), Transactions of the Institute of Metal Finishing, 85, (1), 27-33.

84. Díaz-Arista, P., Trejo, G., “Electrodeposition and characterization of manganese coatings

obtained from an acidic chloride bath containing ammonium thiocyanate as an additive”, (2006),

Surface and Coatings Technology, 201, (6), 3359-3367.

85. Ganesan, P., Kumaraguru, S.P., Popov, B.N., “Development of Zn-Ni-Cd coatings by pulse

electrodeposition process”, (2006), Surface and Coatings Technology, 201, (6), 3658-3669.

86. Mangolini, F., Magagnin, L., Cavallotti, P.L., “Pulse plating of Mn-Cu alloys on steel”,

(2006), Journal of the Electrochemical Society, 153, (9), C623-C628.

87. Mouanga, M., Ricq, L., Douglade, G., Douglade, J., Berçot, P., “Influence of coumarin on

zinc electrodeposition”, (2006), Surface and Coatings Technology, 201 (3-4), 762-767.

88. Savall, C., Rebere, C., Sylla, D., Gadouleau, M., Refait, Ph., Creus, J., “Morphological and

structural characterisation of electrodeposited Zn-Mn alloys from acidic chloride bath”, (2006),

Materials Science and Engineering A, 430, (1-2), 165-171.

89. Díaz-Arista, P., Antaño-López, R., Meas, Y., Ortega, R., Chainet, E., Ozil, P., Trejo, G.,

“EQCM study of the electrodeposition of manganese in the presence of ammonium thiocyanate in

chloride-based acidic solutions”, (2006), Electrochimica Acta, 51, (21), 4393-4404.

90. Pistofidis, N., Vourlias, G., Konidaris, S., Pavlidou, E., Stergiou, A., Stergioudis, G.,

“Microstructure of zinc hot-dip galvanized coatings used for corrosion protection”, (2006) Materials

Letters, 60, (6), 786-789.

10

91. N. Pistofidu, “Study of thermodynamic factors on the controlled growth of layers and effects

of impurities on the strength”, PhD Thesis, Aristotle University of Thessaloniki, Faculty of Science,

2006, p. 43.

92. Zhang Bo, “Development of corrosion resistant galvanizing alloys”, University of

Birmingham, PhD Thesis, 2005, p. 45.

93. Tuaweri J.T., “Zinc and zinc alloy composite coatings for corrosion protecion and wear

resistance”, Loughborough University, PhD Thesis, 2005, p. 33.

94. Müller, C., Sarret, M., Andreu, T., “Corrosion behaviour of zinc-manganese coatings”,

(2004), EUROCORR 2004 - European Corrosion Conference, Long Term Prediction and Modelling of

Corrosion, p. 8.

95. Schacht, B., Verheyen, R., Kruth, J.-P., Lauwers, B., “An erosion index for wire electrode

materials in EDM”, (2004), American Society of Mechanical Engineers, Manufacturing Engineering

Division, MED, 15, art. no. IMECE2004-60798, 157-164.

96. Plieth, W., “Electrochemical deposition: The concept of residence times in structure

development”, (2004), Journal of Solid State Electrochemistry, 8, (6), 338-345.

11

No. 57. Boshkov N., Petrov K., Kovacheva D., Vitkova S., Nemska S., “Influence of the alloying

component on the protective ability of some zinc galvanic coatings”, Electrochimica Acta, 51, 1,

77 – 84, 2005.

1. Touazi, S., Bucko, M., Makhloufi, L., Legat, A., Bajat, J.B., “The electrochemical behavior

of Zn-Mn alloy coating in carbonated concrete solution”, (2016), Surface Review and Letters, 23, (4),

art. No. 1650030.

2. Tafreshi M., Allahkaram S.R., Farhangi H., “Comparative study on structure, corrosion

properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings”, (2016), Materials

Chemistry and Physics, 183, 263-272.

3. Ji S.Y., Liang S.H., Song K.X., Li H.X., Li Z., “Effects of lanthanum on the microstructure,

electrochemical behavior, and anti-corrosion properties of zinc–copper–titanium alloy in 3% sodium

chloride solution”, (2016), Materials and Corrosion, DOI: 10.1002/maco.201609159.

4. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium

thiocyanate”, (2016), Surface and Coatings Technology, 298, 73-82.

5. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings”, (2016), MA2016-01, 229-th ECS Meeting, San Diego, CA, Meeting Abstract.

6. Guo, J., Guo, X., Wang, S., Zhang, Z., Dong, J., Peng, L., Ding, W., “Effects of glycine and

current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films

prepared in ionic liquid”, (2016), Applied Surface Science, 365, 31-37.

7. Badida, M., Sobotova, L., Gombar, M., Kmec, J., Kucerka, D., Hrmo, R., “The contribution

to coating quality evaluation by statistical methods”, (2016), Metalurgija, 55, (3), 445-448.

8. Azizi, F., Kahoul, A., “Electrodeposition and corrosion behaviour of Zn/Co coating produced

from a sulphate bath”, (2016), Transactions of the Institute of Metal Finishing, 94, (1), 43-48.

9. Tsakova, V., “”The Bulgarian physicochemical tradition and the Institute of Physical

Chemistry "Academician Rostislaw Kaischew", (2016), Chemistry, 25, (1), 35-67.

10. Popov, B.N., (2015), Corrosion Engineering: Principles and Solved Problems, 1-774.

12

11. Karahan, I.H., “Effect of borax pentahydrate addition to acid bath on the microstructure and

corrosion resistance of Zn-Co Coating”, (2015), Acta Physica Polonica A, 128, (2), 432-435.

12. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., Tu, J.P., “Electrodeposition,

Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic

Solvent”, (2015), Journal of Materials Engineering and Performance, 24, (1), 434-444.

13. Badida, M., Gombar, M., Maslejova A., Sobotova, L., Kmec, J., Vagaska A., “Evaluation of

zinc coating quality by statistical methods”, (2015), Przemysl Chemiczny, 94, (12), 2146-2149.

14. Marques, A.G., Simões, A.M., “EIS and SVET assessment of corrosion resistance of thin Zn-

55% Al-rich primers: Effect of immersion and of controlled deformation”, (2014), Electrochimica

Acta, 148, 153-163.

15. Ganesan, S., Prabhu, G., Popov, B., “Electrodeposition and characterization of Zn-Mn

coatings for corrosion protection”, (2014), Surface and Coatings Technology, 238, 143-151.

16. Rafiee, A., Raeissi, K., Golozar, M.A., “Characterisation and corrosion resistance of Zn-Mn

coatings electrodeposited from acidic chloride bath”, (2014), Transactions of the Institute of Metal

Finishing, 92 (2), 115-120.

17. Marín-Sánchez, Ocón, P., Conde, A., García, I., “Electrodeposition of Zn-Mn coatings on

steel from 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid”, (2014),

Surface and Coatings Technology, 258, 871-877.

18. Rosalbino, F., Scavino, G., Macciò, D., Saccone, A., “Influence of the alloying component on

the corrosion behaviour of zinc in neutral aerated sodium chloride solution”, (2014), Corrosion

Science, 89 (C), 286-294.

19. Vagaská, A., Gombár, M., Kmec, J., Michal, P., “Statistical analysis of the factors effect on

the zinc coating thickness”, (2013), Applied Mechanics and Materials, 378, 184-189.

20. Bučko, M., Rogan, J., Stevanović, S.I., Stanković, S., Bajat, J.B., “The influence of anion

type in electrolyte on the properties of electrodeposited ZnMn alloy coatings”, (2013), Surface and

Coatings Technology, 228, 221-228.

21. Michal, P., Gombár, M., Vagaská, A., Piteľ, J., Kmec, J., “Experimental study and modeling

of the zinc coating thickness”, (2013), Advanced Materials Research, 712-715, 382-386.

22. Ganesan, S., Prabhu, G., Popov, B.N., “Development of Zn-Mn alloy based sacrificial

coatings”, (2013), Corrosion, Passivity and Energy: A Symposium in Honor of Digby D. Macdonald,

Book Series: ECS Transactions, 50, (31), 405-424, Editors U. Macdonald, Taylor C.D., Haruna T.

13

23. Heydari Gharahcheshmeh, M., Heydarzadeh Sohi, M., “Pulse electrodeposition of Zn-Co

alloy coatings obtained from an alkaline bath”, (2012), Materials Chemistry and Physics, 134 (2-3),

1146-1152.

24. Shang, X.-L., Zhang, B., Han, E.-H., Ke, W., “The effect of 0.4 wt.% Mn addition on the

localized corrosion behaviour of zinc in a long-term experiment”, (2012), Electrochimica Acta, 65, pp.

294-304.

25. Brito, P.S.D., Patrício, S., Rodrigues, L.F., Sequeira, C.A.C., “Electrodeposition of Zn-Mn

alloys from recycling Zn-MnO2 batteries solutions”, (2012), Surface and Coatings Technology, 206,

(13), 3036-3047.

26. Rubin, W., De Oliveira, E.M., Carlos, I.A., “Study of the influence of a boric-sorbitol

complex on Zn-Mn electrodeposition and on the morphology, chemical composition, and structure of

the deposits”, (2012), Journal of Applied Electrochemistry, 42, (1), 11-20.

27. Salvago G., Massimiliano B., "Metal Matrix Composites: Corrosion", Wiley Encyclopedia of

Composites (2012).

28. Maclej, A., Michalska, J., Simka, W., Nawrat, G., Piotrowski, J., “Effect of temperature and

pH of ammonium galvanic bath on the properties of Zn-Co alloy coatings”, (2011), IOP Conference

Series: Materials Science and Engineering, 22, (1), art. No. 012006.

29. Panagopoulos, C.N., Lagaris, D.A., Vatista, P.C., “Adhesion and corrosion behaviour of Zn-

Co electrodeposits on mild steel”, (2011), Materials Chemistry and Physics, 126, (1-2), 398-403.

30. Karahan, I.H., Çetinkara, H.A., “Study of effect of boric acid on Zn-Co alloy

electrodeposition from acid baths and on composition, morphology and structure of deposit”, (2011),

Transactions of the Institute of Metal Finishing, 89, (2), 99-103.

31. Frade, T., Gomes, A., Da Silva Pereira, M.I., Alberts, D., Pereiro, R., Fernández, B., “Studies

on the stability of Zn and Zn-TiO2 nanocomposite coatings prepared by pulse reverse current”, (2011),

Journal of the Electrochemical Society, 158, (3).

32. Shang, X.-L., Zhang, B., Han, E.-H., Ke, W., “Effect of small addition of Mn on the

passivation of Zn in 0.1 M NaOH solution”, (2011), Electrochimica Acta, 56, (3), 1417-1425.

33. Britto P.S.D., Patricio C., Rodriques L.F., Santos D.M.F., Sequeira C.A.C.,

“Electrodeposition of Zn-Mn alloys from recycling battery leach solutions in thye presence of amines”,

Book, The Sustainable World, Editor: C.A. Brebbia, 2011, 367 – 377, ISBN 978-1-84564-504-5.

14

34. Gomes, A., Frade, T., Da Silva Pereira, M.I., “Studies on the stability of Zn and Zn-TiO2

nanocomposite coatings prepared by pulse reverse current”, (2010), ECS Transactions, 28, (24), 13-23.

35. Brito, P.S.D., Patrício, S., Rodrigues, L.F., Santos, D.M.F., Sequeira, C.A.C.,

“Electrodeposition of Zn-Mn alloys from recycling battery leach solutions in the presence of amines”,

(2010), WIT Transactions on Ecology and the Environment, 142, 367-378.

36. Gharahcheshmeh, M.H., Sohi, M.H., “Electrochemical studies of zinc-cobalt alloy coatings

deposited from alkaline baths containing glycine as complexing agent”, (2010), Journal of Applied

Electrochemistry, 40 (8), pp. 1563-1570.

37. Bajat, J.B., Stanković, S., Jokić, B.M., Stevanović, S.I., “Corrosion stability of Zn-Co alloys

deposited from baths with high and low Co content - The influence of deposition current density”,

(2010), Surface and Coatings Technology, 204, (16-17), 2745-2753.

38. Zhang, B., Zhou, H.-B., Han, E.-H., Ke, W., “Effects of a small addition of Mn on the

corrosion behaviour of Zn in a mixed solution”, (2009), Electrochimica Acta, 54, (26), 6598-6608.

39. Ortiz, Z.I., Díaz-Arista, P., Meas, Y., Ortega-Borges, R., Trejo, G., “Characterization of the

corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings”, (2009), Corrosion

Science, 51, (11), 2703-2715.

40. Gharahcheshmeh, M.H., Sohi, M.H., “Study of the corrosion behavior of zinc and Zn-Co

alloy electrodeposits obtained from alkaline bath using direct current”, (2009), Materials Chemistry and

Physics, 117 (2-3), 414-421.

41. Bajat, J.B., Stanković, S., Jokić, B.M., “Electrochemical deposition and corrosion stability of

Zn-Co alloys”, (2009), Journal of Solid State Electrochemistry, 13, (5), 755-762.

