Nitrate attenuation in groundwater: A review of ... · PDF fileReview Nitrate attenuation in groundwater: A review of biogeochemical controlling processes Michael O. Rivetta,*, Stephen

  • Upload
    vohuong

  • View
    220

  • Download
    2

Embed Size (px)

Citation preview

  • w a t e r r e s e a r c h 4 2 ( 2 0 0 8 ) 4 2 1 5 4 2 3 2

    Avai lab le a t www.sc iencedi rec t .com

    journa l homepage : www.e lsev ie r . com/ loca te /wat res

    Review

    Nitrate attenuation in groundwater: A review ofbiogeochemical controlling processes

    Michael O. Rivetta,*, Stephen R. Bussb, Philip Morganb,1,Jonathan W.N. Smithc,d, Chrystina D. Bemmentb

    aSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UKbESI Ltd, New Zealand House, 160 Abbey Foregate, Shrewsbury SY2 6FD, UKcEnvironment Agency, Olton Court, 10 Warwick Road, Olton, Solihull, West Midlands B92 7HX, UKdCatchment Science Centre, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK

    a r t i c l e i n f o

    Article history:

    Received 10 December 2007

    Received in revised form

    11 July 2008

    Accepted 15 July 2008

    Available online 23 July 2008

    Keywords:

    Nitrate

    Denitrification

    Groundwater

    Natural attenuation

    Nitrates Directive

    Water Framework Directive

    * Corresponding author. Tel.: 44 (0) 1214143E-mail address: [email protected] (M

    1 Present address: Sirius Geotechnical & En0043-1354/$ see front matter 2008 Elsevidoi:10.1016/j.watres.2008.07.020

    a b s t r a c t

    Biogeochemical processes controlling nitrate attenuation in aquifers are critically

    reviewed. An understanding of the fate of nitrate in groundwater is vital for managing risks

    associated with nitrate pollution, and to safeguard groundwater supplies and ground-

    water-dependent surface waters. Denitrification is focused upon as the dominant nitrate

    attenuation process in groundwater. As denitrifying bacteria are essentially ubiquitous in

    the subsurface, the critical limiting factors are oxygen and electron donor concentration

    and availability. Variability in other environmental conditions such as nitrate concentra-

    tion, nutrient availability, pH, temperature, presence of toxins and microbial acclimation

    appears to be less important, exerting only secondary influences on denitrification rates.

    Other nitrate depletion mechanisms such as dissimilatory nitrate reduction to ammonium

    and assimilation of nitrate into microbial biomass are unlikely to be important in most

    subsurface settings relative to denitrification. Further research is recommended to improve

    current understanding on the influence of organic carbon, sulphur and iron electron

    donors, physical restrictions on microbial activity in dual porosity aquifers, influences of

    environmental condition (e.g. pH in poorly buffered environments and salinity in coastal or

    salinized soil settings), co-contaminant influences (particularly the contrasting inhibitory

    and electron donor influences of pesticides) and improved quantification of denitrification

    rates in the laboratory and field.

    2008 Elsevier Ltd. All rights reserved.

    Contents

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42162. Denitrification: overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4217

    2.1. Electron acceptor context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42172.2. Denitrification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4218

    957; fax: 44 (0) 1214144942..O. Rivett).vironmental Ltd, The Heath Business Park, Runcorn WA7 4QX, UK.

    er Ltd. All rights reserved.

    mailto:[email protected]://www.elsevier.com/locate/watres

  • w a t e r r e s e a r c h 4 2 ( 2 0 0 8 ) 4 2 1 5 4 2 3 24216

    2.2.1. Transformation products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42182.3. Denitrification occurrence in the subsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4219

    3. Electron donors used in denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42193.1. Organic carbon (heterotrophic denitrification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42193.2. Organic contaminant carbon sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42213.3. Reduced iron (autotrophic denitrification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42223.4. Reduced sulphur (autotrophic denitrification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42223.5. Other electron donors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4222

    4. Denitrification activity: effects of environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42234.1. Nitrate concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42234.2. Oxygen concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42234.3. Nutrient and micro-nutrient availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42244.4. pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42244.5. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42244.6. Salinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42254.7. Inhibitory substances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42254.8. Sediment pore size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42254.9. Microbial acclimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4225

    5. Nitrate depletion mechanisms other than denitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42265.1. Dissimilatory nitrate reduction to ammonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42265.2. Assimilation of nitrate into microbial biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42265.3. Nitrate removal via phreatophytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4226

    6. Conclusions and recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4227Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4227References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4227

    1. Introduction The European approach to the problem has increasingly

    Since the 1970s, nitrate (NO3) contamination of groundwater

    has become a significant environmental problem, with

    many parts of the world now reporting groundwater nitrate

    pollution (Burden, 1982; Spalding and Exner, 1993; Beeson

    and Cook, 2004; European Environment Agency (EEA), 2000;

    Rao, 2006; Rivett et al., 2007; Roy et al., 2007; Organisation

    for Economic Co-operation and Development (OECD), 2008).

    The consequences include long-debated health concerns

    arising from increased risks of methaemoglobinaemia and

    cancer (Fan and Steinberg, 1996; WHO, 1999; WHO, 2004;

    Horing and Chapman, 2004), and environmental impacts

    such as the eutrophication of surface waters due to excess

    nutrients (Vitousek et al., 1997; WHO, 1999; Mason, 2002).

    Diffuse pollution from intensive agriculture since the mid-

    20th century has largely been blamed for these problems

    (Foster, 2000). It has been estimated that 7080% of the

    nitrate in English surface and groundwaters is derived from

    agricultural activities (