139
Nine Mile Point Unit 2 Alternative Source Term Calculation H21C-097 "Post-LOCA Suppression Pool pH Analysis"

Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Nine Mile Point Unit 2Alternative Source Term

Calculation H21C-097

"Post-LOCA Suppression Pool pH Analysis"

Page 2: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

1. .j ,.

Project: NINE MILE POINT.NUCLEAR STATION. Unit (1, 2 or 0=Both): 2 Discipline: MECHANICAL[Title Calculation No.

POST-LOCA SUPPRESSION POOL.PH ANALYSIS H21C-097(Sub)system(s) Building Floor Elev. Index No.N/A CONT N/A N/A

[Originator(s) S A..-...-, 9-go4 r 7.i1-t4

JERI Q~ PENROSE S&L I HELMUT R. KOPKE S&L (INPUT)#9Reviewer(s) I Approver(s) /eJ,,...J.. "'-/.-D tAM. B. COOPER S&L, D. J. FEINGOLD S&L (CHEM) , W. J.'39HNSON S&L (RAD),I R. J. PETERSON S&L (APPROVER)I fOV. ' - --- v-- pIRtatV*.o 60o/% 1 .T, fe,-l.DER, or Preg0o

Rev Descriotion Chan. No. D Date ReviewedBy

tjmpip.~r Oc~Ai/-~o

--- -. ... .. . ..__ _•.. ...

0 INITIAL ISSUE { A/t4 JCP q-,o-c4 MBC UjiRJOL P ,RJP

Computer Output/Microfilm Filed Separately (Yes I No I NA): No Safety Class (SR / NSRI Qxx) : SR

Superseded Document(s): NONE,

Document Cross Reference(s) - For:additional references see page(s): p. 24-25 ORIGINALOutput provided? : No If yes, group(s) • .

(YIN)Ref DocNo Document No. Ty Index Sheet Rev

Si/5 Pw~2, .2 el-.2-r '

General Reference(s):See Section 7.0 of this calculation (p. '24-25).

--T

Remarks:

The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, thefollowing items: correctness of math for manually prepared calculations, appropriateness of Input data, appropriateness ofassumptions and appropriateness of the calculation method.

Confirmation Required (Yes I No): *e& No, Final Issue Status: Turnover RequirpdSee Page(s) :* j~nI - /I ý( Yes I N/At0CFR50.59 Evaluation Number(s): N/A Component ID(s) (As shown in MEL):Copy of Applicability Determination or 50.59 Screen N/AAttached? Yes [I No [

Key Words : POST-LOCA, SUPPRESSION POOL, PH,ALTERNATE SOURCE TERM, AST; STANDBY LIQUIDCONTROL SYSTEM, SLCS

NEP-DES-08Rev 07

Page 3: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES iCALCULATION ONTINUAON S EPage 2 2l(Next

Project: Nine Mile Point Nuclear Station Unit: .2 Disposition:Originator/Date Reviewer/Date Cdalc-ulation NO. RevisionJ. C. Penrose /H. R. Koke M. B. Cooper I H21C-097 0

eef.

TalTable of Contents

Calculation Cover Sheet ................................................... 1

Table of Contents ........... ............................................................................................................ 2

1.0 P u p tose ........................................................................................................................................ 32.0 Methodology and Acceptance Criteria ............. ".................................... ............. .4

3.0 A ssum ptions . ......... . ........ I.......................... 2.......................................... ... ........ ............................. 6-

4.0 Design Input ............................................................................................................................. 9

5.0. Calculations ........................................................................................................................... 13

6.0 Results .............................................. . ..................... ....................................................... 24

7.0 References ......................................................................................................................... 25

Attachments

Attachment 1: Determination of Reactor Core Inventories ........................................... (15 pages)Attachment 2: Determination of Radiation Doses.................... ...................................... (7 pages)Attachment 3: DIT-NM-NPEE-001, "Determination of Exposed Cables in the.

NMP2 Drywell" .......................................................... (29 pages)Attachment 4: Calculations Determining Post-LOCA Suppression Pool pH ............ * .... (29 pages)Attachment 5: Post-LOCA Suppression Pool pH Benchmark to Grand Gulf

Nuclear Station (GGNS) ..................................... ..................... I ........... (30 pages)Attachment 6: Design Verification Report ....................................................................... (1 -page)

NEP-DES-08Revw07

Page 4: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

'ENGINEERING SERVICES I CALCULATIONCONTINUATIONSHEET Page 3I .(Next

Project: Nine Mile Point Nuclear Station Unit: .2_ Disposition:Originator/Date Reviewer/Date Calculation No. RevisionJ. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0-

Ref.1.0 Purpose

The purpose of this calculation is to demonstrate that the pH of the suppression pool remainscontinuously above 7.0 following a Loss of Coolant Accident (LOCA) for the 30-day duration of.the. accident. Based on Section 6.5.2 of the Standard Review Plan, NUREG-0800 (Ref. 7.20),long-term iodine retention may be assumed only when the equilibrium suppression pool pH. isabove 7.0. The pH transient of the suppression pool is evaluated in this calculation to determinewhether the uncontrolled suppression pool pH remains above 7.0. If not, the effect on final pH ofadding sodium pentaborate to the suppression pool via the Standby Liquid Control System(SLCS) is subsequently determined to verify that the suppression pool pH can be maintainedabove 7.0.

NEP-DES-08. Rev 07

Page 5: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES i-CALCULATION CONTINUATION SHEET . Page 4

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21 C-097 0ef.

2.0 Methodology and Acceptance Criteria

2.1 Methodology

The suppression pool pH is calculated using the methodology described in NUREG/CR-5950and in Grand Gulf Nuclear Station Engineering Report GGNS-98-0039. Grand Gulf was one ofthe NRC's Alternate Source Term pilot plants.

This methodology considers the addition of the following acids and bases to the post-LOCAsuppression pool in the pH calculation:

1. Carbon Dioxide - Carbon dioxide is absorbed from the air to form the weak acid carbonicacid. This acid can reduce pH to a limiting value of approximately 5.65 (Ref. 7.13, §2.2.3)and is bounded in the initial condition selected for the suppression pool pH. Therefore,carbonic acid is not explicitly computed -but is accounted for in the pH calculation.

2. Hydriodic Acid - Hydrioclic acid is produced by the release of iodine from the reactor core asfuel failure occurs. Hydriodic acid is added to the suppression pool during the Gap ReleasePhase and during.the Early In-Vessel Phase only. This occurs for a two-hour period at thebeginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).

3. Cesium Hydroxide - Cesium hydroxide is produced by the release of cesium from the reactorcore as fuel failure occurs. Cesium hydroxide is added to the suppression pool during theGap Release Phase and during the Early In-Vessel Phase only. This occurs for a two-hourperiod at the beginning of the LOCA per Regulatory Guide 1.183 (Ref. 7.10.2).

4. Nitric Acid - Nitric acid is produced by irradiation of water and. air during the LOCA. Nitricacid is added to the suppression pool continuously during the LOCA.

5. Hydrochloric Acid - Hydrochloric acid is produced by radiolysis of chlorine-bearing electricalinsulation/jacketing during a LOCA. Only electrical cable exposed to free air or in cable traysis considered. Hydrogen chloride formed from cable enclosed in conduit or enclosures willbe contained in the conduit or enclosure and will not be available to form acid in thesuppression pool. Hydrochloric acid is added to the suppression pool continuously during theLOCA. Hydrochloric acid can also be produced by pyrolysis of chlorine-bearing electricalinsulation/jacketing at temperatures near 5720 F (Ref. 7.13, §2.2.5.3); however, since post-LOCA containment temperatures are much lower than this, pyrolysis is not consideredherein.

6. Concrete Core Aerosols - Per NUREG/CR-5950 (Ref. 7.13, §2.3.2), aerosols from limestoneconcrete will contain the basic oxides CaO, Na20, and K20. However, the aerosols areproduced from the interaction of a molten core with concrete and, per SECY-94-302 (Ref.7.21), core damage can be assumed to cease after the Early In-Vessel Phase. Therefore,concrete core aerosols are not considered in this calculation.

The acids and bases are combined in the suppression pool and the resulting pH transientresponse is calculated for a 30-day period. This pH is the unbuffered suppression pool pH.

NEP-DES-08Rev 07

Page 6: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 5

Project: Nine Mile Point Nuclear Station Unit: .2 Disposition:Originator/Date . ; Reviewer/Date Calculation No. Revision

J. C*. Penrose / H. R. Kopke M. B. Cooper H21C-097 0

Ref.A final pH after 30:days is then recalculated considering the addition of sodium pentaborate fromthe SLCS. This irnjection is manually initiated, so the pH transient is subject to the timing of theinjection. Since only acids are added to the suppression pool after the initial two-hour release ofcesium hydroxide, the final pH is the lowest pH that will be attained in the pool.

2.2 Computer Programs

The analysis performed herein utilizes Microsoft Excel® (Ref. 7.1), which is commerciallyavailable. The validation of Excel is implicit in the detailed review of all spreadsheets used in thisanalysis. All computer runs were performed using PC No. 9098 under the Windows NToperating system.:

2.3 Acceptance Criteria

The acceptance criterion is that the suppression pool pH is at or above 7.0 for the 30-day periodof the LOCA so that iodine re-evolution is not a source term.

-A.

NEP-DES-08Rev'07

Page 7: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES . CALCULATION CONTINUATION SHEET'. Page 6(Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0Ref.

3.0 Assumptions I

3.1 The maximum post-LOCA suppression pool volume is used in this calculation. This isconservative for the following reasons:

The concentration of nitric acid is based on the suppression pool submersion gamma TIDvalues from Reference 7.6.3, which are based on a dilution volume which is smaller than themaximum suppression pool Volume used herein (see Attachment 2). Therefore, -theconcentration of nitric acid, which is the main contributor to the acidity of the post-LOCAsuppression pool (see Attachment 4, Table 4-1), is conservatively over-estimated when themaximum suppression pool volume is used. This conservatively minimizes the post-LOCAsuppression pool pH. The over-estimation is a direct result of not reducing the submersiongamma TID to account for the suppression pool volume that is larger than the dilution volumeupon which the TID is based.

A larger suppression pool volume would result in lower Concentrations of hydriodic acid andhydrochloric acid, as well as cesium hydroxide. However, since the contribution of cesiumhydroxide to ;the post-LOCA suppression pool is orders of magnitude larger than thecontributions of both hydriodic and hydrochloric acid (see concentrations in Table 4-1 ofAttachment 4), a more dilute solution in which the cesium hydroxide concentration is lowest isconservative for minimizing the post-LOCA suppression pool pH.

Thus, use of the maximum post-LOCA suppression pool volume will result in the minimum post-LOCA suppression pool pH.

3.2 The reduction in. RCS/suppression pool mass due to steam addition to the post-LOCAcontainment is conservatively neglected. As discussed in Assumption 3.1, use of the maximumsuppression pool mass is conservative.

3.3 The initial pH in the suppression pool and in the Reactor Coolant System is assumed to be at theminimum value, 5.3, expected during normal operation. Although the RCS generally operates ata minimum pH of 5.6, this assumption is conservative because it leads to the lowest calculatedpH.

3.4 The suppression pool is assumed to be sufficiently mixed so a single pH adequately representsthe pool contents. Per Design Input 4.14, there are a minimum of 0.3 complete exchanges ofwater in the suppression pool per hour. This is judged to provide adequate mixing.

3.5 The Cesium-133 reactor core inventory is conservatively not included in this analysis. Cesium-133 would form. additional cesium hydroxide in the suppression pool, increasing the pH.Exclusion of this stable isotope of cesium leads to a lower suppression pool pH. Also note thatthe stable nuclide inventory for NMP U2 is not provided in Reference 7.7. However, Reference7.7 does include products from the activation of Cs-133 such as Cs-134, which is included in thiscalculation (see Attachment 1, Tables 1-2 and 1-4).

NEP-DES-08Rev 07

Page 8: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES :CALCULATION:CONTINUATIONSHEET Page 7(Next

Project: Nine Mile Point Nuclear Station Unit: 2. Disposition:Originator/Date Reviewer/Date Calculation No. RevisionJ C. Penrose/ H. R. Kopke M. B. Cooper H21C-097 0

Ref.

3.6 Since*Reference 7.7 does not provide the reactor core inventory of stable isotopes, it is assumedthat the'quantity of Iodine-127 is 30% of the quantity of Iodine-129. Based on the cumulativefission yields presented in Reference 7.26 for thermal neutron fission of U23, U2M, PuM, andPu241, this value is, greater than will actually occur in the reactor core. The ratio of Iodine-127 toIodine-129 is computed in the table below based on Reference 7.26. Note that U23 does notundergo thermal neutron fission. -

U235 Fission Pu239 Fission Pu24' Fission% Cumulative Yield 1-1271" 0.137 0:46 0.25% Cumulative Yield 1-129l') 1.0 1.7 1.02nH1 27/ni-129 [= %1-12^/%1129 13.7% 27.1% 24.5%

1) Recommended. values from Reference 7.26 used herein.

Since iodine contributes to the post-LOCA suppression pool acidity, this assumption isconservative as it bounds the actual amount of Iodine-127 which may be in the reactor core.

3.7 It is conservatively assumed that 5% of the iodine released into containment produces hydriodicacid. Per Regulatory Guide 1.183 (Ref. 7.10.2), 95% of the iodine released from the RCS is inthe form of cesium iodide (Csl), 4.85% is in the form of elemental iodine, and 0.15% is in theform of organic iodide. NUREG-1465 (Ref. 7.14) indicates that at least 95% of the iodineentering containment from the RCS is in the form of cesium iodide with no more than 5% as Iplus HI. Therefore, for this calculation, it is conservatively assumed that the combined I plus HIquantity is the maximum 5% in order to maximize the acid contribution from iodine to theSuppression Pool.

3.8 Radiation dose calculations for gamma and beta total integrated dose (TID) in the drywell usedas input are assumed to apply at electrical cable surfaces. If attenuation of air was not taken intoaccount in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is conservative in that it uses ahigher radiation flux and computes a higher hydrochloric acid production rate. If attenuation ofair was taken into :account in the TID calculations (Ref. 7.6.2/7.6.3), this assumption is moot.

3.9 The available G value for hydrochloric acid generation in electrical cable jacketing wasdeveloped based on material (Hypalon®) with a variable chlorine content. The chlorine content ofthis material can be higher than the 16+2% chlorine content of the electrical cable jacketmaterial, Chlorosulfonated Polyethylene (CSPE), specified at NMP Unit 2 (see description inNUREG/CR-5950, Ref. 7.13). Use of the available G value is conservative because theapplication of G involves only the mass of the cable and not the chlorine content; therefore, useof a G value for a higher chlorine content material leads to a higher hydrochloric acid productionrate.

3.10 The amount of sodium pentaborate added to the suppression pool as a buffer is conservativelyassumed to be the minimum mass contained by the SLCS injection tank.

3.11 Hydrogen ion activity coefficients are ignored when calculating the pH of the suppression pool.Because the suppression pool is initially filled with demineralized water, the ionic strength is lowand any deviation from ideality is negligible for purposes of this calculation.

NEP-DES-08Rev 07

Page 9: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

FENGINEERING SERVICES f CALCULATION CONTINUATION SHEET Page 8I (Next

Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0Ref.

3.12 The contribution ofthe ethylene propylene rubber (EPR) cable insulation to the hydrochloric acidproduction is corsidered negligible. This assumption is acceptable, particularly whenconsidering Assumption 3.9, since the EPR cable insulation contains less than 1% chlorine byweight (Ref. 7.19).,

3.13 The gamma radiation dose used herein is increased by 5% to account for bremsstrahlung. Thisconservative increase is justified as follows:

The fraction of beta energy that is converted to bremsstrahlung (or gamma radiation) isestimated using the equation (Ref. 7.24, p. 110):

Fraction = k * Z * E

where:Fraction = the fraction of beta energy converted to bremsstrahlungk = 0.7x10o3 per MeVZ = atomic number of the absorberE = energy of the beta particle [MeV]

For this calculation, absorption in air, water, or CSPE is considered, so a conservative value for Zwould be 20. Similar to. gamma energy,, the beta energy is different for each radionuclide.Assuming the average beta energy per decay is the same as the average gamma energy perdecay, and using a typical gamma energy of 1 MeV, the fraction converted to bremsstrahlungwould be:

Fraction = 0.7x10 3 20' 1 = 1.4%

Inspection of the beta energies for noble gases, iodines, and cesiums in Reference 7.25indicates that, for most radionuclides, the gamma energy per decay is higher than the betaenergy per decay. Using a fraction of 5% is large enough to account for the cases where thebeta energy per decay is larger than the gamma energy per decay, and to account forbremsstrahlung frbm pure beta emitting radionuclides. Therefore, the assumption that thebremsstrahlung contribution to the dose is equal to 5% of the gamma dose is consideredconservative.

NEP-DES-08RevO07

Page 10: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION CONTINUATION. SHEET . Page 9- i(Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. RevisonJ. C. Penrose / H. R. Kopke M. B. Cooper H210-097

Ref.4.0 Design Input

4.1 The initial suppression pool pH is maintained between 5.3 and 8.6 (Ref. 7.3.1,p. 3).

4.2 The RCS pH is maintained between the following limits (Ref. 7.4, p. B3.4-8):

Mode PH Range1 (>10% power) . 5.6: <pH5 <8.62,3 5.6 5 pH S 8.6All others 5.3 5 pH 5 8.6

For Mode 1 operation, the pH range above coincides with the Action Level 1 acceptable pHrange (5.6 < pH < 8.6). The Action Level 2 pH range is 4.9 < pH < 9.3 and the Action Level 3.pHrange is 4.6 < pH < 9.6 (Ref. 7.3.2, p. 11).

4.3 The volume of water (liquid and steam) in the Reactor Coolant System (RCS) during normaloperation is 24,266 ft3, with a liquid fraction of 0.579. This corresponds to a total liquid mass of644,850 Ibm and a total steam mass of 24,324 Ibm (669,174 Ibm total water mass). See p. 86 ofReference 7.6.5.

4.4 Linear absorption 'coefficients are determined from input in NUREG-1081 (Ref. 7.15) as follows.Note that the values below (a, p) are those provided for Hypalon® in Reference 7.15. They areconsidered acceptable for CSPE.

Linear absorption coefficient for gamma radiation, 'o:.

/p =0.0637 cm2 /g

PH =1.55.g/cm3

CY-,H = 0.0637 x 1.55 = 0.099 cm-1

Linear absorption 'coefficient for beta radiation, op:

/l3PH = 33.6 cm2/g

g/ 33,

PH = 1.55 g/cm

OPH = 33.6 x 1.55 = 52.08 cm-1

4.5 The 100% rated thermal reactor core power level is 3,467 MWt (Ref. 7.5, p. 3).

4.6 The maximum and minimum suppression pool water level (referenced to mean sea level) andvolume for normal operation are given below.

NEP-DES-08Rev 07

Page 11: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES 1CALCULATION CONTINUATION SHEET. Page 10(Next _ )

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose /H. R. Kopke M. B. Cooper H21 C-097 0Ref.

Suppression Pool Elevation (Ref. 7.2.5) Volume (Ref. 7.6.1, p. 58)Water Level [ft3]Maximum- 201 ft 0 in 154,400Minimum 199 ft 6 in 145,200

4.7 The suppression pool temperature range is 70'F : T < 90°F for continuous plant operation (Ref.7.6.4, p. 13). However, the maximum temperature can rise to 1 10°F before reactor shutdown isrequired (Ref. 7.2.4). The maximum temperature values are consistent with the TechnicalSpecification (Ref.:7.2.4).

4.8 The suppression 6hamber / drywell pressure is maintained between 14.2 psia and 15.45 psia(Ref. 7.2.2).

4.9 The reactor core 'cesium and iodine inventories are determined in Attachment 1, and arerepeated below for convenience since they are input to the. pH analysis. These quantities areconservatively based on the activities at time t=0 following a LOCA.

Iodines: 81.0 gram-molesCesiums: 503.3 gram-moles

The above core inventories are based on a core thermal power of 3,536 MWt (102% of licensedcore thermal power, 3,467 MWt), consistent with Regulatory Guide 1.49 (Ref. 7.10.1).

It should be noted that the quantity of cesium given above excludes Cesium-133, which is stable,since it is not provided in Reference 7.7. The exclusion of the stable isotope is conservative as itwould form cesium hydroxide (CsOH) which would raise the pH of the post-LOCA suppressionpool. The stable, cesium would form cesium hydroxide since number of moles of non-stablecesium is greater than 95% of the number of moles of, iodine (95% of cesium is released ascesium iodide, Csl - see Assumption 3.7).

4.10 The gamma (y) dose in the drywell, wetwell, and suppression pool is determined in Attachment 2and is repeated below for convenience since it is input to the pH analysis. The dose providedbelow is based on the core thermal power of 3,467 MWt and includes a 5% increase to accountfor bremsstrahlung (see Assumption 3.13).

Time Drywell & Wetwell Airborne y Dose Suppression Pool Submersion y Dose[hr] [rad] [rad]

1 2.4E+06 4.OE+056 7.4E+06 1.5E+06

24. 1.2E+07 3.OE+06720 3.2E+07 1.7E+07

2400 '5.OE+07 3.8E+074320 6.7E+07 5.9E+078760 1.OE+08 1.0E+08

NEP-DES.08Rev 07

Page 12: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGNEEIN SE VIC : -"-.•C A.LCU.LATION =CONTINU.ATIO N .SHEET ""," :. Page 11

Project: Nine Mile Point Nuclear. Station. Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J.C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0Ref.

4.11 The beta (A) dose in the drywell is determined in Attachment 2 and is repeated below forconvenience since it is input to the pH analysis. The dose provided below is based on the corethermal power of 3,467 MWt.

Time Drywell Airborne P Dose Wetwell Airborne P3 Dose[hr] rrad] [rad]

1 2.OOE+07 2.26E+076 5.78E+07 6.90E+07

24 1.30E+08 1.59E+08720 5.65E+08 7.03E+08

2400 6.07E+08 7.54E+084320 6.35E+08 7.81 E+088760 6.97E+08 8.44E+08

4.12 Standby Liquid Control System (SLCS) Parameters

The SLC system has an acceptable range of operation, defined in Figure 3.1.7-1 of TechnicalSpecification 3.1.7 (Ref. 7.2.1). The lower boundary is defined by the following endpoints:

* 4,558.6 gallons of 13.6 weight % sodium- pentaborate solution (SG=1.068).* 4,288.0 gallons of 14.4 weight % sodium pentaborate solution (SG=1.071)

The specific gravity (SG) provided above is taken from Figure 1 of Reference 7.22.

It should be noted that the above weight percentages define the lower boundary of acceptableSLCS operation and are only valid for sodium pentaborate enrichments greater than or equal to25 atom percent B-10.

Sodium pentaborate decahydrate has the chemical formula Na2B10O16-10H 20 (Ref. 7.22, §3.3.1)and a molecular weight of 590.224. In this calculation, "sodium pentaborate" actually refers tosodium pentaborate decahydrate for consistency with plant documentation.

The sodium pentaborate solution is maintained between 750F and 850F by internally locatedelectric heaters (5ef. 7.3.4, §5.0(B), p. 4). Note that 750 F bounds the Technical Specificationlower limit of 70°F (Ref. 7.2.1).

Each sodium pentaborate pump (2SLS-P1A and 2SLS-P1B) must be able to deliver > 41.2 gpmat a discharge pressure ? 1,235 psig (Ref. 7.2.1).

4.13 The chloride beating cable inventory is determined in Table 4-4 of Attachment 4. Informationfrom DIT-NM-NPEE-001 (Ref. 7.19) is used to determine the chloride bearing cable inventory.

4.14 The limiting Design Basis Accident (DBA) LOCA is identified in UFSAR Section 6.2.1.1.5 (Ref.7.11.1) as Case C of UFSAR Section 6.2.1.1.3 (Ref. 7.11.2), which corresponds to Case C ofReference 7.6.5., For this case, a minimum of one Low Pressure Core Injection (LPCI) pump isoperable throughout the accident (Ref. 7.6.5, p. 21). Given that the reactor vessel depressurizesreasonably quickly for a large break L4OCA (see -Ref. 7:6.5, Tables 6.2-9 and 6.2-10), -a minimum

NEP'DES-08Rev 07

Page 13: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION CONTINUATIONRSHEET 1 Page 12.1(Next

Project: Nine Mile Point Nuclear, Station Unit: 2. Disposition:Originator/Date Reviewer/Date Calculation No. ison

J. C. Penrose / H. R. Kopke 1 M.B. Cper H21C-097.Ref.R

LPCI flow rate of 6,000 to 7,000 gpm can be expected per Figure 6.2-3 of Reference 7.6.5. Thisflow rate equates to approximately 0.3 complete exchanges of the water in the suppression poolper hour (1 comple~te exchange in approximately 3- hours).

4.15 The post-LOCA suppression pool temperature response for an RCS recirculation suction linebreak for the DBA; LOCA is provided below. The shortrterm temperature response (t=0 to 1.2days) is taken from Figure 6.2-27 of Reference 7.6.5 (p. 154). It should be noted that thetemperature respobse for the DBA LOCA bounds the response of the other cases.

Time Tpo,1 Time TP0o, Time Tp[ (h]F [sec (hr)o [0E] [sec (hr)]

0.1 (2.8x10"5) 90 100 (0.028) 125 42,000 (11.7) 2021.0 (2.8x104) 90 300(0.083) 140 60,000 (16.7) 2008.0 (2.2x10-3) 95 1000 (0.28) 160 100,000 (27.8) 19010 (2.8x10 3 99 10,000 (2.8) 18530 (8.3xl 03) 115 30,000 (8.3) 200

The long-term suppression pool temperature response (from t=1.25 days to 30 days) is takenfrom Table 1 of Reference 7.6.7 and is provided below.,

Time Tpoo1 Time Ti Time Tpo,[days (hr) JF] [days (hr)] [j] [days (hr)] [F]1.250(30) -190.0 4.500 (108) 153.3 12.000 (288) 132.41.500 (36) 185.9 5.000 (120) 150.2. 13.000 (312) 131.31.750(42) 181.8 5.500(132) 147.6 14.000 (336) 130.32.000 (48) 177.9 6.000 (144) 145.3 15.000 (360) 129.22.333 (56) 173.4 7.000 (168) 142.5 20.000 (480) 127.92.666(64) 169.2 8.000 (192) 139.6 25.000 (600) 125.13.000 (72) 165.5 9.000 (216) 137.1 30.000 (720) 122.43.500 (84) 161.0 10.000 (240) 135.34.000(96) 157.0 11.000 (264) 133.6

NEP-DES-08Rev 07

Page 14: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES C Page(Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date = Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Ko ke M. B. Cooper H21C-097. 0

5.0 Calculations

5.1 Suppression Pool Initial Conditions

5.1.1 Suppression Pool Volume

The maximum suppression pool volume will be used in this calculation. This will result inthe calculation of the lowest transient pH and is conservative (see Assumption 3.1). Thetotal pool volume for this calculation is the sum of the maximum initial suppression poolvolume plus the added RCS volume. The complete RCS mass is added to thesuppression pool at the start of the LOCA.

The suppression pool liquid volume at the maximum water level is 154,400 ft3. TheReactor Coolant System (RCS) has a total volume of 24,266 ft3, with a liquid fraction of0.579. Once the RCS mass is added to the suppression pool, the total suppression poolvolume is approximately 168,000 ft3 (Attachment 4, Table 4-9).

5.1.2 InitialpH

The suppression pool is maintained at a pH between 5.3 and 8.6. Lower pH levels areconservative for this analysis, so an initial pH of 5.3 is used. This pH also accounts fordissolved carbon dioxide,

The RCS pH is maintained at a pH between 5.6 and 8.6 for Modes 1, 2, and 3 andbetween 5.3 and 8.6 for all other Modes. A conservative initial pH of 5.3 is used for thisanalysis. The'choice of this conservative input does not impact the final result of thiscalculation.

The pH of the pool contents after addition of the RCS is 5.3.

5.2 Hydriodic Acid (HI)

Hydriodic acid is formed by the post-LOCA release of elemental iodine (I) and hydrogen iodide(HI) from the reactor core and its absorption in the suppression pool.

Per Regulatory Guide 1.183, Table 1 (Ref. 7.10.2), 5% of the iodine core inventory is releasedinto containment during the Gap Release Phase and an additional 25% of the iodine coreinventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap ReleasePhase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV Phasewith a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).

The reactor core inventory of iodine, the Gap Release Phase iodine release, and the EIV Phaseiodine release are determined in Attachment 1 and listed in Attachment 1, Table 1-1.

Per Section 3.5 of Regulatory Guide 1.183 (Ref.. 7.10.2), 95% of the iodine released-from theRCS is in the form of cesium iodide, 4.85% is in the form of elemental iodine, and 0.15% is in theform of organic iodide. Section 3.5 of NUREG-1465 (Ref. 7.14) indicates that at least 95% of theiodine entering containment from the RCS is in the form of cesium iodide with normore than 5%

NEP-DES-08Rev 07

Page 15: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES T CALCULATION CONTINUATION ýSHEET age 14( ,Next

Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097Ref.

0

as I plus HI. For this calculation, it will be conservatively assumed that the combined I plus HI isthe maximum 5% in order to maximize the acid contribution from iodine to the suppression pool.

The formation of hydriodic acid in the suppression pool is equal to the molar addition of iodine.Computations are shown in Attachment 4, Table 4-2. During the Gap Release Phase, 5% of theGap Release Phase iodine release produces hydriodic acid in the suppression pool. During theEIV Phase, 5% of the EIV -Phase iodine release produces additional hydriodic acid in thesuppression pool. The concentrations are determined at the end of the Gap -Release Phase, atone hour, and at the end of the EIV Phase. The rates of addition during the Gap Release Phaseand during the EIV Phase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). Noadditional hydriodic acid is formed after the EIV Phase.

5.3 Cesium Hydroxide,(CsOH)

Cesium hydroxide is formed by the release of cesium from the reactor core and its absorption inthe suppression pool.

Per Regulatory Gtiide. 1.183, Table 1 (Ref. 7.10.2), 5% of the cesium core inventory is releasedinto containment during the Gap Release Phase and an additional 20% of the cesium coreinventory is released into containment during the Early In-Vessel (EIV) Phase. The Gap ReleasePhase has an onset of 2 minutes and a duration of 30 minutes and is followed by the EIV phasewith a duration of 90 minutes per Table 4 of Regulatory Guide 1.183 (Ref. 7.10.2).

The reactor core inventory of cesium, the Gap Phase cesium release, and the EIV Phase cesiumrelease are determined in Attachment 1 and listed in Attachment 1, Table 1-2.

Cesium released in the form of cesium iodide does not contribute to formation of cesiumhydroxide. The quantity of cesium iodide is 95% of the molar quantity of iodine released,consistent with the determination of hydriodic acid production (see Section 5.3). The amount ofcesium as cesium iodide is subtracted from the Gap Phase cesium release and the EIV Phasecesium release to'obtain the quantity of cesium hydroxide in the post-LOCA suppression pool.

The formation of :cesium hydroxide in the suppression pool is equal to the molar addition ofcesium not in theform of cesium iodide. Computations are shown in Attachment 4, Table 4-5.The concentrationrs are determined at the end of the Gap Release Phase, at one hour, and at theend of the EIV Phase. The rates of addition during the Gap Release Phase and during the EIVPhase are linear per Section 3.3 of Regulatory Guide 1.183 (Ref. 7.10.2). No additional cesiumhydroxide is formed after the EIV Phase.

5.4 Nitric Acid (HNO 3).

Nitric acid is formed by irradiation of air and water in the suppression pool by gamma radiation.Per Section 2.2.4 of NUREG/CR-5950 (Ref. 7.13), the generation rate of HNO 3, G, is 0.007molecules HNO 3 per 100 eV. This generation rate converts to 7.3x10.6 g-mole/liter per MegaRadas follows:

NEP-DES-08Rev 07

Page 16: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES i"s,"' CALCULATION-CONTINUATION SHEET•;.:. Page 15''(Next-•)

Project: Nine Mile Point Nuclear! Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose/H. R. Kopke M. B. Cooper H21C-097 0Rief.

0.007 molecule mole 6.241x 1011 eV 100 x 106 ergx 1000 gG 100 eV I.6.022x 102 3 molecule X erg MegaRadg Xliter

Total integrated suppression pool gamma radiation doses were multiplied by this value tocompute the nitric acid concentration at varying times. Computations are shown in Attachment4, Table 4-3.

5.5 Hydrochloric Acid (HCI)

Hydrochloric acid is formed by radiolysis of chloride-bearing electrical cable in the drywell.