42. Rosalbino, F., Angelini, E., Macciò, D., Saccone, A., Delfino, S., “Application of EIS to

assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in

neutral aerated sodium chloride solution”, (2009), Electrochimica Acta, 54, (4), 1204-1209.

43. Díaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., Trejo, G., “Electrodeposition and

characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing

ammonium thiocyanate as an additive”, (2009), Surface and Coatings Technology, 203, (9), 1167-

1175.

44. Rubin W., “Estudo da influencia do complex borico sorbitol no processo de electrodeposicao,

morfologia e composicao da liga Zn-Mn”, (“Study of the influence of the boric acid sorbitol complex

15

on the electrodeposition process, morphology and composition of the Zn-Mn alloy”), Universidade

Federal de Sao Carlos, 2009, PhD Thesis, p. 8.

45. Lichušina, S., Chodosovskaja, A., Sudavičius, A., Juškenas, R., Bučinskiene, D., Selskis, A.,

Juzeliunas, E., “Cobalt-rich Zn-Co alloys: Electrochemical deposition, structure and corrosion

resistance”, (2008), Chemija, 19 (1), 25-31.

46. Hai-Bo, Z., Bo, Z., Li-Juan, Z., Jian-Qiu, W., En-Hou, H., Wei, K., “Effect of Mn on

corrosion behavior of Zn in a simulated solution for marine atmoshpere”, (2008), Corrosion Science

and Protection Technology, 20 (6), 395-399.

47. Li, H., Zhang, B., Wang, J., Han, E.H., Ke, W., “Effect of Sb and Mn additions on the

corrosion behaviour of Zn”, (2008), Journal of the Chinese Society of Corrosion and Protection, 28,

(5), 257-264.

48. Lichušina, S., Sudavičius, A., Juškenas, R., Bučinskiene, D., Juzeliunas, E., “Deposition of

cobalt rich Zn-Co alloy coatings of high corrosion resistance”, (2008), Transactions of the Institute of

Metal Finishing, 86, (3), 141-147.

49. Hai-Bo, Z., Bo, Z., Li-Juan, Z., Jian-Qiu, W., En-Hou, H., Wei, K., “Effect of Mn on

corrosion behavior of Zn in a simulated solution for marine atmoshpere”, (2008), Corrosion Science

and Protection Technology, 20 (6), 395-399.

50. Li, H., Zhang, B., Wang, J., Han, E.H., Ke, W., “Effect of Sb and Mn additions on the

corrosion behaviour of Zn”, (2008), Journal of the Chinese Society of Corrosion and Protection, 28 (5),

257-264.

51. Bajat, J.B., Mišković-Stanković, V.B., Dražić, D.M., “Adhesion of epoxy cataphoretic

coatings on Zn alloys”, (2007), Journal of the Serbian Chemical Society, 72, (12), 1383-1392.

52. Neto, P.D.L., Correia, A.N., Colares, R.P., Araujo, W.S., “Corrosion study of

electrodeposited Zn and Zn-Co coatings in chloride medium”, (2007), Journal of the Brazilian

Chemical Society, 18, (6), 1164-1175.

53. Rosalbino, F., Angelini, E., Macciò, D., Saccone, A., Delfino, S., “Influence of rare earths

addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium sulphate

solution”, (2007) Electrochimica Acta, 52 (24), 7107-7114.

54. Arizaga, G.G.C., Satyanarayana, K.G., Wypych, F., “Layered hydroxide salts: Synthesis,

properties and potential applications”, (2007), Solid State Ionics, 178 (15-18), 1143-1162.

16

No. 62. Boshkov N., Petrov K., Vitkova S., Nemska S., Raichevski G., “Composition of the

corrosion products of galvanic coatings Zn-Co and their influence on the protective ability”,

Surface and Coatings Technology, 157, 2-3, 171 – 178, 2002.

1. Winiarski J., Tylus W., Szczygiel B., “EIS and XPS investigations on the corrosion mechanism

of ternary Zn–Co–Mo alloy coatings in NaCl solution”, (2016), Applied Surface Science, 364, (28),

455-466.

2. Winiarski J., Szczygiel B., “The influence of iron and molybdenum on the corrosion proces of

protective ternary Zn–Fe–Mo alloy coatings in chloride solution”, (2016), Ochrona przed Korozia, 4,

94-97.

3. Azizi F., Kahoul A., “Electrodeposition and corrosion behaviour of Zn–Co coating produced

from a sulphate bath”, (2016), Transactions of the IMF, 94, (1), 43-48.

4. Tafreshi M., Allahkaram S.R., Farhangi H., “Comparative study on structure, corrosion

properties and tribological behavior of pure Zn and different Zn-Ni alloy coatings”, (2016), Materials

Chemistry and Physics, 183, 263-272.

5. Karahan I.F., “Effect of Borax Pentahydrate Addition to Acid Bath on the Microstructure and

Corrosion Resistance of Zn–Co Coating”, (2015), Acta Physica Polonica, 128, (2-B), B 432-435.

6. Visuet E.M., “Electrolyte transport and interfacial initiation mechanisms of zinc rich epoxy

nanocoating/substrate system under corrosive environment”, (2015), The Graduate Faculty of The

University of Akron, PhD Theses, p. 114.

7. Wang Y., Zeng, J., “Effects of manganese addition on microstructures and corrosion behavior

of hot-dip zinc coatings of hot-rolled steels”, (2014), Surface and Coatings Technology, 245, 55-65.

8. Fettkenhauer, C., Weber, J., Antonietti, M., Dontsova, D., “Novel carbon nitride composites

with improved visible light absorption synthesized in ZnCl2-based salt melts”, (2014), RSC Advances,

4, (77), 40803-40811.

9. Rosalbino, F., Scavino, G., Macciò, D., Saccone, A., “Influence of the alloying component on

the corrosion behaviour of zinc in neutral aerated sodium chloride solution”, (2014), Corrosion

Science, 89 (C), 286-294.

17

10. W. Reátegui R., A. Vergara R., Solis J. L., “Efecto de la incorporación del Ni y Co en la

electrodeposición del Zn”, (“Effect of the incorporation of Ni and Co in the electrodeposition of Zn”),

(2014), Industria Quimica, Novembre, 47-53.

11. Sun, H., Liu, S., Sun, L., “A comparative study on the corrosion of galvanized steel under

simulated rust layer solution with and without 3.5wt% NaCl”, (2013), International Journal of

Electrochemical Science, 8, (3), 3494-3509.

12. Sato Y., Azumi K., “Corrosion Inhibition by Zinc Corrosion Products on Zinc-Coated Steel, ”

(2013), ECS Transactions, 50, (47), 27-36, Editors K.R. Zavadil, K. Azumi, P. Schmutz.

13. Salvago G., Massimiliano B., "Metal Matrix Composites: Corrosion.", Wiley Encyclopedia of

Composites (2012).

14. Heydari Gharahcheshmeh, M., Heydarzadeh Sohi, M., “Pulse electrodeposition of Zn-Co

alloy coatings obtained from an alkaline bath”, (2012) Materials Chemistry and Physics, 134, (2-3),

1146-1152.

15. Ramanauskas, R., Gudavičiute, L., Kosenko, A., Girčiene, O., “Characterisation of oxide

films on Zn and Zn alloy coatings”, (2012), Transactions of the Institute of Metal Finishing, 90, (3),

137-142.

16. Perez, V.E.P., Alfantazi, A., “Effects of oxygen and sulfate concentrations on the corrosion

behavior of zinc in nacl solutions”, (2012), Corrosion, 68, (3), 035005-1/ 035005-11.

17. Bajat, J.B., Stevanović, S.I., Jokić, B.M., “Microstructure and corrosion behaviour of Zn-Co

alloys deposited from three different plating baths”, (2011), Journal of the Serbian Chemical Society,

76, (11), 1537-1550.

18. Panagopoulos, C.N., Lagaris, D.A., Vatista, P.C., “Adhesion and corrosion behaviour of Zn-

Co electrodeposits on mild steel”, (2011), Materials Chemistry and Physics, 126, (1-2), 398-403.

19. Karahan, I.H., Çetinkara, H.A., “Study of effect of boric acid on Zn-Co alloy

electrodeposition from acid baths and on composition, morphology and structure of deposit”, (2011),

Transactions of the Institute of Metal Finishing, 89, (2), 99-103.

20. Mouanga, M., Berçot, P., Rauch, J.Y., “Comparison of corrosion behaviour of zinc in NaCl

and in NaOH solutions. Part I: Corrosion layer characterization”, (2010), Corrosion Science, 52, (12),

3984-3992.

18

21. Gharahcheshmeh, M.H., Sohi, M.H., “Electrochemical studies of zinc-cobalt alloy coatings

deposited from alkaline baths containing glycine as complexing agent”, (2010), Journal of Applied

Electrochemistry, 40, (8), 1563-1570.

22. Bajat, J.B., Stanković, S., Jokić, B.M., Stevanović, S.I., “Corrosion stability of Zn-Co alloys

deposited from baths with high and low Co content - The influence of deposition current density”,

(2010), Surface and Coatings Technology, 204, (16-17), 2745-2753.

23. Nawrat G., Maclei A., Piotrowski J., “Galwaniczne wytwarzanie antykorozuyjnych powlok

stopowych cynk-kobalt”, (“Galvanic production of anti-corrosion alloy coating of zinc-cobalt”),

(2010), Ochrona przed Korozia, 4-5, 262-265.

24. Roque J.M.F., “Estudo da eletrodeposicao da liga Zn/Co sobre aco carbon e sua resistencia a

corrosao”, (“Study of the electrodeposition of the Zn / Co alloy on carbon steel and its resistance to

corrosion”), (2010), Politecnica da Universidade de Sao Paolo, p. 47.

25. Gharahcheshmeh, M.H., Sohi, M.H., “Effect of the temperature and Co2+ concentration of

bath on composition of Zn-Co alloy coatings”, (2010), International Journal of Advanced Design and

Manufacturing Technology, 3, (2), 33-36.

26. Wang S.P.,Fei J.Y., Wang W.K., Wan B.H., Wang L., “Research Progress of Corrosion

Resistant Zinc Base Coatings”, (2010), Materials Protection, 43, (3), 49-52.

27. Addi, Y., Duverneuil, P., Khouider, A.,”Electrodeposition of heavy metals (Cu; Ni; Zn and

Cd) from industrial effluents”, (2009), ECS Transactions, 19, (32), 63-67.

28. Gharahcheshmeh, M.H., Sohi, M.H.,”Study of the corrosion behavior of zinc and Zn-Co

alloy electrodeposits obtained from alkaline bath using direct current“, (2009), Materials Chemistry and

Physics, 117, (2-3), 414-421.

29. Bajat, J.B., Stanković, S., Jokić, B.M., “Electrochemical deposition and corrosion stability of

Zn-Co alloys”, (2009), Journal of Solid State Electrochemistry, 13, (5), 755-762.

30. Ferkous H., Talhi B., Barj M., Boukherroub R., Szunerits S., “Investigation of the Ability of

the Corrosion Protection of Zn-Mg Coatings”, (2009), The Open Corrosion Journal, 2, 26-31.

31. Bajat, J.B., Mišković-Stanković, V.B., Dražić, D.M., “Adhesion of epoxy cataphoretic

coatings on Zn alloys”, (2007), Journal of the Serbian Chemical Society, 72, (12), 1383-1392.

32. Neto, P.D.L., Correia, A.N., Colares, R.P., Araujo, W.S., “Corrosion study of

electrodeposited Zn and Zn-Co coatings in chloride medium”, (2007), Journal of the Brazilian

Chemical Society, 18, (6), 1164-1175.

19

33. Petrauskas, A., Grincevičiene, L., Češuniene, A., Juškenas, R., “Influence of Co2+ and Cu2+

on the phase composition of Zn-Ni alloy”, (2006), Electrochimica Acta, 51, (27), 6135-6139.

34. Olivier S., “Avaliacao dos impactos ambientais Gerados pela Producao de residuos

industriais do Ramo metalurgico: Recuperacao e Reciclagem” [“Evaluation of the environmental

impacts Generated by the production of industrial waste of the metallurgical sector: Recovery and

Recycling”], 2006, PhD Thesis, Universidade Federal de Pernambuco, Recife, p. 28, 122.

35. Panagopoulos, C.N., Georgarakis, K.G., Petroutzakou, S., “Sliding wear behaviour of zinc-

cobalt alloy electrodeposits”, (2005), Journal of Materials Processing Technology, 160, (2), 234-244.

36. Pushpavanam, M., Michael M.S., “Multilayered zinc-nickel and zinc-cobalt alloys -

Corrosion resistance under simulated conditions and field exposure”, (2004), Transactions of the

Institute of Metal Finishing, 82, (5-6), 174-180.

37. Hsu, H.-Y., Yang, C.-C., “Electrodeposition and Corrosion Resistance of Zn-Pd Alloy from

the ZnCl2-EMIC(1-ethyl-3-methylimidazolium chloride)-PdCl2 Room Temperature Molten Salt”,

(2003), Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences, 58, (11), 1055-1062.

38. Zhang H., Guo Z.C., Wang S.L., Wang J.L., “Researching status and Developing Trends of

cobalt Alloy electroplating”, (2003), Electroplating and Pollution Control, 23, (4), 1-6.