The types and amounts of cable are as shown in DIT-NM-NPEE-001 (Attachment 3). Two sizesof cable are present in the drywell, 750 MCM power cable and 1/0 ground cable. Jacketingmaterial for both types is chlorosulfonated polyethylene (CSPE). This material contains 16+2%chlorine. Note, however, that the hydrochloric acid generation rate is determined using theproperties of Hypalon® (see Assumption 3.9).

The 750 MCM cable has ethylene propylene rubber (EPR) insulation, while the ground cable hasno insulation. The insulation material does not contain chlorine (specified as <1%) andconsequently does not contribute to HCI formation (see Assumption 3.12).

The mass of jacket material for each cable is computed based on the maximum guaranteedcable outer diameter (OD) and on the jacket thickness per NMP specification NMP2-E023A (Ref.7.23) as shown on pages 22, 24, and 25 of attached DIT-NM-NPEE-001 (Attachment 3). Adensity of 1.55 g/cm3 was used for Hypalon® per Section 4.2 of NUREG-1081 (Ref. 7.15). Cablelengths are as identified in DIT-NM-NPEE-001 (Attachment 3). As-built cable lengths are locatedin cable tray and additional cable lengths are conservatively assumed to be in free air.

The methodology for computing hydrochloric acid production in GGNS-98-0039, Revision 1 (Ref.7.12.1) differs from that used in GGNS-98-0039, Revision 3 (Ref. 7.12.2). The hydrochloric acidproduction rate iniGGNS-98-0039, Revision 1, is based on the mass of cable jacket and on theradiation dose rate at the cable jacket surface multiplied by a flux averaging factor. However, thehydrochloric acid :production rate in GGNS-98-0039, Revision 3, is based on the cable jacketsurface area and on the energy release per unit volume of containment, diminished byattenuation in air between the center of containment and the cable surface. Both methodologiesuse the same G value (with units converted to rads in GGNS-98-0039, Revision 1) and the sameexpression for energy absorption fraction in the cable jacket. Consistent with Assumption 3.8,which is conservative, the GGNS-98-0039, Revision 1, methodology for hydrochloric acidproduction is used herein. The benchmark (§5.8) demonstrates that both methodologies yieldvery similar results, and therefore the choice of the GGNS-98-0039, Revision 1-, methodologyused in this calculation is considered acceptable.

Hydrochloric acid generation in bchlorine-bearing material in the cable is determined using thefollowing equation from Appendix B of NUREG/CR-5950 (Ref. 7.13) and further developmentsfrom Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1):

R =GxSxoxA

NEP-DES-08Rev 07

Page 17: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET.. Page 16

(Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date I Reviewer/Date Calculation No. RevisionJ. C. Penrose /H.- R. Kopke M. B. Cooper H21C-097 0

Ref. --

where:

R = HCI production rateG = radiolysis yieldS = cable;jacket surface area* = average radiation energy flux in the cable jacketA = absorption fraction of energy flux in the cable jacket

A factor for computing the average radiation energy flux, €, in the jacket is developed based onattenuation of radiation flux at radius r in the cable jacket (Reference 7.12.1, Appendix A, SectionA.2):

0(r) = 0(Rn) x e-P("°-r)

where:

r = cable radiusR, = outside cable radiusp = linear absorption coefficient for Hypalon®

Integration of this, equation over the cable jacket thickness leads to an expression for a fluxaveraging factor that can be multiplied by the flux at the cable jacket surface to give-the averageflux in the. cable jacket:

1 le -(py + 1) - 1] (e-Y -

Ry 2!~R,, y2

2

where:

= average radiation energy flux in the cable jacket0(Ro) = radiation energy flux at the cable jacket surfacep = linear absorption coefficient for Hypaloney = thickness of cable jacket

The absorption fraction of energy flux is calculated as follows per Section 4.2 of NUREG-1081(Ref. 7.15):

A = 1-e

where:

A = fraction of radiation energy flux absorbed by cable jacketp = linear absorption coefficient for Hypalon®y = thickness of cable jacket

NEP-DES-08.Rev 07

Page 18: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGNEEIN SEVICS CALCULATION: CONTINUATION SHEET,` : Page _17. . .• , /: " .: .: :•. • . ; " . i .;J" :', : i 'i " .•.. (N e xt)

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0Ref.

The HCI generation equation then becomes:

1 [e_,,py + 1) Rl Fo(e_,_-

R= G *.S, O(Ro) 2• e ", 1-Pex")

2

The last two terms 'are the previously developed flux averaging factor and the absorption fraction,respectively.

Grand Gulf Engineering Report GGNS-98-0039, Revision 1, Appendix A (Ref. 7.12.1), thenderives from this the following equation in order to use radiation dose reported in units ofMegaRad per hour (or MegaRad when integrated over time) as is typically available:

L .2 [e-'(jy + 1) -] o (e"Y -

R =G mH *X(Ro)* -y2 * -Y)R y = , (1 -e"

where:

R = HCI p roduction rateG = radiolysis yieldmH = mass of cable jacketX (R,) = radiation dose .rate at the surface of the cable jacketR, = outside cable radiusp = linear absorption coefficient for Hypalon®y = thickness of cable jacket

The following linear absorption coefficients are determined for Hypalon® (see Design Input 4.4):

p = 0.099 cm' for gamma radiationp = 52.08 cm1 for beta radiation

Per NUREG/CR-5950 (Ref. 7.13) the G value for Hypalon is 2.115 molecules HCI per 100 eV.This corresponds to 2.192E-6 g-mole HCI/g Hypalon® per MegaRad:

G 2.115 molecule mole 6.241 x 10" eV 100 x 106 ergG=xx x

100 eV 6.022 x 1023 molecule erg MegaRad g

The G value for hydrochloric acid generation in electrical cable jacketing available from AppendixB of NUREG/CR-5950 (Ref. 7.13) was developed based on material (Hypalonr) with a variablechlorine content. The chlorine content of this material can be higher than the 16+2% chlorinecontent of the electrical cable jacket material, Chlorosulfonated Polyethylene (CSPE), specifiedat NMP Unit 2 ý(see description in NUREG/CR-5950). Use -of the available G value isconservative because the. application of G involves only the mass of the cable jacketing and not

NEP-DES-08

Rev 07

Page 19: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION.CONTINUATION SHEET Page 18(Next

Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:Originator/Date ] Reviewer/Date Calculation No. RevisionJ. C. Penrose / H. R. Koke I M. B. Cooper H21C-097

Ref. -"

the chlorine content. Therefore, use of the G value for Hypalon® will overpredict the hydrochloricacid production rate when applied to materials with lower chlorine contents, such as the CSPEutilized in the cables at NMP Unit 2 (Assumption 3.9).

Hydrochloric acid formed by gamma. radiation is computed at varying times using the TotalIntegrated Dose (TID) for gamma radiation in the drywell multiplied by the generation rate. Thetotal mass of cable, jacketing is determined and then used in the computation.

Hydrochloric acid formed by beta radiation is computed at varying times using the TID for betaradiation in the drywell multiplied by the generation rate. The mass of cable in cable tray isdiscounted by 50% to account for localized shielding from beta radiation in the tray.

The mass of hydrochloric acid generated, by gamma and beta radiation is divided by the post-LOCA suppression pool volume to determine the total concentration of HCI formed by irradiationof electrical cable as a function of time.

The computations determining the hydrochloric acid generation are presented in Attachment 4,Table 4-4ý

5.6 Transient pH Calculation

The transient pH was computed by combining the contributions of acids and bases. Theconcentrations of. [H*] and (OH] were summed and the net resultant concentrations fromself-neutralization determined by the relationship:

where:

K, = dissociation constant for waterx = [H*] and [OH] self-neutralized7-[H'] = sum of acids added [g-mole/liter]Z[OH] = 1sum of bases added [g-mole/liter]

Solving for x:

[OH-] + [H4] - VqOH-] + [H]-)2 - 4 x (JOH-][HW] - K.)X=2

The dissociation constant is temperature dependent, and the temperature function is per theCRC Handbook (Ref. 7.17, consistent with correlation used in Ref. 7.12):

- log(K,) = 15.5129 - 2.24 x 10-2T + 3.352 x 10--T 2

where:

NEP-DES-08Rev 07

Page 20: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES " CALCULATION CONTINUATIONW SHEET Page 19

(Next

Project: Nine Mile Point Nuclear, Station Unit: 2 Disposition:OriginatorDate I Reviewer/Date Calculation No. Revision

J. C. Penrose /H. R. Kopke M. B. Cooper H21C-097 0Ref.

T = temperature, *F

Finally, the suppression pool pH is determined:

[H]= [H4 ]um x

pH = - Iog([H*)

5.7 Sodium Pentaborate Addition

Sodium pentaborate can be added via the Standby Liquid Control System (SLCS) to buffer thesuppression pool, resulting in higher pH values.

The SLCS contains an aqueous solution of sodium pentaborate (Na 2Bl10O16 10H20). Thesolution is prepared by mixing borax (Na2B40 7 .0H 20) and boric acid (H3B0 3) in a 1:6stoichiometric molar ratio in distilled water (Ref. 7.22, §4.4). This yields sodium pentaborate(Na2B1 oO16 or Na20*5B20 3) and water.

Sodium pentaborate dissociates in water in accordance with the following equilibrium:

Na 2B100,16 . 10H20 + 6H2 0 <->2Na+ + 2B(OH)- + 8B(OH) 3

This buffers the pH in accordance with:

[anion]pH = pK8 + log

[acid]

pH = pK, + log [B(OH)4][B(OH)3 ]

where:

K, = equilibrium constant for the sodium pentaborate dissociation

The sodium pentaborate dissociation constant is temperature dependent in accordance with thefollowing correlation (Ref. 7.12.2, §6.1):

K, = (0.0585 T + 1.309) 10.1 temperature in 'F

This correlation is, based on temperature data from 5-10TC (41-122°F). However, Reference7.12.2 states the following regarding the correlation: "...linear extrapolation of this data totemperatures above 500C is expected to result in conservatively high dissociation constants andcorrespondingly lower pool pH values." Therefore, use of this correlation with suppression pooltemperatures greater than 1220 F is conservative.

NEP-DES-08-Rev 07

Page 21: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES "-CALCULATION CONTINUATION SHEET Page 20[.,(Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date T Reviewer/Date Calculation No. RevisionJ. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0

Ref.Due to the nature of.the correlation for the pentaborate dissociation constant, a bounding 30-daysuppression pool temperature of 200°F is used. Use of a higher temperature than will actuallyexist results in a lower final pH.

The minimum volume of the SLCS injection tank is 4288.0 gallons and the concentration of thesodium pentaborate solution is 14.4% at that volume based on the decahydrate (includes waterof hydration) as defined in Figure 3.1.7-1 of Technical Specification 3.1.7 (Ref. 7.2.1). Using themaximum controlled temperature of 850F, the minimum specific gravity is 1.068 (Ref. 7.22,Figure 1). The min.imum mass of sodium pentaborate can be calculated:

Mass = volume density * concentration

Note that the mass of sodium pentaborate in 4,288 gallons of 14.4% solution is slightly less thanthe mass in 4,558.6 gallons of 13.6% solution.

The number of moles of sodium pentaborate added to the suppression pool is determined usinga molecular weight of 590.224 since the concentration is based on the decahydrate. Theamounts of anion and acid are 2 and 8 times this amount, respectively, by stoichiometry.

The equivalents of acid in the unbuffered suppression pool neutralize the equivalents ofconjugate base and shift the equilibrium, so, by mass balance,

2 x mole SP - mole H÷pH = pK,6 + log8 x mole SP + mole H*

where:

mole SP = moles of sodium pentaborate added to the suppression poolmole HW - moles of acid in unbuffered suppression pool

5.8 Benchmark

5.8.1 Input for pH Calculation Benchmark

The pH transient developed in this calculation is determined using a Microsoft Excel (Ref.7.1) spreadsheet. In order to benchmark the spreadsheets, the design input from GrandGulf Nuclear Station (GGNS) Calculation No. XC-Q1111-98013, Revision 1,"Suppression Pool pH Analysis," (Ref. 7.12.3) is input into the spreadsheets developedherein. Since Grand Gulf was an NRC pilot plant for Alternate Source Termimplementation, the calculation has been accepted by the NRC and is part of the publicrecord.

Case 1 of this GGNS calculation is used to benchmark the model herein. This caseassumes that all source terms (except noble gases)-are deposited upon release into thesuppression pool water. This maximizes the suppression pool dose and the generation ofnitric acid.

NEP-DES-08Rev 07

Page 22: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATIONCONTINUATIONSHEET Page 21I (Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. RevisionJ. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0

Ref. i. ..

The design, input taken from the Grand Gulf post-LOCA suppression pool pH calculation(Ref. 7.12.3) is provided in the following table. Input which is unchanged in thebenchmark' (e.g. the density of Hypalon®, core inventory fractions released intocontainment, etc.) is not re-stated.

Table 5.8.1-1: Desiqn Input from GGNS Post-LOCA Suppression Pool oH AnalvsisParameter Value Source

Suppression Pool (SP):SP volume 4.841 x10 6 liters Ref. 7.12.3, p. 2SP temperature profile see AUt. 5, Table 5-8 Ref. 7.12.3, AUt. 3, p. 1Reactor Core Inventory:Iodine inventory 325 g-atoms 2 Ref. 7.12.3, p. 4Cesium inventory 2,400 g-atoms2 Ref. 7.12.3, p. 4Radiation Dose:Sup ression pool gamma dose Correlations provided Ref. 7.12.3, Att. 2, Case 1Drywell gamma dose1 in Att. 5, Table 5-7. Ref. 7.12.3, AUt. 2, Case 1Containment gamma dose1 SP y dose correlation Ref. 7.12.3, AUt. 2, Case 1Drywell beta dose' is in Mrad; other y & f3 Ref. 7.12.3, Att. 2, Case 1Containment beta dose1 doses are in MeV/cc. Ref. 7.12.3, Aft. 2, Case 1Cables:Cable material Hypalon®

Typical/modeled cable outer radius 0.35 inches Ref. 7.12.3, p. 8Typical/modeled cable jacket thickness 0.28 inches Ref. 7.12.3, p. 8Drywell cable masses:

mass of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3(combined) in exposed cable ,traysmass 'of jacket and insulation 873.65 Ibm Ref. 7.12.3, p. 3

(combined) in free air dropsContainment cable masses:

mass ;of jacket and insulation 14,049.27 Ibm Ref. 7.12.3, p. 3(combined) in exposed cable traysmass of jacket and insulation 1,561.03 Ibm Ref. 7.12.3, p. 3(combined) in free air drops

SLCS: ,._ _.

Neutron absorber anhydrous sodiumpentaborate

Molecular weight (Na 2 B1 0O16) 410 Ret. 7.12.3, p. 15Final suppression pool temperature 120'F Ref. 7.12.3, p. 16Mass of sodium pentaborate injected 5,800 Ibm Ref. 7.12.3, p. 15

1) Dose in Mev/cc converted to rad using 1 rad = 8.071x10 MeV/cc for air at S.T.P. (Ref. 7.8, p. 23).2) Per the CRC handbook (Ref. 7.17), a gram-atom is defined as "the mass in grams numerically equal to

the atomic weight,' which is essentially the same as the definition for a gram-mole. The CRC handbookdefines a gram-mole as the 'mass in grams numerically equal to the molecular weight." The inventoriespresented above are given in gram-atoms to be consistent with Reference 7.12.3.

The benchmark is performed in Attachment 5 by utilizing the above design input in thespreadsheets developed for the current calculation in Attachment 4. Wherever an inputhas been changed or added, the cell is italicized. Similarly, additionalinformation/equations which are added are italicized. The addition of new-equations/cells

NEP-DES-08Rev 07

I -

Page 23: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES 1" " CALCULATION CONTINUATION SHEET Page 22(Next I

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date . Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21 C-097 0R, .

is necessalry since, in some instances, the input provided in Referencedifferent foim than used herein.

7.12.3 is in a

5.8.2 Benchmark Results

The results of the benchmark provided in Attachment 5 are comparedreported in Reference 7.12.3. This comparison is -illustrated in Figurebelow for convenience.

to the results5-1, repeated

Figure.5-1: GGNS BenchmarkPost-LOCA Suppression Pool pH Analysis

pH Response without SLCS

ft

A.

S

'A

-e- Benchms

-4F- GGNS ý

, . D 1 i

0.01 0.1 1 10 100

Time Alter LOCA (hours)

1000

Figure 5-1: demonstrates the successful benchmarking of the model developed herein.The result, are identical to 2 hours post-LOCA, thus indicating that the gap release phaseand early in-vessel release phases are modeled in the same manner for both GGNS andthe benchmark. Beyond 2 hours, nitric acid and hydrochloric acid are produced as aresult of radiolysis. The nitric acid contribution is the same for GGNS and the benchmark.

Slight differences between the benchmark and GGNS curves beyond 2 hours areattributed to differences in methodologies between GGNS-98-0039, Revision 1 (Ref.7.12.1), adopted in this calculation, and GGNS-98-0039, Revision 3 (Ref. 7.12.2), whichis the basis for Reference 7.12.3 (the benchmark), for computing hydrochloric acidproduction. The hydrochloric acid production rate in GGNS-98-0039, Revision 1, isbased on -the. mass of cable jacket and on the radiation dose rate at the cable jacketsurface multiplied by a flux averaging factor. However, the hydrochloric acid productionrate in GGNS-98-0039, Revision 3, is based on the cable jacket surface area and on the

NEP-DES-08Rev 07

Page 24: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES - CALCULATION CONTINUATION SHEET.,: Page 23.(Next

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. RevisionJ. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0

Ref.I

energy release per unit volume of containment, diminished by attenuation in air betweenthe center of containment and the cable surface. Both methodologies use the same Gvalue (with units -converted to rads in GGNS-98-0039, Revision 1) and the sameexpression for energy absorption fraction in the cable jacket. The benchmark alsodemonstrates that both methodologies yield very similar results.

The final suppression pool pH calculated by the spreadsheets herein is 4.07 incomparison to 4.03 in the GGNS calculation. This is considered sufficiently accurate tobenchmark: the model developed for this calculation.

Similarly, the model. determining the final suppression pool pH following SLCS addition isbenchmarked. Both the model herein and the GGNS calculation predict a final pH of8.46.

NEP-DES-08Rev 07

Page 25: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CACLTO OTNAINSETPage 24I IProject: Nine Mile Point Nuclear Station Unit: 2 Disposition:

Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0Ref.

6.0 Results

6.1 The pH in the unbuffered post-LOCA suppression pool initially rises due to the influence ofcesium hydroxide addition at the beginning of the LOCA, but falls to below a pH 7.0 betweenapproximately 12 to 14 days (see Figure 4-1, repeated below for convenience). The final pH at30 days without buffering is 4.4, so the suppression pool pH does not satisfy the AcceptanceCriterion of a pH greater than 7.0.

6.2 Addition of sodium pentaborate via the Standby Liquid Control System (SLCS) buffers thesuppression pool and results in a final pH at 30 days of 8.3. The suppression pool pH will satisfythe Acceptance Criterion of a pH greater than 7.0 with use of the SLC system. The SLCS shouldbe used prior to the suppression pool pH falling below 7.0. When determining the appropriatetime to inject the sodium pentaborate, the duration of injection should be considered as well asthe amount of time to achieve a homogenous mixture in the suppression pool.

Figure 4-1: Nine Mile Point Unit 2Post-LOCA Suppression Pool pH Analysis

pH Response without SLCS

9.0Final pH with SLCS would be 8.3

8.0

7.0

6.0.

3.0 L.

0.010 0.100 1.000 10.000

Time After LOCA (hours)

100.000 1000.000

NEP-DES-08Rev 07

Page 26: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET Page 25(Next

Project:•Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke M. B. Cooper H21C-097 0Ref. 7.0 References

7.1 Microsoft Excel 97 SR-2, S&L Program No. 03.2.081-1.0, dated 04/28/1999.

7.2 NMPNS Unit 2 Technical Specifications7.2.1 TS 3.1.7, Amendment 91, "Standby Liquid Control (SLC) System."7.2.2 TS 3.6.1.4,'Amendment 91, "Drywell and Suppression Chamber Pressure."7.2.3 TS 3.6.1.5, Amendment 91, "Drywell Air Temperature."7.2.4 TS 3.6.2.1, Amendment 91, "Suppression Pool Average Temperature."7.2.5 TS 3.6.2.2, Amendment 91, "Suppression Pool Water Level."

7.3 NMPNS Unit 2 Procedures7.3.1 N2-CTP-GEN-M105, Revision 00, "Monthly Reactor Water, SFC and Suppression Pool

Chemistry.'7.3.2 GAP-CHE-O1, Revision 09, "BWR Water Chemistry Operating Limits."7.3.3 S-CTP-V666, Revision 01, "Auxiliary Chemistry System."7.3.4 N2-OP-36A, Revision 04, "Standby Liquid Control System."

7.4 NMPNS Unit 2 Technical Requirements Manual, Revision 16.

7.5 NMPNS Unit 2 Facility Operating License, Docket No. 50-410, Amendment 100.

7.6 NMPNS Unit 2 Calculations7.6.1. ES-1 15, Revision 2, "Primary Containment Volume/Area."7.6.2 PR-C-19-C, Revision 3, "Dose Rates and Integrated Doses from Airborne and Plate-out

Sources in;Drywell and Wetwell - Post-LOCA."7.6.2.a PR-C-19-C, Revision 3, Disposition PR-C-19-C-03A.

7.6.3 PR-C-21-Q, Revision 1, "Post-LOCA Radiation Environment (Gamma) in Drywell andWetwell du'e to Airborne and Liquid Sources."7.6.3.a PR-C-21-Q, Revision 1, Disposition PR-C-21-Q-01A.

7.6.4 ES-145, Revision 02, "Primary Containment Environmental Parameters."7.6.5 ES-121, Revision 01, "Large Break Accident Analysis for FSAR Section 6.2.1.1."7.6.6 PR-C-20-1, Revision 3, "Dose Rates versus Distance and Dose Rate to Dose Conversion

Factors for. Piping Containing Post-LOCA Fluids"7.6.7 ES-142, Revision 2, "Evaluation of Long-Term Containment Pressure and Temperature

Profiles for: Large Break Accident."

7.7 GE Nuclear Energy (GENE) Document No. GE-NE-A41-00097-00-01. DRF A41-00097-00, ClassIII, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation," dated February1999.

7.8 Radiological Health Handbook, U.S. Department of Health, Education, and Welfare, PublicHealth Service, Compiled and Edited by the Bureau of Radiological'Health and the TrainingInstitute Environmental Control Administration, Revised Edition, 1970.

7.9 "Nuclides and.Isotopes - Chart of the Nuclides," 15th Edition, GE Nuclear Energy, 1996.

NEP-DES-08Rev 07

Page 27: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES. CPage 26(Next

Project: Nine Mile Point Nuclear Station Unit: 2 . Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose / H. R. Kopke, M. B. Cooper H21C-097 0Ref.

7.10 U.S. Nuclear Regulatory Commission Regulatory Guides7.10.1 Regulatory; Guide 1.49, Revision 1, "Power Levels of Nuclear Power Plants," dated

December 1973.7.10.2 Regulatory' Guide 1.183, Revision 0, "Alternative Radiological Source Terms for

Evaluating Design Basis Accidents at Nuclear Power Reactors," dated July 2000.

7.11 NMPNS Unit 2 Updated Final Safety Analysis Report (UFSAR).7.11.1 UFSAR Revision 15, §6.2.1.1.5, "Impact of Power Uprate on Large Break Containment

Response Analysis."7.11.2 UFSAR Revision 14, §6.2.1.1.3, "Design Evaluation."

7.12 Grand Gulf Nuclear Station Documents7.12.1 Engineering Report No. GGNS-98-0039, Revision 1, "Suppression Pool pH and Iodine

Re-Evolution Methodology." (included as Attachment 7 to Letter GNRO-2000/20005 fromGGNS to the NRC)

7.12.2 Engineering Report No. GGNS-98-0039, Revision 3, " Suppression Pool pH and IodineRe-Evolution Methodology." (included as Attachment 1 to Letter GNRO-2000/00100 fromGGNS to the NRC)

7.12.3 Calculation' No. XC-Q11111-98013, Revision 2, "Suppression Pool pH Analysis." (includedas Attachment 2 to Letter GNRO-2000/00100 from GGNS to the NRC)

7.13 NUREG/CR-5950,:"Iodine Evolution and pH Control", Published December, 1992.

7.14 NUREG-1465, "Accident Source Terms for Light Water Nuclear Power Plants", PublishedFebruary, 1995.

7.15 NUREG-1081, "Post Accident Gas Generation from Radiolysis of Organic Materials", PublishedSeptember, 1984.

7.16 NUREG-5732, "Iodine Chemical Forms in LWR Severe Accidents", Published April, 1992.

7.17 CRC Handbook of'Chemistry and Physics

7.18 ASME Steam Tables, 4th Edition, The American Society of Mechanical Engineers, New York, NY,1979.

7.19 DIT-NM-NPEE-001, "Determination of Exposed Cables in the. NMP2 Drywell." (Included asAttachment 3)

7.20 U.S. Nuclear Regulatory Commission Standard Review Plan, NUREG-0800, Revision 2, Section6.5.2, "Containment Spray as a Fission Product Cleanup System."

7.21 Commission Paper No. SECY-94-302, "Source Term Related Technical and Licensing IssuesPertaining to Evolutionary and Passive Light Water Reactor Designs," December 19, 1994.

7.22 General Electric Design Specification 22A7641, Revision 1, "Standby Liquid Control System."

7.23 NMP2 Specification No. NMP2-E023A, Revision 2, "Insulated 15-kV Power Cable."

NEP-DES-08Rev 07

Page 28: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

ENGINEERING SERVICES CALCULATION CONTINUATION SHEET P.•age 27 Final(Next_____

Project: Nine Mile Point Nuclear Station Unit: 2 Disposition:Originator/Date Reviewer/Date Calculation No. Revision

J. C. Penrose H. R. KoHke M. B. Cooper H21C-097 0Ref.

7.24 Chilton, A. B., Shultis, J. K., and Faw, R. E., Principles of Radiation Shielding, Prentice-Hall, Inc.,Englewood Cliffs, NJ, 1984. ISBN 0-13-709907-X

7.25 NUREG/CR-1413, "A Radionuclide Decay Data Base - Index and Summary Table," May 1980.

7.26 GE Document No! APED-5398-A, "Summary-of Fission Product Yields for U23, U22, Pu 239, andPu241 at Thermal,; Fission Spectrum and 14 MeV Neutron Energies," Class I, Revised, datedOctober 1, 1968.

NEP-DES-08RevO07

Page 29: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile- Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 1-1

Attachment I

Determination of Reactor Core Inventories

Page 30: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment. 1 Calculation No. H21 C-097Nine Mile Point Nuclear Station "Revision 0Unit 2 - Page 1-2

Purpose

The purpose of this attachment is to document the inventory of all iodine and cesium isotopes inthe reactor core.

Methodology.

The reactor core inventory is calculated using GE document GE-NE-A41-00097-00-01, DRFA41-00097-00, "Nine Mile Point Unit 2 24-Month Cycle Fission Product Inventory Evaluation,"(Ref. 7.7 in main body). Case 3, which addresses a single batch core with 1,400 Effective FullPower Days (EFPD) and 34,000 MWd/ST Expected Core Average Exposure (CAVEX), isconservatively used to determine the inventories. The inventory at both t=0 and t=30 days (720hours) is calculated to demonstrate that the values at t=0 are conservative.

Reference 7.7 presents the activity in Ci/MWt. To convert this to core inventory, themethodology on p. 29 of the Radiological Health Handbook (Ref. 7.8 in the main body) is used.

XN ln(2)._ N In(2).Na XN [Ci1 In(2)-Natl/2 .M~tl/2 =3.7x1010 g'm = 37x1010.Mt/

where:XN specific activity [dis/sec/gm]N number of atoms per gram [atoms/gm]tI r2 half life [sec]Na Avogadro constant [atoms/mole]M molecular weight [gm/mole] = [amu]3.7x1 010 disintegrations per second per Curie

Once the total core inventory is known, the fractions released during the gap release phase andearly in-vessel (EIV) phase are determined in accordance with the guidance provided in Table Iof Regulatory Guide 1.183 (Ref. 7.10.2 in main body). This table is summarized below for alkalimetals such as cesium and halogens such as iodine.

Group Core Inventory Fraction Released into ContainmentGap Release Phase I Early In-Vessel Phase Total

Halogens 0.05 I 0.25 0.30Alkali Metals 0.05 0.20 0.25

Notes/Assumptions

See the text in the main bodyfor the basis for these items.

1. Stable cesium is conservatively not included in the cesium inventory.2. The mass of iodine-127 is assumed to be 30% of the mass of iodine-129.

Page 31: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment I calculation No. H21C-097Nine Mile Point Nuclear Station Revision 0Unit 2 Page 1-3

Results

The results below are taken from Tables 1-1 through 1-4..

Reactor Core Inventory [gram-moles]Element t=0 t=30 days

_ Gap Release EIV Total Gap Release EIV TotalIodine 13.5 I 67.5 81.0 13.1 65.7 78.8Cesium 100.7 402.7 503.3 100.3 401.1 501.4

It can be seen that the reactor core inventory of both iodine and cesium does, not changeappreciably during the duration of the accident. Therefore, use of the values at time=0 is bothreasonable and conservative.

Page 32: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile Point Nuclear StationUnit 2

Time post-LOCANeutron MassCore Thermal Power (100%)Core Thermal Power (102%)1 CurieAvogadro's Number

Table 1-1: Core Iodine Inventory Determination (t=0 Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0

Page 1-4

0 sec1.008665 amu (Ref. 1)

3,467 MWt (Ref. 5)

.3,536 MWt (Ref. 6)3.70t+10 dis/sec (Ref. 1)

6.022137E+23 atoms/mole (Ref. 2)

Core Inventov Fryaction Released in Containment for Haloens

Gap Release PhaseEarly In-Vessel Phase

0.05 (Ref. 4, Tbl 1).0.25 (Ref. 4, Tbl 1)

Isotope Atomic Mass Half Life 12 nits HalfLife Activity Activity Specific Core Gap ElV Total(Ref. 1) (Ref. 2) (Ref. 3) per Core Activity Inventory Release Release Release[amu _ Isec] [CI/MWt) [Ci/corel [Cl/gm) [gmn/core) [mole) [mole) [mole)

1-127(2) 126.904470 stable 3.03E+00 1.51E+01 1.82E+011-128 127.905838 25.00 m 1,500 4.28E+02 1.51E+06 5.88E+07 2.57E-02 1.01E-05 5.03E-05 6.04E-051-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 4.60E+00 1.77E-04 2.60E+04 1.012+01 5.04E+01 6.052+011-130 129.906676 12.36 h 44,496 1.09E+03 3.85E+06 1.95E+06 1.97E+00 7.60E-04 3.80E-03 4.56E503

1-130M 129.906676 9.0 m 540 4.23E+02 1,50E+06 1.61E+08 9.30E-03 3.58E-06 1.79E-05 2.15E-051-131 130.906127 8.020 d 692,928 2.71E+04 9.58E+07 1.24E+05 7.71E+02 2.94E-01 1.47E+00 1.77E+001-132 131.907981 2.28 h 8,208 3.92E+04 1.39E+08 1.04E+07 1.33E+01 5.04E-03 2.52E-02 3.03E-021-133 132.907750 20.8 h " 74,880 5.51E+04 1.95E+08 1.13E+06 1.72E+02 6.47E-02 3.23E-01 3.88E-01

1-133M 132.907750 9 s .9 1.70E+03 6.01 E+06 9.43E+09 6.37E-04 2.40E-07 1.20E-06 1.44E-061-134 133.909850 52.6 m 3,156 6.03E+04 2.13E+08 2.67E+07 7.99E+00 2.98E-03 1.49E-02 1.79E-02

1-134M 133.909850 3.7 m 1222 6.00E+03 2.12E+07 3.79E+08 5.59E-02 2.09E-05 1.04E-04 1.25E-041-135 134.910020 6.57 h. . 23,652 5.16E+04 1.82E+08 3.54E+06 5.16E+01 1.91E-02 9.56E-02 1.15E-011-136 135.914740 1.39 m 83 2.44E+04 8.63E+07 9.95E+08 8.67E-02 3.19E-05 1.59E-04 1.91E-04

1-136M 135.914740 47 s 47 1.43E+04 5.06E+07 1.77E+09 2.86E-02 1.05E-05 5.27E-05 6.322-051-137(1) 136.923405 24.5 s 24.5 2.38E+04 8.42E+07 3.36E+09 2.50E-02 9.14E-06 4.57E-05 5.48E-05

1.138(l) 137.932070 6.5 s 6.5 1.18E+04 4.17E+07. 1.26E+10 3.32E-03 1.20E-06 6.012&06 7.21E-06

1.139(1) 138.940735 2.30 s 2.30 5.22E+03 1.85E+07 3.53E+10 5.23E-04 1.88E-07 9.41 E-07 1.13E-06

1.1401) 139.949400 0.86 S 0.86 1.47E+03 5.20E+06 9.37E+10 5.55E-05 1.98E-08 9.91E-08 1.19E-07

1-141(") 140.958065 0.45 s 0.45 2.43E+02 8.59E+05 1.78E+11 4.83E-06 1.71E-09 8.57E-09 1.03E-081-142(l) 141.966730 0.2 s 0.2 3.53E+01 1.25E+05 3.97E+11 3.14E-07 1.11E-10 5.53E-10 6.64E-10

1-14 3(lx3" 142.975395 n/a 2.33E+00 8.24E+03 "1.14 4('IX31 143.984060 We' n/a 1.90E-01 6.72E+02

Total 2.70E+04 13.50 67.51 81.01

1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.3) Half-life Information not available in Reference.2.