No. 54. Boshkov N., Petrov K., Raichevski G., “Corrosion behavior and protective ability of

multilayer galvanic coatings of Zn and Zn–Mn alloys in sulfate containing medium”, Surface &

Coatings Technology, 200, 20-21, 5995 - 6001, 2006.

1. Timma, C., Lostak, T., Janssen, S., Flock, J., Mayer, C., “Surface investigation and

tribological mechanism of a sulfate-based lubricant deposited on zinc-coated steel sheets”, (2016),

Applied Surface Science, 390, 784-794.

2. Cross, S.R., Schuh, C.A., “Ternary alloying additions and multilayering as strategies to

enhance the galvanic protection ability of Al-Zn coatings electrodeposited from ionic liquid solution”,

(2016), Electrochimica Acta, 211, 860-870.

3. Kazimierczak, H., Hara, A., Bigos, A., Ozga, P., “Electrodeposition of Zn-Mn-Mo layers

from citrate-based aqueous electrolytes”, (2016), Electrochimica Acta, 202, 110-121.

20

4. Guo, J., Guo, X., Wang, S., Zhang, Z., Dong, J., Peng, L., Ding, W., “Effects of glycine and

current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films

prepared in ionic liquid”, (2016), Applied Surface Science, 365, 31-37.

5. Abou-Krisha, M.M., Assaf, F.H., Alduaij, O.K. et al., “Deposition Potential Influence on

the Electrodeposition of Zn–Ni–Mn Alloy”, (2016), Transactions of the Indian Institute of Metals,

doi:10.1007/s12666-016-0859-y.

6. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings”, (2016), MA2016-01, 229-th ECS Meeting, San Diego, CA, Meeting Abstract.

7. Popov, B.N., “Corrosion Engineering: Principles and Solved Problems”, (2015), 1-774.

8. Rafiee, A., Raeissi, K., Golozar, M.A., “Effect of pH on nucleation mechanism of Zn-Mn

coatings electrodeposited at different deposition potential”, (2015), Surface Engineering, 31, (6), 439-

445.

9. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., Tu, J.P., “Electrodeposition,

Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic

Solvent”, (2015), Journal of Materials Engineering and Performance, 24, (1), 434-444.

10. Lee M.H., Kim Y.W., Lee S.G., Kang J.W., Park J.M., Moon K.M., Kim Y.H., “Influence of

annealing temperatures on corrosion resistance of magnesium thin film-coated electro-galvanized

steel”, (2015), Modern Physics Letters B, 29, (06n07), 5 pages.

11. Ganesan, S., Prabhu, G., Popov, B., “Electrodeposition and characterization of Zn-Mn

coatings for corrosion protection”, (2014), Surface and Coatings Technology, 238, 143-151.

12. Tomachuk, C.R., Elsner, C.I., Di Sarli, A.R., “Electrochemical characterization of chromate

free conversion coatings on electrogalvanized steel”, (2014), Materials Research, 17, (1), 61-68.

13. Rafiee, A., Raeissi, K., Golozar, M.A., “Characterisation and corrosion resistance of Zn-Mn

coatings electrodeposited from acidic chloride bath”, (2014), Transactions of the Institute of Metal

Finishing, 92, (2), 115-120.

14. Cross, S.R., Woollam, R., Shademan, S., Schuh, C.A., “Computational design and

optimization of multilayered and functionally graded corrosion coatings”, (2013), Corrosion Science,

77, 297-307.

21

15. Zhai, X., Myamina, M., Duan, J., Hou, B., “Microbial corrosion resistance of galvanized

coatings with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes”,

(2013), Corrosion Science, 72, 99-107.

16. Bučko, M., Rogan, J., Jokić, B., Mitrić, M., Lačnjevac, U., Bajat, J.B., “Electrodeposition of

Zn-Mn alloys at high current densities from chloride electrolyte”, (2013), Journal of Solid State

Electrochemistry, 17, (5), 1409-1419.

17. Liu, J.H., Chen, J.L., Liu, Z., Yu, M., Li, S.M., “Fabrication of Zn-Ni/Ni-P compositionally

modulated multilayer coatings”, (2013), Materials and Corrosion, 64, (4), 335-340.

18. He, F., Luo, X.-Y., Hu, Y.-B., Ling, J., “Influence of Mg on corrosion resistance of hot-dip

Zn-Al alloy coating”, (2013), Corrosion and Protection, 34, (8), 686-689.

19. Ganesan, S., Prabhu, G., Popov, B.N., “Development of Zn-Mn alloy based sacrificial

coatings”, (2013), ECS Transactions, 50, (31), 405-424.

20. He F., Luo X., Hu Y.B., Ling J., “Influence of Mg on corrosion resistance of hot-dip Zn-Al

alloy coating”, (2013), Corrosion and protection, 34, (8), 686-689.

21. Chen, J.-L., Liu, J.-H., Li, S.-M., Yu, M., “Corrosion resistance of Zn-Ni/Ni and Ni/Zn-Ni

compositionally modulated multilayer coatings”, (2012), Materials and Corrosion, 63, (7), 607-613.

22. Rubin, W., De Oliveira, E.M., Carlos, I.A., “Study of the influence of a boric-sorbitol

complex on Zn-Mn electrodeposition and on the morphology, chemical composition, and structure of

the deposits”, (2012), Journal of Applied Electrochemistry, 42, (1), 11-20.

23. Bučko, M., Rogan, J., Stevanović, S.I., Perić-Grujić, A., Bajat, J.B., “Initial corrosion

protection of Zn-Mn alloys electrodeposited from alkaline solution”, (2011), Corrosion Science, 53,

(9), 2861-2871.

24. Wang, J., Wu, Z., Su, X., Wu, C., Liu, Y., Hao, T., “Analysis of morphology and growth

kinetics of Zn-Mn and Zn-0.2wt.%Al-Mn hot-dip galvanizing coatings”, (2011), Advanced Materials

Research, 291-294, 233-236.

25. Rahsepar, M., Bahrololoom, M.E., “Corrosion resistance of Ni/Zn-Fe/Zn and Ni/Zn/Zn-Fe

compositionally modulated multilayer coatings”, (2011), Corrosion Engineering Science and

Technology, 46, (1), 70-75.

26. Bucko M.M., Tomic M.V., Stojanovic M.V., Pavlovic M.G., Bajat J.B., “Elektrohemijsko

taloženje i koroziona stabilnost prevlaka Zn-Mn legura”, (“Electrochemical deposition and corrosion

stability of Zn-Mn alloys”), (2010), Zaštita Materijala, 51, (2), 105-110.

22

27. Osuchowska E., Bielinski J., Lutze R., Kwiatkowski L., “Antykorozyjne powloki

elektrolityczne na baize cynku”, (“Anticorrosion electrolytic zinc-based coating”) (2010), Inzynieria

Powierzchni, 3, 40-47.

28. Rahsepar, M., Bahrololoom, M.E., “Study of surface roughness and corrosion performance of

Ni/Zn-Fe and Zn-Fe/Ni compositionally modulated multilayer coatings”, (2009), Surface and Coatings

Technology, 204, (5), 580-585.

29. Rahsepar, M., Bahrololoom, M.E., “Corrosion study of Ni/Zn compositionally modulated

multilayer coatings using electrochemical impedance spectroscopy”, (2009), Corrosion Science, 51,

(11), 2537-2543.

30. Díaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., Trejo, G., “Electrodeposition and

characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing

ammonium thiocyanate as an additive”, (2009), Surface and Coatings Technology, 203, (9), 1167-

1175.

31. Sørensen, P.A., Kiil, S., Dam-Johansen, K., Weinell C.E., “Anticorrosive coatings: a

review”, (2009), Journal of Coatings Technology and Research, 6, (135), 135-176.

32. Ferkous H., Talhi B., Barj M., Boukherroub R., Szunerits S., “Investigation of the Ability of

the Corrosion Protection of Zn-Mg Coatings”, (2009), The Open Corrosion Journal, 2, 26-31.

33. Rubin W., “Estudo da influencia do complex borico sorbitol no processo de electrodeposicao,

morfologia e composicao da liga Zn-Mn”, (“Study of the influence of the boric acid sorbitol complex

on the electrodeposition process, morphology and composition of the Zn-Mn alloy”), Universidade

Federal de Sao Carlos, 2009, PhD Thesis, p. 9.

34. Junior J.M.F., “Obtencao e Caracterizacao de Revestimentos de Zn-Mn em Meio de Sulfato”,

(“Obtaining and Characterizing Coatings of Zn-Mn in Sulfate Medium”), Fortaleza 2008, Universidade

federal do Ceara, PhD Thesis, p. 14.

35. Ganesan, P., Kumaraguru, S.P., Popov, B.N., “Development of compositionally modulated

multilayer Zn-Ni deposits as replacement for cadmium”, (2007), Surface and Coatings Technology,

201, (18), 7896-7904.

36. Wang D., “Organosilane self-assembled layers (SAMs) and hybrid silicate magnesium-rich

primers for the corrosion protection of aluminum alloy 2024 T3”, (2007), North Dakota State

University, Publication Number: AAI3304606; ISBN: 9780549505051, PhD Thesis.

23

37. Ganesan, P., Kumaraguru, S.P., Popov, B.N., “Development of Zn-Ni-Cd coatings by pulse

electrodeposition process”, (2006), Surface and Coatings Technology, 201, (6), 3658-3669.

No. 48. Koleva D.A., Hu J., Fraaij A.L.A., Stroeven P., Boshkov N., De Wit J.H.W., “Quantitative

characterization of steel/cement paste interface microstructure and corrosion phenomena in

mortars suffering from chloride attack”, Corrosion Science, 48, 12, 4001 - 4019, 2006.

1. Medina, C., De Rojas S., M.I., Thomas, C., Polanco, J.A., Frías, M., “Durability of recycled

concrete made with recycled ceramic sanitary ware aggregate. Inter-indicator relationships”, (2016),

Construction and Building Materials, 105, 480-486.

2. Romero J.D.M., “Efecto del ambiente Marino en edificios de segunda residencia en la costa

valenciana. Influencia del crecimiento urbanistico y sistemas constructivos”, (“Effect of the marine

environment on buildings of second residence on the Valencian coast. Influence of urban growth and

construction systems”), (2016), Universitat Politècnica de València, PhD Thesis, p. 7.27.

3. Pacheco, J., Çopuroğlu, O., “Quantitative energy-dispersive X-ray microanalysis of chlorine in

cement paste”, (2016), Journal of Materials in Civil Engineering, 28. (1), art. No. 04015065.

4. Nazrazdani S., Nagulakonda V.V., Barnes J., Garcia A., Al-Shenawa A., D’Souza N.A.,

“Effects of Heat Treatment Processes on Corrosion Resistance of Epoxy-Coated Rebar Steel”, (2016),

Journal of failure Analysis and Prevention, 16, (5), 896-901.

5. Michel A., Lepech M., Stang H., Geiker M.R., “Multi-physical and multi-scale deterioration

modelling of reinforced concrete: modelling corrosion-induced concrete damage”, (2016), 9-th

International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9, pp.

1-12, Editors: V. Saouma, J. Bolander and E. Landis.

6. Shi J., Geng G., Ming J., “Corrosion resistance of fine-grained rebar in mortars designed for

high-speed railway construction”, (2016), European Journal of Environmental and Civil Engineering,

http://dx.doi.org/10.1080/19648189.2016.1210035

7. Moreno, J.D., Bonilla, M., Adam, J.M., Victoria Borrachero, M., Soriano, L., “Determining

corrosion levels in the reinforcement rebars of buildings in coastal areas. A case study in the

Mediterranean coastline”, (2015), Construction and Building Materials, 100, 11-21.

24

8. Wang, D., Shi, J., Jiang, J., Sun, W., “Chloride-induced corrosion resistance of low-alloyed

reinforcement steels in two different pH simulated concrete solution”, (2015), Dongnan Daxue

Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 45, (6), 1163-

1168.

9. Aperador, W., Plaza, M., Delgado, A., “Improved protection against corrosion of galvanized

steel embedded in alkali-activated concrete”, (2015), International Journal of Electrochemical

Science, 10, (6), 4585-4595.

10. Rodríguez, A., Gutiérrez-González, S., Prieto, M.I., Cobo, A., Calderón, V.,”Analysis of

long-term corrosion behavior in mortars containing recycled ladle furnace slag using computerized

tomography and SEM“, (2015), Materials and Corrosion, 66, (3), 199-205.

11. Serdar, M., Meral, C., Kunz, M., Bjegovic, D., Wenk, H.-R., Monteiro, P.J.M., “Spatial

distribution of crystalline corrosion products formed during corrosion of stainless steel in concrete”,

(2015), Cement and Concrete Research, 71, 93-105.

12. Pavoine, A., Harbec, D., Chaussadent, T., Tagnit-Hamou, A., Divet, L., “Impact of alternative

cementitious material on mechanical and transfer properties of concrete”, (2014), ACI Materials

Journal, 111, (3), 251-261.

13. Itty, P.-A., Serdar, M., Meral, C., Parkinson, D., MacDowell, A.A., Bjegović, D., Monteiro,

P.J.M., “In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in

cement paste”, (2014), Corrosion Science, 83, 409-418.

14. Duffó, G.S., Farina, S.B., Schulz, F.M., “Corrosion of steel drums containing cemented ion-

exchange resins as intermediate level nuclear waste”, (2013), Journal of Nuclear Materials, 438, (1-3),

116-125.

15. Shi, W., Dong, Z.H., Kong, D.J., Guo, X.P., “Application of wire beam electrode technique to

investigate initiation and propagation of rebar corrosion”, (2013), Cement and Concrete Research, 48,

25-33.

16. Silva, N., Tang, L., Lindqvist, J.E., Boubitsas, D., “Chloride profiles along the concrete-steel

interface”, (2013), International Journal of Structural Engineering, 4, (1-2), 100-112.

17. Tang, F., "Enamel coated steel reinforcement for improved durability and life-cycle

performance of concrete structures: microstructure, corrosion, and deterioration" (2013). Doctoral

Dissertations. Paper 1828. http://scholarsmine.mst.edu/doctoral_dissertations/1828

25

18. Goncalves, A.R.F., “Avaliação da durabilidade de fitas metálicas embebidas em argamassa

bastarda, sujeita a envelhecimento artificial”, (“Evaluation of the durability of metallic bands

embedded in bastard mortar, subject to artificial aging”), (2013), Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, PhD Thesis, p. 38.

19. Aperador-Chaparro, W., Delgado-Tobón, A.E., Bautista-Ruiz, J.H., “Application of cathodic

protection at the laboratory in AAS and OPC mortar under a marine environment” (Aplicación de

protección catódica en el laboratorio a los morteros de escoria activada alcalinamente y al Portland

ordinario sometidos a un ambiente marino), (2012), Ingenieria y Universidad, 16, (1), 77-94.

20. Miranda, J.M., Narváez, L., García, G., “Characterisation of corrosion products formed on

steel rebars”, (2012), Canadian Metallurgical Quarterly, 51, (2), 228-234.

21. Alhozaimy, A., Hussain, R.R., Al-Zaid, R., Al-Negheimish, A., “Coupled effect of ambient

high relative humidity and varying temperature marine environment on corrosion of reinforced

concrete”, (2012), Construction and Building Materials, 28, (1), 670-679.

22. Shi, J.-J., Sun, W., “Electrochemical and analytical characterization of three corrosion

inhibitors of steel in simulated concrete pore solutions”, (2012), International Journal of Minerals,

Metallurgy and Materials, 19, (1), 38-47.

23. Sosa, M., Pérez-López, T., Reyes, J., Corvo, F., Camacho-Chab, R., Quintana, P., Aguilar, D.,

“Influence of the marine environment on reinforced concrete degradation depending on exposure

conditions”, (2011), International Journal of Electrochemical Science, 6, (12), 6300-6318.

24. Xu, C., Li, Z., Jin, W., “Electrochemical impedance spectroscopy characteristics of corrosion

behavior of rebar in concrete”, (2011), Corrosion Science and Protection Technology, 23, (5), 393-398.

25. Chen X., Zhi-Yuan L., Wei-Liang J., “Electrochemical Impedance Spectroscopy

Characteristics of Corrosion Behavior of Rebar in Concrete”, (2011), Corrosion Science and Protection

Technology, 23,.(5), 393 – 398.

26. Aperador-Chaparro W., Ruiz J.B.B., Rivera W.G., “Identification products of corrosion of

steel embedded alkali-activated slag concrete in a chloride solution”, (2011), Avances Investigacion de

Ingenieria, 14, 32-39.

27. Correa, E., Peñaranda, S., Castaño, J., Echeverría, F., “Concrete deterioration in Colombian

urban atmospheres”, (Deterioro del concreto en ambientes urbanos de Colombia), (2010), Revista

Facultad de Ingenieria, (52), 41-46.

26

28. Silva, N., Luping, T., Lindqvist, J.E., Boubitsas, D., “Chloride contents at the concrete-steel

interface”, (2010), Advances in Concrete Structural Durability - Proceedings of the 2nd International

Conference on Durability of Concrete Structures, ICDCS 2010, 275-284.

29. Beck, M.F., “Zur Entwicklung der Eigenkorrosion von Stahl in Beton”, (“On the

development of the self-corrosion of steel in concrete”), (2010), Rheinisch-Westfälische Technische

Hochschule, Aachen, PhD Thesis, p. 134.

30. Kupwade-Patil, K., Gordon, K., Xu, K., Moral, O., Cardenas, H., Lee, L., “Corrosion

mitigation in concrete beams using electrokinetic nanoparticle treatment”, (2009), Excellence in

Concrete Construction through Innovation - Proceedings of the International Conference on Concrete

Construction, 365-371.

31. Subramaniam, K.V., Bi, M., “Investigation of the local response of the steel-concrete

interface for corrosion measurement”, (2009), Corrosion Science, 51, (9), 1976-1984.

32. Shi, X., Yang, Z., Nguyen, T.A., Suo, Z., Avci, R., Song, S., “An electrochemical and

microstructural characterization of steel-mortar admixed with corrosion inhibitors”, (2009), Science in

China, Series E: Technological Sciences, 52, (1), 52-66.

33. Tang Y., Zhang J., Zuo Y., “Electrochemical corrosion of concrete reinforcing bars of

naphthenic water reducer”, (2009), Electrochemistry (China), 15, (2), 152-156.

34. Imai D., Dabwan A.H.A.,

Kaneco S.,

Katsumata H.,

Suzuki T.,

Hossain M.Z.,

Nakashima K.,

Kato T.,

K. Ohta, “Disposal of Sea Bottom Sediments by Use as Raw Material for Concrete Elements”,

(2008), Agricultural Engineering International: The CIGR E-Journal. Manuscript BC 08 003. Vol. X,

1- 13.

35. Tanner, R., “Effect of Polarization on Steel Embedded in Simulated Piling Specimens

Evaluated by Critical Chloride Threshold”, Book, (2007), Florida Atlantic University,

https://books.google.bg/books?id=yrjB4xeNZPgC

27

No. 59. Boshkov N., Petrov K., Vitkova S., Raichevski G., “Galvanic alloys Zn-Mn - composition

of the corrosion products and their protective ability in sulfate containing medium”, Surface and

Coatings Technology, 194, 2-3, 276 - 282, 2005.

1. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium

thiocyanate”, (2016), Surface and Coatings Technology, 298, 73-82.

2. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings”, (2016), MA2016-01, 229-th ECS Meeting, San Diego, CA, Meeting Abstract.

3. Guo, J., Guo, X., Wang, S., Zhang, Z., Dong, J., Peng, L., Ding, W., “Effects of glycine and

current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films

prepared in ionic liquid”, (2016), Applied Surface Science, 365, 31-37.

4. Kaassis, A.Y.A., Wei, M., Williams, G.R., “New biocompatible hydroxy double salts and

their drug delivery properties”, (2016), Journal of Materials Chemistry B, 4, (35), 5789-5793.

5. Ji S.Y., Liang S.H., Song K.X., Li H.X., Li Z., “Effects of lanthanum on the microstructure,

electrochemical behavior, and anti-corrosion properties of zinc–copper–titanium alloy in 3% sodium

chloride solution”, (2016), Materials and Corrosion, DOI: 10.1002/maco.201609159.

6. Popov, B.N., Corrosion Engineering: Principles and Solved Problems, (2015), p. 1-774.

7. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., Tu, J.P., “Electrodeposition,

Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic

Solvent”, (2015), Journal of Materials Engineering and Performance, 24, (1), 434-444.

8. Quites, F.J., Germino, J.C., Atvars, T.D.Z., “Improvement in the emission properties of a

luminescent anionic dye intercalated between the lamellae of zinc hydroxide-layered”, (2014),

Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 194-201.

9. Barahuie, F., Hussein, M.Z., Fakurazi, S., Zainal, Z., “Development of drug delivery systems

based on layered hydroxides for nanomedicine”, (2014), International Journal of Molecular Sciences,

15, (5), 7750-7786.

28

10. Wang, Y., Zeng, J., “Effects of manganese addition on microstructures and corrosion

behavior of hot-dip zinc coatings of hot-rolled steels”, (2014), Surface and Coatings Technology, 245,

55-65.

11. Ganesan, S., Prabhu, G., Popov, B., “Electrodeposition and characterization of Zn-Mn

coatings for corrosion protection”, (2014), Surface and Coatings Technology, 238, 143-151.

12. Yao, C., Wang, Z., Tay, S.L., Gao, W., “Effects of Mg on morphologies and properties of hot

dipped Zn-Mg coatings”, (2014), Surface and Coatings Technology, 260, 39-45.

13. Szczygiel, B., Laszczynska, A., “Influence of bath concentration and pH on electrodeposition

process of ternary Zn-Ni-Mo alloy coatings”, (2014), Transactions of the Institute of Metal Finishing,

92, (4), 196-202.

14. Machovsky, M., Kuritka, I., Sedlak, J., Pastorek, M., “Hexagonal ZnO porous plates prepared

from microwave synthesized layered zinc hydroxide sulphate via thermal decomposition”, (2013),

Materials Research Bulletin, 48, (10), 4002-4007.

15. Mohsin, S.M.N., Hussein, M.Z., Sarijo, S.H., Fakurazi, S., Arulselvan, P., Hin, T.-Y.Y.,

“Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application”,

(2013), Chemistry Central Journal, 7, (1), art. No. 26.

16. Cousy, S., Svoboda, L., Zelenka, J., “Basic precipitation of Simonkolleite nanoplatelets”,

(2013), NANOCON 2013 - Conference Proceedings, 5th International Conference, pp. 265-268.

17. Ganesan, S., Prabhu, G., Popov, B.N., “Development of Zn-Mn alloy based sacrificial

coatings”, (2012), ECS Transactions, 50, (31), 405-424.

18. Thomas, N., “Mechanochemical synthesis of layered hydroxy salts”, (2012), Materials

Research Bulletin, 47, (11), 3568-3572.

19. Rubin, W., De Oliveira, E.M., Carlos, I.A., “Study of the influence of a boric-sorbitol

complex on Zn-Mn electrodeposition and on the morphology, chemical composition, and structure of

the deposits”, (2012), Journal of Applied Electrochemistry, 42, (1), 11-20.

20. Thomas, N., Rajamathi, M., “High selectivity in anion exchange reactions of the anionic clay,

cobalt hydroxynitrate”, (2011), Journal of Materials Chemistry, 21, (44), 18077-18082.

21. Thébault, F., Vuillemin, B., Oltra, R., Allely, C., Ogle, K., “Modeling bimetallic corrosion

under thin electrolyte films”, (2011), Corrosion Science, 53, (1), 201-207.

22. Xu Q.Y., Li Y., “Effect of Titanium and Cerium on Microstructure and Corrosion Resistance

of Hot - Dip Galvanized Coatings”, (2011), Electroplating and Finishing, 30, (8), 28-31.

29

23. Reffass, M., Berziou, C., Rébéré, C., Billard, A., Creus, J., “Corrosion behaviour of

magnetron-sputtered Al1-x-Mnx coatings in neutral saline solution”, (2010), Corrosion Science, 52,

(11), 3615-3623.

24. Osuchowska E., Bielinski J., Lutze R., Kwiatkowski L., “Antykorozyjne powloki

elektrolityczne na baize cynku”, (“Anticorrosion electrolytic zinc-based coatings”) (2010), Inzynieria

Powierzchni, (Surface Engineering), 3, 40-47.

25. Rubin W., “Estudo da influencia do complex borico sorbitol no processo de electrodeposicao,

morfologia e composicao da liga Zn-Mn”, (“Study of the influence of the boric acid sorbitol complex

on the electrodeposition process, morphology and composition of the Zn-Mn alloy”), Universidade

Federal de Sao Carlos, 2009, PhD Thesis, p. 7.

26. Pistofidis, N., Vourlias, G., Stergioudis, G., Tsipas, D., Polychroniadis, E.K., “Hot-dip

galvanized and alternative zinc coatings”, (2009), Corrosion Protection: Processes, Management and

Technologies, pp. 1-38.

27. Rosalbino, F., Angelini, E., Macciò, D., Saccone, A., Delfino, S., “Application of EIS to

assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in

neutral aerated sodium chloride solution”, (2009), Electrochimica Acta, 54, (4), 1204-1209.

28. Díaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., Trejo, G., “Electrodeposition and

characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing

ammonium thiocyanate as an additive”, (2009), Surface and Coatings Technology, 203, (9), 1167-

1175.

29. Zhang J.Y., Liu Q.F., Liu Q., “Research Status and Tendency of Corrosion Resistant Zn -

Based Alloy Coatings”, (2009), Journal of materials Science and Engineering, 27, (4), 644-648.

30. Arizaga G.G.C., “Modificação química de superfícies de hidroxinitrato de zinco e hidróxidos

duplos lamelares com ácidos mono e dicarboxílicos” [“Chemical modification of hydroxinitrate

surfaces of zinc and hydroxides double lamelars with mono e acids dicarboxylics”], (2009),

Universidade federal do Parana, Post Graduate Thesis, p. 10, 111.