References1. Radiological Health Handbook, 1970 (main body Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9).3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License (main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t=0

Page 33: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile Point Nuclear StationUnit 2

Time post-LOCANeutron MassCore Thermal Power (100%)Core Thermal Power (102%)1 CurieAvogadros Number

Table 1-2: Core Cesium Inventory Determination (t-0 Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0Page 1-5

S' 0 sec1.008615 amu

3,467 MWt3,536 MWt

3.70E+10 dis/sec6.022137E+23 a.omsjmole

Core Inventory Fraction Released ih Containment for Alkalis(Ref. 1)(Ref. 5)(Ref. 6)(Ref. 1)(Ref. 2)

Gap Release PhaseEarly In-Vessel Phase

0.05 (Ref. 4, Thl 1)0.20 (Ref. 4, Thl 1)

Atomic Mass Half Life 1 Activity Activity Specific . Core Gap EIV [TotalIstp t1/2 units HafLfJlvt Cr p EV 'oa

(Ref. 1) (Ref. 2) j (Ref. 3) per Core Activity Inventory * Release Release Release[amu] _ [sec] [CI/MWt] [Ci/core] [Cl/gm] [gm/core] [mole] [mole] [mole]

CS-132 131.906393 6.48 d 559,872 7.96E+00 2.81E+04 1.53E+05 1.84E-01 6.98E-05 2.79E-04 3.49E-04

CS-133(i) " 'CS-134 133.906823 2.065 a 65,121,840 7.29E+03 2.58E+07 1.29E+03 1.99E+04 7.44E+00 2.98E+01 3.72E+01

CS-134M 133.906823 2.90 h 10,440 1.70E+03 6.01E+06 8.07E+06 7.45E-01 2.78E-04 1.11E-03 1.39E-03CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 8.88E+01 1.15E-03 7.70E+04 2.85E+01 1.14E+02 1.43E+02

CS-135M 134.905770 53 m 3,180 8.81E+02 3.12E+06 2.63E+07 1.18E-01 4.39E-05 1.76E-04 2.20E-04CS-136 135.907340 13.16 d 1,137,024 2.28E+03 8.06E+06 7.30E+04 1.1OE+02 4.06E-02 1.63E-01 2.03E-01CS-137 136.906770 30.07 a 9.48E+08 4.35E+03 1.54E+07 8.69E+01 1.77E+05 6.47E+01 2.59E+02 3.23E+02CS-138 137.910800 32.2 m 1,932 5.002+04 1.77E+08 4.23E+07 4.18E+00 1.51 E-03 6.06E-03 7.57E-03

CS-138M 137.910800 2.9 m 174 2.39E+03 8.45E+06 4.70E+08 1.80E-02 6.52E-06 2.61E-05 3.26E-05CS-139 138.912900 9.3 mr 558 4.73E+04 1.67E+08 1.46E+08 1.15E+00 4.14E-04 1.65E-03 2.07E-03CS-140' 139.917110 -1.06 m 64 4.26E+04 1.51E+08 1.27E+09 1.19E-01 4.25E-05 1.70E-04 2.12E-04

CS-141(2) 140.925775 24.9 s 24.9 3.16E+04 1.12E+08 3.22E+09 3.48E-02 1.23E-05 4.93E-05 6.17E-05CS-142(2) 141.934440 1.8 a 1.8 1.91E+04 6.75E+07 4.42E+10 1.53E-03 5.39E-07 2.16E-06 2.69E-06CS-1431 2 ) 142.943105' 1.78 s 1.78 9.33E+03 3.30E+07 4.43E+10 ,7.44E-04 2.60E-07 1.04E-06 1.30E-06CS-1441 21 143.951770 1.01 s 1.01 2.70E+03 9,55E+06 7.76E+10 1.23E-04 4.27E-08 1.71E-07 2.14E-07.

CS-145(2) 144.960435 0.59 a 0.59 6.79E+02 2.40E+06 1.32E+1 I .1.82E-05 6.28E-09 2.51E-08 3.14E-08CS-146(2) 145.969100 0.322 s 0.322 9.96E+01 3.52E205 2.40E+11 1.47E-06 5;03E-10 2.01E-09 2.51E-09.

CS-147(2 ) 146.977765 0.227 s 0.227 1.65E+01 5.83E+04 3.38E+11 1.73E-07 5.87E-11 2.35E-10 2.94E-10CS-148(2) 147.986430 0.15 s 0 15 1.07E+00 3.78E+03 5.08E+11 7.45E-09 2.52E-12 1.01E-1111 1.26E-11

Total 2.741E+05 100.67 •402.68 503.34

1) Stable cesium Is conservatively not accounted for In this analysis as it forms cesium hydroxide (CsOH).2) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-1 40.

References

1. Radiological Health Handbook, 1970 (main body, Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)3. GE-NE-A4I-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License (main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=0

Page 34: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile Point Nuclear Station

Unit 2

Time post-LOCANeutron Mass

Core Thermal Power (100%)Core ThermalPower (102%)1 Curie

Avogadro's Number

Table 1-3: Core Iodine Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX) .

Calculation No. H21C-097Revision 0Page 1-6

30 days

1.008665 amu (Ref. 1)* 3,467 MWt (Ref. 5).3,536 MWt (Ref. 6)

3.70E+10 dis/sec (Ref. 1)6.022137E+23 atoms/mole (Ref. 2)

Core Inventory Fraction Released in Containment for HalooensGap Release PhaseEarly In-Vessel Phase

0.05 (Ref. 4, Tbl 1)0.25 (Ref. 4, Tbl 1)

Atomic Mass Half Life Life Activity Activity Specific Core Gap EIV TotalIsotopa (Ref. 1) (Ref. 2) (Ref. 3) per Core Activity Inventory Release Release Releaseamu] . . [Isec] ICi/MWtII [Ci/corel [Ci/gm] [gm/cora [molel I [mole] imolel

1-127(2) 126.904470 stable 3.03E+00 1.51E+01 1.82E+01

1-128 127.905838 25.00 m 1,500 0.00E+00 0.OOE+00 5.88E+07 0.OOE+00 0.OOE+00 0.00E+00 0:00E+001-129 128.904987 1.57E+07 a 4.95E+14 1.30E-03 4.60E+00 1.77E-04 2.60E+04 1.01E+01 5.04E+01 6.05E+011-130 129.906676 12.36 h 44,496 3.18E-15 1.12E-11 1.95E+06 5.76E-18 2.22E-21 1.11E-20 1.33E-20

1-130M 129.906676 9.0 m 540 0.00E+00 0.00E+00 1.61E+08 0.00E+00 0.OOE+00 0.00E+00 0.00E+001-131 130.906127 8.020 d 692,928 2.10E+03 7.43E+06 1.24E+05 5.97E+01 2.28E-02 1.14E-01 1.37E-011-132 131.907981 2.28 h 8,208 6.71E+01 2.37E+05 1.04E+07 2.28E-02 8.63E-06 4.32E-05 5.18E-051-133 132.907750 20.8 h 74,880 2.14E-06 7.57E-03 1.13E+06 6.68E-09 2.51E-12 1.26E-11 1.51E-11

1-133M 132.907750 9 a 9 0.OOE+00 0.00E+00 9.43E+09 0,00E+00 0.00E+00 0.00E+00 0.00E+001-134 133.909850 52.6 m 3,156 0.00E+00 0.00E+00 2.67E+07 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1-134M 133.909850 3.7 m 1 222 0.00E+00 0.00E+00 3.79E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+001-135 134.910020 6.57 h.' 23,652 0.OOE+00 0.00E+00 3.54E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+001-136 135.914740 1.39 m 83 0.00E+00 0.00E+00 9.95E+08 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1-136M 135.914740 47 s 47 0.00E+00 0.00E+00 1.77E+09 0.002+00 0.OOE+00 0.00E+00 0.00E+001-137(') 136.923405 24.5 a 24.5 0.00E+00 0.00E+00 3.36E+09 0.00E+00 0.00E+00 0.00E+00 0.00E+001-13801) 137.932070 6.5 s 6.5 0.00E+00 0.00E+00 1.26E+10 0.00E+00 0.00E+00 0.00E+00 0.00E+001-139(') 138.940735 2.30 s 2.30 0.00+E00 0.00E+00 3.53E+10 0.002+00 0.00E+00 0.00E+00 0.00E+001.140(1') 139.949400 0.86 s 0.86 0.00E+00 O.00E+00 9.37E+10 0.00E+00 0.00E+00 0.00E+00 0.OOE+001-141(1) 140.958065 0.45 s 0.45 0.00E+00 0.00E+00 1.78E+11 0.002+00 0.00E+00 0.00E+00 0.00E+001-142(') 141.966730 0.2 a 0.2 0.00E+00 0.00E+00 3.97E+11 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1-14 3 (lX3) 142.975395 n/a 0.00E+00 0.00E+001-144)(X3) 143.984060 n/a 0.00E+00

Total 2.61 E+04 13.14 65.69 78.82Notes1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.2) Since 1-127 Is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 Is assumed to be 30% of the mass of 1-129.3) Half-life information not available in Reference 2.

1. Radiological Health Handbook, 1970 (main body Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License.(main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reterence:7.10.1)

Iodine t=30d

Page 35: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile Point NuclearStationUnit 2

Time post-LOCANeutron MassCore Thermal Power (100%)Core Thermal Power (102%)1 CurieAvogadro's Number

Table 1-4: Core Cesium Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWdlST CAVEX)

Calculation No. H21C-097Revision 0

Page 1.7

30 days1.008665 amu (Ref. 1)

3,467 MWt (Ref. 5)3,536 MWt (Ref. 6)

3.70E+10 dis/sec (Ref. 1)6.022137E+23 atoms/mole (Ref. 2)

Core Inventory Fraction Released in Containment for AlkalisGap Release PhaseEarly In-Vessel Phase

0.05 (Ref. 4, TbI 1)0.20 (Ref. 4, Tbl 1)

Atomic Mass Half Life units! f Activity Activity Specific Core Gap EIV TotalIsotope (Ref. 1) (Ref. 2) 1 Half Life (Ref. 3) per Core Activity I Inventory Release Release Release

I [amu] . j [sec] [Ci/MWt] [Cilcorel I [Cilgm] [gm/core] [mole] [mole] [mole]CS-132 131.906393 6.48 d 559,872 3.21E-01 1.14E+03 1.53E+05 7.43E-03 2.82E-06 1.13E-05 1.41E-05

CS- 133('1)CS-134 133.906823 2.065 a 65,121,840 7.09E+03 2.51E+07 1.29E+03 1.94E+04 .7.24E+00 2.89E+01 3.62E+01

CS-134M 133.906823 2.90 h 10,440 0.00E+00 0.00E+00 8.07E+06 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00CS-135 134.905770 2.30E+06 a 7.25E+13 2.51E-02 8.68E+01 1.15E-03 7.70E+04 2.85E+01 1.14E+02 1.43E+02

CS-135M 134.905770 53 m 3,180 0.OOE+00 0.OOE+00 2.63E+07 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00CS-136 135.907340 13.16 d 1,137,024 4.66E+02 1.65E+06 7.30E+04 2.26E+01 8.30E-03 3.32E-02 4.15E-02CS-137 136.906770 30.07 a 9.48E+08 4.34E+03 1.53E+07 8.69E+01 1.77E+05 6.45E+01 2.58E+02 3.23E+02CS-138 137.910800 32.2 m 1,932 0.OOE+00 0.OOE+00 4.23E+07 0.OOE+00 0.00E+00 0.OOE+00 0.00E+00

CS-138M 137.910800 2.9 mr 174 0.OOE+00 0.00E+00 4.70E+08 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE÷00CS-139 138.912900 9.3 m 558 0.OOE+00 0.OOE+00 1.46E+08 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00CS-140 139.917110 1.06 mr 64 0.OOE+00 0.OOE÷00 1.27E+09 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00

CS-141(2) 140.925775 24.9 s 24.9 0.00E+00 0.OOE+00 3.22E+09 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00CS-142(2) 141.934440 1.8 s 1.8 0.OOE+00 0.OOE+00 4.42E+10 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00CS-143(2) 142.943105 1.78 s 1.78 0.OOE÷00 0.OOE+00 4.43E+10 0.OOE+00 0.OOE+00 0.OOE+00 O.OOE+00CS-144( 2 ) 143.951770 1.01 s 1.01 0.OOE+00 0.OOE+00 7.76E+10 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00CS-145(2) 144.960435 0.59 s 0.59 O.OOE+00 0.OOE+00 1.32E+11 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00CS-146( 2 ) 145.969100 0.322 s 0.322 0.00E+00 0.OOE+00 2.40E+11 0.OOE+00 0.00E+00 0.00E+00 0.00E+00CS-147(2) 146.977765 0.227 s 0.227 0.OOE+00 0.OOE+00 3.38E+11 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00CS-148(2) 147.986430 0.15 s 0:15 0.OOE+00 0.OOE+00 5.08E+11 0.OOE+00 0.OOE+00 0.OOE+00 0.OOE+00

Total 2.730E+05 100.3 401.1 501.4

Notes1) Stable cesium Is conservatively not accounted for In this analysis as It forms cesium hydroxide (CsOH).2) Atomic mass not given for these Isotopes In Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-140.

References1. Radiological Health Handbook, 1970 (main body Reference 7.8)2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product inventory Evaluation (main body Reference 7.7)4. Regulatory Guide 1.183 (main body Reference 7.10.2)5. NMP2 Site License (main body Reference 7.5)6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=30d

Page 36: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment INine Mile Point Nuclear StationUnit 2

Table 1-1 Equations: Core Iodine Inventory Determination (t=0 Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0

Page 1-8

A I D E FI Time post-LOCA 0 sec__2 Neutron Mass 1.008665 aenu (Ref. 1)3 Core Thermal Power(100%) 3467 MWt (Ref. 5)4 Core Thermal Power (102%) =D3"1.02 MWt (Ref. 6)5 1 Curie 37000000000 dis/sec . (Ref. 1)6 Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)7

Atomic Mass Half Life usl Activity•Isotope (Ref. 1) (Ref. 2) 11,2 Units •Half Life Activity

8 (Ref. 3)

9 [smut I sect [Ci/MWt!

10 1-127(2• 126.90447 stable11 1-128 127.905838 25 m =IF(D1 l='"s',Ci11 IF(D1 l="m*,C 11"60,IF(D11I ="h",Cl1*60*60,1F(ID l=d",C 11"24"60"60,1F(ID1 =*a*,C 11°365*24*60"60,"r11a"))))) 428

12 1-129 128.904987 15700000 a =IF(_12=_ _ __C_2,_F(D_2=_m_,C_2*60,_F(D_2_'h",C_12*60*60,1F(D12_"d*,C_2*24*60*60,1FI12='a_,C_2*365*24*60*60,'nla"))))) 0.001313 1-130 129.906876 12.36 h IF(D13=s_,C13,1F(D_13=_m",C_13"60,1F(D13 _h'.C_13*60_60,_F(D13="d_,C_3_24°60*60,_F(D13='a",C13*36524*60*60,"na_))))) 109014 1-130M 129.906676 9 m =IF(D14='s.,C14,1F(D14="m.,C14*60.IF(D14="h'.C 1460*60,IF(D14="d",C14*24*60*60,IF D14='a,C 14*365"24*60*60.,n/a'))))) 42315 1-131 130.906127 8.02 d =IFfD15="sr.C15,IF(D1S=*m.,C15*60,IF(D1S='h".C15*60*60.IF(D15=-d*,C1524*60*60.IF D15=-a.'C15*385*24*60*60.'n/a*)))' 2710016 1-132 131.907981 2.28 h =IFD16=-s-,C16,F(F016= m-,C16*60,IF(D16=-h*,C1l6*6060•IF(D16=-d",C16*24*60*60,IF D16=•a*.C16*365*246060"n/a'))))) 3920017 1-133 132.90775 20.8 h =1F D17=ýs.`C17,F D17=*m-,C17*60`F(D17=h-,C17*6060,IF(D17=d*,C17*2460*60IF(D17=aC17*365*24606Dn/a-)))) 5510018 1-133M 132.90775 9 a =IF(D18=s-.C18,IF(FD18=-m.`C1860,IF(D18="h,.C1•60*60.IF(D 18=-d-,C18*24*60*60,IF D18=•asC1l8*36524*60*60,-n/a-))) 170019 1-134 133.90985 52.6 m =IF(D19='s',C19,IF(D19=*m',C19°60, F(D19="h',C19*60*60, F(DI9="d",C19°24"60*60,IF(D19='a',C19365*24"60*60,"n/a*)))) 6030020 1-134M 133.90985 3.7 m =IF(D20='s",C20,1F(D20='mn,C20°60, F(D20='h'.C20"60*60,IF(020="d',C20*24"60*60,IF D20=*a*,C20*365*24*60°60.'n/a'))) 600021 1-135 134.91002 6.57 h =IFD21 ,C21,iF(D21=-m',C21*60,IF(D21=h".C21.6060.IF(D21=dC21246060,IFD21='a",C2136524*6060.,nra"))))) 5160022 1-136 135.91474 1.39 m =IF(D22="s.C22,IF(D22= m*,C22*60,IF(D22='h*,C22*60*60,F(D22=d*,C22*2460*60,IF(D22=aC22-365*24°60*60,"n/a-)))) 2440023 1-136M 135.91474 47 s =IF(D23=s*,C23.IF(D23="m.C2360,IF(D23=h*,C2360*60,F(D23="d.C23*246060,IF(D23="aC23*365*246060,"nla) 1430024 1-13711) =823+1*D$2 24.5 s IF(D24=s'.C24,[F(D24='m,C24'60.IF(D24='h-,C24*60"60,IF(024="d,ýC24*24"60*60,1F(D24=°a*.C24*365*24*60"60,*n/a"))))) 2380025 1-138"1) =B24+1*D$2 6.5 s =IF(D25= s",C25,1F(D25=-m".25160.•F(D25="h*'C25*6060F(D25='d-•C25*24*60*60F(D25=-a".C25*365*24*6060'•n/•-))))) 1180026 1-139(') =B25+lSD$2 2.3 s =_F(D2_=_ s _C26__FD26=-__ .C2-6_6_'_F(D2_=-h__C2_6_6__ _F(D2_=_d-.C2_24___F(D2_=_a__C2__3_5_24__-na_)_)_ 522027 1-140'1) =B26+1"D$2 0.86 s =IF(D27=_ s _,C27_IFD27=_m"_C27_60_IF(D27=_h'_C27"60*60_IF(D27="d__C27_24_60*60,1FD27'a',C27*365°24"80*60,_n/a"))))) 147028 1-141(') =B27+l°D$2 0.45 s =_F(D28=_s'C28__ F(D28__ m__C2__ 6_ F(D28=_hC28_6_6_F(D28=_d_ C28_24_6_6'_FD28=-aC28_365*2_6_6_na_)_)) 24329 1-142(") =828+1D$2 0.2 s =IF(D29=__s",C29,1F(D29=_m',C29°60,1F(D29="h°,C29*60_60_1F(D29="d",C29-24*60*60,1F(D29=_a_0C29*365°24°60°60_"n/a______ 35.330 1- 14 3('"3) =B29+1*D$2 =.F(D30="s.C30F(D30=-m',C3060F(D30=*h-,C306060,IF(D30=*d-,C3024660.IF(D30=-a*,C30365*24*6060.-n/a-))))) 2.3331 1-144 (I'3) =B30+÷l°$2 _=IF(D31=_s_,C31,_FD31=_m',C31"80,_F(D31=_h-_C31_6__6__F(D31=-d_'C31_24_6__6__ F(D31=-a_'C31_365_24_6__6_.-n/a-))))) 0.193233 Nola I34 1) Atomic mass not given for these isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of I-1 36M.35 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3. The mass of 1-127 is assumed to be 30% of the mass of 1-129.36 3) Half-life information not available In Reference 2.3738 Rafe:

39 1. Radiological Health Handbook, 1970 (main body Reference 7.8)40 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)41 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)42 4. Regulatory Guide 1.183 (main body Reference 7.10.2)43 5. NMP2 Site License (main body Reference 7.5) : ._44 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t-0 Eqs

Page 37: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment INine Mile Point Nuclear StationUnit 2

Table 1-11 Equations: Core Iodine Inventory Determination (t0 Post-LOCA).(Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX)

Calculation No. H21C-097Revision 0Page 1-9

G H I K [ L1 Core Inventory Fra tion Rele asd inContainment for Halogens

2 _____Gap Release Phase 0.05 (Ref. 4, Tbl 1) ______

3 Early In-Vessel Phase 0.25 (Ref. 4, Tbt 1) _____

7

Activity Specific Core Gap. EIV Totalper Core Activity Inventory Release Release Release

9 1 Cilcore] ICi/gmj lgmlcorel [mole] Imolell [mole]10 ______________ =0.3*J12 =0.3*K12 =J1O.KlO _

11 =F11OD$4 =LN(2)D$6/(D$5BI11E11 =GilIH11 =I1VJS2IBlI =111J$311611 =JI1+Ki112 =F12*D$4 =LN 2 *D$61(0$5512*El2) =G121H12 =112*J$2i912 =112J$3IB312 =J12+K1213 =F13'D$4 =LN(2)t5$61(D$5513'E13) =G1311H13 =113*J$21BI3 =113*J$3/B13 =J13+K1314 =Fl4*D$4 =LN 2 rO$6/ D$5*l4*E14) =G141H14 =114J52/B14l =1114JS31114 -J14+Kl415 =F15-D$4 = JpSrD6/O$5'B15-E15) =G151H15 I=I15'J$2/B15 =115*JS31B15 =J15.K1516 1-F6*$4 I-LN(2)*D$6/(D$5*B616E16) =G161H16 =116J 211316 I-I16*J$31B16 -J16+KI6171=FI7DS$4 I=LN(2)*D$P/(D$5-17'E17) =G 17/H 17 =117*J$2/817 =117*J$3/817 =J17+K1718 =F18'D$4 = L N(2)-D$61(D$ 5 BI VE 18) =G 18/1-18 -118*J$21B18 -118*J$3IBl8 .=J18+K18

19 =F19-D$4 = LN(2)-0$61(D$5561 E 19) =G19/1-19 =119*J521B19 =1119J$31B319 =J19.K1920 =F20*t$4 =LN(2)*D$6/(D$S*B20*E20) =G20/1-120 =120*J$21B20 =120*J$31B20 =J20.K2021 =F21l0$4 =LNL2)D$6/(D$5-B21 E21) =G21/1-1211 =121J$21B21 -121*J$3/B21 =J21+K2122 =F22*DS4 =LN(2)*D$6/(D$5*B22*E22) =G22/1-22 =122*J$2/B22 =122*JS31922 =J22+K2223 =F23tD$4 =LN(2)-D$6/(D$5*B23*E23) -G23IH23 =123*J$21823 =123J$31B23 =J23.K2324 =F24tD$4 I=LN(2rD$§1(D$55624*E24). =G24/1-124 =124J412/B24 =124*J$31B24 =J24.K24

25 =F25*0$4 =LN(2)*D$61(D$5*B25*E25) =G25/1-125 =125*J$21625 =125'J$3/B25 =J25+K2526 =F2603$4 =LN(2)*D$ /(D$55926*E26) =G28/H26 =126-JS2/26 =126*J$3lB26 =J26.K2627 =F270D$4 =LN(2)D$6/(D$55627'E27) =G27/H27 =127'J$21IJ27 =127JS311327 =J27+K2728 =F28*D$4 'LN(2)*D$6/(D$5*828*E28) =G28/1-128 =128*J$2/628 =128*J$3IB28 =J28+K2829 =F29tD$4 =LN(2)TD$6/(D$56829'E29) =G29/1-29 =129J$2/1B29 =129*J$3/B29 =.129+K29

32 ~~Total -SUM(1lO:i31) =SUM(JIO:J31) =SUM(KIC:K31) =SULM(-10:1.311)

Iodine t=0 Eqs

Page 38: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment INine Mile Point Nuclear Station

Unit 2

Table 1-2 Equations: Core Cesium Inventory Determination (t=O Post-LOCA)(Single Batch Core with 1400 EFPO and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0

Page 1-10

I A I B C D E FITime Ipost-LOCA 0sec

2 Neutron Mass 1.008665 amu (Ref. 1)

3 Core Thermal Power (100%) 3467 MWI (Ref. 5)4 Core Thermal Power (102%) =D3 1.02 MWI (Ref. 6)5 1 Curie 37000000000 dis/sec (Ref. 1)

6 Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)T

Atomic Mass Half Uife Activity

Isotope (Ref. 1) (Ref. 2) t1,2 units Half Life(Ref. 3)

9 [amu _ [sec] [CI/MWt]

10 CS-132 131.906393 6.48 d _=IFID10=_s__C10,1FID10=_m_,C10*60,1F(D10='h"_C10*60*60_IF(D10=_d_,C10°24"60"60,1F(D10=_a"_C10"365*24°60"60,_n/a))))) 7.96

11 CS-133_I _

12 CCS-134 133.906823 2.065 a =IF7D22='s9,CI2,1F0D12='m',C12*60,1F(D12='h",C12*60*60,1FI2="d',C12"24°60°60,1F(D12=*a',C12*365*24*60*60,*n/a"))))) 729013 CS-134M 133.906823 2.9 h =IFfD13='s",C13,1F(D13=*m",C13*60,IF(D13="h",C13*60*60,IF(D13=*d",C13°24"60°60,1F(D 3='a',C13°365*24*60*60,'n/a"))))) 170014 CS-135 134.90577 2300000 a =IF(D14=sC14.1IF(D14='m",Cl1460,IF(Dl14=h.*C14*60"60,IF(D14="d',C14°24*60°60.IF(D 4="a',C14"365*24"60°60,'n/a*))))) 0.025115 CS-135M 134.90577 53 m =IF(D15='s".C15,IF(D15=*m',C15*60,IF(D15='h*,C15°60"60,1F(D15="d',C 5"24*60*60,IF(D15="a',C15"365*24°60"60,'nra'))))) 88116 CS-136 135.90734 13.16 d =_FD16=-s-_C16__FD16=-m-`C16_6__ FD16=-h__C16_6__6__FD16=_d-_C16_24_6__6_FD16=_C1_ 36__24_6_6_na))))) 228017 CS-137 136.90677 30.07 a =1F(O17=:s',C17,IF(D17='m",C1l760,lF(D17=hh*,C1760*60,iF(D17=dd',C1724*60*60.IF(D17="a',C1l7365*24*60*60'n/a"))))) 435018 CS-138 137.9108 32.2 m =IF(D18=s.C1BIF(D18='m',C 1860,IF(D18='h'.C18°60°60,IF(D18="d",C18°24*60*60,IF(D18="a',C18"365"24°60*60,"n/a"))))) 5000019 CS-138M 137.9108 2.9 m =IF(D19=s',C19,IF(D19=-m-,C19*60,IF(D19=h-,CI9*660,IF(D19=-d-`C19*24*6060,iF(DO9=*a",C19*365*24*60860,n/a-))))) 239020 CS-139 138.9129 9.3 m =]F(D20=-s'C20,IF(D20=-m-'C20*60.•F(D20=-h",C20*60*60,IF(D20=-d',C20*24*60*60,[F(D20="a-.C20*365*24*60*60'n/a-))))) 4730021 CS-140 139.91711 1.06 m =IF(D21="s"-C21,IF(D21=-m',C21 60,IF(D21=-h,.C216060,iF•••F021=-dC21'24*60*60,IF(D21=-a-.C21*365*24*60'60,*nta¶))))) 42600

22 CS-141(2

) =B21+17D$2 24.9 s =_FD22=-_s__C22__F(D22=_m_.C22__F(D22=-h__C22_6__6_._FD22=_d-'C22_24_6_6_F(D22=_a_.C22_36_24_6_6_n_-)))) 31600

23 CS-142(1

) =922+1"D$2 1.8 s =_F(D23=_s-_C23__F__ 23=-m__ C23_6__ iF(D23=_h-'C23_6__6__F(D23=-d__C23_24_6__6__FD23-'-a-_C23_365_24_6__6_'_na_))))) 19100

24 CS-143(2) =B23+10D$2 1.78 s =F(D24=5s-.C24.[F(D24=-mC24*60,IF(D24=*h-,C24*6060F(D24=-d-'C24*24*6060'•F(D24="a-,C24*365*24*6060.-rda-))))) 9330

25 CS-14421

=B24÷1"D$2 1.01 s =[F(D25="s',C25.•F(D25=-m•C25*60F(D25='h*.C25*6060F(D25=-d".C25*24*6060F(D25=-a-•C25*365*24*6060-n/a"))))) 2700

26 CS-14512

) =B25÷I"D$2 0.59 5s =IF(D26=s_,C26,_F(_26=_m',C26_60_IF(_26=_h',C26_60*60,IF(_26=_dC26°24_60_60,_F(D26=_aC26*365°24_60*60,_a))) 679

27 CS-14612

1 =B26+1°D$2 0.322 . s = _FD27=_s-.C27__FD27=-m_.C27_6_. _FD27=-h--*-_C27_6__ 6__FD27=-d-_C27_24_6_ _ F(D27=_a_.C27_36__24_6__6__n/a-))))) 99.6

28 CS-147(2

) =B27+1VD$2 0.227 s 5 =(D28=#s-,C28F(D28=-m-.C2860`•F(D28=-h-'C2860°60.•F(D28=*d-'C28*24*6060.•F(D28=-a-•C28365*24°6060.-n/a-))))) 16.529 CS-148

12) =928+1D$02 0.15 560F(D29=-h-C29'6060,IF(D29=-d'C29-24'6060,IF(D29="a-•C29*365*24*6060,n/a-))))) 1.07

30 ! ....31 Ngle _

32 1) Stable cesium is conservatively not accounted for In this analysis as it forms cesium hydroxide (CsOH).33 2) Atomic mass not given for these isotopes In Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of CS-140.