31. Junior J.M.F., “Obtencao e Caracterizacao de Revestimentos de Zn-Mn em Meio de Sulfato”,

(“Obtaining and Characterizing Coatings of Zn-Mn in Sulfate Medium”), Fortaleza 2008, Universidade

Federal do Ceara, PhD Thesis, p. 14.

30

32. Rosalbino, F., Angelini, E., Macciò, D., Saccone, A., Delfino, S., “Influence of rare earths

addition on the corrosion behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium sulphate

solution”, (2007), Electrochimica Acta, 52, (24), 7107-7114.

33. Arizaga, G.G.C., Satyanarayana, K.G., Wypych, F., “Layered hydroxide salts: Synthesis,

properties and potential applications”, (2007), Solid State Ionics, 178, (15-18), 1143-1162.

34. Gurrappa, I., Malakondaiah, G., “Corrosion characteristics of newly developed structural

DMR-1700 steel and comparison with different steels for industrial applications”, (2006), Metallurgical

and Materials Transactions A: Physical Metallurgy and Materials Science, 37 (10), 3039-3046.

35. Pistofidis, N., Vourlias, G., Konidaris, S., Pavlidou, E., Stergiou, A., Stergioudis, G.,

“Microstructure of zinc hot-dip galvanized coatings used for corrosion protection”, (2006), Materials

Letters, 60, (6), 786-789.

No. 40. Boshkov N., Tsvetkova N., Petrov P., Koleva D., Petrov K., Avdeev G., Tsvetanov Ch.,

Raichevski G., Raicheff R., “Corrosion behavior and protective ability of Zn and Zn-Co

electrodeposits with embedded polymeric nanoparticles”, Applyed Surface Science, 254, 17, 5618

- 5625, 2008.

1. Winiarski, J., Tylus, W., Szczygieł, B., “EIS and XPS investigations on the corrosion

mechanism of ternary Zn-Co-Mo alloy coatings in NaCl solution”, (2016), Applied Surface Science,

364, 455-466.

2. Crina, C.A., Lidia, B., Pierre, P., “Phenol-Formaldehyde resin to improve corrosion resistance

of zinc layers”, (2016), Key Engineering Materials, 699, 63-70.

3. Crina, C.A., Lidia, B., Pierre, P., “Corrosion resistance of zinc–resin hybrid coatings obtained

by electro-codeposition”, (2016), Arabian Journal of Chemistry,

http://dx.doi.org/10.1016/j.arabjc.2016.07.002

4. Erten, Ü., Ünal, H.İ., Zor, S., Atapek, Ş.H., “Structural and electrochemical characterization

of Zn–TiO2 and Zn–WO3; nanocomposite coatings electrodeposited on St 37 steel”, (2015), Journal of

Applied Electrochemistry, 45, (9), 991-1003.

31

5. Hoang, T.K.A., Doan, T.N.L., Sun, K.E.K., Chen, P., “Corrosion chemistry and protection of

zinc & zinc alloys by polymer-containing materials for potential use in rechargeable aqueous

batteries”, (2015), RSC Advances, 5, (52), 41677-41691.

6. Ates, M., “Comparison of corrosion protection of chemically and electrochemically

synthesized poly(N-vinylcarbazole) and its nanocomposites on stainless steel”, (2014), Journal of Solid

State Electrochemistry, 19, (2), 533-541.

7. Korobov V. I., Petrenko L.V., Poltavets V.V., “Effect of Phase Composition on the Anodic

Dissolution and Passivation of Zinc-based Alloys”, (2014), Universal Journal of Chemistry, 2, 76 - 85.

8. Petrenko L.V., Korobov V. I.,, “The influence of electrolytic Zn–Ni alloys structural

characteristics on their electrochemical properties”, (2014), Bulletin of Dnipropetrovsk University,

series Chemistry, 22, (2), 52-60.

9. Lehr, I.L., Saidman, S.B., “Anticorrosive properties of polypyrrole films modified with zinc

onto SAE 4140 steel”, (2013), Progress in Organic Coatings, 76, (11), 1586-1593.

10. Yin, F., Ruan, X., Zhao, M., Liu, Y., Li, Z., “The 600 C and 450 C isothermal sections of the

Zn-Fe-B system”, (2013), Journal of Alloys and Compounds, 565, 79-84.

11. Ullal, Y., Chitharanjan Hegde, A., “Corrosion protection of electrodeposited multilayer

nanocomposite Zn-Ni-SiO2 coatings”, (2013), Surface Engineering and Applied Electrochemistry, 49,

(2), 161-167.

12. Sato Y., Azumi K., “Corrosion Inhibition by Zinc Corrosion Products on Zinc-Coated Steel”,

(2013), ECS Transactions, 50, (47), 27-36, Editors K.R. Zavadil, K. Azumi, P. Schmutz.

13. Ullal, Y., Chitharanjan Hegde, A., “Development of multilayered nanocomposite Zn-Ni-SiO2

coatings for better corrosion protection”, (2012), Jurnal Teknologi (Sciences and Engineering), 59,

(SUPPL.3), 47-52.

14. Olad, A., Barati, M., Behboudi, S., “Preparation of PANI/epoxy/Zn nanocomposite using Zn

nanoparticles and epoxy resin as additives and investigation of its corrosion protection behavior on

iron”, (2012), Progress in Organic Coatings, 74, (1), pp. 221-227.

15. Gomes, A., Almeida, I., Frade, T., Tavares, A.C., “Stability of Zn-Ni-TiO 2 and Zn-TiO2

nanocomposite coatings in near-neutral sulphate solutions”, (2012), Journal of Nanoparticle Research,

14, (2), art. No. 692.

16. Salvago G., Massimiliano B., "Metal Matrix Composites: Corrosion." Wiley Encyclopedia of

Composites (2012).

32

17. Maciej A., Nawrat G., Piotrowski J., Krzakala A., Stoj J., Cwajna J., “Badania odporności

korozyjnej powłok stopowych cynk-kobalt metodą NSS (”Testing corrosion resistance of zinc-cobalt

alloy using NSS”), (2012), Ochrona przed Korozja, 55, (4), 143-147.

18. Aliofkhazraei, M., Rouhaghdam, A.S., “Nanocomposite coatings”, (2011), Nanocomposite

Coatings, 1-173.

19. Ma, S., Xing, J., Fu, H., Yi, D., Zhang, J., Li, Y., Zhang, Z., Zhu, B., Ma, S., “Interfacial

morphology and corrosion resistance of Fe-B cast steel containing chromium and nickel in liquid zinc”,

(2011), Corrosion Science, 53, (9), 2826-2834.

20. Vasilakopoulos, D., Bouroushian, M., “Electrochemical codeposition of PMMA particles

with zinc”, (2010), Surface and Coatings Technology, 205, (1), 110-117.

21. Gharahcheshmeh, M.H., Sohi, M.H., “Electrochemical studies of zinc-cobalt alloy coatings

deposited from alkaline baths containing glycine as complexing agent”, (2010), Journal of Applied

Electrochemistry, 40, (8), 1563-1570.

22. Gharahcheshmeh, M.H., Sohi, M.H., “Study of the corrosion behavior of zinc and Zn-Co

alloy electrodeposits obtained from alkaline bath using direct current”, (2009), Materials Chemistry and

Physics, 117, (2-3), 414-421.

No. 65. Boshkov N., Vitkova S., Petrov K., “Corrosion Products of Zn-Mn Coatings: Part I.

Investigations Using Microprobe Analysis and X-Ray Diffraction”, Metal Finishing, 99, 9, 56 –

60, 2001.

1. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium

thiocyanate”, (2016), Surface and Coatings Technology, 298, 73-82.

2. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings”, (2016), MA2016-01, 229-th ECS Meeting, San Diego, CA, Meeting Abstract.

33

3. Feng, Z., An, M., Ren, L., Zhang, J., Yang, P., Chen, Z., “Corrosion mechanism of

nanocrystalline Zn-Ni alloys obtained from a new DMH-based bath as a replacement for Zn and Cd

coatings”, (2016), RSC Advances, 6, (69), 64726-64740.

4. Winiarski, J., Tylus, W., Winiarska, K., Szczygieł, B., “The influence of molybdenum on the

corrosion resistance of ternary Zn-Co-Mo alloy coatings deposited from citrate-sulphate bath”, (2015),

Corrosion Science, 91, 330-340.

5. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., Tu, J.P., “Electrodeposition,

Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic

Solvent”, (2015), Journal of Materials Engineering and Performance, 24, (1), 434-444.

6. Rafiee, A., Raeissi, K., Golozar, M.A., “Characterisation and corrosion resistance of Zn-Mn

coatings electrodeposited from acidic chloride bath”, (2014), Transactions of the Institute of Metal

Finishing, 92, (2), 115-120.

7. Pistofidis, N., Vourlias, G., Stergioudis, G., Tsipas, D., Polychroniadis, E.K., “Hot-dip

galvanized and alternative zinc coatings”, (2009), Corrosion Protection: Processes, Management and

Technologies, pp. 1-38.

8. Shivakumara, S., Arthoba Naik, Y., Achary, G., Sachin, H.P., Venkatesha, T.V., “Influence

of condensation product on electrodeposition of Zn-Mn alloy on steel”, (2008), Indian Journal of

Chemical Technology, 15, (1), 29-35.

9. Neto, P.D.L., Correia, A.N., Colares, R.P., Araujo, W.S., “Corrosion study of

electrodeposited Zn and Zn-Co coatings in chloride medium”, (2007), Journal of the Brazilian

Chemical Society, 18, (6), 1164-1175.

10. Savall, C., Rebere, C., Sylla, D., Gadouleau, M., Refait, Ph., Creus, J., “Morphological and

structural characterisation of electrodeposited Zn-Mn alloys from acidic chloride bath”, (2006),

Materials Science and Engineering A, 430, (1-2), 165-171.

11. Pistofidis N., Vourlias G., Konidaris S., Pavlidou E. Stergiou A., Stergioudis G.,

“Microstructure of zinc hot-dip galvanized coatings used for corrosion protection”, (2006), Materials

Letters, 60, (6), 786-789.

12. Ishikawa, T., Matsumoto, K., Kandori, K., Nakayama, T., Tsubota, T., “An approach to

enhancement mechanism of resistance to corrosion of zinc alloys by artificially synthesized rusts”,

(2004), Galvatech '04: 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet -

Conference Proceedings, 837-844.

34

13. Ishikawa, T., Matsumoto, K., Yasukawa, A., Kandori, K., Nakayama, T., Tsubota, T.,

“Influence of metal ions on the formation of artificial zinc rusts”, (2004), Corrosion Science, 46, (2),

329-342.

14. Sylla, D., Creus, J., Savall, C., Roggy, O., Gadouleau, M., Refait, Ph., “Electrodeposition of

Zn-Mn alloys on steel from acidic Zn-Mn chloride solutions”, (2003), Thin Solid Films, 424, (2), 171-

178.

15. Jelinek, T.W., “Advances in Мetal Фinishing - An evaluation of the international published

literature for 2001/2002 [Fortschritte in der Galvanotechnik - Eine Auswertung der internationalen

Fachliteratur 2001/2002] ”, (2003), Galvanotechnik, 94, (1), 46-74+IV, Eugen G. Leuze Verlag.

16. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2001-2002 г.”,

(2003), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (2), 17-22.

17. John, S., Silaimani, S.M., Anand, V., Vasudevan, T., “Zinc - Manganese alloy plating - A

critical review”, (2002), Bulletin of Electrochemistry, 18, (9), 407-412.

18. Bozzini, B., Griskonis, E., Fanigliulo, A., Sulcius, A., “Electrodeposition of Zn-Mn alloys in

the presence of thiocarbamide”, (2002), Surface and Coatings Technology, 154, (2-3), 294-303.

No. 31. Koleva D., Boshkov N., Bachvarov V., Zhan H., De Wit J.H.W., Van Breugel K.,

“Application of PEO113-b-PS218 nano-aggregates for improved protective characteristics of

composite zinc coatings in chloride containing environment”, Surface and Coatings Technology,

204, 3760 – 3772, 2010.

1. Stankiewicz, A., Barker, M.B., “Development of self-healing coatings for corrosion

protection on metallic structures”, (2016), Smart Materials and Structures, 25 (8), art. No. 084013.

2. Luo, J., Du, Z., Tai, X., Wang, W., Wu, J., Ding, B., Wang, P., “One-pot preparation of

Nano-SiO2 using a silane derivative as a coupling agent”, (2016), Tenside, Surfactants, Detergents, 53,

(3), 278-283.

3. Crina, C.A., Lidia, B., Pierre, P., “Phenol-Formaldehyde resin to improve corrosion resistance

of zinc layers, (2016), Key Engineering Materials, 699, 63-70.

35

4. Crina, C.A., L”idia, B., Pierre, P., “Corrosion resistance of zinc–resin hybrid coatings

obtained by electro-codeposition”, (2016), Arabian Journal of Chemistry,

http://dx.doi.org/10.1016/j.arabjc.2016.07.002

5. Stankiewicz, A., Jagoda, Z., Zielińska, K., Szczygieł, I., Gelatin microgels as a potential

corrosion inhibitor carriers for self-healing coatings: Preparation and codeposition, (2015), Materials

and Corrosion, 66, (12), 1391-1396.