3435 ~~tne36 1. Radiological Health Handbook, 1970 (main body Reference 7.8)37 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)38 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)39 4. Regulatory Guide 1.183 (main body Reference 7.10.2)

•40 5. NMP2 Site License (main body Reference 7.5)41 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=0 Eqs

Page 39: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine'Mile Point Nuclear StationUnit 2

Table 1-2 Equations: Core Cesium Inventory Determination (t--0 Post-LOCA)(Single Batch Core with 1400 EFPD arid 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0Page 1-11

G H I I I ; K L__1 Core Inventory Fraction Released in Containment fd Akai2 ________Gap Release Phase 0!05 (Ref. 4. Tbil 1) ______

3 Early In-Vessel Phase 0.2 (Rel. 4, Tbl 1)

67__ _ _ _ _ _ _ _ _

Activity Specific Core I Gap EIV Totalper Core Activity Inventory Release Release Release

9 JCIfcore] [ClI/ [gm/corel [mole] [mole] mol10 I=F1O*D$4 =LN(2)*D$6/(D$5*Bl0EIO) =G10/H1-1 --l10US2/IB1 =110*J$3/B10 =J1O+K1O

12 =1`12=$4 =LN(206(5B 2E2 G1/1 112*J$21E12 =112*J$3/B12 =J12+K1213 =Fl3*D$4 =LN(2)*D$ (055Bl3*El3) =G13/1-13 =-113J52116113 =113*J$31813 =J13.K1314 =F14*D$4 =LN(2)*D$6I(D$5*Bl4E14) =G11411-114 =ý'114JS2iB`14 =114'J$31114 =J14+K1415 =F15*0$4 =LN(2y$61(D$5*Bl5*El5) =G15/H15 -- 5$/85 =153/1 =J1 5.K1516 =F16D$)4 =LN(2yD$6/(D$5*B16EIO) =GIB/Hi6 -116J$Zt816 =16J3/1 =18+K(16

17 j=F1T7DS4 =LN(2)*D$61(D 5*817*E17) =G17/H17 -',lr7J$2/817 =I17'J$3/817 =J17+K1718 I=F18*DS4 =LN(2)*D$61(D 55B18*E18) =G18131-18 =-ý118*J$2161 =118*JS3/B18 =J18.K1819 1*=1 905$4 =LN(2)*D$6/( 55B19*El9) =G19/H19 --'lg*J$2/B19 =11 9J$3/B19 =J19+K1920 j=F200$S4 =LN(2)*D$6/(0$55B20*E20) =G20/1-20 --,l20*J$2IB20 =120*JS3/B20 =J20.K2021 =F21*D$4 =LN(2)*D$61(D 58B21*E21) =13211-211 =!121*J$2/B21 =121J$311B211 =J21 +K21 122 =F22*D$4 =LN(2)*D$6/(D$5*B22*E22) =132211-22 --l22*JS2/B22 =122*J$3/B22 =J22+K2223 =F23*DS4 =LN(2rD$61(0$55823'E23) =G2311-23 .123*JS21823 =123*JS3/B23 =J23.K2324 =F24*DS4 =LN(2)t5$61(D$5*B24*E24) =G24/k24 -7I24*J$2/824 =124J$3/B324 =J24.K2425 =F25*D$4 =LN(2)*D$6/(D$5*B25*E25) =G25tH25 =125*J$2/B25 =125*J$3/B25 =J25+K2526 =F26*D$4 =LN(2)*D$6/(D$5*B26'E28) =G2611-26 =126*J$21B26 =126*J$3/B26 =J26*K2627 *=27tS$4 =LN(2)D$6J(D$5B27*E27) =G271H27 4l27*4JS]327 =127*3/13B27 =J27.K2728 =F28'D$4 =LN(2)0D$6/(D 5-828'E28) =G281/-28 =128J$2/21828 =128J53/B328 =J28.K2829 j=F29D$)4 =LN(2)0$6/(D 55829'E29) =G2911-129 =129*J$2/829 =129JS3/B229 =J29+K29301 Total =SUM 110:129) SUM(J1O:J29) =SUM(KIO:K29) =SUM(LIO:L29)

33 ______

34 ________ _____________ ______

35 ________ ______ _______ ______

36 ________ _____________ ______ ______ _______

37 _______________________________ _______________ ______

398 _____________I______ ______ _____

40319 ______________________ ______

410 _______ ____________ _____________________ ______

Cesium t=0 Eqs

Page 40: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile Point Nuclear StationUnit 2

Table 1-3;Eqs: Core Iodine Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0Page 1-12

A I B C E1 Time post-LOCA 30 days2 Neutron Mass 1.008665 amu3 Core Thermal Power (100%) 3467 MWt4 Core Thermal Power (102%) =D3*1.02 MWt5 1 Cude 37000000000 dis/sec6 Avogadro's Number 6.022137E+23 atomslmole7

Atomic Mass Half LifeIsotope (Ref. 1) (Ref. 2) t1,2 units . Half Life

9 lamu] [sec]

10 1-127(2) 126.90447 stable11 1-128 127.905838 25 m =IF(D1 1=s,C1 1,IF(D 1= m.,C11"60,IF(D1 I= h",C1 16060,IF(D 1I=d",C1 1 "24*60*60,IF(D I=°a",C1 1*365"24*60*60,"n/a')))))12 1-129 128.904987 15700000 a =IF(Di2='i',CI2,1F(D12='m',C12"60,1FID2='h',C12"60"60,1F(D12='d',C12*24*60*60,1F(Di2=*a',C 2*365*24*60*60,,rda")))))13 1-130 129.906676 12.36 h =IF(D13=°SC 13,1F(D13='m*,C 13*60,F(ID 13='h*,C13*60°60,1F(D1 3=d',C13*24°60'60,IF(D13="a",C 13"365"24*60*60,"nla")))))14 1-130M 129.906676 9 m =IF(D14=__,C 14,1F(D_14-_m_,C_4"60,1F(D14=_h_,C_ 4"60_60,1_F(D14.-d_,C_4*24_60*60,1F(D14=_a_,C14*365*24"60*60,_na_)))))15 1-131 130.906127 8.02 d =IF(D 15=Wsc 15,F(D 15='m',C15*60,lF(D15="h*,C1 5*60*60,1F(D15=dC 1524"60°60,1F(D15='a*,C 15*365*24*6060,'n/a)))16 1-132 131.907981 2.28 h =IFD1_6=_s_,C16,1F(D16='m_,C 16"60,1FD16='h_,C1_6*60*60,IF(D_6="d°,C1_6*24"60*60,1F(D15a_,C_6_365°24"60°60,'n/a_)))))17 1-133 132.90775 20.8 h =IF(D 17=*s',C 17,IF(D 17='m,C 17°60,1F(D17="h",C 17°60*60,IF(D17="d",C 17*24°60"60,IF(D 17=*a".C17*365°24*60*60."nla")))))18 1-133M 132.90775 9 a =IF(D18='s`,C I 8,IF(D18='m',C18*60,1F(D18="h*,C18°60*60,1F(D1i8=d.C 18°24"60*60,lF(D18=ae",CI 8*365*24*60*60,"n/a")))))19 1-134 133.90985 52.6 m _=_FD19_-s-_C_9`_F(D1_=-m-__C1__6__ _F(D1_='h__ C19_6__FD19=-d-_C_9*24*6_ _ F(D1_=-a-'C19_3_5_24__.-na_)))20 1-134M 133.90985 3.7 m =IF(D20==s".C20,lF(D20-=m.'C20*60,lF(D20=-h.,C20*60*60,IF(D20==d",C20*24*60'6OIF 020--"a",C20.365*24*60*2C0 ,n/a*dCa-0l))221 1-135 134.91002 6.57 h =IF(D21=_ ,C21_,IF(D21_m_,C21_60,IF(D21_=_h_,C21_60°60,_F(D21_=°d',C21_24_60_60,IF(D21='a',C21_*365_2480*60,_n/a_)))))22 1-136 135.91474 1.39 m =IF(D22="s-'C22•F(D22=*m`C22: F(D22='h-•C22°60 F(D22=-d-•C22*24'60 '•F(D22=-a-•C22*365'24660'-n/a-)))))23 1-136M 135.91474 47 s =aF(D23=-s-,C23,IF(D23='m'C23 60'•F(D23="h",C23*60*60.IF(D23="d",C23°24*60*60,IF(D23="a-•C23'365*24°60*60•n/a')))

24 1-137111 =B23+1'D$2 24.5 s =5F(D24="s'C24.[F(D24="m".C24*60,IF(D24=•h",C24°60*60'•F(D24=•d",C24*24*60*60,IF(D24=•a*,C24*365*24*60*60,"n/a"))

25 1-138811 =824+l*D$2 6.5 s =IF(D25=5s°,C25,1F(D25='m°,C25*60,1F(D25='h'C25*60*60,IF(D25=°d',C25*24"60*60,1F(D25=°a" C25°365°24*60°60,"n/a*)))))

26 1-139011 =825+1D$2 2.3 s =IF(D26="s*,C26,F(026="m,C26*60,1F(D26="h*.C26*60*60,1F(D26='dC26*24*60°60 IF(D26="a" C26°365°24"60*60,"nla,)))))27 Ik140(') =B26+l"D$2 0.86 s =IF.D27="s*,C27,1F(D27-°m",C27*60,1F(D27=*h°.C2760*60,IF(o27='d-,c27*24°60°60'1F(D27="a*,C27*385*24.60*60,'n/a"))))

28 1-141(1) =B27+1*0$2 0.45 s =5F(D28='. C28,IF(D28=-m-•C28*60. F(D28='h-`C28 '6060, F(028= d-C28 24*60*60. F(D28=-a-•C28.365 24 6O0•60-n/a")))))

29 1-142(') =B28+1°D$2 0.2 5 =F(D29=-s-,C29,IF(D29=•m*,C29*60,IF(D29=-h*,C29*60*60,IF(D29="d',C29*24*60*60,IF(D29=*a"'C29*365*24*60*60 -n/a')))))30 1-143")P) =B29+1"D$2 =IF(D30=-s-.C30'•F(D30--'m".C30*60.•F(D3O='h•'C30•••6V6O•F(D30=-d-'C30*24*60'60,IF(D30=-a*,C30*365*24*60*60,"n/a••)))))

31 1-144"H3) =B30+1*D$2 I F(D31="s"C311F(D31I-rn"C31*60'1F(D31=-h.C31 6060F(D31=*d",C31*24*6,F(D31='a*C31I3624*60*60-n/a,)))))3233 oaL

34 1) Atomic mass not given for these Isotopes in Reference 1; therefore, a multiple of the neutron mass is added to the atomic mass of 1-136M.35 2) Since 1-127 is a stable element, its quantity is not presented in Reference 3: The mass of 1-127 is assumed to be 30% of the mass of 1-129.36 3) Half-life information not available In Reference 2.3738 Refernce,39 1. Radiological Health Handbook, 1970 (main body Reference 7.8)40 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9)41 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)42 4. Regulatory Guide 1.183 (main body Reference 7.10.2)43 5. NMP2 Site License (main body Reference 7.5)44 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Iodine t=30d Eqs

Page 41: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment INine Mile Point Nuclear StationUnit 2

* Table 1-3 Eqs: Core Iodine Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0Page 1-13

F .G H jI -J KLI Core Inventory Fraction Released in Containment for Halogena

2 tRet. i) Gap Release Phiase 1.05 (Ret. 4, TbI 1)3 (Ref. 5) Early tn-Vessel Phase 0.25 (Ref. 4, ThI 1)4 (Ref. 6) _____

5 (Ref. 1)6 (Ref. 2) ______

Activity Activity Specific Core Gap EIV Total(Ref. 3) per Core Activity Inventory Release Release Release

-- ICi/M WtI [Ci/corel lCi/ciMl igloe mole] (mole] [mole]

10 _________ ______ 0.3*J12 =0.3*K12 =JIO+KI01110 _________=FIPDS4 =LN(2)*D$6/(D$5*811E11) =G11IH11 =111J$4218111 =I1VJ$3/Bll =J11+KI1

12 0.0013 =F12*D$4 =LN(2)*D$6/(D$5*812*E12) =G12/H12 =112*J$2I812 =112JS3/B12 =J1 2+K1213 0,00000000000000318 =F13'D$4 f!L!(M-D$6/(D$5-813'E13) =G1311-13 =113*J$2/813 =113*J$3/Bl3 =J13+K1314 0 _________=F14*0$4 =LN(2)*D$6I(D S*B14*EI4) =G114111114 =114*J$2/814 =114*J$3/B14 =J14+K1415 2100 * =F15*D$4 =LN 2 *D$6 D$S*BlS*E15) =G151H15 =115*J$21815 =115*JS31B15 =J15+Kl516 67.1 =F16*D$4 =LN(2)*D$61(D$S5B16*E6) =G16fH16 =116*J$2/816 =116*J$3BIB6 =J16+K11617 0.00000214 =F17*DS4 =LN(2)*D561( $5*B17*EI7) =G11711-17 *=117*J$21817 =1117J531B317 =.J17+K1718,0 _________=F18*D4 =LN(2rD$61(D$5518*E18) =G1811-18 =118*J$2IB18 =l18*J$3iB18 =J18+K1819 0 _________=F19*D54 =LN(2)*D$6/(DS5*B19*E19) =G191H19 =119*J$21819 =119*43/12119 =J19+KI920 0 _________=F20*D$4 =LN(2)*056/(O$5*20*E20) =G201-120 =120*JS21B20 =120*J$3/B20 =J20.K2021 0 _________=F21*DS4 =LN(2)0$6/(D$55B21*E21) =G2111-211 =121'J$2/821 =121*J$31821. =J21+K2122 0 _________ F22*D$4 =LN(2)*D$6/(D$S*B22*E22) =G2211-22 =122*J$21B22 =122*J$3/B22 =J22+K2223 0 .=F23*D$4 =LN(2)0S61(DS5-23'E23) =G231H23 =123*J$21B23 =123*J$31823 =.J23+K2324 0 _________=F2405$4 =LN(2)'D$G/(D$55924'E24) =G2411-124 =124*J521824 =124J$3/1B24 *=J24+K24

25 0 _________=F2505$4 =LN(2)*0$6/(O$5*25*E25) =G2511-25 =125*J$21825 =125*J$3iB25 =J25+K2526 0 =F26*D$4 =LN(2rD$6flD 5*B26*E26) =G26/1-126 =126*J$21B26 =126*J$3/B26 =J26+K26.27 0 _________=F27*D$4 =LN(2)D$6i(D$5*B27*E27) =G2711-127 =127*J$21B27 =127*J$31B27 =J27+K2728 0 _________ F28*D$4 =LN(2)*D$6/(DS5*B28*E28) =G .28IH28 =128*J$2/828 =128*J$31828 =J28+K2829 0 * F29*D$4 =LN(2rD$6/(D$5*829*E29) =G2911-29 a129*J$2/B29 =129*J$3/829 =J29+K2930.0 =F30*0$4 ___________ ______ _____________

31 =F31*D$4 ___________ ______

32 .Total =SU j10:131) -SUM(JIO:J31) =SUM(KIO:K31) -SUM(LID:L31)33 ______________

36 _______

38 ______

39 _________ ______________

410 ________ _____

431___ ______

442 ______________ __________________ ______ ______

iodine t=30d Eqs

Page 42: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment INine Mile Point Nuclear StationUnit 2

Table 1-4 Eqs: Core Cesium Inventory Determination (1=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWd/ST CAVEX)

Calculation No. H21C-097Revision 0Page 1-14

A B _ I E F1 Time post-LOCA 30 days

2 Neutron Mass 1.008665 amu (Ref. 1)

3 Core Thermal Power (100%) 3467 MWt (Ref. 5)4 Core Thermal Power (102%) =D3"1.02 MWt .,(Ref._6)

5 1 Curie 37000000000 dis/sec (Ref. 1)

6 Avogadro's Number 6.022137E+23 atoms/mole (Ref. 2)7

Atomic Mass s Ht Life Activity

(Ref. 1) (Ref. 2) Haf Life (Ref. 3)

8

9 _ ainu_ Isec] [CUMWtI10 cs-i132 1131'.906393 -6.48 d --IF(D10="S',C10,1F(Dl0='m",Cl10*60,1F(IO 0--"h*,Cl10*60"60,'IF(Dl o=*d*,Cl0"24"60"00,1F(Dl0=*a*,C10*365*24*60"60,*n/a'))))) 0.32111 CS-13321 3

12 CS-134 133.906823 2.065 a =IF D12="s,C12,IF D12=:m.,C 12"60,IF D12='h',C12"0606IFDF12=*d,C12"24"60"60.,F D12='a'.Ct2"365"24"60"60,'n/a*))))) 7090

13 CS-134M 133.906823 2.9 h =IF(D03='s",C13,1F!D13='m',C13*60,tFI3='h",C13*60"60,IF(D13='d',C13"24"60*60.IF(013='a'.C13"365"24"60*60,"n/a')))) 014 CS-135 134.90577 2300000 a =IF(14='s_,C_14,1F(D_4="m_,C_14_60,1F(D_4=_h",C_14"60"60,1F(D_4=_d_,C14*24"60"60,1F(O14=_a_,C14365*24*60*60,n/a*))))) 0.025115 CS-135M 134.90577 53 m =IF D15="s".C15,IF(D15="m*,C15"60,IF(D15="h¶,C15*60"60,IF(D15=*d".C15*24*60*60,IF(DI5="aC15*365*24"60*60,n/ala"))) 0

16 CS-136 135.90734 13.16 d =IF(D46=6sC16,IF(DlB=6m*,Cl6*60,IF(D16="h",Cl6*60"60,IF(D16="d",C16*24*60"60,iF(Dl6="a",Cl6"365"24*60"60,'n/a'))))17 CS-137 136.90677 30.07 a =IF(D17="s"C17•F(D17="m-•17*60.•F(DI7="h•C17*6060'•F(D17=-d-,C17*24-6060`•F(D17="a*,C17"365*24"60"60,*n/a*))))) 4340

18 CS-138 137.9108 32.2 m =IF(D018='s",C 1,1FI8="m" C 1*60,1F(D18="h",C18*60*60,1F(D18='d",C18*24*60*60,1F(D 1='a',CI18365*24*60"60,'n/a")))))19 CS-138M 137.9108 . 2.9 m =IF(D19=s",C 19,1F(D19="m",C19"60,IF(D19=*h",C19*60*60,1F(D19=*d',C19"24"60*60,IF(D19='a*,C19*365"24"60*60,'n/a'))))) 020 CS-139 138.9129 9.3 m = F(D20=es ,C20, FD20='m',C20"60, F(D20= h C20 60 60, F D20= d 20°24 6060,IF(D20="a-•C20.365.24.60*60,'n/a*))))) 021 CS-140 139.91711 1.06 m =IF(D21='s0 C21,1F(D21='m" C21°60 IF(D21='h" C21"60*60,1F(D21='d",C21"24,60"60,IF(D21="a*,C21*365*24"60*OO.'nla*)) 0

22 CS-141n) =821+1"D$2 24.9 s =0F(122= s"'C22'•F(D22='m'C22'60F(D22=-h•C22*6060.IF(D22="d"c22*24*6060F(D22=-a*'C22*365*24*60*60n/a-))))) 0

23 CS-142(2) =B22+1"D$2 1.8 S =0F D23= s__C23F(D23=_m__C23_6F(D23=_h',C23_6_6_F(23=_dC23_24_60 F(D23=_a__23_365*24060n/a'))

24 CS-143n2) =B23.1"D$2 1.78 s =0F(D24=ýs",C24,1F(D24=*m" C24*60,1F(D24='h* C24*60"60,1F(D24="d',C24"24*60*60,IF(D24='a",C24*365*24"60*60,'n/a"))))) 0

25 CS-144m) =B24+1*D$2 1.01 s =IF(D25=0*s*,C25.1F(025=m',C25"60,IF(D25=",C25"60"60,1F(D25=d,C25°24*60*60,IF(D25='a",C25.385.24.60.60,"n/a.)))

26 CS-145(2) =B25+lD$2 0.59 s =0F(D26="s"'C26,F(026=-m",C26*60F(D26=-h".C26*6060F(D26=-d*'C26*24*6060F(D26=*a•C263624*6060-n/a-)))) 0

27 CS-146r2) =826+10$2 0.322 s =IF(D27=0s',C27,IF(O27='m',C27°60, F(027=*hC27*6060F(D27=d•C2724`6060F(D27=aC27*365*24°6060nfa')))) 0

28 CS-147(2ý =B27+1*D$2 0.227 s =IF(D28=tsC28,IF D28=m"mC2880,IF D28='hC28*60'60,lFD28="d.C28'24*60*60'IFD28='a',C28*365*2460*60.n/a"))) 0

29 CS-148('2 =B28+1*D$2 0.15 s =IF(D29=:s",C29.IF D29=mrý",C29*60,IF(D29="h,*,C29*60*60.IF(D29='rd-C29*24.60*60,IFFD29=*a*,029'365.24*60*60'nla"))))) 0

30 " __"_....

31 Notes32 1) Stable cesium is conservatively not accounted for in this analysis as It forms cesium hydroxide (CsOH),33 2) Atomic mass not given for these Isotopes in Reference 1; therefore, a multiple of the neutron mass Is added to the atomic mass of CS-140.

35 Renw*36 1. Radiological Health Handbook, 1970 (main body Reference 7.8) ..37 2. Chart of the Nuclides, 15th Edition (main body Reference 7.9) 138 3. GE-NE-A41-00097-00-01, NMP2 24-month Cycle Fission Product Inventory Evaluation (main body Reference 7.7)39 4. Regulatory Guide 1.183 (main body Reference 7.10.2)40 5. NMP2 Site License (main body Reference 7.5)41 6. Regulatory Guide 1.49 (main body Reference 7.10.1)

Cesium t=30d Eqs

Page 43: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 1Nine Mile Point Nuclear Station

Table 1.4 Eqs: Core Cesium Inventory Determination (t=30 days Post-LOCA)(Single Batch Core with 1400 EFPD and 34,000 MWdIST CAVEX)

Unit 2

G H K L .e Core InvCntooyrFaction leased In Coenory t for Alkalis

2 Gap Release Phase 0l05 (Ref. 4, Tbl 1)3 Early, In-Vessel Phase _ 02 (Ref. 4, TbI 1)

45_6

Activity Specific Core Gap EIV Total

per Core Activity Inventory '.Release Release Release

[Ci/core] [CI/gm] [gin/core] [motle (mole] [oe

10 =F10*D$4 =LN(2)*D$6/(D$S5*B10*E10) =G1O/HIO =110*J$2/B1O =110"J3/B10 =J10IOK011

12 =F12*D$4 =LN(2)*D$6/(D$5"B12"E12) =G12/H12 =112"J$2/B12 =I12"J$3fB12 =J12+K1213 =F13*D$4 =LN(2)*D$6/(D$5*B13*E13) =G13/H13 =I13'J2/B13 =113"J$3/B13 =J13+K13

14 =F14*D$4 =LN(2)*D$61(D$S5B14"E14) =G14/H14 =114"J$2/1B4 =114J$3/B14 =J14+K14

15 =F15*0$4 =LN(2)*0$61(D$5"B15*E15) =G151H15 =115J$2/1B15 =115*J$3/B15 =J15+K15

16 =Fl6"D$4 =LN(2)°D$6/(D$5*B16*E16) =G16/H16 =116*J2/1B16 =116J3$3/B16 =J16+K16

17 =F17"D$4 =LN(2)D$6/(D$5"B17*E17) =G17/H17 =117J$2/B17 =I17"J$3/B17 =J17+K17

18 =F18*D$4 =LN(2)D$6/(D$5B18E 18) =G18/H18 =118*J2/B18 =118"J$3/818 =J18+K18

19 =F19"D$4 =LN(2)*D$6/(D$5"B19"E19) =G191Hl9 =I19"J$2/B19 =119*J3/B19 =J19+K19

20 =F20*D$4 =LN(2)*0$6/(D$5"B20*E20) =G20/H20 -120'J$2/B20 =120J$3/B20 =J20+K20

21 =F21"D$4 =LN(2)*D$6/(D$5*B21"E21) =G211H21 -12V1J$2iB21 =121*J$3/B21 =J21 +K21

22 =F22*D$4 =LN(2)*D$61(D$5'B22"E22) =G22)H22 #1223S2)B22 =122'J3/B22 =J22+K22

23 =F23*D$4 =LN(2)*D$6/(D$5"B23"E23) =G23/H23 =123*J$2/B23 =123"J$3/B23 =J23+K23

24 =F24"D$4 =LN(2)*D$6/(D$5"B24"E24) =G24/H24 =.124"J$2/B24 =124"J$3/B24 =J24+K24

25 =F25"0$4 =LN(2Y0$6/(0$5"B25"E25) =G251H25 =1251J$2/B25 =125*J$3/B25 =J25+K25

26 =F26'D$4 =LN(2)D$61(D$5 B26'E26) =G26/H26 =126J$52.B26 =126*J$3/B26 =J26+K26

27 =F27*D$4 =LN(2)*0$61(D$55B27*E27) =G271H27 =127"J$21B27 =127*J$3/1B27 =J27+K27

28 =F28'0$4 =LN(2)'D$61(D$5"828*E28) =G28/H28 =128*J$21828 =128"J$3/128 =J28+K28

29 =F29*DS4 =LN(2)°D$6/(D$5*B29*E29) =G29/H29 =129*J2/B29 =129°J$3/B29 =J29+K29

30 Total =SUM(1.0:129) ='SUM(J1O:J29) =SUM(K1O:K29) =SUM(LIO:L29)

31 _.I _32333435,363738'39 I

40

411

Calculation No. H21C-097Revision 0Page 1-15 Fir/AL

Cesium t-30d Eqs

Page 44: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

.Attachment 2Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 2-1

Attachment 2

Determination of Radiation Doses

Page 45: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 2 Calculation No. H21C-097Nine Mile Point Nuclear Station Revision 0Unit 2 Page 2-2

Purpose

The purpose of this attachment is to document the gamma and -beta radiation dose in thedrywell, wetwell, and suppression pool.

Methodology

Beta Dose

The beta radiation dose is taken from Calculation PR-C-19-C, Revision 3 (main body Reference7.6.2). In order to account for power uprate from 3,323 MWt to 3,467 MWt, the beta dosepresented in the calculation is increased by 1.36%.

The beta dose in PR-C-1 9-C is presented for both a drywell surface area of 275,000 ft2 and200,000 ft2. Since the values for a drywell surface area of 200,000 ft2 are greater and hencemore conservative, they are used herein.

Both halogen plate-out and airborne dose are included in the total drywell and wetwell betadose.

Since the penetrating ability of beta radiation is orders of magnitude less than that of gammaradiation, the beta dose from the suppression pool is considered negligible in comparison to thesuppression pool gamma dose. Therefore, the suppression pool beta dose is not modeled.

Gamma Dose

The gamma radiation dose is taken from Calculation PR-C-21-Q, Revision 1 (mrain bodyReference 7.6.3). In order to account for power uprate from 3,323 MWt to 3,467 MWt,. thegamma dose presented in the calculation is increased by 1.36%.

The drywell and wetwell airborne gamma dose is taken from environmental zone PC 289684.The long-term gamma dose in this zone bounds that in all other environmental zones analyzed

........ .. .-in PR-C-21 -Q jand therefore-is conservative.'-........ .............. ... .. .. . .

The suppression pool submersion gamma dose is taken from environmental zones PC 175101,PC 196112, and PC 215121, which represent the suppression pool.

Both the drywell/wetwell airborne gamma dose and the suppression pool submersion gammadose are increased by 5% to account for bremsstrahlung.

It is recognized that the suppression pool submersion gamma dose is based on a dilutionvolume of 160,000 ft3 (PR-C-21-M, main body Reference 7.6.6). Since this volume is differentthan that used in this calculation, the impact of a different suppression pool volume isaddressed. The total integrated dose (TID) is determined as follows:

TID = DCF * (ANV)

Where DCF is a dose conversion factor [rad/(Ci/cc)], A is the amount of activity released to thesuppression pool [Ci], and V is the volume of the suppression pool [cc]. From this expression it

Page 46: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 2Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 2-3is clear that, since the DCF and A do not change for this analysis, a change in suppression pool

volume results in:

TID1 / TID 2 = [DCF *(ANIV)] I[DCF*(AIV 2)]

or

TID 2 = TID1 * (VlN1 2)

Since, for this analysis, the maximum post-LOCA suppression pool volume, approximately168,000 ft3, is used (see main body Assumption 3.1), it is conservative to use the suppressionpool submersion gamma dose from PR-C-21-Q without adjustment for suppression poolvolume.

Results

The radiation doses to be used are shown in Tables 2-1 and 2-2.

Page 47: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 2Nine Mile Point Nuclear StationUnit 2

Power. Uprate Factor (1..36% incr.)

Table 2-1: Beta Dose Calculation No. H21C-097Revision 0

Page 2-4

1.0136

Drywell Airborne Beta Dose Wetwell Airborne Beta DoseTime TID(1X4) @ ~ TID(l @ TID@ )(5) @ TID(2)0

3323 MWt 3467 MWt 3323 MWt 3467 MWt[hr] Irad) [rad] [rad " [rad]

1 .1.97E+07 2.OOE+07 2.23E+07 2.26E+076 5;70E+07 5.78E+07 6.81 E+07 6.90E+07

'24 1l28E+08 1.30E+08 1.57E+08 1.59E+08720 5.57E+08 5.65E+08 6.94E+08. '7.03E+082400 5.99E+08 . 6.07E+08 7.44E+08 7.54E+084320 6i.26E+08 6.35E+08 7.71E+08 7.81E+088760 6.88E+08 6.97E+08 8.33E+08 8.44E+08

Notes

1) Includes halogen plateout and airborne dose; surface area of 200,000 ft2 used.2) TID 3467=(1.0136)(TID 332 3) per References 1 and 2

3) Suppression pool beta dose is negligible and is therefore not included.

4) Taken from Table 6 of Reference 1, for surface area=200,000 ft2

5) Taken from Table 6A of Reference 1

References .1) PR-C-19-C, Rev. 3 (mlain body Reference 7.6.2)2) PR-C-19-C, Rev. 3, Disposition PR-C-19-C-03A (main body Reference 7.6.2.a)

Beta

Page 48: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 2Nine Mile Point Nuclear StationUnit 2

Table 2-2: Gamma Dose Calculation No. H21C-097Revision 0

Page 2-5

Power Uprate Factor (1.36% incr.)Bremsstrahlung Factor (5% incr.)

1.01361.05

(Ref. 2)Assumption

Drywell & Wetwell Airborne Gamma Dose Suppression Pool Submersion Gamma DoseTime TID(1) @ J TID( 2 @ TOD 3)@ TIDO2 ) @

3323 MWt 3467 MWt 3323 MWt 3467 MWt[hr] [rad] 4 [rad] [rad] . [rad]1 2.3E+06 2.4E+06 3.8E+05 4.OE+056 7.OE+06 7.4E+06 1.4E+06 1.5E+06

24 1.1E+07 1.2E+07 2.8E+06 3.OE+06720 3.OE+07 3.2E+07 .1.6E+07 1.7E+07

2400 4.7E+07 5.OE+07 3.6E+07 3.8E+074320 6.3E+07 6.7E+07 5.5E+07 5.9E+078760 9.5E+07 1.OE+08 9.4E+07 1.OE+08Notes

1) Maximum environmental zone TIl, as given in Reference 1 (Zone PC289684, p. 270)2) TID3467=(1.0136)(1.05)(TID 3323)

3) TID for suppression pool environniental zones (PC175101, PC196112, PC215121) in Reference I (p. 202)

References1) PR-C-21-Q, Rev. I (main body Reference 7.6.3)2) PR-C-21-Q, Rev. 1, Disposition PR-C-21-Q-OIA (main body Reference 7.6.3.a)

Gamma

Page 49: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 2Nine Mile Point Nuclear StationUnit 2

Table 2-1 Equations: Beta Dose Calculation No. H21C-097Revision 0Page 2-6

A B C D E F

2 Power Uprate Factor (1.36% incr.) 1.136

4 Drywell Airborne Beta Dose Wetwell Airborne Beta DoseTime

TITID 2 @T TID(lx5() @ TID(2) @5 3323 MWt j 3467 MWt 3323 MWt 3467 MWt6 (hr] [rad] "J [rad] [red] [rad]"_7 1 19700000 =B7*C$2 22300000 =D7*C$28 6 57000000 =B8*C$2 68100000 =D8*C$29 24 128000000 =B9"C$2 157000000 =D9*C$2

10 720 557000000 =B1O*C$2 694000000 =D10*C$211 2400 599000000 =B11*C$2 744000000 =Di1*C$212 4320 626000000 =B12*C$2. 771000000 =D12*C$213 8760 688000000 =B13*C$2 833000000 =D13*C$214 Note __

15 1) Includes halogen plateout and airborne dose; surface area of 200,000 f used.16 2) TID346=(1.0136)(TID 3323) per References ,I and 2

17 3) Suppression pool beta dose is negligible. 'nd is therefore not included.18 4) Taken from Table 6 of Reference 1,for suýface area=200,000 ft19 5) Taken from Table 6A of Reference 120 !21Reeecs''

22 1) PR-C-19-C, Rev. 3 (main body Reference 7.'6.2)23 2) PR-C-19-C, Rev. 3, Disposition PR-C-19.C-03A (main body Reference 7.6.2.a)

Beta-Eqs

Page 50: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 2Nine Mile Point Nuclear StationUnit 2

Table 2-2 Equations: Gamma Dose Calculation No. H21C-097Revision 0

Page 2-7 Final

A _ . B C 0E

2 Power Uprate Factor (1.36% incr.) _ _ 1.0136 (Ref. 2)3 Bremsstrahlung Factor (5% incr.) 1.05 Assumption45 Drywell & Wetwell Airborne Gamma Dose Suppression Pool Submersion Gamma Dose

Time TID(1) @ TID(2) @ TID(3) @ TIDO) @(6 3323 MWt 3467 MWt 3323 MWt 3467 MWt7 [hr] _ _ _ _[rad] [rad] (rad] [rad]8 1 2300000: =B8*C$2*C$3 380000 =D8*C$2*C$39 6 7000000: =B9*C$2*C$3 1400000 =D9*C$2*C$310 24 11000000 =B10*C$2*C$3 2800000 =D10*C$2*C$311 720 30000000 =Bl1*C$2*C$3 16000000 =Dl1"C$2*C$312 2400 47000000 =Bl2"C$2*C$3 36000000 =D12*C$2*C$31_3_ 4320 ,63000000 =B13*C$2*C$3 55000000 =D1 3*C$2*C$31418760 95000000 =B14*C$2*C$3 94000000 =D14*C$2*C$3•15 Notes16 1) Maximum environmental zone TID as givenin Reference 1 (Zone PC289684, p. 270)

17 2) TID3467=(1.0136)(1.05)(TID 3323)18 3) TID for suppression pool environmental zones (PC175101, PC196112, PC215121) in Reference 1 (p. 202)19120

21 1) PR-C-21-Q, Rev. I (main body Reference 7.6.3)22 2) PR-C-21-Q, Rev. 1, Disposition PR-C-21-Q-01A (main body Reference 7.6.3.a)

Gamma-Eqs

Page 51: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2 1

Calculation No. H21C-097Revision 0

Page 3-1

Attachment 3.

DIT-NM-NPEE-001, "Determination of Exposed Cables in the NMP2 Drywell"

Page 52: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097Nine Mile Point Nuclear Station Revision 0Unit 2

Page 3-2

DESIGN INFORMATION TRANSMITTAL - FIRST PAGEForm SOP-0403-02-02. Revision 4

DESIGN INFORMATION TRANSMITTAL

x Safety-Related 0 Non-Safety-Related DIT No. DFT-NM-NPEE-001

Client: Nine Me Point Nuclear Station. LLC ProjectNo.: 11236.061 Page 1 of 28

Station: Nine'Mile Point Unit(s): 2 To: JC Penrose

Subject: Determination of Exoosiad Cables In the NMP2 Drywall

MODIFICATION OR DESIGN CHANGE NUMBERS A lJH Gotston NPEE w" L ie, ,,641Preparer (Print name) Process Group \..'repa, Sinaturei IssueDate

STATUS OF INFORMATION (This Information Is approved for use. Design Information, approved for use, that containsassumptions or Is preliminary or requires further verification shall be so identified).

Approved For Use - This DIT conitains Ennineerim Judgement That Does NRot.eaulm Verification

IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE(list any supporting documents attached to DIT by Its itle, revision and/or issue date, and total number of pages for each supportingdocument.)

This DIT contains cable length, and cable insulation and jacket information for exposed cable installed in the Nine MilePoint Unit 2 (NMP2) Drywall.

The data provided herein may' be used to calculate the formation of HCI by radiolysis of chlorine-bearing Materials.

SOURCE OF INFORMATION

Calc No.Rev. Data

Report No.Rev. Date

Other Sources of Information are listed on the foliowtng [ane 2 of this DIT

DISTRIBUTION

Action:JC PenroseHR Kopko.

Information:RE DavisOM Wright

Reviewed Mb. Jayaa " J, OD

SOP04030202-REV4.doRev. Data: 04-19-2004

page I orl4

Page 53: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097Nine Mile Point'Nuclear Station Revisio21 0Unit 2 Revision 0

Page 3-3

DESIGN INFORMATION TRANSMITrAL -. CONTINUATION PAGEForm SOP-0403-02-03. Revision 4

• .•:• L~ DESIGN INFORMATION TRANSMITTAL

DIT No.: DIT-NM-NPEE-00t Project No.: 11236-061 Page 2 of Z7

SUBJECT:

Determination of exposed cables In the NMP2 Drywell.

PURPOSE:

Cables installed In the NMP2 Drywall containing chlorine-bearing materials may release HCI via rediolyals when exposed to variousforms of radiation. This DIT estimates the lengths and sizes of cables Installed In the Drywall, that am Installed In cable tray or freeair. It also provides Information on cable insulation and jacket material. The user of this DIT can use this information to calculate theexposed surface area of cable jacket material, and the volume of cable jacket and cable insulation material contained by theseexposed cables. (Ref. 11

REFERENCES:

1. Emall mesage from Jeri C Penrose to Robefl E Davis, sent 8/11/2004at 4*:44pm, Attachment 1.2. "Electrtcal Installation" Specification E061A3. "insulated 15-kV Power Cable" Specification No. NMP2-E023A. Rev. 02, Attachment 5 (selected pages)4. 'Electrak Corp. Raceway Reportr, Attachment 2 (selected pages)5. "As-Built Cable Report", Altachment 3 (selected pages)6. "Cable Mark Number Report", Attachment 4 (selected pages)7. Drawing EE-036U, Rev. 6, Wiring Diagram Electrical Penetrations 2CES-Z31E. -Z32E, .Z45E, -Z46E"8. Drawing EE-34Z-12; Rev. 12, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 1"9. Drawing EE-034AA, Rev. 13, "Cable Tray Arrangement EL. 215'-0" Reactor Building Sheet 2"10. Drawing EE-34AB-15, Rev. 15, 'Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 1"11. Drawing EE-34AC-15. Rev. 15, "Cable Tray Arrangement EL. 240'-0" Reactor Building Sheet 2'12. Drawing EE-34AD-11. Rev. 11, Tcable Tray Arrangement EL. 261'-0" Reactor Building Sheet 1"13. Drawing EE-034AE, Rev. 13, Cable Tray Arrangement EL 261'-0" Reactor Building Sheet 2"14. Drawing EE-34AF-7. Rev. 7, "Cable Tray Arrangement EL 289'-0" Reactor Building Sheet 1"15. Drawing EE-34AG-7. Rev. 7. "Cable Tray Arrangement EL. 289'4"- Reactor Building Sheet 2'16. Drawing EE-340G-6, Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building - EL. 261'- 0' Sheet I'17. Drawing EE-34OH-6. Rev. 6, "Arrangement Seismic Cable Tray Supports Reactor Building - EL. 261'- 0" Sheet 2"18. Email message from the Keoria Company's R. Flemming to S&L's Helmut Kopke, sent 8/412004 at 2:06pm, Attachment 6.

ASSUMPTIONS.

1. The calculation results of 'HCI released via rediolysls' may be used in a safety related applicatiori: therefore this DIT will beprepared as Safety Related.

2. The user will calculate cable jacket surface area. and cable jacket and insulation volume from data provided herein.3, Over-estimates of cable length and size are In a conservative direction for the user of this DIT's data.4. The Drywall is a plant area Whiere virtually all scheduled cables am Installed in conduit Exceptions are the power cables to the

RCPs and their associated free air drops from tray to motor junction boxes. Other scheduled cables are Installed in conduit.Other potential exceptions may exist for non-scheduled short lengths of lighting or receptacle power cables, or aluminumsheathed cables, etc.

EVALUATION:

1. The user of this DIT is Interested In exposed cable only. Exposed cable Is routed In open cable tray or free air. Cable muted inenclosed raceway. Ie. conduit, flexible conduit, pull boxes, etc.. and cable contained Inside equipment. I.e. termination boxes,motors, etc., will not be considered. A review of the Installation specification E061A Indicates that free air cable muting Istypically only allowed as cables enter and exit the cable trays. Therefore, this DIT estimates the cable lengths and sizes of thosethat are muted In cable tray. There may be some aluminum sheathed or metal clad cable routed in some areas, and thepotentlal exists of small quantities of lighting or receptacle cable. These cable types can be muted without the use of a racewayutilizing simple supports and have an overall jacket. Therefore, for conservatism, it will be estimated that the amount of cableInsulation and jacket matarial for cables of this construction is equal to the amount contained in the cable trays.

2. A detailed search of NMP2 cable tray, penetration wirng dis rams, conduit plan and arrangement drawings was performed to

6OP04030203-REV4.docRev. Date: 04-19-2004

Page 54: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097Nine Mile Point Nuclear StationUnit ,. .Revision 0

Page 3-4

DESIGN INFORMATION TRANSMITTAL -CONTINUATION PAGE .3Form SOP-0403-02-03. Revision 4 L'- Z.i

Identify any cable tray that is installed in the primary containment Cable tray drawings EE-034AA and EE-034Z for ReactorBuilding El. 215'. and drawings EE-034AG and EE-034AF for Reactor Building El. 289' indicate that ther are no trays installed Inthe Drywell or Suppression Pool for these elevations. Cable tray locations were verified utilizing the tray support drawings EE-340H and EE.340G.

3. Cable tray drawings EE-034AB and EE-034AC for Reactor Building El. 240', and drawings EE-034AD and EE-034AE for ReactorBuilding El. 261' indicate that there are cable trays installed In the Drywall for these elevations. The following are theapproximate lengths of tray as shown on the drawings. Where actual tray segment lengths are listed on the drawings, the valueswere conservatively rounded up to the nearest fool. In addition, where cable trays segment lengths are not listed on thedrawings, the tray length has been conservatively estimated by scaling the lengths from the drawing. The following era theresulting scaled lengths:

El. 240' 50-ft. (EE-034AC)Df0- (EE-034AB)

Sub Total 50-t.L

El. 261' 40-ft. (EE-034AD)& 1- (EE-034AE)

Sub Total 130-ft.

Total. 180-ft.

4. To verity the above scaled cable tray lengths, the TRAK 2000 raceway report (Ref. 41 was reviewed for the raceways Identifiedon the above drawings. The Identified cable trays contain the cables feeding the Reactor Recirculation Pumps. The TRAK 2000Information for these raceways installed in the Drywell provide the following installed lengths:

2TJ012N 70-FT2TJO15N 39-FT2TJO22N 8-FT

Total: 19441.

If cable lengths are to based on cable tray lengths, this ODT would estimate a 210-ft total cable tray length.

5. To Investigate the cables Installed between the electrical penetrations and the Reactor Recirculatton Pumps (RCP), and InstalledIn the abovementioned cable tray, the As-BuIlt Cable Report [Ref. 5] was reviewed. The as-buflt cable reports Identifies thecable Identficatton number, the number of cables, the type of cable, Its racaway's Installed length, the cable's calculated lengthand Its actual length. The actual length exceeds the cable tray length to allow for free air length. termination length, and actualInstalled length. The below'summarizes the Installed cables' types and lengths:

Cable IDI Raceways Number of Cobles/Tvoe Size Ifrom Ref. c1 Actual cable lenath

2RCSANJ308f 3 - NJN-03 750-kCMIL 80-ft2TJO12N

2RCSANJ3O9/ 1 - NJN-04 1/0-AWG 80-ft2TJO12N

2RCSBNJ308/ 3 - NJN-03 750-kCMIL 155-ft2TJO1SN +2TJ022N

2RCSBNJ309/ 1 - NJN-04 1I0.AWG 155-ft2TJOI5N +2TJO22N

The above one way crcluit lengths from penetrations to RCPs is 235-ft.

6. Using the actual installed cable lengths from the above as-built cable report summary yields the following:

Coble 1i) Number of cables X Lenath Total Cable length I Size

2RCSANJ308 3 x 80-ft 240-ft 1750-kCMIL

2RCSBNJ308. 3 x 155-ft 465-ft 1750-kCMILSOP04030203-REV4.WOC.Rev. Date: 04-19,2004

Page 55: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-5

DESIGN INFORMATION TRANSMITTAL -CONTINUATION PAGE

Forrri SOP-0403.02-03. Revision 4

bIT- NM-t )PE E- ~oo

LI~s 4~ apZ

2RCSANJ309 i x80 80-ft I 1/0-AWG

2RCSBNJ3091 4 1 x 155-fl 155-ft 1 110-AWG

Total Cable Lengths by' size:

750-kCMIL 705-ftI10-AWG 235-fl

7. To account for the potential existence of other exposed cables, not Included on NMP2 drawings or cable and raceway reports.

the above total cable lengtts'are doubled, yielding the following:

750-kCMIL 1400-ft NJN-03

1)0-AWO 600-ft NJN-04

8. From the 15-kV electrical cable specification fRef. 3], the following dimensions pertaining to the two above cable types 'are

summarized:

Tvye NJN-03 1.conductor. 750-kCMIL:

Conductor Diameter 0 0.9734nch Copper

Insulation Thickness: 220-mils Ethylene Propylene Rubber (EPR)

Jacket Thickness 110-mils Chlorosulfonated Polyethylene (CSPE)

Tyae NJN.04 1.conductor Il-AWG:

Conductor Diameter 0.363-inch Copper

Insulation Thickness' NONE Jacket Only

Jacket Thickness I 50-mille Chlorosulfonated Polyethylene (CSPE)

9. From Information providedlby the Kerite Company [Ref. 18], the following Chlorine content Is available In insulation and jacket

material:

Insulation (EPR) I %

Jacket (CSPE) 16%,*2%

.1

SOP04030203-REV4.docRev. Date 04-19-2004

Page 56: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097

Nine Mile Point Nuclear Station Revisioo 0

D -S--- 2 Page 3-6

Form SOP-0403-02-03. Revision 4

DESIGN INFORMATION TRANSMITTAL

DIT No.: DIT-NM.NPEE-001 Project No.: 11236-061 Page S of ZV-

ATTACHMENT I

E-Mail message from Sargent & Lundy, LLC's JC Penrose to RE Davis, sent 8111/2004 at 4:44pm

Subject: Cable Inventory for pH Analysis

SOP403O203-REV4,d0CRev. Date: 04-19-2004

Page 57: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097Nine Mile Point Nuclear Station- Revision 0Unit 2 Ui2Page 3-7

JERI C PENROSE To: "Davis, Robert E" <[email protected]>cc: HELMUT R KOPKEISargenfundy@Sorgentlundy

08/11104 G444 PM Subject Cable Inventory for pH Analysis

Bob,

I've been using your data as Input to the calculation of the pH In the Suppression Pool In Unit 2. Its a niceanalysis and has much of the Information I need, but I'd like to confirm a few additional details to properlyuse the data.

Your data will be used to calculate the formation of HCI by.radlolysis of chlorine-bearing materials. As Iunderstand itL only the jacketing contains chlorine; the insulation Is made of EP or some other material thatdoes not contain chlorine. Therefor, I need to determine the amounts of jacketing only. The radiolysla -calculation Is sensitive to depth because radiation Is absorbed as it passes through the materiel. Becauseof this, besides the total weight of jacketing I also need data which Identify the jacket OD and the Jacketthickness.

The Cable Inventory you prepared concludes that there Is a total of 200 LF of tray in the Drywall which isused for Reactor Recirculation Pump power cables. It also uses a jacket and insulation weight of 6.4 lbper foot for cable In this tray, but doesn't Identify the basis for this unit weight. Your email dated 7120indicates 1/c 750 MCM cables are used plus a 1/0 ground cable. Is the 6.4 lb per foot weight based onthe total insulation and jacketing for three power cables plus one ground cable (i.e.. 600 LF 750 MCMcable and 200 LF 110.cable)? Are there any other cables in the tray?

The Cable Inventory also assumed additional exposed cable equal in weight to the Recirculation Pumppower cables. Again. I need to use a.jacket.OD and thickness for the pH calculation. Would thisadditional cable be power cable or would it include smaller diameter control cable? Perhaps a reasonableassumption would be a mix of both.

I need to get the additional Information for all cables In the cable tray and elsewhere In the Drywall asdescribed above. Your emall dated 7/20 provided the cable OD and the jacketing thickness for 1/c 750MCM power cable. Please provide similar data for other cables and quantities by type of cable.

I would appreciate inclusion of a summary results table such as the following In your analysis. This wouldhelp me understand the data and provide a reference to be used for input to the pH calculation.

Cable Total length Jacket wt Jacket OD.- Jacket thickness

750 MCM power 600 LF xxx lb/kft 1.94 In 110 ml1/0 ground 200 LF xxx tb/kft x.xx In xxx milletc.

The final calculation is due to the client on August 24 and must be reviewed and approved before then. Ineed to receive an updated Cable Inventory to use as Input no later than Monday, August 16 to supportthe schedule.

Thanks,Jeri312-269-6234

Page 58: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097

Nine Mile Point Nuclear Station Revision1 0

Unit 2 •Revision 0

Ui2Page 3-8

DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGE

Form SOP-0403-02-03. Revision 4

. • DESIGN INFORMATION TRANSMITTAL

DT No.: DIT-NM-NPEE-01 Proect No.: 11236-061 Page 7 of Z.

ATTACHMENT 2

'Electrak Corp." Raceway Reports, dated 1213112003 for Cable Trays

* 2TJ012N* 2TJO15N, and* 2TJ022N

SOPM4030203-REV4 docRev. Date: 04-19-2004

Page 59: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 3-9

z?

Page 60: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-10

NT-M-PEE00

Page 61: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-11

I~2

b~T-N~M-N~PEE- oc~ip ~

I.

Page 62: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21 C-097Nine Mile Point Nuclear Station Revision 0Unit 2 R vsoPage 3-12

DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGEForm SOP-0403-02-03, Revision 4

• •DESIGN INFORMATION TRANSMITTAL

DIT No.: DIT-NM-NPEE-O01 Proect No.: 11236-061 Page 11 of Z?

ATTACHMENT 3

'As-Built Cable Report". dated 7/16/2004 for Cables

* 2RCSANJ308, in Cable Tray 2TJO12N* 2RCSANJ309, in Cable Tray 2TJO12N* 2RCSBNJ308, in Cable Trays 2TJ01 5N and 2TJ022N* 2RCSBNJ309, in Cable Trays 2TJ01 5N and 2TJ022N

SOP040302034REW.docRev. Date: 04-19-2004

Page 63: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

As-Built Cable Report 7/16/04- . . . . . ... . .r - -

Cable ID 2RCSANJ308

From Ccuponent 2CES-Z45Z PENETRATION 13.8 KV (N)

To Ccazonent 2RCS-MIA REACT RECIRC PP MTR 2RCS*PIA

Hank Ro. of go. of Service Swpacity Current Length Data Roids

Design Cables/Cables/ IXn Tyye Design ZXa.alled QA separation Design Program

Vendor Cable No. Constr Code Splice Codes Stolpe FIA Irelin Level Codes Flage Design Rev

A 3 J 70' 0 N 0

Route, Holds xnztallea No. of Pat Fi11 Structural Struzt Load Separation Service Troy Prot

cza.5

010

0

g

Raceway Xd

1 "2TJ012N

NotesI

V00C Code Length

0000 312 70,

Cables Pat W11l Linrit Load Override Codes Codes Cover Hold

4 25.25 10.98 N J. N/A

33

45

Drawings a

Type

DDDD

LvI

AAAAA

Del Text:

Calclength: 0e00070Actlength:5S1.00080Servolt: 13900VServfunc: SRCS15Ree3.nu1Tb: 23k1-08

Text

Drawing No. Sheet Title

5RCSI5-

z

P,V

eM

0R)0

0)

z

a) (D '

W(0 <-4

Page 64: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

As-Built Cable Report 7/16/04

Cable D 2RCB1JI7309

From Coa.onent 2CES-Z45E PENETRATION 13.8 [KV (N)

To Component 2RCS-MIA REACT RECIRC PP MTR 2RCSP.IA

Rank No. of Uo. of service Acra• ity Current Length Data Holds

Design Cabieecableal/ ICHA Type Design Installed QA Separation Design Program

Vendor Cable No. Constr Code Sýlice Codes Stolpe FLA prelim Level Codes Flags Design Rev

A 1 J 70 70 N 1

NJN-04

cz~Z'3.

CD€-u

z'.0

0)MI

Raceway Id

1 2TJ01Ni

Notes s

VWIC Code Length Cables Vot P11i

0000 312 70 4 25.25

Limit Load Override Codes Codes

10.99 N J

Cover Hold

N/A

Type

1 D2 D3 D4 D5 D

Drawings 8

LvI Del Text

A Calc]A Actl1A Serv;A ServA Reeli

Length: 000070ength: 000080olt: 13800Vfunc: SRCS15inmb: 23A-02

Drawing No. Sheet; Title

5RCS15

-1

p1

0,

0C__R0)

0)

B.

<0z

C•)

Page 65: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

-ARA-01 %kt '750 #"tMl

As-Built Cable Report 7/16/04

Cable ZD MiCdikj3OU

cz-. CD

a')

0

=r

(D

From Coamonent 2CES-Z46E

To Component 2RCS-MIB

PENETRATION 13.8 K(V (N)

REIACT RECIRC PP XTh 2RCS*PlB

Rank No. of Hf. of fezvyioe Anpaaity Current Length Data Holds

Design Cables/Cabloe/ ICKI Type Design Znatalled QA separation Design Program

Vendor Cable No. Constr Code Sp•ioe Codes I togpe IFA Prelim Level Codes Flags Design Rev

A 3 . 124 124"" 1" NJ-03"

Route i

Raceway Xd

I. 2TJO15N.

2 2TJ022N

Noteas

Holds xnstalled go. of "

VlSC Code Length

0000 312 39;

0000 312 85

Cables Pat Vi1

4 25.25

4 25.25

ePt pill Btrz•tral Stzruct Lead SeParation Service Tray Prog

1- Limit Load Override Codes Codes Cover Hold

10.98 ii J N/A

1 0•.98 N I N/A

12

345

Type

DDDD

D

AAAA

A e Tz

De& Text

Caiclength: 600155.Actlength: 000155Servolt: 13800VServfunc: SRCS17Reelnumb: 23A-08

Drawi•gol

Drawing No. Sheet' Title

5RCS17

2..0

z

S20

W(0 6 ..

0 0-

Page 66: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

As-Built Cable Report *f7/16/04

cable ID' 2RCsBEN309

Prom Conponent 2CES-Z46E !PETATION 13.S KV (N)

To Coaqonent 2RCS-NIB ;REACT RECIRC PP MTR 2RCS*18

Rank No. of No. of se•vice Msaoity Current Length Data Holds

Design Cables/Cables/ XC.A - Type Design installed Qh sepauation Design Program

Vendor Cable No. Conet: Code fplice Codes Utolpe'. "a Prellim Level Codes Flags Design Rev

Ate3 124 124 N I

RoUtes Holds Installed Nob. of Pat Fill structural struet Load separation Service Tray Frog

Raceway Id

1 2TJOl5N

VFSC Code Length

0000 312 39'i0000 312 85!

Cables Pct Pill L-4-t Load

a 25.25 10.98

4 25.25 10.98

Override Codes

NN

Codes

3

3

Cover Hold

N/A

N/A

CZ>2.5*

(D

-3CD CD-0 a2. c,)

z.c0

(0

0)0)

z0

Cc <.~l

CD 0 -

O--.

2 2TJ02:

NotesI

1

2.345

Drawings a

2N

Type LvI Del "Text

D A CalcD A, Actli

D A Serv

D A Servi

D. A Reel.

lengthi 000155angth: 000155ait: 13800Vfunc: 5RC$17numb: 23A-02

Drawing No. 'Sheet.; Title

Z.

.Z.1'SRCS17

Page 67: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097

Nine Mile Point Nuclear Station Revision 0

Unit2 Page 3-17

DESIGN INFORMATION TRANSMIT'AL - CONTINUATION PAGE

Form SOP-0403-02-03, Revision 4

DESIGN INFORMATION TRANSMITTAL

DIT No.: DIT-NM-NPEE-001. Project No.: 11236-061 Papel|a of. Z•

ATTACHMENT 4

"Cable Mark Number Report", dated 8/13/2004, selected page containing Cable Mark Numbers

" NJN-03" NJN-04

S0P04030203-REV4.docRev. Date: 04-19-2004

Page 68: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-18

I Q~arlm fo Widows 32fitlifi -[Tn(! Conecton t -e

Page 69: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

SI.

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21 C-097Revision 0Page 3-19

JQSmmleffn far windowsv 32-Bit Editim -[I Onct Connection to Host) . I : Inq

~MM~I.iPEt-OoI as~i~e It bC 'it

Page 70: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097Nine Mile Point Nuclear Station Revision 0Unit 2 ,Revision 0Ut2Page 3-20

DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGEForm SOP-0403-02-03. Revision 4

,DESIGN INFORMATION TRANSMITTAL

DIT No.: DIT-NM-NPEE-001 Pro ect No.:" 11236-061 page 19 of Z7-

ATTACHMENT 5

'Specification No. NMP2-E023A for "Insulated 15-kV Power Cable", Revision 2, dated 50/1986,selected pages

SOP04030203-REV4.docRev. Date: 04-19-2004

Page 71: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-21

II.I.I

J.O. NO. 22177Spec No. NMP2-E023A

'Revision~ 2Mýay 1.' 1986,

Specification for

INSULATED 15-kV POWER CABLE

III

Nine Mile Point Nuclear Station - Unit 2Niagara Mohawk Power Corporation

Scribe, NewYork

Sellers The Kerite CompanySeymour,-Connecticut

I'DOCUMENT USER:I

IUIIII

APP

3ONSULT DCIS TO RECEIVEDOBTAIN LATEST A.0. No. .,,1,,LICABLE DOCUMENT W 1276

INFORMATION. s'lnPl a wu

'- D•CONTROL W

AMPOVED

Conat Dept t

•Indep Beflbw •.

copyright 1986

Stone & Webster Engineering Corporaltioncherry Hill Operations Center

Cherry Hill, New JerseyQA Category I

NUCLEAR SAFETY RELATED

II

II

Page 72: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-22

II

biT-tQM -NP1E-oo%.

Pcse. 7-1 4~ Z?1-4

!

Ii

Quality Quality Assurance comprises all thoseAssurance planned systeiatic actions necessary to

provide adequate confidence that astructure, system, or component willperform satisfactorily in service.Quality Assurance includes QualityControl, which comprises those qualityassurance actions related to the physicalcharacteristics of a material, structure,component, or system which provide 'ameans to control the quality of thematerial, structure, component, or systemto predetermined requirements.

3.373.393.40

3.41

3.43

3.44

3.45

3.46

IUIIIIIIIiII

Cable - insulated. 15-kV power cable as specified 3.49herein. 3.50

Triplexed - A cable which consists of three phase con- 3.55Cable ductors with insulation and a jacket over 3.57

each conductor, twisted, and a jacketed 3.58ground wire run in one interstice of thecable. (The ground wire la usually 3.59smaller than the phase conductors.)

FURNISMED BY THE SELLER 4.4

'The equipment, materials, and services to be 4.7furnished by the Seller shall include, but not be limited 4.8to, the followings

The Engineer is to have the privilege of increasing 4.10or decreasing the quantity of any items not more than tenpercent at the unit price before the manufacture is started. 4.11

i(NA indicates not applicable)

Item No.. 1 2 3

NJN-02 N3N-035,883 ckt. ft 2,215 ft

Mark No. NJN-01 -Quantity, ft 20,580 ckt.ftNo. of InsulatedConductors 3-Trlplexed

Size, AWO or.KCMIL Three 4/0

Conductor Mat-erial - . Copper

Insulation Wall'Thickness,min.avg 220 mile

Insulation Shield-ing Required Yes

3-TrIplexed

Three 250

Copper.

1

750

Copper

4.13

4.26

4.25,4.264.284.294.304.314.32

.4.334.344.354.364.374.38

220 mile 220 mile

Yes * Yes

ch-12177;.S526e 04/28/86 10s

Page 73: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-23

I

IIIIi

IIIIIIII

1-5•

23Item No. I

Jacket WallThickness,min . avg I0 mile

* Grounding Con-ductor Size 2 AW_

Grounding Jac-ket Thickness,min.avg .50 mile

Cable Firiish Non-MetalReel Length Ref. Sec. 2Nuclear Incident,Test Required Yes

Item No.' 4

S5 mils

2 AWG

110 mile

NA

50 mils NANon-Metal Non-MetalRef. Sec. 2 Ref. Sec. 2

Yes Yes

5

Mark No. NJN-OS NJN-04Quantity, ft 24,345 57888Noo. of Insu-lated Con-ductors! 1 1

Size, AWO orKCMIL So0 1/0

ConductorMaterial Copper Copinr

InsulationWall Thick-ness, min.avg 220 mils NA

Insulatibn

ShieldingRequired Yes No

Jacket WallThickness,min. vgi 95 mile 50 mile

Cable Finish Non-Metal Non-MetalReel Length Ref. Sec. 2 Ref. Sec. 2Nuclear IncidentTest Required Yes Yes

PROCUREMENT, FABRICATION. AND CANCELLATrION PROVISIONS

4.404.414.424.444.454.474.484.494.514.524.534.54

4.56

4.584.595.1

5.25.35.45.55.65.75.85.95.105.115.125.13

5.145.155.165.175.185.195.20

5.24

5.275.285.30

5.31

5.38

5.405.415.425.43

The procurement of material and the fabrication ofthe Sellfr's cable covered by this specification shall notcommence prior to receipt by the Seller of a writtenauthorizlation from the Engineers.,

:This release will be based on approval of Seller'sengineeiing and drawing information. The Bidder shallinclude in his proposal the date before which he requiresrelease :in order to meet delivery of the cable at thejobsite.. Should the Seller deem it necessary to purchase

ch-12177-5526e 04/28/86 105

Page 74: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear .StationUnit 2

Calculation No. H21C-097Revision 0Page 3-24

IIIII!1IIIIIIIIIIIIIIIIIIIiIIIIIIIIII

lose-Z4. C e Z2~

2-6

Track resistanceSurface resistivity

Phaee Identification

Triplexed cable

Shield Characteristics

Shield material

Conductivity, X

Coverage

Percent lap

Cable Tray Fire Propagation Tests

Typical Guaranteed

Not ApplicableNot Applicable

5.175.18

5.22

4 d

Time for ignition, min. See Reportsutbmi ttedwith propo

.and encloaGas burner

Time for short circuit afterignition, min'., Gas burnerLength of burn, in.

Gas burnerAfter burn, min.

Gas burner

Item No.

Ampacityin 400C ambient air.in 50°C ambient airin 65.5°C ambient air

Factory test voltage, kVindicate, ac and dc AC/DC

Field acceptance test. voltage,_ kV dcInsulation thickness, mileindividual jacket thickness,mile

igits surface printed 5.24(1111, 2222, 3333). 5.25

5.29

a mil zinc 5.31

28.44 iACS 5.33

100o S.36

minimum 25X 5.38

S.42

NO. 76 VG-35P 5.44as Attachment No. 2 5.45Hsal dated 11/3/76 5.46eed herewlth, 5.47

5.485.495.505.515.535.545.555.56

2 3 6.6

6.8

38 6.934-6 797.45 6.10272 624.4 6.12

6.23

35/80 35/80 6.246.25

56 56 6.26220 220 6.27

6.2895 110 6.29

1

352315246.4

56220

so

ch-12177-5526f 04/28/86 105

• 8

Page 75: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 3-25

IIIIIIIIIIIII,IUIII

b1T- K3M- t3PjEk-MPC,5e 44

2-7

Item No.

Minimum temperature at whichcable may safely be pulled

1 2 3

If pulling below 3201, storeindoors for a minimum of24 hours before installation

Length of time cable must bestored at this minimumtemperature before pulling

Maximum allowable pullingtension, lb

Straight runsBy conductor 5080 6000 6000By Jacket (1 grip) 1000 1000 1000

Bends, per ft radiusBy conductor 610 648 815

.By Jacket 610 648 815Minimum bending radius forpermanent training, in.

Completed cable 33 35 22Individual conductor 15 16 22

Maximum uniformly distri-buted vertical load which

.cable can withstand wheninstalled in cable traywith 9 in. maximumrung spacing and 3/4 in.flat rung bearing surface, lbsper linear foot 15.6 16.6 22.4.

Minimum bending radius for, cable being pulled, in. 33 35 22Maximum guaranteed, OD, in. 2.91 3.10 1.94Minimum guaranteed, OD; in. 2.51 2.66 1.68Average guaranteed. OD, in. 2.71 2.88 1.81Weight in lb per ft/ckt ft 4.4 per 5.0 per 3T.5per

i ckt ft ckt ft ftLength on reel 2043 ckt ft 1900 ckt ft 2150ft

2200 ckt ft1500 ckt ft800 ckt ft

Reel size, in. *96x50x60R *96xSOx6OR *8Rx40x36R*96xSOx42R

or as required

* 6.326.336.346.356.366.37

* 6.386.416.426.436.446.456.466.476.486.49.6.506.516.536.546.556.566.576.587.17.27.47.57.67.77.87.97.107.117.127.137.147.157.167.17

7.19-7.207.217.227.237.247.25

Manufacturer's recommended.terminatton procedure

Manufacturer's recommendedsplicing procedure

Manufacturer.'s recommendedpulling lubricant

See Kerite Prints IT-15P1T,OT-15 PMT (Add suffix NUC forContainment Area)Print S-15 PMT (Add suffixNUC - for Containment Area)

See Kerite'e Memo-EM60

I cb-12177-SS26f 04/28/86 105

Page 76: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear .StationUnit 2

Calculation No. H21C-097Revision 0Page 3-26

III

Pý5.7Sr ?XJ- af2-6

IIIIIIIIIIIIIIII

Itmo-4 5

Ampacityin 400C ambient air 692 N Ain SOOC ambient air

.in 65.5°C ambient air 484 N/AFactory test voltage, kVindicate ac and de, AC/DC 35/80 N/A

Field acceptance testvoltage, kV, dc 56 N/A

Insulation thickness. mile 220 N/AIndividual jacket thickness,mils 95 50

ifPlling'-b'w-320F, store

7.367.377.387.397.407.417.437.447.467.487.497.517.527.53Minimum temperature at which indou

cable may safely be pulled 24 hcLength of' time cable must bestored at this minimumtemperature before pulling

maximum allowable pullingtension, lb

straight runsBy conductor 4000By jacket 100

Bends, per ft radiusBy conductor 783By Jacket 783

Minimum bending radius forpermanent training, in.Completed cable 19Individual conductor 19

Maximum uniformly distri-* buted vertical load whichcable can withstand wheninstalled in cable tray.with9 in. maximumrung spacing and 3/4 in.flat rung bearing surface, lbper linear foot . 19.6

Minimum bending radius for.cable being pulled. in. 19

maximum guaranteed. OD, In. 1.74Minimum guaranteed, OD, in. 4L---Average guaranteed, OD, in. 1.58Neight In lb per ft 2.5Length on-reel, ft 3088

Urs for a minimum of)ure before Instal lation

845845

300

300

2.42.4

6.0

2.40.53

0.4450.48T. 38'

0 or 1000

';-3014R

7.547.557.568.S8.6.8.78..8

•8.9.211

8.128.138.148.158.168.178.188.198.208.218.228.238.248.258.268.278.288.298.309.318.328.338.358.36

.5 8.4Sfix 8.46

Reel size, in.