6. Erten, Ü., Ünal, H.İ., Zor, S., Atapek, Ş.H., “Structural and electrochemical characterization

of Zn–TiO2 and Zn–WO3 nanocomposite coatings electrodeposited on St 37 steel”, (2015), Journal of

Applied Electrochemistry, 45, (9), 991-1003.

7. Tai, X., Du, Z., Wang, W., Hou, M., Zhao, Y., “The one-step method preparation of thermal

responsive SiO2/poly-ether composites”, (2014), Powder Technology, 264, 273-277.

8. Fayyad, E.M., Almaadeed, M.A., Jones, A., Abdullah, A.M., “Evaluation techniques for the

corrosion resistance of self-healing coatings”, (2014), International Journal of Electrochemical Science,

9, (9), 4989-5011.

9. Stankiewicz, A., Szczygieł, I., Szczygieł, B., “Self-healing coatings in anti-corrosion

applications”, (2013), Journal of Materials Science, 48, (23), 8041-8051.

10. Sato Y., Azumi K., “Corrosion Inhibition by Zinc Corrosion Products on Zinc-Coated Steel,

(2013) ”, ECS Transactions, 50, (47), 27-36, Editors K.R. Zavadil, K. Azumi, P. Schmutz.

11. Jiang, E.Y., Tang, D.Y., Yu, Z.Q., “Electronspun thermal responsive and photocatalytic

Zn(NO3)2/PNIPAAm nanofibers”, (2013), Advanced Materials Research, 710, 50-54.

12. Tai, X., Ma, J., Du, Z., Wang, W., “Synthesis of thermoresponsive SiO2 composite modified

by nonionic organosilicone surfactant”, (2013), Tenside, Surfactants, Detergents, 50 (4), 245-248.

13. Tai, X., Ma, J.H., Du, Z., Wang, W., “The facile preparation for temperature sensitive

silica/PNIPAAm composite microspheres”, (2013), Applied Surface Science, 268, 489-495.

14. Tai, X., Ma, J.H., Du, Z., Wang, W., Wu, J., “A simple method for synthesis of thermal

responsive silica nanoparticle/PNIPAAm hybrids”, (2013), Powder Technology, 233, 47-51.

15. Salvago G., Massimiliano B., "Metal Matrix Composites: Corrosion." Wiley

Encyclopedia of Composites (2012).

16. Chen, J., Liu, M., Chen, C., Gong, H., Gao, C., “Synthesis and characterization of silica

nanoparticles with well-defined thermoresponsive PNIPAM via a combination of RAFT and click

chemistry”, (2011), ACS Applied Materials and Interfaces, 3, (8), 3215-3223.

36

17. Aliofkhazraei M., “Size Dependency in Nanostructures”, (2011), Book Series: Engineering

Materials (Chapter Nanocoatings), 29-76.

No. 63. Boshkov N., Petrov K., Vitkova S., “Corrosion Products of Zn-Mn Coatings; Part III.

Double-Protective Action of Manganese”, Metal Finishing, 100, 6, 98 - 102, 2002.

1. Touazi, S., Bucko, M., Makhloufi, L., Legat, A., Bajat, J.B., “The electrochemical behavior of

Zn-Mn alloy coating in carbonated concrete solution”, (2016), Surface Review and Letters, 23, (4), art.

No. 1650030.

2. Close, D., Stein, N., Allain, N., Tidu, A., Drynski, E., Merklein, M., Lallement, R.,

“Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy

coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium

thiocyanate”, (2016), Surface and Coatings Technology, 298, 73-82.

3. Fashu, S., Gu, C.D., Zhang, J.L., Zheng, H., Wang, X.L., Tu, J.P., “Electrodeposition,

Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic

Solvent”, (2015), Journal of Materials Engineering and Performance, 24, (1), 434-444.

4. Rafiee, A., Raeissi, K., Golozar, M.A., “Characterisation and corrosion resistance of Zn-Mn

coatings electrodeposited from acidic chloride bath”, (2014), Transactions of the Institute of Metal

Finishing, 92, (2), 115-120.

5. Marín-Sánchez, M., Ocón, P., Conde, A., García, I., “Electrodeposition of Zn-Mn coatings on

steel from 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ionic liquid”, (2014),

Surface and Coatings Technology, 258, 871-877.

6. Pistofidis, N., Vourlias, G., Stergioudis, G., Tsipas, D., Polychroniadis, E.K., “Hot-dip

galvanized and alternative zinc coatings”, (2009), Corrosion Protection: Processes, Management and

Technologies, pp. 1-38.

7. Zhang, B., Zhou, H.-B., Han, E.-H., Ke, W., “Effects of a small addition of Mn on the

corrosion behaviour of Zn in a mixed solution”, (2009), Electrochimica Acta, 54, (26), 6598-6608.

37

8. Ortiz, Z.I., Díaz-Arista, P., Meas, Y., Ortega-Borges, R., Trejo, G., “Characterization of the

corrosion products of electrodeposited Zn, Zn-Co and Zn-Mn alloys coatings”, (2009), Corrosion

Science, 51, (11), 2703-2715.

9. Díaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., Trejo, G., “Electrodeposition and

characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing

ammonium thiocyanate as an additive”, (2009), Surface and Coatings Technology, 203, (9), 1167-

1175.

10. Shivakumara, S., Arthoba Naik, Y., Achary, G., Sachin, H.P., Venkatesha, T.V., “Influence

of condensation product on electrodeposition of Zn-Mn alloy on steel”, (2008), Indian Journal of

Chemical Technology, 15, (1), 29-35.

11. Neto, P.D.L., Correia, A.N., Colares, R.P., Araujo, W.S., “Corrosion study of

electrodeposited Zn and Zn-Co coatings in chloride medium”, (2007), Journal of the Brazilian

Chemical Society, 18 (6), 1164-1175.

12. Savall, C., Rebere, C., Sylla, D., Gadouleau, M., Refait, Ph., Creus, J., “Morphological and

structural characterisation of electrodeposited Zn-Mn alloys from acidic chloride bath”, (2006),

Materials Science and Engineering A, 430 (1-2), 165-171.

13. Pistofidis, N., Vourlias, G., Konidaris, S., Pavlidou, E., Stergiou, A., Stergioudis, G.,

“Microstructure of zinc hot-dip galvanized coatings used for corrosion protection”, (2006), Materials

Letters, 60, (6), 786-789.

14. Jelinek, T.W., “Advances in Metal Finishing - A Survey of the International Literature

2002/2003 [Fortschritte in der Galvanotechnik: Eine Auswertung der Internationalen Fachliteratur

2002/2003]”, (2004), Galvanotechnik, 95, (1), 42-71+IV, Eugen G. Leuze Verlag.

15. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2002-2003 г.”,

(2004), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 12, (2), 9-26.

16. Murphy, M., “Technical developments in 2002: Inorganic "metallic" finishes, processes, and

equipment”, (2003), Metal Finishing, 101, (2), 8-39.

38

No. 49. Koleva D.A., Hu J., Fraaij A.L.A., Stroeven P., Boshkov N., Van Breugel, K. “Cathodic

protection revisited: Impact on structural morphology sheds new light on its efficiency”, Cement

and Concrete Composites, 28, 8, 696 - 706, 2006.

1. Byrne, A., Norton, B., Holmes, N., “State-of-the-art review of cathodic protection for reinforced

concrete structures”, (2016), Magazine of Concrete Research, 68, (13), 664-677.

2. Zuo, J., Yao, W., Xu, J., Chen, Y., and Liu, X. "Effects of Carbon Nanotube-Carbon Fiber

Cementitious Conductive Anode for Cathodic Protection of Reinforced Concrete," (2016), Journal of

Testing and Evaluation, 45, (5), published online https://doi.org/10.1520/JTE20160062

3. Byrne, A., Holmes, N., Norton, B., “Cement based batteries and their potential for use in low

power operations”, (2015), IOP Conference Series: Materials Science and Engineering, 96, (1), art. No.

012073.

4. Eichler T., Gieler-Bressmer S., “Kathodischer Korrosionsschutz im Stahlbetonbau”, (2015),

Wiley Online Library, DOI: 10.1002/9783433603406.ch5.

5. Holmes, N.; Byrne, A.; Norton, B., "First Steps in Developing Cement-Based Batteries to Power

Cathodic Protection of Embedded Steel in Concrete", (2015), SDAR Journal of Sustainable Design &

Applied Research: 3, (1), Article 3, Available at: http://arrow.dit.ie/sdar/vol3/iss1/3

6. Belmonte M.R., Quiroz J.T.P., Madrid M.M., Acosta A.T., “Aplicación de corriente catódica

como sistema de protección contra la corrosión de estructuras de concreto reforzado” [“Cathodic

current application as a corrosion protection system for reinforced concrete structures”], (2013),

Instituto Mexicano del Transporte, ISSN 0188-7297, 1-52.

7. Bautista, A., Velasco, F., Guzmán, S., Martínez, F.J., Calabrés, R., “Effect of high frequency

cathodic pulses on steel embedded in mortar: Short and medium term tests”, (2011), Corrosion

Engineering Science and Technology, 46, (4), 493-498.

8. Jing, X., Wu, Y., “Electrochemical studies on the performance of conductive overlay material in

cathodic protection of reinforced concrete”, (2011), Construction and Building Materials, 25, (5), 2655-

2662.

9. Ray, I., Parish, G.C., Davalos, J.F., Chen, A., “Effect of concrete substrate repair methods for

beams aged by accelerated corrosion and strengthened with CFRP”, (2011), Journal of Aerospace

Engineering, 24, (2), 227-239.

39

10. Xu, J., Yao, W., “Conductive mortar as anode material for cathodic protection of steel in

concrete”, (2010), Journal Wuhan University of Technology, Materials Science Edition, 25, (5), 883-

888

11. Xu, J., Yao, W., “Characteristic and micromechanism of cathodic protection for reinforced

concrete”, (2010), Jianzhu Cailiao Xuebao/Journal of Building Materials, 13, (3), 315-319.

12. Beck, M.F., “Zur Entwicklung der Eigenkorrosion von Stahl in Beton”, (2010), Rheinisch-

Westfälische Technische Hochschule, Aachen, PhD Thesis, p. 5.

13. Yao, W., Xu, J., “Mechanism and characterization of cathodic protection of reinforced

concrete”, (2009), Sciencepaper Online, http://www.paper.edu.cn

No. 58. Koleva D., Boshkov N., Raichevski G., Veleva L., “Electrochemical corrosion behavior

and surface morphology of electrodeposited zinc, zinc-cobalt and their composite coatings”,

Transactions of the Institute of Metal Finishing, 83, 4, 188 – 193, 2005.

1. Crina, C.A., Lidia, B., Pierre, P., “Phenol-Formaldehyde resin to improve corrosion resistance

of zinc layers”, (2016), Key Engineering Materials, 699, 63-70.

2. Walsh, F.C., Ponce De Leon, C., “A review of the electrodeposition of metal matrix

composite coatings by inclusion of particles in a metal layer: An established and diversifying

technology”, (2014), Transactions of the Institute of Metal Finishing, 92, (2), 83-98.

3. Lichušina, S., Sudavičius, A., Juškenas, R., Bučinskiene, D., Juzeliunas, E., “Deposition of

cobalt rich Zn-Co alloy coatings of high corrosion resistance”, (2013), Transactions of the Institute of

Metal Finishing, 86, (3), 141-147, Taylor and Francis Online.

4. Sato Y., Azumi K., “Corrosion Inhibition by Zinc Corrosion Products on Zinc-Coated Steel”,

(2013), ECS Transactions, 50, (47), 27-36, Editors K.R. Zavadil, K. Azumi, P. Schmutz.

5. Salvago G., Massimiliano B., "Metal Matrix Composites: Corrosion.", Wiley Encyclopedia of

Composites (2012).

6. Vasilakopoulos, D., Bouroushian, M., “Electrochemical codeposition of PMMA particles

with zinc”, (2010), Surface and Coatings Technology, 205, (1), 110-117.

40

7. Chandrasekar, M.S., Shanmugasigamani, Pushpavanam, M., “Morphology and texture of

pulse plated zinc-cobalt alloy”, (2009), Materials Chemistry and Physics, 115, (2-3), 603-611.

8. Lichušina, S., Chodosovskaja, A., Sudavičius, A., Juškenas, R., Bučinskiene, D., Selskis, A.,

Juzeliunas, E., “Cobalt-rich Zn-Co alloys: Electrochemical deposition, structure and corrosion

resistance”, (2008), Chemija, 19, (1), 25-31.

9. Lichušina, S., Sudavičius, A., Juškenas, R., Bučinskiene, D., Juzeliunas, E., “Deposition of

cobalt rich Zn-Co alloy coatings of high corrosion resistance”, (2008), Transactions of the Institute of

Metal Finishing, 86, (3), 141-147, Maney Publishing (USA).