Manufacturer's. recommendedtermination procedure

'80x"'z3'66NR

*See Kerite prints IT-2PMT OT-I5 PMT (Add sulf

ch-12177-SS26f 04/28/86 105

Page 77: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3Nine Mile Point Nuclear Station

Calculation No. H21C-097

Unit 2 Revision 0Page 3-27

DESIGN INFORMATION TRANSMITTAL - CONTINUATION PAGE

Form SOP-0403-02-03, Revision 4

:". "- , DESIGN INFORMATION TRANSMITTAL

DIT No.: DIT-NM-NPEE-001 I Proect No.: 11236-061 PageZlo of Za

ATTACHMENT 6

E-Mail message from the Kerite Company's Robert Flemming to Sargent & Lundy, LLC's Helmut

Kopke, sent 8/412004 at 2:06pmSubject: Kerte Power Cables at Nine Mile Point Nuclear Station

SOP04030203-REV4.docRev. Date: 04-19.2004

Page 78: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Calculation No. H21C-097Nine Mile Point Nuclear Station Revision 0Unit 2 Page 3-28

1I1T-,t',- MPE-.oeI

JOHN H GELSTON. To: v• ."rzS'08/13/04 03:14 PM Subject: RE: Kerite Power Cables at Nine Mile Point Nuclear Station

Forwarded by HELMUT R KOPKE/Sargentlundy on 08/13104 01:14 PM -

"Fleming, Robert" To: [email protected], [email protected]~kerite.c.,m cc: [email protected],0 [email protected]

08/04/04 02:08 PM Subject: RE: Kerite Power Cables at Nine Mile Point Nuclear Station

Helmut, confirming our conversation earlier this week the compounds in theKerite power cable in Nine mile Point and their chlorine content are asfollows:

Kerite Designation Generic Description PerCent Chlorine byWeight

Permashield (PRS-54) Urethane 0%

HTK (N-90) EPR Insulation < I%

SemiCon Tape (C7T6-6) SemiCon Tape 0%

FR Jacket (KC-711i CSPE 16+2%

Let me know how this works out for you.,

Sincerely,

Bob Fleming

Principal EngineerThe Kerite Company49 Day St.Seymour, CT 06483

Phone 203-881-5380Fax 203-888-1987Email ref lemingekerite.com

> ----- Original Message-----> From: HELMUT.R.KOPKseargentlundy.com> CSNTP: HELNUT. R.:KOPKE~sargentlundy. cor]> Sent: Monday, August 02. 2004 4:08 PM> TO: reflemingakerite.com> Cc: [email protected]; JERI. C. PENROSEseargentlundy. com

Subject: Kerite Power Cables at Nine Mile Point Nuclear Station

> Bob,

• The following information was provided to me by Nine mile Point regarding> the 15 kV power cables used at the station. If you could please respond> to> this email with the following information, it will be greatly appreciated.

• 1. Short description of the material

Page 79: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 3 Cc t No. HNine Mile Point Nuclear Station Calculation No. H21C-097Unit 2 Revision 0Page 3-29 Final

> 2. Is the materia1 chloronated?> 3. If the material is chloronated, what is the weight % chlorine?

>If you have any questions, please contact me at 312-269-2175.

> Thank you for your help,

> Helmut, Kopke

> P.S. I have alslo included the physical parameters of the cable in case> they would be of use. Also, if it is not too difficult, it would beappreciated if You could verify the thickness of the jacket and the OD of> the cable.

> INFORMATION FROý, NINE NILE POINT:

" In the "Technical Information by Seller" section of'Specification E023A" which purchased the subject 15 kV cables, the following information was" provided by Kerite and dated October 31, 1977:

> Basic Insulation Material: High Temperature Kerite, Material Identification Number: N-98

Strand Shielding': Permashield> Material Identification-Number: PES-54

" Insulation Shielding:, nonmetallic semiconducting material" Material Identification Number: C7T6-6

Basic Jacket Material: Kerite FR JacketMaterial Identification Number: HC-711

, The "typical" 'cable is the cable installed in the power cable trays that>-were inventoried. These cables are 1/c 750MCM, 15kv shielded power cable> manufactured k•y Kerite Co.

> Per the cable specification R023A, the following applies to this cable>type:

" Minimum average insulation wall thickness = 220 Mile" Minimum average jacket wall thickness - 110 Mile> Cable weight per foot - 3.5 lbs> Cable diameter - 1.94 inches

Page 80: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4 Calculation No. H21C-097Nine Mile Point Nuclear Station Revision 0Unit 2 Page 4-1

Attachment 4

Calculations Determining Post-LOCA Suppression Pool pH

Table of Contents

Figure 4-1: Post-LOCA Suppression Pool pH Analysis pH Response without SLCS ............. 4-2Table 4-1: Post-LOCA pH Calculation without SLCS........................................................... 4-3Table 4-2: Hydriodic Acid (HI) Production ............................................................................. 4-5Table 4-3: Nitric Acid (HNO 3) Production ................................. 4-6Table 4-4: Hydrochloric Acid (HCI) Production .................................................................... 4-7Table 4-5: Cesium Hydroxide (CsOH) Production ........................... 4-9,Table 4-6: Effect of SLCS Addition on Post-LOCA Suppression Pool pH ........................... 4-10Table 4-7: Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH ...... 4-11Table 4-8: Post-LOCA Suppression Pool Temperature Responsei ....................... 4-12Table 4-9: Post-LOCA Suppression Pool Volume ................................................................ 4-13Figure 4-2: Gamma (y) Dose vs. Time Post-LOCA ........................... 4-14Figure 4-3: Beta (P) Dose vs. Time Post-LOCA ............................. 4-15

Equations for, above tables .................................................................... 4-16 to 4-29

Note that each table in this attachment has been developed using Microsoft Excel. Some tablesreference each other; for these references, see the "tab" name at the bottom of each sheet.

Page 81: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 4-2

Figure 4-1: Nine Mile Point Unit 2Post-LOCA Suppression Pool pH Analysis

pH Response without SLCS

9.0

8.0

7.00.0

Q.

0a .Co 6.0

5.0

4.0

3.0 L--

0.010 0.100 1.000 10.000 100.000

Time After LOCA (hours)

1000.000

Pool pH

Page 82: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-1: Post-LOCA pH Calculation without SLCS Calculation No. H21C-097Revision 0

Page 4-3

Initial conditions

Suppression pool massRCS massTotal post-LOCA SP mass

9,620,464 Ibm669,175 ibm

10,289,639 Ibm

Table 4.9 (maximum values)Table 4.9 (maximum values)

Design input4.1 (minimum value)Design Input 4.2 (minimum value)

suppression pool pHreactor coolant pH

initial [H].initial [OH]

5.35.3

5.01E-06 g-moleil weighted aie'age .2.OOE-09 g-mole/l weighted average

Pool [HI] 2 [HNO, 3] [HCI]2 [CsOH12 Total [H+] Total [OH1] Pool Water K, at x [HH] Pool

Time Volume, Temp Density Pool Temp pH(hr) (liter) (g-moles/l)l (g-moles/l) (g-moles/1) (9-moles/I) (g-moles/I) (g-moles/I) (°F) (Ibm/ft3) (-) (g-moles/I) (g-moles/I) (-)0 4,690,698 5.01E-06 2.00E-09 90.0 62.12 1.704E-14 -1.40E-09 5.01E-06 5.3

0.034 4,729,502 9.79E-08 5.265E-09 5.12E-06 2.00E-09 126.6 61.61 6.100E-14 -9.91E-09 5.12E-06 5.30.534 4,781,170 1.41E-07 1.18E-06 5.706E-08 1.84E-05 6.39E-06 1.84E-05 162.6 60.94 1.748E-13 6.38E-06 1.46E-08 7.8

1 4,788,753 3.60E-07 2.88E-06 1.547E-07 4.03E-05 8.40E-06 4.03E-05 167.2 60.84. 1.975E-13 8.40E-06 6.18E-09 8.22 4,805,668 8.43E-07 4.41E-06 2.128E-07 8.87E-05 1.05E-05 8.87E-05 177.2 60.63 2:536E-13 1.05E-05 3.24E-09 8.5

2.034 4,806,252 8.43E-07 4.46E-06 2.147E-07 8.87E-05 1.05E-05 8.87E-05 177.6 60.62 2.556E-13 1.05E-05 3.27E-09 8.53 4,821,606 8.40E-07 5.93E-06 2.705E-07 8.84E-05 1.20E-05 8.84E-05 186.2 60.43 3.132E-13 1.20E-05 4.1OE-09 8.44 4,831,531 8.38E-07 7.45E-06 3.283E-07 8.83E-05 1.36E-05 8.83E-05 191.6 60.31 3.535E-13 '1.36E-05 4.74E-09 8.35 4,841,709 8.37E-07 8.96E-06 3.858E-07 8.81E-05 1.52E-05 8.81E-05 197.0 60.18 3.972E-13 1.52E-05 5.45E-09 8.36 4,847,754 8.36E-07 1.05E-05 4.434E-07 8.80E-05 1.68E-05 8.80E-05 200.1 60.10 4.242E-13 1.68E-05 5.96E-09 8.212 4,851,097 8.35E-07 1.40E-05 6.215E-07 8.79E-05 2.04E-05 8.79E-05 201.9 60.06 4.395E-13 2.04E-05 6.51E-09 8.218 4,845,158 8.36E-07 1.75E-05 8.008E-07 8.80E-05 2.41E-05 8.80E-05 198.8 60.14 4.125E-13 2.41E-05 6.46E-09 8.224 4,834,896 8.38E-07 2.10E-05 9.815E-07 8.82E-05 2.78E-05 8.82E-05 193.4 60.26 3.677E-13 2.78E-05 6.09E-09 8.248 4,806,847 8.43E-07 3.01E-05 1.327E-06 8.87E-05 3.73E-05 8.87E-05 177.9 60.62 2.578E-13 3.73E-05 5.01E-09 8.372 4,785,930 8.46E-07 3.73E-05 1.585E-06 8.91E-05 4.47E-05 8.91E-05 165.5 60.88 1.889E-13 4.47E-05 4.25E-09 8.496 4,772,390 8.49E-07 4.33E-05 1.798E-06 8.93E-05 5.1OE-05 8.93E-05 157.0 61.05 1.505E-13 5.09E-05 3.92E-09 8.4120 4,762,036 8.51E-07 4.86E-05 1.983E-06 8.95E-05 5.65E-05 8.95E-05 150.2 61.19 1.246E-13 5.65E-05 3.77E-09 -8.4144 4,754,844 8.52E-07 5.35E-05 2.147E-06 8.97E-05 6.15E-05 8.97E-05 145.3 61.28 1.082E-13 6.15E-05 3.84E-09 8.4168 4,750,837 8.53E-07 5.79E-05 2.295E-06 8.98E-05 6.61E-05 8.98E-05 142.5 61.33 9.964E-14 6.61E-05 4.21E-09 8.4192 4,746,766 8.53E-07 6.21E-05 2.432E-06 8.98E-05 7.04E-05 8.98E-05 139.6 61.38 9.139E-14 7.04E-05 4.70E-09 8.3216 4,743,322 8.54E-07 6.60E-05 2.56E-06 8.99E-05 7.44E-05 .8.99E-05 137.1 61.43 8.474E-14 7.44E-05 5.48E-09 8.3240 4,740.880 8.54E-07 6.97E-05 2.679E-06 8.99E-05 7.82E-05 8.99E-05 135.3 61.46 8.02E-14 7.82E-05 6.85E-09 8.2

pH

Page 83: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-1: Post-LOCA pH Calculation without SLCS Calculation No. H21C-097Revision 0

Page 4-4

Pool [HI] 2 [HNO3]3 [HCI] 2 [CsOHJ2 Total [H÷] Total [OH] Pool Water K,, at x. [H+J Pool

Time Volume' Temp Density Pool Temp pH(hr) (liter) (g-moleslIg-molesti)flg-moles/1)) (g-moles/) (g-moles/) (°F) (lbm/ft3) (-) (g-moles/I) (g-moles/l (-)288 4,737,014 8.55E-07 7.66E-05 2.899E-06 9.OOE-05 8.54E-05 9.OOE-05 132.4 61.51 7.333E-14 8.53E-05 1.57E-08 7.8336 4,734,266 8.56E-07 8.29E-05 3.099E-06 9.01E-05 9.19E-05. 9.01E-05 130.3 61.54 6.866E-14" 9.OOE-05 1.86E-06 5:7384 4,732,510 8.56E-07 8.88E-05 3.283E-06 9.01E-05 9.80E-05 9.01E-05 128.9 61.57 6.578E-14 9.01E-05 7.89E-06 5.1432 4,731,844 8.56E-07 9.44E-05 3.453E-06 9.01E-05 1.04E-04 9.01E-05 128.4 61.58 6.47E-14 9.01E-05 1.36E-05 4.9480 4,731,180 8.56E-07 9.96E-05 3.613E-06 9.01E-05 1.09E-04 9.01E-05 127.9 61.59 6.364E-14 9.01E-05 1.90E-05 4.7528 4;729,761 8.56E-07 1.05E-04 3.765E-06 9.02E-05 1._14E-04 9.02E-05 -.126.8 61.60 ... 6.14E-1_4. 9.01E-05 2.41E-05 4.6576 4,728,353 8.57E-07 1.09E-04 3.909E-06 9.02E-05 1.19E-04 9.02E-05 125.7 61.62 5.924E-14 9.02E-05 2.90E-05 4.5624 4,726,984 8.57E-07 1.14E-04 4.047E-06 9.02E-05 1.24E-04 9.02E-05 124.6 61.64 5.717E-14 9.02E-05 3.38E-05 4.5.672 4,725,652 8.57E-07 1.19E-04 4.179E-06 9.02E-05 1.29E-04 9.02E-05 123.5 61.66 5.52E-14 9.02E-05 3.83E-05 4.4720 4,724,331 8.57E-07 1.23E-04 4.306E-06 9.03E-05 1.33E-04 9.03E-05 122.4 61.67 5;329E-14 9.03E-05 4.27E-05 4.4

Notes1) Pool volume is computed as follows: (msp / psp)*2 8 .3 168 5 lift3

2) The HI, HCI, and CsOH concentrations calculated in Tables 4-2, 4-4, and 4-5 are based on the SP volume from Table 4-9.To adjust for the SP volume as it changes throughout the LOCA, the concentration from Tables 4-2, 4-4, and 4-5 is multiplied by the following factor: Vasis/Vsp

where Vba,. is the volume in Table 4-9 and VSP is calculated in this sheet.3) The HNO 3 concentration does not directly utilize the SP volume and therefore is not adjusted as described in Note 2. However,

* the HNO 3 generation is based on PH2o= 1000 g/I. To account for the density in the post-LOCA SP, the concentration from Table 4-3is multiplied by Psp / 1000 g/Il * 453.6 glIbm 128.31685 Vft3

pH

Page 84: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Core iodine inventoryCore iodine - gap releaseCore iodine - EIV release

Fraction~of release as HI

Table 4-2: Hydriodic

13.50 g-mole67.51 g-mole

0.05 max

Acid (HI) Production Calculation No. H21C-097Revision 0

Page 4-5

Attachment 1, Table 1-1

Attachment 1, Table 1-1

Reg Guide 1.183 (main body Ref. 7.10.2)

Reg Guide 1.183 (main body Ref. 7.10,2)Reg Guide 1.183 (main body Ref. 7.10.2)Reg Guide 1.183 (main body Ref.7.10.2)

Gap release onsetGap release durationEIV duration

23090

minutesminutesminutes

cumulativeTime HI,(hr) (W-mole)

suppressionpool

volume(liter)

cumulativeHI

(Q-mole/l)

end of!

I

onset 0.033gap release 0.533

1.000end of EIV 2.033

0.000.68

. 1.734.05

.4,757,7344,757,7344,757,7344,757,734

O.OOE+001'.42E-073.63E-078.51 E-07

*1

I.

HI

Page 85: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-3: Nitric Acid (HNO 3) Production Calculation No. H2IC-097Revision 0

Page 4-6

HNO 3 generation 7.3E-06 g-mole/I per MRad NUREG/CR-5950 (main body Ref. 7.13)

end of g

Time(hr)

onset 0.034;ap release 0.534"1

end of EIV 22.034

3456121824487296120144168192216240288336384432480528576624672720

Suppression

PoolTID @

3467 MWt(rad)

1.36E+04

1.66E+05

4.04E+056.22E+056.29E+058.39E+051.06E+061.27E+061.49E+061.99E+062.48E+062.98E+064.25E+065.23E+066.06E+066.80E+067.46E+068.08E+068.65E+069.19E+069.70E÷061.06E+071.15E+071.23E+071.31E+071.38E+07

1.45E+071.52E+071.58E+071.64E+071.70E+07

HN03

(g-moleil)9.92E-081.21 E-062.95E-064.54E-064.59E-066.12E-067.71 E-069.29E-061.09E-051.45E-051.81 E-052.18E-053.10E-053.82E-054.43E-054.96E-055.45E-055.90E-056.31 E-056.71 E-057.08E-057.77E-058.41 E-059.01 E-059.57E-051.01E-041.06E-041.11E-041.16E-041.20E-041.24E-04

cumulative

HNO3

Page 86: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-4: Hydrochloric Acid (HCI) Production Calculation No. H21C-097Revision 0

Page 4-7

Cables

hypalon properties:radiolysis yield, Glinear absorption coefficientlinear absorption coefficientdensity

Cable jacket and insulation:

2.192.E-06 g-mole HCI per MRad-g

52.08 cm-1 for beta radiation

0.099 cm"1 for gamma radiation

'1.55 g/cm3

NUREG/CR-5950 (main body Ref. 7.13)

NUREG-1081 (main body Ref. 7.15)

NUREG-1 081 (main body Ref. 7.15)

NUREG-1081 (main body.Ref. 7.15)

750 MCM power cable 1/0ground cable

cable OD (max guar.)jacket thickness

jacket materialinsulation thickness

insulation materiallength in free air.

length in tray

chlorine-bearing material:

1.94 in110. mil

hypalon220 milEPR695 linear ft705 linear ft

cable OD (max guar.)jacket thickness

jacket materialinsulation thickness

insulation materiallength in free air

length in tray

0.5350

hypalonnone

inmil

mil

265 linear ft235 , linear ft

volume in free air 86,429.3 cm 3

volume in tray 87,672.9 cm 3

mass in free air 133,965.4 grammass in tray 135,892.9 gram

volume in free airvolume in tray

mass in free airmass in tray

3,929.1 cm 3

3,484.3 cm 3

6,090.1 gram5,400.6 gram

Irradiation:

:750 MCM power cableI beta

gamrnma free air I tray

1/0 ground cableI beta

gamma free air I tray

cable radius (cm)jacket thickness (cm)mass irradiated (g)

flux averaging factorabsorption factor

2.4638.0.2794

269,858.3

2.46380.2794

133,965.4

2.46380.2794

67,946.5

0.6731 - 0.67310.127 0.127

11,490.7 6,090.1

0.67310.127

2,700.3

0.98657 0.072286 0.0722860.027282 1 1

0.993957 0.162002 0.1620020.012494 0.998659 0.998659

HCI •

Page 87: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-4: Hydrochloric Acid (HCI) Production Calculation No. H21C-097.Revision 0Page 4-8

Time(hr)

pool gammavolume TID(liter) (rad)

betaTID(rad)

Drywell HCIgamma(g-mole)

beta HCI(g-mole) (g-mole/I)

0.0336110.533611

12

2.03361134561 ,21824487296120144168192216240288336384432480528-576624672720

4,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,7344,757,734

-8.23E+049.20E+052.45E+063.45E+063.48E+064.45E+065.45E+066.45E+067.45E+068.87E+061.03E+071.17E+071.44E+071.62E+071.76E+071.88E+071.99E+072.08E+072.16E+072.24E+072.31 E+072.44E+072.55E+072.65E+072.75E+072.83E+072.91E+072.99E+073.06E+073.13E+073.1 9E+07

6.71E+057.34E+062.OOE+072.75E+072.78E+073.51 E+074.27E+075.02E+075.78E+078.18E+071.06E+081.30E+081.75E+082.09E+082.36E+082.60E+082.82E+083.01 E+083.1 9E+083.35E+083.51 E+083.80E+084.06E+084.30E+08.4.53E+084.74E+084.94E+085.13E+085.31 E+085.48E+085.65E+08

1.34E-03 2.36E-021.49E-02 2.58E-013.97E-02 7.OIE-015.60E-02 9.67E-015.65E-02 9.75E-017.22E-02 1.23E+008.85E-02 1.50E+001.05E-01 1.76E+001.21E-01 2.03E+001.44E-01 2.87E+001.67E-01 3.71E+001.90E-01 4.56E+002.33E-01 6.15E+002.63E-01 7.32E+002.86E-01 8.30E+003.06E-01 9.14E+003.22E-01 9.88E+003.37E-01 1.06E+013.51E-01 1.12E+013,63E-01 1.18E+013.75E-01 1.23E+013.96E-01 1.33E+014.14E-01 1.43E+014.31E-01 1.51E+014.46E-0i1 1.59E+014.60E-01 1.66E+014.73E-01 1.73E+014.85E-01 1.80E+014.97E-01 1.86E+015.08E-01 1.92E+015.18E-01 1.98E+01

5.23E-095.73E-081.56E-072.15E-072.17E-072.74E-073.33E-073.93E-074.52E-076.34E-078.16E-079.97E-071.34E-061.59E-061.8E-06

1.98E-062.15E-062.29E-062.43E-062.55E-062.67E-062.89E-063.08E-063.27E-063.43E-063.59E-063.74E-063.89E-064.02E-064.15E-064.28E-06

HCI

Page 88: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4 Table 4-5: Cesium Hydroxide (CsOH) ProductionNine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 4-9

Core cesium - gap releaseCore cesium - EIV release

100.67402.68

12.8364.13

g-mole Attachment 1, Table 1-2g-mole Attachment 1, Table 1-2

Csl - gap releaseCsl - EIV release

CsOH - gap releaseCsOH - EIV release

Gap release onsetGap release durationEIV duration

g-mole-g-mole

fraction iodine release in form of Cslfraction iodine release in form of Csl

87.85 g-mole338.55 g-mole

2

3090

TimeI(Hr)

minutesminutesminutes

Reg Guide 1.183 (main body Ref. 7.10.2)Reg Guide 1.183 (main body Ref. 7.10.2)Reg Guide 1.183 (main body Ref. 7.10.2)

cumulativeCsOH

(g-mole)

suppressionpool

volume(liter)

cumulativeCsOH

(a-mole/1)onset 0.033

end. of gap release 0.533'1.000

end of EIV 2.033

0.0087.85193.17426.39

4,757,7344,757,7344,757,7344,757,734

0.OOE+O01 .85E-054.06E-058.96E-05

CsOH

Page 89: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-6: Effect of SLCS Additionon Post-LOCA Suppression Pool

Calculation No. H21C-097Revision 0Page 4-10

Buffering by SLCS

SLCS:Min SLC pump flow rate,Min SLC injection tank volumeMax SLC tempMin SLC tempSLC SPB conc. by weightSpecific gravity

Density (T=850F)

Final suppression pool temp (bounding)

41.24288

8575

14.4%1.071

66.58

gpm Design Input 4.12gal Design Input 4.12OF Design Input 4.12OF Design Input 4.12

Design Input 4.12Design Input 4.12

Ibm/ft3 Ref. 7.18

200 OF

Boric acid K• f

MW sodium pentaborate (Na 2B11001*10H 20)

Volume sodium pentabor•ateMass sodium pentaboraleMass sodium pentaborate

unbuffered pHunbuffered [H+]Suppression Pool volume

Equivalents unbuffered [H-]

Final pH

Time to inject boron

1.30E-09

590.224

573.25,495.84,223.6

4.374.273E-054,757,734

203.3

at 200 OF

Design Input 4.12

ft3

Ibmg-mole

g-mole/Iliter

g-mole

8.27

104.1 minutes

SLCS

Page 90: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4 Table 4-7: Gamma and Beta Radiation DoseNine Mile Point Nuclear Station used to Determine Post-LOCA pHUnit 2

Calculation No. H21C-097Revision 0Page 4-11

gamma dose beta doseSuppression Drywell &

Pool Wetwell Drywell WetwellTID @ TID @ TID @ TID @

Time 3467 MWt 3467 MWt 3467 MWt 3467 MWt Source[hr] [rad] [rad] [rad] [rad] [-]0

0.034 1.4E+04 8.2E+04 6.7E+05 7.6E+05 linear interpolation0.534 1.7E+05 9.2E+05 7.3E+06 8.5E+06 linear. interpolation

1 4.OE+05 2.4E+06 2.OOE+07 2.26E+07 Attachment 2, Tables 2-1 and 2-22 6.2E+05 3.4E+06 2.75E+07 3.19E+07 linear interpolation

2.034 6.3E+05 3.5E+06 2.8E+07 3.2E+07 linear interpolation3 8.4E+05 4.4E+06 3.51 E+07 4.12E+07 linear interpolation4 1.1E+06 5.4E+06 4.27E+07 5.05E+07 linear interpolation5 1.3E+06 6.4E+06 5.02E+07 5.97E+07 linear interpolation6 1.5E+06 7.4E+06 5.78E+07 6.90E+07 Attachment 2, Tables 2-1 and 2-212 2.OE+06 8.9E+06 8.18E+07 9.91E+07 linear interpolation18 2.5E+06 1.OE+07 1.06E+08 1.29E+08 linear interpolation24 3.OE+06 I.2E+07 1.30Et08 1.59E+08 Attachment 2, Tables 2-1 and 2-248 4.3E+06 1.4E+07 1.8E+08 2.2E+08 log-log interpolation72 5.2E+06 1.6E+07 2.1E+08 2.6E+08 log-log interpolation96 6.1E+06 1.8E+07 2.4E+08 2,9E+08 log-log interpolation120 6.8E+06 - .9E+07 2.6E+08 3.2E+08 log-log interpolation144 7.5E+06' 2.OE+07 2.8E+08 3.5E+08 log-log interpolation168 8.1 E+06 2.1E+07 3.0E+08 3.7E+08 log-log interpolation192 8.6E+06 2.2E+07 3.2E+08 3.9E+08 log-log interpolation216 9.2E+06 2.2E+07 3.4E+08 4.2E+08 log-log interpolation240 9.7E+06 2.3E+07 3.5E+08 4.4E+08 log-log interpolation288 1.1 E+07 2.4E+07 3.8E+08 4.7E+08 log-log interpolation336 1.2E+07 2.5E+07 4.1 E+08 5.OE+08 log-log interpolation384 1 .2E+07 2.7E+07 4.3E+08 5.3E+08 log-log interpolation432 1.3E+07 2.7E+07 4.5E+08 5.6E+08 log-log interpolation480 1.4E+07 2.8E+07 4.7E+08 5.9E+08 log-log interpolation528 1.5E+07 ,2.9E+07 4.9E+08 6.1E+08 log-log interpolation576 1.5E+07 .3.0E+07 5.1E+08 6.4E+08 log-log interpolation624 1.6E+07 3.1E+07 5.3E+08 6.6E+08 log-log interpolation672 1.6E+07 3.1E+07 5.5E+08 6.8E+08 log-log interpolation720 1.7E+07 ;3.2E+07 5.65E+08 7.03E+08 Attachment 2, Tables 2-1 and 2-2

2400 3.8E+07 ;5.0E+07 6.07E+08 7.54E+08 Attachment 2, Tables 2-1 and 2-24320 5.9E+07 -6:7E+07 6.35E+08 7.81E+08 Attachment 2, Tables 2-1 and 2-28760 1.0E+08 1.OE+08 6.97E+08 8.44E+08 Attachment 2, Tables 2-1 and 2-2

Rad Dose

Page 91: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-8: Post-LOCA Suppression PoolTemperature Response

Calculation No. H21C-097Revision 0Page 4-12

From Data (Refs. 7.6.517.6.7)

Time Post-LOCA Temp

U.UQ4 1LOO

0.534 162.61 167.22 177.2

2.034 177.6

;3 186.2

4 191.65 197

=31333=, ý5.556 -`200

6 200.1

L=52,O 1. 202 6712 201.9

=,60;090~ " 16;67 '. 200

Used for pH Analysis

Time Temp(hr) (*F)0 90.0

0.034 126.60.534 162.6

1 167.22 177.2

2.034 177.63 186.24 191.65 197.06 200.112 201.918 198.824' 193.448 '177.972 165.596 157.0120 150.2144 145.3168 142.5192 139.6216 137.1240 135.3288 132.4336 130.3384 128.9432 128.4480 127.9528 126.8576 125.7624 124.6672 123.5720 122.4

The shaded values are takenfrom either Reference 7.6.5or 7.6.7 (Design Input 4.15).Other other values are eitherinterpolated or extrapolated.

1824

198.8

432 128.4,-7 ý-, -1 f V, MMIT =07 - - 4 8 0 Wu

528 126.8576 125.7

624 124.6672 123.5

Seconds are the units for t=O to27.78 hours;' days are the unitsfor t=48 to 720 hours.

SPTemp

Page 92: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Table 4-9: Post-LOCA Suppression Pool VolumesAttachment 4Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 4-13

Parameter .Symbol Unit Minimum SP Mass Maximum SP Mass Reference

Suppression Pool (SP) ,

Suppression pool volume Vsp ft3 145,200 154,400 Ref. 7.6.1, p. 58

Suppression pool temperature Tsp OF 110 70 Ref. 7.6.4, p. 13

Suppression chamber pressure Psp psia 14.2 15.45 Ref. 7.2.2

Density of suppression pool water PsP lbm/ft3 61.86 62.31 Ref. 7.18

Mass of water in suppression pool msp Ibm 8,982,608 9,620,464 vsp~psp

Reactor Coolant System (RCS)RCS volume VRCS.tot ft3 24,266 24,266 Ref. 7.6.5, p. 86

RCS liquid fraction x - 0.579 0.579 Ref. 7.6.5, p. 86

RCS liquid volume VRCSI ft3 14,050 14,050 = VRCS,tot*X

RCS steam volume VRCSg ft3 10,216 10,216 - VRCStot - VRCS,I

Reactor dome pressure PRCS psia 1,055 1,055 Ref. 7.6.5, p. 86

RCS water density VRCSI ft3/ibm 0.021788 0.021788 Ref. 7.6.5, p. 86

RCS steam density VRCS,g ft3/lbm 0.42 0.42 Ref. 7.6.5, p. 86

RCS liquid mass mRCS.i Ibm 644,851 644,851 = VRCS,I / VRCSI

RCS steam mass mRCS~g Ibm 24,324 24,324 - VRCS,g / VRCS,g

Post-LOCA (SP+.RCS)no RCS mass included in SP' for min;

RCS mass added to SP mRCS,tot Ibm 0 669,175 al Steam cnden in SP for maxall steam condenses in SP for max

Total water mass in SP mpLSP,tot, Ibm 8,982,608 10,289,639 = msp + mRCS,tot

Mass averaged density in SP PPLSP,avg Ibmlft 61.86 61.24 = [(mSp*psp)+(mRCS.tot/VRcS,i)]/mpL..SP,ot.