10. Carpenter, D.E.O.S., Farr, J.P.G., “Kinetics of electrodeposition of Zn-Co alloy using mild

steel rotating disc electrode”, (2007), Transactions of the Institute of Metal Finishing, 85, (6), 298-305.

11. Fei H., “Electrodeposition of Ni-SiC composites by different shaped current waveforms and

magnetic fields”, (2005), The Hong Kong Polytechnic University, PhD Thesis, p. 34.

No. 44. Koleva D.A., Van Breugel K., De Wit J.H.W., Van Westing E., Boshkov N., Fraaj A.L.A.,

“Electrochemical behavior, microstructural analysis and morphological observations in

reinforced mortar subjected to chloride ingress”, Journal of the Electrochemical Society, 154, 3,

E45 – E56, 2007.

1. Karadakis, K., Azad, V.J., Ghods, P., Isgor, O.B., “Numerical investigation of the role of mill

scale crevices on the corrosion initiation of carbon steel reinforcement in concrete”, (2016), Journal of

the Electrochemical Society, 163, (6), C306-C315.

2. Balusamy T., Nishimura T., “In-situ monitoring of local corrosion process of scratched epoxy

coated carbon steel in simulated pore solution containing varying percentage of chloride ions by

Localized Electrochemical Impedance Spectroscopy”, (2016), Electrochimica Acta, 199, (1), 305-313.

3. T. Koike, H. Tokieda, Y. Hoshi, I. Shitanda, and M. Itagaki, “Detection Method of Corrosion

Site of Reinforcing Steel in Concrete By Two Electrode System”, (2016), Electrochemical Society

Meeting PRIME, October 2 – 7, Honolulu, Hawaii.

41

4. Lv, C., Wei, Y., Li, J., Sun, C., “Electrochemical characteristics of rebar in polymermodified

mortar and resistance to chloride ionpenetration of polymer-modified concrete”, (2015), Journal of the

Chinese Society of Corrosion and Protection, 35, (5), 467-473.

5. Belmonte, M.R., Madrid, M.M., Pérez-Quiroz, J.T., Salas, B.V., Juarez-Arellano, E.A.,

Schorr, M., “Surface modification of carbon steel reinforcement of concrete”, (2015), Anti-Corrosion

Methods and Materials, 62, (2), 69-76.

6. Guo, Y., Wang, X.-P., Zhu, Y.-F., Zhang, J., Gao, Y.-B., Yang, Z.-Y., Du, R.-G., Lin, C.-J.,

“Electrochemical and XPS study on effect of Cl- on corrosion behavior of reinforcing steel in

simulated concrete pore solutions”, (2013), International Journal of Electrochemical Science, 8, (12),

12769-12779.

7. Díaz, B., Freire, L., Nóvoa, X.R., Puga, B., Vivier, V., “Resistivity of cementitious materials

measured in diaphragm migration cells: The effect of the experimental set-up”, (2010), Cement and

Concrete Research, 40, (10), 1465-1470.

8. Liu, Y., Shi, X., “Molecular dynamics study of interaction between corrosion inhibitors,

nanoparticles, and other minerals in hydrated cement”, (2010), Transportation Research Record,

(2142), 58-66.

9. Menendez, E., De Frutos J., Andrade, C., “Internal deterioration of mortars in freeze-thawing:

non-destructive evaluation by means of electrical impedance”, (2009), Book Series: Advanced

Materials Research, 68, 1-11, Editors: Velimani S., Asomoza R.

10. Díaz, B., Freire, L., Merino, P., Nóvoa, X.R., Pérez, M.C., “Impedance spectroscopy study of

saturated mortar samples”, (2008), Electrochimica Acta, 53, (25), 7549-7555.

No. 78. Boschkov N., Petrov K., Nikolova S., Vitkova S., “Galvanische Zink-Mangan

Legierungen - Elektrochemische Abscheidung und Strukturcharakteristika”, Metalloberfläche,

52, 7, 514 – 519, 1998.

1. Díaz-Arista, P., Ortiz, Z.I., Ruiz, H., Ortega, R., Meas, Y., Trejo, G., “Electrodeposition and

characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing

42

ammonium thiocyanate as an additive”, (2009), Surface and Coatings Technology, 203, (9), 1167-

1175.

2. Plieth, W. and Bund, A., (2007), Corrosion Protection by Metallic Coatings. Encyclopedia of

Electrochemistry.

3. Ye G.C., Kim D.Y., Ahn D.S., “Current efficiency and Composition of Zn-Cr and Zn-Cr-X

Ternary Alloy Electrodeposits”, (2003), Journal of Korean Institute of Surface Engineering, 36, (3),

256-262.

4. Jelinek, T.W., “Galvanische Verzinkung – Elektrolyte, Nachbehandlung, Anwendung”, 1.

Auflage (2003), p. 144, Eugen G. Leuze Verlag.

5. John, S., Silaimani, S.M., Anand, V., Vasudevan, T., “Zinc - Manganese alloy plating - A

critical review”, (2002), Bulletin of Electrochemistry, 18, (9), 407-412.

6. Bozzini, B., Griskonis, E., Fanigliulo, A., Sulcius, A., “”Electrodeposition of Zn-Mn alloys in

the presence of thiocarbamide”, (2002), Surface and Coatings Technology, 154, (2-3), 294-303.

7. Bozzini, B., Griskonis, E., Sulcius, A., Cavallotti, P.L., “Influence of selenium-containing

additives on the electrodeposition of zinc-manganese alloys”, (2001), Plating and Surface Finishing,

88, (10), 64-72.

8. Jelinek, T.W., “Advances in Metal Finishing - A Survey of the International Literature

1997/98 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1997/98”], (1999), Galvanotechnik, 90, (1), 40-66, Eugen G. Leuze Verlag.

9. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1997-1998 г.”,

(1999), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 7, (1), 7-26.

No. 64. Boshkov N., Nemska S., Vitkova S., “Corrosion Products of Zn-Mn Coatings; Part II.

Investigations Using X-Ray Photoelectron Spectroscopy”, Metal Finishing, 100, 5, 14 - 20, 2002.

1. Mouanga, M., Berçot, P., Rauch, J.Y., “Comparison of corrosion behaviour of zinc in NaCl

and in NaOH solutions. Part I: Corrosion layer characterization”, (2010), Corrosion Science, 52 (12),

3984-3992.

43

2. Pistofidis, N., Vourlias, G., Stergioudis, G., Tsipas, D., Polychroniadis, E.K., “Hot-dip

galvanized and alternative zinc coatings”, (2009), Corrosion Protection: Processes, Management and

Technologies, pp. 1-38.

3. Neto, P.D.L., Correia, A.N., Colares, R.P., Araujo, W.S., “Corrosion study of

electrodeposited Zn and Zn-Co coatings in chloride medium”, (2007), Journal of the Brazilian

Chemical Society, 18 (6), 1164-1175.

4. Pistofidis, N., Vourlias, G., Konidaris, S., Pavlidou, E., Stergiou, A., Stergioudis, G.,

“Microstructure of zinc hot-dip galvanized coatings used for corrosion protection”, (2006), Materials

Letters, 60, (6), 786-789.

5. Zhang Bo, “Development of corrosion resistant galvanizing alloys”, University of

Birmingham, PhD Thesis, 2005, p. 121.

6. Jelinek, T.W., “Advances in Metal Finishing - A Survey of the International Literature

2002/2003 [Fortschritte in der Galvanotechnik: Eine Auswertung der Internationalen Fachliteratur

2002/2003] ”, (2004), Galvanotechnik, 95, (1), 42-71+IV, Eugen G. Leuze Verlag.

7. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2002-2003 г.”,

(2004), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 12, (2), 9-26.

8. Murphy, M., “Technical developments in 2002: Inorganic "metallic" finishes, processes, and

equipment”, (2003), Metal Finishing, 101, (2), 8-39.

No. 55. Koleva D., Hu J., Van Breugel K., Boshkov N., De Wit J.H.W., “Conventional and pulse

cathodic protection of reinforced concrete: Electrochemical approach and microstructural

investigations”, ECS Transactions, 1, 4, 287 – 298, 2006.

1. Abbas, Y., de Graaf, D.B., Olthuis, W., van den Berg, A., “Dynamic electrochemical

measurement of chloride ions”, (2016), Journal of Visualized Experiments, 2016 (108), art. No.

e53312.

44

2. Belmonte, M.R., Madrid, M.M., Pérez-Quiroz, J.T., Salas, B.V., Juarez-Arellano, E.A.,

Schorr, M., “Surface modification of carbon steel reinforcement of concrete”, (2015), Anti-Corrosion

Methods and Materials, 62, (2), 69-76.

3. Abbas, Y., De Graaf, D.B., Olthuis, W., Van den Berg, A., “No more conventional reference

electrode: Transition time for determining chloride ion concentration”, (2014), Analytica Chimica

Acta, 821, 81-88.

4. Díaz, B., Nóvoa, X.R., Puga, B., Vivier, V., “Macro and micro aspects of the transport of

chlorides in cementitious membranes”, (2014), Electrochimica Acta, 124, 61-68.

5. Belmonte M.R., Quiroz J.T.P., Madrid M.M., Acosta A.T., “Aplicación de corriente catódica

como sistema de protección contra la corrosión de estructuras de concreto reforzado” [“Cathodic

current application as a corrosion protection system for reinforced concrete structures”], (2013),

Instituto Mexicano del Transporte, ISSN 0188-7297, 1-52.

No. 74. Boschkov N., Raichevski G., Vitkova S., “Chromatierung von Zink und Zink-Mangan-

Schichten - Anodisches Verhalten und Korrosionsgeschwindigkeit”, Metalloberfläche, 53, 7, 27 –

31, 1999.

1. Rosalbino, F., Angelini, E., Macciò, D., Saccone, A., Delfino, S., ” Application of EIS to

assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in

neutral aerated sodium chloride solution”, (2009), Electrochimica Acta, 54, (4), 1204-1209.

2. Jelinek, T.W., “Galvanische Verzinkung – Elektrolyte, Nachbehandlung, Anwendung”, 1.

Auflage (2003), p. 144; 186, Eugen G. Leuze Verlag.

3. Jelinek, T.W., Murr, S.A.D., “Advances in Metal Finishing - A Survey of the International

Literature 1998/99 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen

Fachliteratur 1998/99”], (2000), Galvanotechnik, 91, (1), 44-71, Eugen G. Leuze Verlag.

4. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1998-1999 г.”,

(2000), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (8), 9-23.

45

No. 22. Koleva D., Boshkov N., Van Breugel K., De Wit J.H.W., “Steel corrosion resistance in

model solutions, containing waste materials”, Electrochimica Acta, 58, 1, 628 - 646, 2011

1. Díaz, B., Freire, L., Nóvoa, X.R., Pérez, M.C., “Chloride and CO2 transport in cement paste

containing red mud, (2015), Cement and Concrete Composites”, 62, art. No. 2527, 178-186.

2. Asipita, S.A., Ismail, M., Majid, M.Z.A., Majid, Z.A., Abdullah, C., Mirza, J., “Green

+Bambusa Arundinacea leaves extract as a sustainable corrosion inhibitor in steel reinforced concrete”,

(2014), Journal of Cleaner Production, 67, 139-146.

3. Jeyalakshmi, J., Rajamane, N.P., Mathew, S., Dhinesh, M., “Studies on the effect of

migratory corrosion inhibitor addition on the onset of corrosion in the slag cement concrete”, (2014),

International Journal of Earth Sciences and Engineering, 7, (4), 1492-1505.

4. Liu, J., “Investigation of inhibition effect of some amino acids against steel corrosion in

chloride-containing alkaline solution”, (2014), PhD Thesis, TU Delft, Delft University of Technology,

p. 25.

No. 83. Boschkov, N., Raichevski, G., Raschkov, St., "Elektrochemische

Korrosionsuntersuchungen von chromatierten Zinküberzügen, Teil I: Bestimmung der

Korrosionsgeschwindigkeit durch die Chromatfilme und ihrer Schutzfähigkeit mit Hilfe von

anodischer Außenpolarisation", Galvanotechnik, 86, 9, 2819 – 2827, 1995.

1. Roev V.G., Matykina E.Y., Kaidrikov R.A., “Short-Term Assessment of Chromate Films on

Zinc and Zinc-Nickel Alloy Coatings”, (2003), Journal of Corrosion Science and Engineering, 4, 2003,

Papers presented to Cathodic Protection Conference UMIST (10-11.02.2003), Preprint 14 (1-14).

2. Bellezze T., Roventi G., Fratesi R., “Electrochemical study on the corrosion resistance of Cr

III-based conversion layers on zinc coatings”, (2002), Surface and Coatings Technology, 155, (2-3),

221-230.

46

3. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1995-1996 г.”,

(1997), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 5, (2), 6-25.

4. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

1994/95 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1994/95”], (1996), Galvanotechnik, 87, (1), 19-35, Eugen G. Leuze Verlag.

No. 45. Koleva D.A., Van Breugel K., De Wit, J.H.W., Boshkov N., Fraaj A.L.A., “Composition

and morphology of product layers in the steel/cement paste interface in conditions of corrosion

and cathodic protection in reinforced concrete”, ECS Transactions, 2, 9, 127 – 136, 2007.