Total volume of water in SP VPLSP~tot ft3 145,200 168,01.8 =mPL.SP,at / PPL.SP,avg

Total volume of water in SP VPL sptot liters 4,111,607 4,757,734 F VpL. P,tt 3] * 28.31685 liter/ft3

SP Mass

Page 93: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 4-14

Figure 4-2: Gamma (y) Dose vs. Time Post-LOCA

"U

0

E312

0

00

1.2E+08

1.0E+08

8.0E+07

6.0E+07

* 4.OE+07

2.OE+07

0.0E+00

This plot is included todemonstrate the adequacy ofthe interpolations used in Table4-7,

-4-- Pool

--M- Drywell & Wetwell

. . .0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Time Post-LOCA (hours)

gamma TID

Page 94: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0Page 4-15

Figure 4-3: Beta (0) Dose vs. Time Post-LOCA

9.OE+08

8.OE+08

7.OE+08

~66.OE+08

o5.OE+08

S4.OE+08

10 3.OE4O3B

2.OE+08

1.OE+08,

0.OE+000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Time Post-LOCA (hours)

9,000 10,000

beta TID

Page 95: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

NiWe Mile Point NuClde Station

Unit 2

TWOt 4AI EW. Po"t4ACH Oj et %_CtS.ROvIohIn 0Peae 4.16

a IE - G I H

I274

aI

'SP Mass (eqs)'lEo ibm. Table 4.9 (manishum velues)

='SP Mess $eqs)'E20 ibm Toble 4.9 msmirnumvatues_)

=0D3+4 Jtbm II

Deasan hind 4.1 Ininimun veaualDesign Input 42 (idnkmum value)

0i0is [ 'I =(D3* 100-D7()D4 O0Ai-DOjyD5 -moisll

N1 hinwlnt011-J(3

ollnl.4o11.aYS 4le,

(CsOHf13 Pool I . (HN~s] tHCIe 1 Total [Hi Ttal OtnIi~14

ISA917 'Rod 00s0 (eqsyTA9 I=OSSIJlr*28.31605 I - ='HN03 (es

1 1: 1 - . 16MBS12 51512 M IL., 119*28.3 1686oqsyfAt2 1=001J20'28.316115

7"SP Mass (eo)q15E$24$S819

21~ 'Red ose (eqaj)IA13 I0StJ21-28.31685 1=122112 3 =00SIJSUM(C231E231 =I0114.23

I2

;H (qs)1ESlr'P Mess (eOYI9ES241413lessITeS)I'l*ES24/3tk31

a 'Rod Dose (eqsytA24 less (eqsYIES24l 9632jI"HN03 (ecr

I li"o.YfH51

YIH5(

YIH5S1

YIH6l

rIH63

FIH6t

1es1 (MaoS'1IES241SH33-'HI -8.% (aqIESP Mess (eq)'fSE$244B34

1I 16e02'tES18"'SP Mass IIt (Mqs)'IES1B'SP Mass (

L31W41

M

"D65344*28.316B5 "H11,I Eltel16*'SP Mess (egs'1l11E624115944n=tSS/J45*28.31685 1H8IEI"SP Mess a 5 '11E$24/9B45-05154082.31685 "-Hi (aqsl'IESIBrSP Mess (eqs)'16E324/VB49

d5IJ47 (Oqe)'IESIBSP Mess (a In

41, I IPool vohlume is wmeuted es telloni: Imp 1 oe,(2B.

3168

5 Vft

502) The HI, HCI, and CsOH concentretions caliuslted in Tables 4-2, 4-4. and 4-5 We based on the SP volume from Table 4-9.

To aedust to the SIP voume as a changes throughout the LOCA, the Conlcetration from Tables 4-2. 4-4. and 4-5 ondllultiied by Its following fector,,..JVew,

2 where Vý, IS the volume in Table 4-9 and VSP is Calculeted In this sheet.

The HNO, concentrtlon does not directly utilize the SIP vstem end therefore Is not adjusted as descitled In NOtI Z. However.

54 the HN0 generation Is based on pm'o1000 gl. To owcunt for the density in the Post-LOCA SP, the c•ncentretlon from Teble 4-3

Is multiplied by pe,I II S10g/I .43.9gtbr 128.3185 I/h__TOII

pH (eos)

Page 96: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attacment 4Nine 1410 Point Nuseleal StationUrr6 2

Tablte &I1 Eqs: Poel-LOCA pH4 Calculation without SLCS owoOnNo 41-9Revision 0Pago4-17

r T r J IJ K L

2I31

_____-I

________ 1. __________________ _______________

13 Pool Water Výe asxI-) Po-5 ,4, Irnl

5(- ___• ________________

14 Temp Density Pool Temp pH

is go -1110581(116) - 101-115.5129-0.0224"1160.00003352"112) =(H11.1-SORT(16TG1)12-4"(H6"GI64K16))2 --G16-1.16 -LO.MI6)_jL &'SP Tamp (s•isyFe v=•Nss•ifml :",O'•'5,5129-0,O;224*IiT-0.00003352"t't7•2) :(H'?+Gi?-SQR•'(iHiT-GiT•2-4*(H'tTIGiT,,K'T)))/2 -- =T47--LOGJM17)

18 'S~empeqeyFT *i.llel 11 '-1-'- I.5120.0241160.00D03352-1162 =Hl 8.018-SORT 141.1 6 -'11G6Ke G6i 10 119 -'SPTemp (eqs)'l

F7 al1/lsalt118 -104-=15.5129-0.0 24"180.00003352"ll"2) = H18+GI.,QRT((H1819.S12-4" 18=GI8-K18))( 2 =G18-L18 -LOG. MI8)

a9 ,SP Tamp (eqsy'IF8 -I/vltsM(t•) 1019,(P-15.5129-0.0224'119+0.00003352"119-2) -(HIO-GI9-SQRT((H g*19)*I~2.4"(H19*GIg.K1l9)))/2 -GI9-L19 ,LLOr2MIO)

20 w'SPTemp(eqs)'IF9 -11•s919120 -10=- 15.5129-0.02241200.0000332'120=2) =(H20+G20-SORT( 120.020 2-4*"H20'G20-K20))y2 =G20-1.20 4.OGM20)

21 ='SPTemp(eqs)'IFIO =1.ftsal121 =t0=-I15.5129-0.0224"121.0.00603352 2)121-2 =121.021-SQRT((H121-G. 2-4"2I0i'G21-K21V 2 =G21-1L21 =-I.OGM21

22 -'SPTeme (eqsYIFll =lvftsol122| =10=-(l9.5129-0.0224"122+0.00003352'1222 = 1422=022-SORT UH22.G22 2-4" 122"G22-K222 =G22-L22 =-I.OGM22)

23 =*SPTemp (901)lF12 =l/fsate123) =-10=- l.5129-0.0224'123=0.6003352"123=2) 10H23+G23-SQRT((H23=G23 2-4" 12223.K23))2 =0G23-L23 -LO.(M23I

24 ='SP Teop (eosafF13

=11v9sa9o 24) 10=-(15.5129-0.0224"124=0.00103352*124"2) =(H24+G24-SORT((H424 2-4"(2 4 "G24-K124 =024424 - 4 4

29 ='SPTemp eqsrI•F4 -11 sW011 25 =10-I -15.5129-0.0224*125-0.00003352'12512) = H25.G25-SQRT( -125G 2-4 " 6))25- K25 =G25 -25 =- LO 25)

26 'SPTemp(eqs)lF15 1.ioSM(126 =10=- 15.5129-0.0224"126=0.00003352"129 2] =(H26+G2-SOQRT(H 1 26)22-4' H21=026-K(26 f2 =0G226 -LOG(M26)

27 'OPTempleqeit F6 :l/vf16 (127) =10=(-15.5129-O.0224'127.0.00003352"127 2) v1H27+G27-SQRT14H27 2-lr 14*'0-127.K27))/2 =G27-L27 -LOG(M27)

268 ='SPTemp (eq)'Ft7 ,lftgg((28) 2 i=-(0=15.5129-0.0224"128#0.0W033521282) =1H28G28-SOQRT( H28.G28r2-4'"0=H28-G28K26 =G28-642 =-LO4M286

20 ='SPTemp eqsylsFIe =l1.-/0o 1290 =10=-.15.5129-0.0224"129'0.000I03352'129 2] =49G29-SQRT((H29.G29 2-4"(29 92G294( 29 .29 -LOG(M29)

2 0 =SP Temp (" 1l19 11.99sat(130) -=A-1 19129 0.0 4'130.0.0602352'130 2 =14(30.020-SORT 1420.G020 2-4*3'G14200-(30)2 =302-130 =-L GM30)S='SP Tamp (eqs'F20 =1 .lsatl213 =10 - -15.5129-0.0224"131 0.0-003352'131^2 = H31+G31-SORT((H31+G31) 2-4* H31'031.K31))/2 =G31-131 =-LOGM31)

32 -SP Ta•p (easY'F21 =11.ee 032) -0(P-=-15.5129-0.0224"132+0.00033521322 =14H32+G32.-SQRT 1H32.0322 2-4'°H32'G32-(32))Y2 =G32-L32 -LO M32)

ý33 -'SP Tamp easT7F22 I-11fisa (133) =10=-(15.5129-0.0224"133.0.01003352?133=2) = H33.G33-SORT(IH3.033r24(H33-(G33.K33))Y2 =G33-1L33 -LOG1M33)

34 ='SP Temprn sF23 vI-1hl t(134) =10=- 15.5129-0.0224"134.0,00003352"134"2) = 1H34.G34-SQRT (H34+G34) 2-4 1H34*G34.K34))Y2 =G34-.0 -4.O M34)

2L ='SPTerm eas'lF24 1il1vIsat 135) 10=- 15.5129-0.0224'1350.00003352"13=2) = 1H35+G35-SORT( H350.35 2-4"35*0G35-K35)))2 0G35'1.32 -. 0M35)

26 ='STemp (es'F25 =11.flel136) =10=- 15.5129-0.0224"13.+0.00003352'139'2) 1H34G36-SQRT( 360G36 2-4' H36'G36-K36)2 =G30-L36 =-,LOGM36)

217-'SPT1 np(e'Trn F26 =l/lsatl 37=1i=- '16.5129-0.0224*1370-0303352•1372) -=137.G37-SQRTI1H34+G3702-4'H37'W7-K3T)) =G371L37 -LOGIM37)

38=SP Tamp(es)',F27 =1vftsal 13861 1015.6129-0,0224"138+0,00003352'13=2) 14H38C0•3-SQRT(1H386G38}2-4*H8G380 K38))4( 2 =G389-.38 =L0GM38)

29 'SP Tamp (ersnIF28 =i1ftiat(1391 10=-(15.5129-0.0224 139 0.00003352'"29 * H39=039-SORT 39G39=02942"-94G'.39-K1 2 =G39-L31 =-LOG(M39)

40 'SP Tomp (qs)'lF29 =-1/fial 140) 0=-t 15.5129-0.0224 14D0-'.0003352*40=2' ) H40+G40-SQRT1(H440G40 2-4(H4O'G40-K40•)2 =048-1.40 =-LOG(M40)

41 =5 rPTemp(qsr' F30 =lFD (hf ) 141 .10--(15.5129-0.0224 "141=0.000033 52"141 ̂2 ) =(H441=041-SQRT((H41=G41 2-4 *(H41'G4l(41))y2 =G4 -141.41 =JO CWM41)

42 -'SP Teamp (s)'1F31 =17.9sat 142 =I0•-(15.5129-0.0224"142=0.00003352'142=2) = H42.042-SQRT((H42G42 2-64*H442*G42-K42))i2 =G42-L42 =4-0C(M42)

43 -'SP Tomp (aqsIF32 -I=f1lols143 =10=-(15.5129-0.0224"430.00003352143"2) = 1H434G43-SQRT(1H43=G43r2-4' H43'G43-K43))2 C043-1L43 =ý. 23)

44 -'OPT•(Qs7F33 =1". (144 =l(=-(15.5129-0.0224"144=0.01003352'"4I-2) 1 (144+4•44-SQRT((11444.44rA2.4'(144-G44-K441)y2 =G444-44 -LOG(M448

45 -'SP Temp (a s)'1F34 -1/vosate145) -=1-(l15.S129-0.0224"145.0.00)03352"1492) =(H450G45-SRT(W445+G4512-4"*'(45'G45-K45)1Y2 =G49-L45 -LO4 1M45)

46 ='SP Temp (eqsy1F35 =11.9s1t(1486 10=-15.5129-0.0224"146=0.00003352'146'2) =(146+G48-SQRT((146.G46,?2-4"(46"G4-K48))y2 •G46-446 -LOg(M46)47 'SP Temp (eq)'1F36 "1I.flat(147) '10=-(15.5129-0.0224"147=0.00003352'147=2) ((H47÷G47-SORT((H47+G47r2.4'(147oG47-K47)))2 -G47447 I-LOG(M4748

•50

52

54

58

pH (eqs)

Page 97: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-2 Eqs: Hydriodic Acid (HI) Production Calculation No. H21C-097Revision 0Page 4-18

A B C D E1 Core iodine inventory2 Core iodine - gap release 13.5 g-mol-e Attachment 1, Table 1-13 Core iodine - EIV release 67.51 g-mole Attachment 1, Table 1-14

5 Fraction of release as HI 0.05 max Reg Guide 1.183 (main body Ref. 7.10.2)

6 . I

7 Gap release onset 2 minutes Reg Guide 1.183 (main body Ref. 7.10.2)8 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)

9 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2)1011 _, _ suppression12 cumulative, pool cumulative

13 Time HI volume HI14 ________________ (hr) (g-mole) (liter) (g-molell)

15 onset =B7/60 0 _ ='SP Mass (eqs)'!$E$24 =C15/D1516 end of gap release =B15+B8/60 =B2*B5 ='SP Mass (eqs)'"$E$24 =C16/D1617 1 =C16+(B17-B!6)I(B9/60)*B3*B5 ='SP Mass (eqs)'!$E$24 =C17/131718 end of EIV =B16+B9/60 =C16tB3*B5 . .. 'SP Mass (eqs)'!$E$24 .=C18/D18

HI (eqs)

Page 98: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-3 Eqs: Nitric Acid (HNO 3) Production Calculation No. H21C-097Revision 0Page 4-19

A JB C D E

NUREG/CR-5950 (main

I HNO3 generation 0.0000073 g-mole/l per MRad body Ref. 7.13)23

4 Suppression

5 -_.Pool cumulative

TID @

6 Time 3467 MWt HNO 3 _

7 (hr) (rad) (g-mole/l) ___

8 onset ='Rad Dose (eqs)'IA9 =Rad Dose (eqs)'!B9 1=$B$1"C8/10000009 end of gap release ='Rad Dose (eqs)'!A1O ='Rad Dose (eqs)'!B1o J=$B$1"C9/100000010 , ='Rad Dose (eqs)'!A11 ='Rad Dose (eqs)'!Bl i =$B$1"C0I/100000011 end of EIV ='Rad Dose (eqs)'!A12 ='Rad Dose (eqs)'1B12 =$B$l"Cl1/100000012 ='Rad Dose (eqs)'fAl3 ='Rad Dose (eqs)'!B13 =$B$1"C12/100000013 ='Rad Dose (eqs)'!Al4 ='Rad Dose(eqs)'1B14 =$B$1"C13/100000014 ='Rad Dose (eqs)'IA15 ='Rad Dose (eqs)'1B15 =$B$1"C14/1000000151 ='Rad Dose (eqs)'!A16 ='Rad Dose (eqs)'!Bl6 =$B$1"C15/100000016 ='Rad Dose (eqs)'!Al7 ='Rad Dose (eqs)'!B17 =$B$1"C16/100000011 ='Rad Dose (eqs)'!A18 ='Rad Dose (eqs)'!Bl8 =$B$1*C17/1000000

18 ='Rad Dose (eqs)'1A19 ='Rad Dose (eqs)'!B19 =$B$1"C18/100000019 ='Rad Dose (eqs)'1A20 ='Rad Dose (eqs)'1B20 =$B$1"C19/100000020 ='Rad Dose (eqs)'!A21 ='Rad.Dose (eqs)'!B21 =$B$1"C20/100000021 ='Rad Dose (eqs)'!A22 ='Rad Dose (eqs)!B22 =$B$1*C21/100000022 ='Rad Dose (eqs)'IA23 ='Rad Dose (eqs)'!B23 =$B$1"C22/100000023 ='Rad Dose (eqs)'1A24 ='Rad Dose (eqs)'!B24 =$B$1*C23/1000000

24 ='Rad Dose (eqs)' A25 ='Rad Dose (eqs) 'B25 =$B$1"C24/100000025 ='Rad Dose (eqs)'!A26 ='Rad Dose (eqs)'!B26 =$B$1*C25/100000026 ='Rad Dose (eqs)'IA27 ='Red Dose (eqs)'IB27 =$B$1"C26/1000000

27 ='Rad Dose (eqs)'!A28 ='Rad Dose (eqs)'!B28 =$B$1"C27/100000028 ='Rad Dose (eqs)'!A29 ='Rad Dose (eqs)'IB29 =$B$1"C28/100000029 ='Rad Dose (eqs)'!A30 ='Rad Dose (eqs)'!B30 =$B$1"C29/100000030 ='Rad Dose (eqs)'!A31 ='Rad Dose (eqs)'!B31 =$B$1"C30/100000031 .... ='Rad Dose (eqs)'!A32 -=Rad Dose (eqs)'!B32 =$B$1"C31/1000000

32 ='Rad Dose (eqs)'!A33 ='Rad Dose (eqs)'!B33 =$B$1"C32/100000033 ='Rad Dose (eqs)'!A34 ='Rad Dose (eqs)'!B34 =$B$1"C33/100000034 ='Rad Dose (eqs)'!A35 ='Rad Dose (eqs)'!B35 =$B$1*C34/1000000

35 ='Rad Dose (eqs)'!A36 ='Rad Dose (eqs)'!B36 =$B$1"C35/1000000

36 ='Rad Dose (eqs)'!A37 ='Rad Dose (eqs)'!B37 =$B$!*C36/1000000

37 ='Rad Dose (eqs)'!A38 ='Rad Dose (eqs)'!B38 =$B$1"C37/1000000

38 ='Rad Dose (eqs)'!A39 ='Rad Dose (eqs)'!B39 =$B$1*C38/1000000 ...._,_......

HNO3 (eqs)

Page 99: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4lne, MWt.e Point 1-,.cSlM Stotn

Unit 2

Table 4.4 Eqs: Hydrochloric Acid (HCI) Production Calculatlon NO. H21C-097

Revision i0Pogp 4-20

I Cables

..Lhyplraon properties:

0 E F

4 radiolysis yield. G 0.000002192 g-mole HCI per MRad-g NUREGICR-6950 (main body Ref. 7.13)NUREG-1081 (main body Ref. 7.15)linear 52.08 cm" for beta radiation

-,,46 Unear !;.-099 lcm"' for gamma radiation INUREG-1081 (main body Ref. 7.15)7 dpnnity 1.55 a/cm, NUREG-1081 (main body Ref. 7.15)

9Cable jacket and mnsuialion: _______

'101__________ ______

I _ _ ZSMCpoc -12i3j cable O (max quar.) 1.94 in141 jackel thickness 110 mill

cable 00 Imax guar.jacket thickness

jacket materiaInsulation thickness

Insuatlion material

h.,anlnnh Iony!ý--

-151

-' "'-Lý;12-20-161 Insulation thickn,17 Insulation materialI EPR

181 length in 'rear10-19 inal______________ ____________1 _______________ _______________1ni_______________

_____________19______ I _________________ ______________________ __________________ft ______________ ____________________

290lnt nta 0 iert__________ _______ __________

21 chlorine-bearing material:

1 1 t~ 1

,Pimu(8S132-{Bs13-2*B84l4/O10Y2y4*2.S4^'2

3-- vflhinmln Irn f ali331- vuurun1u1*1 volum In free I ..

26S1l4/1000r214-2.54-2*B19*12*2.54S24 voluma In tray cm3 volume in Val

25 ma!26 I

I - / t 1 mass rn iree a,;I.aram masm In free ali

aram mass In tral

57

!28 Irradiation:__________301 ___________________

31

32 gamma trirae air tray '3334 :able radius (cm) =$B13"2.54/2 =$B13"2.54/2 =$B13"2.54/2:35 jjacket thickness ( cm) j=($B14y1O0002.54 1=( 014)11000-2.54 Ja($814)/1000*2.54 ______________________

361mass irradiated 1g) 1=825-B26 1=825 j=0.5*82637

-+ 1 1 1. T=(lI(S056A2)-(EXP(-9BS6-B35)($BS66B35+1 ýl)-B34,f/SBW(EXP(-1S6B$635Y)- Y(B34-835-

-lI/(SB$5^2r(ExP(-SB6S5C35)'(SB$5tC35+1 ).1 Y-C34/S$85-(EXP(-$B$5C35)1)y1C34*C35-C35A2/2)

=(11($0$5^2)(EXP(-$BS50D35)'($BS*D503+ Y.1 y-0341$8S5'(EXP(-8885'035)-1 )tit034*35-035A212ISR

- + -

-r ~40 CP(-SB$66B35) j-iEXP(-$BS5'C3S) ~ 1-EXP(-6$B50D35) I-41

HCI (eqs)

Page 100: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear Station

Unit 2

Table 4.4 Eqs: Hydrochloric Acid (HCl) Production Calculation No. H21C-.09Revision 0Page 4-21

A B C , E F

42 pool gamma beta

43 Time volume TOD TID gamma(h4r) (liter) (red) (rd) (9-mota)

45 -"Red Dose (eqs)'tA9 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs)'IC9 "'Red Dose (eqs)'lD9 =$B$4*(($B$363$8$38*$1$39)+($G$36*$G$38"$G$39))'D4511000000

46 ='Red Dose (eqs)'!AO ='SP Mass (eqs)'f$E$24 ='Rod Dose (eqs)'IClO 'Rd Dose (eqs)'t~lo =$$B4*($B$36*$8$38*$B$39+$G$36*SG$38*$GS39)*D46/1000000

47 =Red Dose (eqsy!All ='SP Mass (eqs)'t$E$24 ' ='Rod Dose (eqs)'tC11 ='Rad Dose (eqs)'ID11 =$B$4"($B$36*$86385$8$39+$G$36*$G$381$G$39),D4711000000

48 =Red Dose (eqs)'lA1 2 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs)'IC12 ='Red Dose (eqs)'D12 =$S$4*($B$36*$B38 $8$39+$G$36*$G$38*SG$39)*D48/1000000

491 -Red Dose (eqsytIA3 "'SP Mass (eqsyt$S$24 ='Red Dose (eqs'tC13 ='Red Dose (eqs)'tDi3 --'$B$4*($$36"$B$38"$B$39+$G$36"$G$38"$G$39)D4911000000

501 ='Rod Dose (eqs)' A14 ='SP Mass (eqsy'$E$24 ='Rad Dose (eqs)'IC14 'Red Dose (eqs)'tD14 =$B$4"($B$36*$B$38"$6$39+$GS368$G$38"$G$38)DSO01100000O

51 -'Red Dose (eqsylA15 ='SP Mass (eqs)'!$E$24 ='Red Dose (eqs)'IC15 'Red Dose (eqsylDIS =$B.$4($B$36"$8$38"$B$39+$G$36"SG$38$G$39)*D511000000

52 "'Rad Dose (eqs)'tA16 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs)'tC16 'Red Dose (eqs)'tD16 =$B$4*($B$36*$B$38"$B$39+$G$36*$GS38*$GS39}rD52/1000000

53 ='Rad Dose (eqs)'lAl7 ='SP Mass (eqsy)$E$24 ='Red Dose (eqs)'lC17 "'Rd Dose (eqs)'ID17 =$B$4"($B$36"$BS38"$B$39+$G$36*$G$381$G$39)'D5311000000

54 .'Red Dose (eqs)'lA18 ='SP Mass (eqs)'t$E$24 "'Red Dose (eqs)'tCl8 "'Rad Dose (eqsy[DI8 =$B$4*($B$361$B$38*$B$39÷$G$36"$G$38"$G$39)*D5411000000

55 -'Red Dose (eqs)'IA. 9 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqs'ICi9 =?Red Dose (eqs)'!D19 =$8W4*($B$36"$B$38i$S$39+$G$36"$G$38"$G$39)'D551000000

56 -' Rod Dose (SeqS)'A20 ="SP Mass (eas)tI$E$24 ='Red Dose (eqsyIC20 ='Red Dose (eqsYtD20 4$W(SB$368$B$38*$iB$39÷$G$36"$G$38"$G$39)yD5,1000000

57 ='Red Dose (eqs)'IA21 '='SP Mass (eqs)'t$E$24 ='Rod Dose (eqs)'1C21 ='Red Dose (eq.)ItD21 =$B$4"($8$36*$B$38*B$39+$G$38*SG$38*$G$39rD5711000000

58 -'Red Dose (eqs)'IA22 "eSP Mass (eqs)'ySE$24 , 'Red Dose (eqse'lC22 ='Red Dose (eqs)'1D22 =$B$4"($B$363 $B$38*$B$39+$G$36"$G$38"$G$39*D5B/1000000

59 ='Red Dose (eqs)'tA23 ='SP Mass (eqs)'l$E$24 ' ='Red Dose (eqs)'tC23 ='Red Dose (eqs)'ID23 =$B$4*($8$36*$B$38*$1$39+$G$36°$G$38*$G$39)*D59t1000000

60 ='Red Dose (eqs)'!A24 "'SP Mass (eqs)'t$E$24 ='Red Dose (eqsylC24 ='Red Dose (eqs)'1D24 =$B$4*($B$36*$B$38"$B$39+$G$36"$G$38*$G$39)*D60/1000000

61 -'Red Dose (eqs)'tA2t ='SP Mass (eqs)'l$E$24 ' ='Red Dose (eqs)'1C25 =Red Dose (eqs)'1D25 =$B$4*($B$36"$B$38*$8$39+$G$36*$G$38*$G$39)D61/1000000

62 -'Red Dose (eqs)'tA28 ='SP Mass (eqs)'tfE$24 ="Red Dose (eqs)'tC26 ='Red Dose (eqs)'1D26 =$B$4*($B$36*$B$38*$8$39+$G$36*$G$38"$G$39)*D62/I1000000

63 ='Red Dose (eqsYA27 =I'SP Mass (eqsy't$E$24 =Rad Dose (eqsy)C27 =!Red Dose (eqsylD27 --$B$4*($B$38*$B$38*S6$39+$G$36*$G$38*$G$39)*6311000000

64 .Red Dose (eqs)'tA28 ='SP Mass (eqs)Y$E$24 -'Red Dose (eqs)'tC28 "Red Dose (eqs)'1D28 =$8$4*($B$36*$B$38*$B$39+$G$36*$G$38*1G$39)D6411000000

6 "'Red Dose (eqs)'A29 ='SP Mass (eqs)'t$E$24 =Red Dose (eqs)'tC29 "Red Dose (eqs)'fD29 =$8$4"($B$36"$B$38*$8S39+$G$36°$G$38*$G$39)*D65/1000000

6 ='Red Dose (eqs)'1A30 "'SP Mass (eqsy'f$E$24 ='Red Dose (eqs)'tC30 "IRed Dose (eqs)'tD30 =$B$4*($B$36*$B$38*$B$39+$G$36*$G$38*$G$39)*D66/1000000

6= "'Red Dose (eqs)'1A31 "'SP Mass (eqs)'FSE$24 "'Red Dose (eqs)'IC31 "Red Dose (eqs)'t031 4 *($8536"$1$38*$8$39+$G$36*$G$38*$G$398*D671100000

88 ='Red Dose (eqs)'tA32 ='SP Mass (eqs)'I$E$24 ='Red Dose (eqs)'tC32 "'Red Dose (eqs)'tD32 =$8.$4($B$36"$B$38"$B$39+$G$36"$G$38"$G$39)*D88I1000000

89 -'Red Dose (eqs)'!A33 ='SP Mass (eqs)'t$E$24 ='Red Dose (eqsy'C33 "Raed Dose (eqs)'ID33 =$BS4*($B$36*$8$38*$8$39+$G$36*$G$38'$G$39*D69/11000000

70 ='Red Dose (eqs)'tA34 ='SP Mass (eqs)'tSE$24 ='Red Dose (eqs)'tC34 =Red Dose (e5s)'tD34 =$8$4"($B$36"$B$38*SB$39+$GS38S$G$381$G$39)"D70/1000000

71 ='Reod Dose (eqs)'tA35 ReSI Mass (eqs)'$E$24 ='Red Dose (eqs)'C35 REdD3 =$B$4*($8$36*$8$38*$B$39+$G$36*$G$38"$G$39)*D71 11000000

72 ='Red Dose (eqs)'IA36 ='SP Mass (eqs 't$E$24 ' ='Red Dose (eqs)'tC36 =Rad Dose (eqs)'tD36 =$B$4"($B$36*$BS38"$B$39'$G$36"$G$38*$G$39)*07211000000

73 ='Red Dose (eqs)'tA37 ='SP Mass (eqs)'t$E$24 ='Red Dose (aqs)'tC37 "Red Dose (eqe)'tD37 =$8$4*($B$38$S838*$8$39+$G$36'$G$38*$G$39)*D73/1000000

74 ='Red Dose (eqs)'IA38 ='SP Mass (eqs)'lSE$24 "='Rd Dose (eqs)'1C38 "Red Dose (eqs)'1D38 =$8$4*($B$36*$B$381$8$39+$G$36*$G$38*$G$39)*D7411 000000

75 ='Red Dose (eqs)'tA39 ='SP Mass (eqs)'l$E$24 =Red Dose (eqs)'fC39 ='Red Dose (eqsy'1D39 =$B$4*($8$36*$B$38*B$39÷$G$36*$G$38"$G$39)°D7511000000

HCI (eqs)

Page 101: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Altachment 4Nine Mile Point Nuclear StationUnit 2

Table 4.4 Eqs: Hydrochloric Acid (HCl) Production Calculation No. H21C-097Revision 0Page 4-22

G H _ __ _

2 ____________________

23_____________34_____________

4 ________________

57_____

8 _____

1011 ji0Ogundcamta12 __________

13 0.53 in14 50 mil15 hypalon16 nlone mil1718 E.500-G19 lInear It

20

22 ___________

23 =PI()(GS1 312-(G13-2*GS14/l100V2y4'2.54^2*G1812*2.54 ____________

2L4_ =PIO(G$1 3v2.(Gsl3-2.G14/l000r2Y4'2.54u2.G1912'2.54 M

25 =G23*$BS7 gram26 =G24*$B$7 gram27281__________________________________________________

2930 -Gil___________31 bela32 gamma free air trex

3334 z$G313*2.5412 =$G13'2.54/2 =$G13*2.5412

35 ($G14yiODD*2.54 n($G14ylOOO-2.54 m($G14YI1000*2.54

36 =G25vG26 =G25 =0.5*G26317 ______________________________________________ __________ _________

IB$5'H35)'($BS5H35+1).I )-N3448WS(EXP(-B9$51135)-1 )Y((34NH35--135^2121

o(11($B$5'2)'(EXP(-SBS5I'35T(s0S5135+l 1 Y-)l34119565(EXP(-S9S5-l35)-1 IY(134*135-135^212138 ~lIlSR16-2liIrXPfl-BS6*G35l'ISBS6*G35+1 1-1I lG34IIBS6*lEXP(-SBS6*G35),-1 )ViG34*G35-G35P2r2)

= I -~------~---MW-EXWF-sR1eSG =I-EXP(-$BS5"H35l =1-EXP(-$B$5"I351

41M - , --- +

HCI (eqs)

Page 102: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

______________________________________________ I

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4.4 Eqs: Hydrochloric Add (MCI) Production Catcutation No. H21C-097Revision 0Page 4-23

G H42 Drywaell NCI43 beta HCI

44 (g-mole) (g-moleMi45 =(($C$361$C$381$C$39+SD$36*$$D38*$D$39)+($H$361i$386$H$39+S$$36ii$386$I$39))*$B$4*E45/100000 =(F45+G45)/C4546 ($C$36*$C$381$C$39+$D$36*$D$38"$0$39) ($H$36"$H$38"$H$39+$1$36$1538*$I$39))$B$4"E46/1000000 =(F46+G46/C4647 =$C$36"$C$36$CS39,$S$36"$D538"$0539 $H$36"tH$38"$H$39+$S$36"$i$38t$1$39))$B$4*E47/1000000 (F47÷G47yC4T48 =($($C365$C381$C$39+$DS361$$381DS39 +($H$36*$H$386$H$39+$1$36**$138*$I$39))i$B$4'E48100DH3) =(F48÷G48 C4849 ,($CS36"$C$38*$C$39+$D$36O$D$38"$D$39 )-$H$36"$H$38"$H$39.$S$36*$1538*$I$39))'$B$4°E49/100000O =(F49+G49/C4950 =($C36.$C$386$C$39+$$•36.$DS38`$DS39)+($H$3 61.H$38$H$39+$l$36.•1138*$1$39))I$B$4*E50/1000000 =(FSO+GS0yCS0