1. Liu, Y.-C., Liu, D.-B., Zhao, Y., Chen, M.-F., “Corrosion degradation behavior of Mg-Ca

alloy with high Ca content in SBF”, (2015), Transactions of Nonferrous Metals Society of China

(English Edition), 25, (10), 3339-3347.

2. Belmonte, M.R., Madrid, M.M., Pérez-Quiroz, J.T., Salas, B.V., Juarez-Arellano, E.A.,

Schorr, M., “Surface modification of carbon steel reinforcement of concrete”, (2015), Anti-Corrosion

Methods and Materials, 62, (2), 69-76.

3. Belmonte M.R., Quiroz J.T.P., Madrid M.M., Acosta A.T., “Aplicación de corriente catódica

como sistema de protección contra la corrosión de estructuras de concreto reforzado” [“Cathodic

current application as a corrosion protection system for reinforced concrete structures”], (2013),

Instituto Mexicano del Transporte, ISSN 0188-7297, 1-52.

No. 79. Raichevski G., Boschkov N., Sofianska A., Atanassov N., “Anodisches und

Korrosionsverhalten von galvanischen Nickel-Wolfram-Legierungsüberzügen”, Galvanotechnik,

88, 4, 1153 – 1157, 1997.

1. Franz, S., Marlot, A., Cavallotti, P.L., Landolt, D., “Pulse plating of Ni-W alloys from model

electrolytes”, (2008), Transactions of the Institute of Metal Finishing, 86, (2), 92-97.

47

2. Jelinek, T.W., “Advances in Metal Finishing - A Survey of the International Literature

1996/97 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1996/97”], (1998), Galvanotechnik, 89, (1), 44-72, Eugen G. Leuze Verlag.

3. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1996-1997 г.”,

(1998), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 6, (2), 6-29.

No. 81. Bratoeva, M., Gurkovski, S., Boschkov, N., "Laserelektrochemie bei der Herstellung von

Kobalt- und Eisenüberzügen", Galvanotechnik, 87, 10, 3252 – 3255, 1996.

1. Knödler A., “Elektrolytische Abscheidung weniger häufig angewandter �berzugsmetalle”,

(1999), Jahrbuch Oberflächentechnik, 55, 17-26.

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1996-1997 г.”,

(1998), Гальванотехника и обработка поверхности(Electroplating & Surface Treatment), ВИНИТИ,

Москва , 6, (2), 6-29.

3. Jelinek, T.W., “Advances in Metal Finishing - A Survey of the International Literature

1996/97 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1996/97”], (1998), Galvanotechnik, 89, (1), 44-72, Eugen G. Leuze Verlag.

No. 84. Boschkov, N., Raichevski, G., Raschkov, St., "Elektrochemische

Korrosionsuntersuchungen von chromatierten Zinküberzügen, Teil II: Bestimmung der

Korrosionsgeschwindigkeit von Chromat-filmen durch Polarisationmessungen in der Nähe des

kompensierten Korrosionspotentials", Galvanotechnik, 86, 10, 3195 – 3202, 1995.

1. Roev V.G., Matykina E.Y., Kaidrikov R.A., “Short-Term Assessment of Chromate Films on

Zinc and Zinc-Nickel Alloy Coatings”, (2003), Journal of Corrosion Science and Engineering, 4, 2003,

Papers presented to Cathodic Protection Conference UMIST (10-11.02.2003), Preprint 14 (1-14).

48

2. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

1995/96 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1995/96”], (1997), Galvanotechnik, 88, (1), 60-85, Eugen G. Leuze Verlag.

3. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1995-1996 г.”,

(1997), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 5, (4), 7-23.

No. 80. Raichevski G., Boschkov N., Nikolova M., Raschkov St., "Einfluss der Zusammensetzung,

Struktur und Morphologie auf die Schutzfähigkeit von Chromatschichten", Galvanotechnik, 88,

8, 2554 – 2559, 1997.

1. Dobreva E., Petrov C., Lirkov A., Iliev T., “Chromatfreie Passivierung von Aluminium:

Molybdate als Ersatz”, (2000), MO Metalloberfläche Beschichten von Metall und Kunststoff, 54, (8),

16-19.

2. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

1996/97 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1996/97”], (1998), Galvanotechnik, 89, (1), 44-72, Eugen G. Leuze Verlag.

3. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1996-1997 г.”,

(1998), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 6, (2), 6-29.

No. 71. Boschkov N., Raichevski G., Atanassov N., Paul M., Friedrich S., “Verhalten von

galvanischen Ni-Co-Mn-S Legierungsschichten in künstlichen Korrosionsmedien”,

Galvanotechnik, 91, 3, 641 – 649, 2000.

1. Kristofory F., Mohyla M., Mikuláš D., Vítek J. “Vliv Manganu na sírovou křehkost

elektrolytického Niklu a jeho Slitin” [“Influence of manganese on sulphur embrittlement of nickel and

nickel alloys electrodeposits”], (2004), Acta Metallurgica Slovaca, 10, (3), 236-241.

49

2. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

1999/2000 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1999/2000”], (2001), Galvanotechnik, 92, (1), 41-72, Eugen G. Leuze Verlag.

3. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1999-2000 г.”,

(2001), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (2), 17-22.

No. 66. Bratoeva M., Boschkov N., Popova I., “Elektrochemische Legierungsabscheidung von

Metallen aus der Eisengruppe”, Galvanotechnik, 92, 7, 1806 – 1811, 2001.

1. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

2000/2001 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

2000/2001”], (2002), Galvanotechnik, 93, (1), 98-125, Eugen G. Leuze Verlag.

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2000-2001 г.”,

(2002), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (2), 17-22.

3. Mockute, D., Bernotiene, G., Butkiene, R., “The effect of electrolytes composition on the

behaviour of saccharin and N-methylsaccharin during Ni electrodeposition”, (2002), Transactions of

the Institute of Metal Finishing, 80, (4), 120-123.

No. 70. Boschkov N., Raichevski G., Atanassov N., Klimanek P., “Anodisches und

Korrosionsverhalten von wärmebehandelten Ni-Co-Mn-S Legierungsschichten”,

Galvanotechnik, 91, 10, 2762 – 2771, 2000.

1. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

2000/2001 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

2000/2001”], (2002), Galvanotechnik, 93, (1), 98-125, Eugen G. Leuze Verlag.

50

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2000-2001 г.”,

(2002), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва , 1, (2), 17-22.

No. 68. Bratoeva M., Tzatscheva Tz., Boschkov N., Atanasssov N., “Elektrolytisch abgeschiedene

Co-W-Legierungen im Hinblick auf kompositionsmodulierte CoWx / CoWy - Multischichten”,

Galvanotechnik, 92, 3, 641 – 650, 2001.

1. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

2000/2001 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

2000/2001”], (2002), Galvanotechnik, 93, (1), 98-125, Eugen G. Leuze Verlag.

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2000-2001 г.”,

(2002), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (2), 17-22.

No. 67. Bratoeva M., Boschkov N., Gurkovski S., Novev T., “Elektrolytische Silberabscheidung

mit Laserunterstützung”, Galvanotechnik, 92, 5, 1220 – 1224, 2001.

1. Jelinek, T.W., “Advances in Metal Finishing – A Survey of the International Literature

2000/2001 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

2000/2001”], (2002), Galvanotechnik, 93, (1), 98-125, Eugen G. Leuze Verlag.

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 2000-2001 г.”,

(2002), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (2), 17-22.

51

No. 15. Bachvarov V., Peshova M., Vitkova S., Boshkov N., “Electrodeposition, structure and

composition of ternary Zn-Ni-P alloys”, Materials Chemistry and Physics, 136, 2-3, 999 - 1007,

2012.

1. Haghmoradi, N., Dehghanian, C., Yari, S., “The Correlation Among Deposition Parameters,

Structure and Corrosion Behavior in ZnNi/Nano-SiC Coating”, (2016), Journal of Materials

Engineering and Performance, 25, (9), 3746-3755.

2. Fashu, S., Gu, C.D., Wang, X.L., Tu, J.P., “Structure, composition and corrosion resistance of

zn-ni-p alloys electrodeposited from an ionic liquid based on choline chloride”, (2014), Journal of the

Electrochemical Society, 161, (7), D3011-D3017.

No. 75. Boschkov N., Raichevski G., Tzatscheva Tz., Nikolova S., “Chromatierung von Zink und

Zink-Mangan-Legierungsschichten - Bewertung der Schutzfähigkeit”, Metalloberfläche, 53, 8, 32

– 36, 1999.

1. Jelinek, T.W., Murr, S.A.D., “Advances in Metal Finishing - A Survey of the International

Literature 1998/99 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen

Fachliteratur 1998/99”], (2000), Galvanotechnik, 91, (1), 44-71, Eugen G. Leuze Verlag.

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1998-1999 г.”,

(2000), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (8), 9-23.

No. 76. Bratoeva, M., Boschkov, N., Pantschev, B., “Elektrochemisches Verhalten der

elektrolytisch abgeschiedenen Legierung Kobalt-Nickel-Eisen”, Galvanotechnik, 90, 2, 336 – 341,

1999.

1. Jelinek, T.W., Murr, S.A.D., “Advances in Metal Finishing - A Survey of the International

Literature 1998/99 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen

Fachliteratur 1998/99”], (2000), Galvanotechnik, 91, (1), 44-71, Eugen G. Leuze Verlag.

52

2. Елинек Т.В., “Успехи Гальванотехники. Обзор мировой литературы за 1998-1999 г.”,

(2000), Гальванотехника и обработка поверхности (Electroplating & Surface Treatment),

ВИНИТИ, Москва, 1, (8), 9-23.

No. 86. Bratoeva M., Nanova L., Boschkov N., "Wirkung einer speziellen

Oberflächenbehandlung auf Armco-Eisen- und Stahlproben", Korrosion, Dresden, 21, 1, 39 – 52,

1990.

1. Jelinek, T.W., “Advances in Metal Finishing - A Survey of the International Literature

1989/90 [Fortschritte in der Galvanotechnik: Eine Auswertung der internationalen Fachliteratur

1989/90”, (1991), Galvanotechnik, 82, (1), 75-92, Eugen G. Leuze Verlag.

No. 28. Koleva D.A., Hu J., De Wit J.H.W., Boshkov N., Radeva Ts., Milkova V., Van Breugel K.,

“Electrochemical Performance of Low-carbon Steel in Alkaline Model Solutions Containing

Hybrid Aggregates”, ECS Transactions, 28, 24, 105-112, 2010.

1. Dutschk, V., Karapantsios, T., Liggieri, L., McMillan, N., Miller, R., & Starov, V. M. “Smart

and green interfaces: from single bubbles/drops to industrial environmental and biomedical

applications”, (2014), Advances in colloid and interface science, 209, 109-126.

No. 14. Koleva D., Denkova A., Boshkov N., Van Breugel K., “Electrochemical performance of

steel in cement extract and bulk matrix properties of cement paste in the presence of Pluronic

123 micelles”, Journal of Materials Science, 48, 6, 2490 - 2503, 2013.

53

1. Song, Y., Tian, Y., Zhao, X., Guo, H., Zhang, H., “Corrosion process of ductile iron with

cement mortar linings as coatings in reclaimed water”, (2016), International Journal of Electrochemical

Science, 11, (8), 7031-7047.

No. 23. Raichevski G., Lutov L., Boshkov N., “Corrosion characterization and protective ability

of the LR-3 rust converter”, Bulgarian Chemical Communications, 43, 1, 69 - 73, 2011.

1. Martinez, S., Mikšić, B., Rogan, I., & Ivanković, A., “Rust Converter with Improved

Adhesion for Topcoats”, In Eurocorr 2016, The Annual Event of the European Federation of

Corrosion.

No. 10. Veleva S., Angelova R., Stoyanov L., Grudeva V., Kovacheva D., Mladenov M., Boshkov

N., Raicheff R., “Biogenic iron oxide-based nanocomposite electrodes for hybrid battery-

supercapacitors systems”, Nanoscience and Nanotechnology, 4, 50 - 52, 2014.

1. Shopska, M., Paneva, D., Kadinov, G., Cherkezova-Zheleva, Z., Mitov, I., Iliev, M. “Study

on the Composition of Biogenic Iron-Containing Materials Obtained Under Cultivation of the

Leptothrix sp. on Different Media”, (2016), Applied Biochemistry and Biotechnology, 1-17.

Koleva D.A., Zhang X., Petrov P., Boshkov N., “”Surface analysis and electrochemical behavior

of zinc composite layers, incorporating polymer nano-micelles”, (2007), Meeting Abstracts-

Electrochemical Society, 212-th ECS Meeting, Washington, USA, 7-12 October 2007:

Nanotechnology General Session, Publisher: The Electrochemical Society.

1. Ciubotariu, A. C., Benea, L., & Ponthiaux, P., “Corrosion resistance of zinc–resin hybrid

coatings obtained by electrocodeposition”, (2016), Arabian Journal of Chemistry,

http://dx.doi.org/10.1016/j.arabjc.2016.07.002.