S=((SC$36-SCS38S$CS39.SD$3B$D$38.$DS39 $HS36*$H1386$HS39+$St36BSI$38'$1$39))•$4.E51/100000 3 -(F51÷G51/C51

52 ($C$36$C$38$C$39+$D$36$D$38*$D$39 +SH$36'$H$386H$39+S$136I$i$38i$1$39))'$B$4.E52/10DOO =(F52÷G52YC5253 =-($CS36'C$38.$C$39+$$361$0381$D$39 +($H$361$H$381$H$39+$1$36$$1$388$i$39))1$BS4¶E53/1I0000 =(F53.G53/C5354 - (SC536$SCS38-$C$39+$DS36°3D$380$D$39)+($HS36ItH1381$HS39+S$36$1S38*6139))°IBS.CE54/1000000 =(F54+G54yC5455 =($C$36"$C$38"$C$39+$D$36"$D538"$0$39 )+$H$36"$H$38"$H$39+$t$36*$1$38"$i139))*$B$4*E5511000000 =(F55.G55)IC5556 =(($C$36$C$386$C$39÷$0$36SOD$38$D$39)+($H$36'$H$S3$H$39+$1$36•$i$38.$i$39))i$B$4.E56/10000 F0 =(F5G÷G56yC56

57 =((SC$36.$C$38.$C$39+SD$36*$D$386$D$39+(SH$36$HS386$H$39.t$$36*$i$38.$I$39))$BI4E571000000 =(F57.G57/C57se =(($C$366$C$38*$C$39.$D$36*$D$38"$D$39)+($H$36"$H$386$H$39+$I$38°$1538*$1$39))*$B$4*E5811000000 =(F58+G58 C5859 -(($C$36.$C$38*$C39+$D$36*$D$38$D$39)+($H$36$H$35$H$39.$1$361$$$38.$S$39)).$BS41E5911000000 =(F59+G59 C5960 =($C$36.$C$381$C$39+$D$36 $D$381$D$39)+($H$3 t$H$381$H$39.$S$36*$1$386$ $39))`$BS4.E60/1000000 = F60+G60)/C6061 =($CS36`$C$38i$C$39+$0$36 $D$38.D$39)+($H$36t$H$381$HS39+$i$36i$i$38 $S$39)).$B$4 E61/1000000 =(F61÷G61Y)C6162 =(($CS36"$C$38"$C$39+$D$36*SDS38"SD$39)($H$36°$HS38"$H$39+StS36*$1538"SIS39))SB$4 E6211000000 =(F62.G62YC6263 =(($C$36*$C$38"$C$39.$D$36-S0$38*$D$39)-($HS36*$H$38"$H$39+$1$36"$1538"$1539))*$B$4*E63/1000000 =(F63+G63YC63

64 =(($C$36$C$38$C$39.$D$36"$D$38*$D$39).($H$36*$H$38"$H$39g$1$36"$1361$39))*$BS4*E641t000000 :(F64.G64YC64

65 -($CS36$C$38*$C$39÷$D$36oSD$38"$DS39)+($H$36S$H$38*$H$39+$1536S$1538*$1$39))*$B$4*E6511000000 =(F65G65/C6566 =($CS36"$C$38$C$39÷$D$36*$D$38"$D$39)+($H$36"$H$38*$H$39+$t$36"$1538$1I539))$$4*E66/I000000 =(F66+G66yC6667 =(($C$36"$C$36$CS39$D$36*$D$38*$D$39)+($H$36"$H$38"$H$39+$1536*$1538"$1$39)) B$4*E6711000000 =(F67+G67)1C67

68 =((CS36$C$386$C$39+$D$36$D$381D$39g($H$36'$H381H$39+t$36$i$38••S39)1B6$4*E68/1000 =(F68+G68YC68 _

69 =($CS36B$C38-$C$39÷$D$36$D$381D$39)+ $H$36S$H$38S$H$39+$t$36$1$38*$1$39))$B$4*E69I1000000 =(F69+G69 C69

70 =(($C$36"$C$38*$C$39+$D$36*$D$38*$D$39 )+($H$36$H$38*$H$39+$1$36*$1$38"$I$39))$B$4"E7011000000 =(F70+G70)YC70

71 (C$36$C$38'$C$39+$D3$36$0$386$$39)+($H$36.$H$3865H$39+$S$36*$1$38`$I$39))r$94*E7111000WOO ={F71÷G71 )C7172 =(($C$36$C38I$C$39+SD$36$D$38SD$39H($H$36S$H$38i$H$39+$t$36il$386$$39))i$BS46E72J100= :(F72+G72YC72

3 =((SCS3$C$386$C$39+$D$36$$0$38.$D$39)+($H$36.$HS3OIH$39+$1$36i$1$386$i$39))i$B$4*E73/1000000 =(F73+G73)/C73L4 =(($C$3-$C$36'$C$39+$D$36.$D$38'$D$39S+($H$36I$H$38*$H$39+$S$36*$i$38*$1$39))*$B$4*E741100000 =(F74+G74YC7475 =(($C$3$C$38$C$39+$D$36.$D$386$D$39 $H$36I$H$38S$H$39+$1$36*$138.$$39))$$4*E75/1000000 =-F75+G75 C75

HCI (eqs)

Page 103: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-5 Eqs: Cesium Hydroxide (CsOH) Production Calculation No. H21C-097Revision 0Page 4-24

AB -B C D E1 Core cesium - gap release, 100.67 g-mole Attachment 1, Table 1-22 Core cesium - EIV release 402.68 g-mole Attachment 1, Table 1-23 C4 Csl - gap release =(1-'HI (eqs)'!B$5)*'HI (eqs)'!B2 g-mole fraction iodine release in form of Csl5 Csl - EIV release =(1-'HI (eqs)'!B$5)*'Hli (eqs)'!B3 g-mole fraction iodine release in form of Csl ..6

7 CsOH - gap release =BI-B4. g-mole '8 CsOH - EIV release =B2-B5 g-mole1910 Gap release onset 2 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)11 Gap release duration 30,, minutes Reg Guide 1.183 (main body Ref. 7.10.2)

12 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2)13

14i suppression15 cumulative pool cumulative16 Time CsOH volume CsOH17 (Hr) (g-mole) (liter) (g-mole/I)18 onset =B10/60 0 ='SP Mass (eqs)'!$E$24 =C18/D1819 end of gap release =B18+BI1/60 =B7 ='SP Mass (eqs)'!$E$24 =C19/D1920 1 ___ =C19+(B20-B19)/(B21-B19)*B8 ='SP Mass (eqs)'y$E$24 =C20/D2021 end of EIV =B19+B12/60 _ _=C19+B8 ='SP Mass (eqs)'!$E$24 =C21/D21

CsOH (eqs)

Page 104: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-6Eqs: Effect of SLCS Additionon Post-LOCA Suppression Pool

Calculation No. H21C-097Revision 0Page 4-25

A B C D EI Buffering by SLCS23 SLCS:4 Min SLC pump flow rate 41.2 gpm Design Input 4.125 Min SLC injection tank volume 4288 gal Design Input 4.126 Max SLC temp 85 OF Design Input 4.127 Min SLC temp 75 OF Design Input 4.128 SLC SPB conc. by weight 0'144 Design Input 4.129 Specific gravity 1.071 Design Input 4.12

10 Density (T=850 F) =62.17-B9 Ibm/ft3 Ref. 7.18

12 Final suppression pool temp (bounding) 200 OF13

14 Boric acid K =(0.0585"B12+1.309)*0.0000000001 at =B12 'F1516 MW sodium pentaborate (Na2BioO16*10H 20) 590.224 Design Input 4.1217

18 Volume sodium pentaborate =B5/7.481 ft3

19 Mass sodium pentaborate =B18*B10*B8 Ibm20 Mass sodium pentaborate =B19*453.6/B16 g-mole21

22 unbuffered pH ='pH (eqs)'!N4723 unbuffered [H+] =10^(-B22) g-mole/l24 Suppression Pool volume ='SP Mass (eqs)'!$E$24 liter25 Equivalents unbuffered [HI =B23*B24 g-mole2627 Final pH =-LOG(B14)4-LOG((2*B20-B25)/(8*B20+B25))28291Time to inject boron =B5/B34 Iminut-es

SLCS (eqs)

Page 105: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mite Point Nuclear StationUnit 2

Tabe 4-7 Eqs: Gamma and Beta Radiation Doseused to Detemitne Post.LOCA pH

Caiculation No, H21C-097Revision 0Page 4-26

A B c

23 g- __amin dose4 Suppression Drywall &5 Pool Wetwell

TO @ TiD @6 Time 3467 MWI 3467 MWII r [rad rad]8 0.,9 =12113600 =A9gA11B1I1 =891811,C1110 =A9+30/60 =A101A12"B12 =B10812"C1211 1 404426.4 244784412 2 :($A12-SAZ 11 Y5A$17-$A$11 68$17-B$11 )+6$11 =($A12-SA$11 Y($A$17-$A$11 01C$17-C$11 )÷C$1113 =2+12113600 -- $A13-$A$11t$A$17-$A$11)($ 7-0$11 +$11 =-SA13-$A$SI1($A$17-$A$11 *(CS17-C$11)+C$11

14 3 "-(SA14-SASII $SA$17-$A$11r(B$17-B$11 +6$11 " =(A14-SA$I1 y($A174A$11)(C$,17-CSII)+C$1115 4 =($Al5-$A$I1 ($A$17-$A$11"(B$17-B$11)+B$11 =($AI5-$ASII1($A$17-$A$1 11C$17-C$1 )+C$1118 5 -- $Ai6-$A$1l1($A$17-$A$11)' B$17-B$11)+B$tl -($A16-SA$11I {$A$17-$A$I11 IC$17-C$11)+C$1117 8 1489992 744996018 12 =($A18-$A$17y($A$20-$A$17) (8$20-B$17)+B$117 =($SA18-SAS SY($A$20-$A$17)*(C$20-CS17)+C$1719 is =SA19-$A$17 Y($A$20-$A$17 "(S$20-B$17)+B$17 =(SAi9-SA$I7Y($$20-$A$17r C$020.C$17)÷C$1720 24 2979984 1170708021 =A20+24 =10'((LOG($A21 LOG(I$AS20)(LOG($AS39-LOGG(SA$20))(LOG(BS390-0G(B$20))+-LOG(B$20)) =10A((LOG($A21)-LOG($A$20)Y(LOG($A$39-L0G($A$20)°(LOG(C$39-LOG0C$20))÷LOG(C$20))22 =A21+24 =1 ((LOG($A22-LOG($A$20)Y(LOG($A$39-LOG($A$20))(LOG(B$39LOGG(5$20))+LOG(B$26))2 =10'((LOG($A22-LOG($A$2O)/(LOG($A$39 LOG($A$20)r(LOG(C$390 G(C$20))+LOG(C$2O))23 =A22+24 =1 (LOG $A23-LOG($A$20)Y(LOG($A$39-LOG($A520)) (LOG(B63900LG(B$20))+LOG(B$20)) =101((LOG($A23-LOG($A$20))/LOG($AS39-LOGG($A$20))(LOG(C$39) -0G(C$20))+LOG(C$20)24 =A23+24 •=10^((LOG(A24-LOG($A$20)/(LOG($A$39-LOG($A$20)0(L8G(B$39)-0 G(B$20)LOG(B$20)) =10`((LOG($A24-LOG G$A$20Y(LOG($A$39-LO G/$A$20)(LOG(C$39 LOG C$20+LOG(0$20))25 =A24+24 =10' LOG(SA25 LOG 5$A$20)Y(LOG($A$39-LOG($A$20) (LOG(B$39-LOGG(8$20))+LOG(B 20)) 1=10'(LOG($A25-LOG($A$20)yLOG($A$39-LOG($SAS20)LOG(C$3900 G(C$20) LOG(C$20))26 =A25+24 =10^'LOG($A26•OG($A$20Y (LOG($A$39 -00G($A$20)(LOG(B$39)LGG(5$20))+LOG B620)) =10'((LOG($A26 LOG($A$20)Y(LOG($A$39)LOG($A$20)) (LOG(C039-OG(C$20))÷LOG(C$20))27 =A26+24 =10'((LOG($A27-LOG($A$20) (LOG($A$39)-L0G(0A20)(LOG(B$39LOGG(6$20))+LOG(B 20)) =10^((LOG($A27}-LOG($A$20)y(LOG1$A$39-LO G$A20))*LOG(C039)-L0G0C$20+LOG0C$20))28 =A27+24 =10'((LOG($A28-LOG($A120 )(LOG( A$39)LOG($A$20))`(LOG1B$39LOGG(8$20))-LOG(B$20) =10((LOG($A2.LOG(SA$20))0(L0G$A$39 L0G5$A$20•)(LOG(C$39-LOG(C$20))+LOG C$20))29 =A28+24 i=10A'LOG($A29•LOG $A$20))(LOG($A$39)LOG($A$20)) (LOG(6$39-LOG(B$20))+L0G(6$20) =10(('LOG($A29-LOGG$A$20)Y(LOG($A$39)LOG($A$20)) (LOG0C$39 000(c$20))+LOG(C120))30 =A29+48 I=10'((LOG($A3•0L0G($A$20 )YLOG($A$39•LOG($A$20)r(LOG(B$3900-G(1$20))+LOG(8$20) =10^((LOG( A30)LOG(A$A2O)Y LOG($A$39-LOGG(/A$20) (LOG(c$390L0G0C$20))-LOG(C$20)31 =A30+48 =1 (LOG($A31-LOG($A$20)YLOGG($A$39-LOG($A$20)r(LOG(B$39-LOG(B$20)) LOG(6$20)) =J10((LOG 5A31-LOG($A$2O y(LOG($A$39 LOG($A$20)) (LOG(C$39LOG0(C$20))-LOG(C$20)232 =A31-48 =1 (LOG($A32-LOG($A20))LOG(5/4$A$39-LOGSA$2S))2(LOG(B$39 LOGB$20 10+LG(B$20) =10' (LOG A32-LOG($A$20) /LOG($A$39 LOG($A$20)*(LOG(C$39)-LOG C$20))+LOG(C$20))33 =A32+48 =10^((LOG($A33-LOG(SA$20)Y(LOG1$A$39 LOG(A$20))*(LOG(B$39)0LG(B$20))+LOG(B$20) =10'((LOG($A33)LOG($A$20) (LOG($A$39)LOG($A$20)) (LOG(C$39-LOGGC$20)4+LOG0C$25)234 =A33+48 =10A((LO• $A34LLOG($A$20)L(LOG/$A$39-LOGG(5A$20).LOG 5139).L0G6B$20))+LOGB$20)) =10((LOG$A34-LOG($A$20 )(LOG($A$39-LOG $A$20))*(LOG(C$39)00G(C$20))+LOG(C$20)35 =A34+48 =10('(LOG($A35-LOGG$A$20)Y(LOG(/A$39 LOG($A$20))(LOG(B$39 LOG(1$20))÷LOG(B20)) 12 =10((LOG($A35)L0G($A120)Y(LOG($A$39-LOG5$A420))*(LOG(C$39 LOG(C$20) LOG(C120))36 =A35+48 =10 ((LOG($A36-LOG($A120 YLOG($A$39 LOG($A$20))*(L0G(8$39ýLOGG5$20) +LOG(6$20 =10((LOG($.A36 LOG($A$20)y(LOG($A$39 LOG($A$20) ILOG(C$39.L0G0C$20))L0G(C52037 =A36+48 =10 ((LOG($A37-LOG($A$20) (LOG($A$39-LOG($A$20)*(LOG(B$3900LG(B$20))+LOG(B$20)) =10•'((LOG($A37?LOG$A$2O)Y(LOG $A$390L/G($A$20))*(LOG(C$3900G0C$20))+LOG10 $20))36 =A37+48 =10^((LOG($A38LOG($A$2O)/(LOG($A$39-LOG5$A$20))0(LG(B$39-LOG(B$20))+LOG(B$20) =10'((LOG(SA3 LOG($A$2 LY(LOG/$A$39 LOG/$A$20)•*(LOG5C$3900G0C$201+0LG0C$20)39 720 17028480 3192840040 2400 38314080 5002116041 4320 58535400 6704984042 8760 100042320 101106600

Rad Dose(eqs)

Page 106: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear Station.

Unit 2

Table 4-7 Eq.: Gamma and Beta Radiation Dose

used to Determine Post-LOCA pH

Calculation No. H21C-097Revision 0Page 4-27

DF

3 beta dose

4

Drywall Wetwell ........TIC @ TID @

3467 MWt 3467 MWt Source

7 dIrad [rad] H8

9 =C9/Cl1"Dll D El11"E1l linear Interpolation

10 =C1O/C12"Dt2 -=b01D12*E12 linear Interpolation

11 19967920 22603280 Attachment 2, Tables 2-1 and 2-2

12 =(SA12-$A$1I '$A$17-SA$ 1)*(D$17-D$11)0D$11 =($A12-$A$11 y/5A$17-$A$511 )*$17-E$11)+E$11 linear Interpolation

13 =($A13-$ASlIY($A$17-$A$11)*(D$17-D$11)+D$11 ,=$A13-$A$11 Y5A$17-$A$11 *rE$17-E$11)+E$11 linear Interpolation

14 =cSA14-$A$S11 I$A$17-$A$1 1)A- •D17-D$11)+D$11 = $A14-$A$11 I$A$17-$A$11)*5E$17-E$11 +E$11 linear Interpolation

15 =•IA15-$A$i1 Y($A$17-$A$11 )*D$17-D$Sl )+D$11 =$A1-A$11 5y$A$7-$A$1 1*E$17-E$11 )+E$11 linear Interpolation

16 =1S(A16-$A$1Y ($A$17-$AS11)'(i$17-D$11+0511 "=-$Al6-SA$1y($A$17-$A$11)* E$17-E$11)+ linear Interpolation

17 57775200 69026160 Attachment 2, Tables 2-1 and 2-2

18 =($Ai8-$ASI7 5$A$20-$A$17)'(D$20-D$17)+0$17 =($ A18-$ASI7 ($A$20-SAS17)6(E$20-E$17)+E$17 linear Interpolation

19 = $A19-$A$17J($A$20-$A$17) 0$20-D$17)+D$17 HSA19-$A$17ySIA$20-$A$17)*0E$20-E$17)+E$17 tinner Interpolation

20 129740800 159135200 Attachment 2, Tables 2-1 and 2-221 =10'((LOG($A21 YLOG( A$2O)/LOG($A$39-LOG($A$2O)) (LOG(D$390L0G(D$20)+LOG(D020)) =1OA((LOG(WA21 LOG($A$20)/(LOG$A$39 LOGG$A$20)) (LOG(E$39 LOG(E$20))+LOG(E$20 log-log Interpolation

22 =10((LOG($A22 LOG$A$2 YILOG $A$39-LOG 5$A$20) (LOG($039 LOG05$20))+LOG(020)) =10^((LOG($A22 LOG($A$20)5LOG($A$39 LOG($A$20)).(LOG(E$39 )O-G(E$20))+LOG(E$20) log-log Interpolation

23 =10^ LOG(SA23 L0G0A220 )YLOG($AS39-LOGGA20)) LOG(D039 -LOG0D$20) LOG(D020)) =10=((LOG($A23-LOG(GA$20)(LOG($A$39 -LOG($A520 )(LOG(E$39-LOG(E620))÷-LOGE520) I og-logaoterpolation

24 =1OA(ILOG(SA24 0L0G($A$2O)/`LOG($A$39-LOG($A$20)*OLOG(D$39-LOG05D$20)LOG0G(5$20)) =10((LOG($A24-LOG($AS2O)/(LOG($A$39-LOG($A$20)LO(LG0E$39 LOG0E$20))-LOG6E$25)2 log-log Interpolation

25 =1-0-((LOG($A25 LOG($A$20)y(LOG( A$39-LOG(SA$20))O LOG(0$39YLOG(D$20))+LOG(D 20)) =10 (LOG($A25 LOG$SAS2O)/LOG G$A$39-LOG( A$20))(LOG6E$39-LOG6E$20))+LOG(E$20)) log-log Interpolation

26 =10^((LOG($A26-OG($A$2O) ALOG($A$39-LOG G$A$20(LOG(0$39••OG(D$20))+LOG(0$20)) =10((LOG($A26 LOG($A520 )YLOGG$A$39 LOG($A$20)*(LOG(E$39 LOG5E$20))+LOG6E$20)) log-log Interpolation

27 =10^ LOG( A27-LOG G$A$20)ILOG($A$39-LOG($A$20'LOG 0539 LOG(0520)LOG(L020 =1 LOG(SA27 OG($AS2O LOG($A$39 LOG($A$20))LOG(E$39)00-G(E$20))+LOG(E$20)) log-log Interpolation

28 =10I-((LOG(SA28•LOG(SA$20 Y(LOG$A539-LOG($A$2O)) *LOG(D$39-LOGG(0$20))LOG(D$20)) =10A((LOG(SA28 LOG($AS20)Y(LOG($A$39 LOG($A$20) '(LOG(E$39-LOG(E$20 )iLOG(E$20 l-o In lation

29 10=1(LOG 5A29-LOG $A$20)y(LOG($A$39 LOG($A$2)) (LOG(D$39K-0G(D$20))LOG(D$20)) =10'(LOG($A29 LOG($A20)YLOG($A$39-LOG G$A$20)) LOG6E$39•-LOGE$20))+LOG(E$20) log-log Interpolatlon

30 =101((LOG($A30 LOGG$A$20)/LOG G$A$39LOGG$A$2L))(L3G(L$3 OL0G(D$20))LOG0D$20L) =1((LOG($A30LOG($A$2)YLOG($A$39-LOG($-A$2))*(LOG(E$39LOGGE$2)LOG(E$20 log-log Interpolation

31 =10'((LOG($A31 LOG($A$20)Y LOG($A$39 LOG($A$20))O(LOG(0$39 LOG(0$20) LOG(0$20)) =10^((LOG($A31LOG($A$2O)Y(LOG($A$39 LOG($A$20))*(LOG(E$39LOG(E$20ij+LOG(E$260 log-log Interpolation

32 =I1 ((LOG(5A32-LOG($A$20)y(LOG($A$39-LOG($A$2O))*(LOG(D$39)LOG(D$20))+LOG(D$20)) =10=((LOG($A32 LOG($A$2O)Y(LOG($A$39-LOG($A$20)*(LOG(E$39 LOG(E$20))iLOG(E$20)) log-log Interpolation

33 =10^((LOG($A33 LOG($A$20)y LOG($A$39-LOG($A$20)) LOG(D0390L0G(D$20) LOG(D$20)) =1OA((LOG($A33-LOGG$A$20)Y(LOG($A$39 LOGG$A$20))*(LOG(E$39 LOG(E$20))+LOG0E$20) Ilog-log interpolation

34 =101((LOG($A34)LOG($A$20)y(LOG($A$39-LOG($A$20)) (LOG(D$39-LOGG(0$20))LOG(D$20)) =10*(LOG($A34-LOG($A$20)Y(LOG($A$39 LOG($A$-20 )(LOG(E$39 LOG(E$20))+LOG(E$20)) log-log Interpolation

35 =101((LOG($A35 LOG $A$20)y(LOG($A$39-LOG($A$2O))*(LOG(D$39-LOG(0$20))LOG(D020)) =10I (LOG($A35 LOG($A$20)/(LOG($A$39-LOG($A$2 )*(LOG(E639-LOG(E$20))+LOG(E$20 Io laterotion

36 =101(=LOG($A3r6-LOG $A$20)/LOG G$A539 LOGGSA$20))(LOG••039-LOG 0520))+LOG 0$20)) =10= ̀LO G•$A36 LOG $A$20)/LOGG$A$3SPOLOGA$2)2O LOG(E$3LOLGG9E$2L)O2 LOGJE$2G0) log-log interpolation

37 =1OA((LOG($A37)-LOG($A$20)Y(LOG SA$39 LOG($A$20))(LOG(D$39-LOG(D$20))LOG(D$20)) =10((LOG($A37-LOG($A$20)/LOG G$A$39-LOG( S2O))-(LOG(E$39-LOG(E$20))-LOG(E$26)) log-log Interpolation38 =10*((LOG($A38-LOG($A$2O)(LOG($A$39LOG($A$20'(LOG(D$39-LOG05D$20)LOGG(0$20)) =113((LOG($A38-LOGG$A$20)Y(LOG($A$39-LOG($A$20))*(LOG(E$39LOG(E$20))-LOG(E$250) log-log Interpolation

39 564575200 703438400 Attachment 2, Tables 2-1 and 2-2

40 607146400 754118400 Attachment 2, Tables 2-1 end 2-2

41 634513600 781485600 Attachment 2, Tables 2-1 and 2-2

42 697356800 844328800 Attachment 2, Tables 2-1 end 2-2

Red Dose (eqs)

Page 107: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-8 Eqs: Post-LOCA Suppression PoolTemperature Response

Calculation No. H21C-097Rfevslon 0Page 4-28

A C I E F1 From Oata (Rae. 7.6.517.6.7) jUsed for pH Analysis I

- -econos era me units ior i~u to z . ro hoUrs; says are me units mr t=so- to 720 hours.

SP Temp (eqs)

Page 108: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 4Nine Mile Point Nuclear StationUnit 2

Table 4-9 Eqs: Post-LOCA Suppression Pool Volumes Calculation No. H21C-097Revision 0

Pane 4-29 FinalA B C D . • 1-. F

2 Parameter Symbol UMit Minimum SP Mass Maximum SP Mass' Reference

3 Suppression Pool (SP) ',4 Suppression pool volume Vsp ft3 145200 154400 Ref. 7.6.1, p. 585 Suppression pool temperature TsP °F 110 70 Ref. 7.6.4, p. 13

6 Suppression chamber pressure Psp psia 14.2 15.45 Ref. 7.2.27 Density of suppression pool water psP lbnr/ft3 61.86 62.31 Ref. 7.18

8 Mass of water in suppression pool msp lbin =D4*D7 =E4*E7 =VsP*PsP9 Reactor Coolant System (RCS)10 RCS volume VRcstot ft3 24266 24266 Ref. 7.6.5, p. 8611 RCS liquid fraction x 10.579 0.579 Ref. 7.6.5, p. 86

12 RCS liquid volume VRCS.I ft3 =D1O*D11 =E10*EI1 = VRcs,tot*X

13 RCS steam volume VRCS,g ft3 =D1O-D12 =EIO-E12 = VRcstot VRcs,I

14 Reactor dome pressure PRCS psia 1055 1055 Ref. 7.6.5, p. 86

15 RCS water density VRCS.I ft3/lbm 0.021788 0.021788 Ref. 7.6.5, p. 86

16 RCS steam density VRCS,g ft3/lbm 0.42 0.42: Ref. 7.6.5, p. 86

17 RCS liquid mass .mRCS,I lbrm =D12/D15 =E12/E15 VRCS.I/VRcs,I

18 RCS steam mass mRcs.9 Ibm =D13/D16 =E13/E16 VRCS9 / VRCS,g19 Post-LOCA (SP+RCS) "_ _

RCS mass added to SP mRCS, tot lb; m no RCS mass included in SP for min;S mall steam condenses in SP for max.

20 I 0 =E17+E18_ __ _

21 Total water mass in SP mpLSP,tot Ibm =D8+D20 =E8+E20 = msp + mRCS,Iot22 Mass averaged density in SP PPLSP.Svg lbrm/ft3 =D7 =(E8*E7+E20/E15)/E21 = [(msp*PsP)+(mRCStot/VRcsI)]/mPLSPtOt

23 Total volume of water in SP YPLsp,tot ft3 =D21/D22 =E21/E22 = mpSPItot PPLSP,avg

24 Total volume of water in SP VPLSP,tot liters =D23*28.31685 =E23*28.31685 = VpL Sptot [ft3 * 28.31685 liter/ft?

SP Mass (eqs)

Page 109: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

t-

Attachment 5Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 5-1

Attachment 5

Post-LOCA Suppression Pool pHBenchmark to Grand Gulf Nuclear Station (GGNS)

Table of Contents

Figure 5-1:Table 5-1:Table 5-1a:Table 5-2:Table 5-3:Table 5-4:Table 5-5:Table 5-6:Table 5-7:Table 5-8:

Post-LOCA Suppression Pool pH Analysis pH Response without SLCS............. 5-2Post-LOCA pH Calculation without SLCS .................................... o ....................... 5-3Post-LOCA pH - GGNS Calculation No. XC-Q1111-98013, Rev. 1 ..................... 5-5Hydriodic Acid (HI) Production ................................. 5-6Nitric Acid (HNO3) Production .................................. 5-7Hydrochloric Acid (HCI) Production .............................. 5-8Cesium Hydroxide (CsOH) Production .............. ............................. 5-10Effect of SLCS Addition on Post-LOCA Suppression Pool pH ........... * .5-t 1Gamma and Beta Radiation Dose Used to Determine Post-LOCA pH .............. 5-12Post-LOCA Suppression Pool Temperature Response .................................... 5-13Equations for above tables ................................................................... 5-14 to 5-30

Note that each table in this attachment has been developed using Microsoft Excel. Some tablesreference each other; for these references, see the "tab" name at the bottom of each sheet.

Input in the tables in this attachment is obtained from GGNS Calculation No. XC-Q1111-98013,Revision 1 (main body Ref. 7.12.3). Any input/cells which have changed from the NMP2 tablesprovided in Attachment 4 are italicized. - In some-instances, new cells were added. and. inothers,-various input was not provided and therefore is left blank inthe tables.

Page 110: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

I.

Attachment 5Nine Mile Point Nuclear StationUnit 2 '

Calculation No. H21C-097Revision 0Page 5-2

Figure 5-1: GGNS BenchmarkPos't-LOCA Suppression Pool pH Analysis

pH Response without SLCS

!J

i

x0.

"60

CLCI..

0.0.

(i2

--- Benchmark

-U--GGNS

0.01 0.1 I 10 100. 1000

Time After LOCA (hours)

Pool pH

Page 111: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-1: GGNS BenchmarkPost-LOCA pH Calculation without SLCS

Calculation No. H21C-097Revision 0

Page 5-3

Initial conditions

Suppression pool massRCS massTotal post-LOCA SP mass

suppression pool pHreactor coolant pH

initial [H÷J

initial [OH']

IbmIbmIbm

5.35.3

5.01E-06 g-mole/Il weighted average not required since pH sp, = PHRCSj

2.OOE-09 g-mole/I weighted average not required since pH spj = pH Rcs.i

Pool J [HI] [HNO 3] (HCI] [CsOH] Total [H] Total OH'] Pool Water K. at x [H÷j PoolTime Volume j Temp Density Pool Temp pH(hr) (liter) (g-moles/I) (g-moles/I) (g-molesll) (g-moles/I) (g-moles/I) (g-moles/l) (°F) (lbm/ft3) (-) (g-moles/I) (g-moles/I) L')0 4,841,000 5.01E-06 2.00E-09 90.0 62.12 1.704E-14 -1.40E-09 5.01E-06 5.300

0.034 4,841,000 __5.01E-06 2.OOE-09 160.0 60.99 1.633E-13 -3.04E-08 5.04E-06 5.2970.100 4,841,000 2.2285E-08 :_2.8679E-06 5.03E.06 2.87E-06 160.0 60.99 1.633E-13 2.80E-06 2.24E-06 5.6500.534 4,841,000 1.6784E-07 2.1599E-05 5.18E-06 2.16E-05 160.0 60.99 1.633E-13 5.17E-06 9.94E-09 8.003

1 4,841,000 4.2876E-07 _ _4.7471E-05 5.44E-06 4.75E-05 160.0 60.99 1.633E-13 5.44E-06 3.88E-09 8.4112 4,841,000 1.0070E-06 1.0061E-05 8.6798E-06 1.0481E-04 2.48E-05 1.05E-04 160.0 60.99 1.633E-13 2.48E-05 2.04E-09 8.690

2.034 4,841,000 1.0070E-06 1.0068E-05 8,7776E-06 1.0481E-04 2.49E-05 1.05E-04 160.0 60.99 1.633E-13 2.49E-05 2.04E-09 8.6903 4,841,000 1.0070E-06 1.0256E-05 1.1300E-05 1.0481E-04 2.76E-O5 1.05E-04 159.1 61.01 1.594E-13 2.76E-05 2.06E-09 8.6854 4,841,000 1.0070E-06 1.0450E-05 1.4047E-05 1.0481E-04 3.05E-05 1.05E-04 157.3 61.05 1.518E-13 3.05E-05 2.04E-09 8.6905 4,841,000 1.0070E-06 1.0644E-05 1.6233E-05 1.0481E-04 3.29E-05 1.05E-04 155.5 61.08 1.445E-13 3.29E-05 2.01E-09 8.6976 4,841,000 1.0070E-06 1.0837E-05 1.8063E-05 1.0481E-04 3.49E-05 1.05E-04 154.6 61.10 1.409E-13 3.49E-05 2.02E-09 8.695

12 4,841,000 1.0070E-06 1.1990E-05 2.5535E-05 1.0481E-04 4.35E-05 1.05E-04 149.2 61.21 1.2112-13 4.35E-05 1.98E-09 8.70418 4,841,000 1.0070E-06 1.3129E-05 3.0458E-05 1.0481E-04 4.96E-05 1.05E-04 146.4 61.26 1.117E-13 4.96E-05 2.02E-09 8.69424 4,841,000 1.0070E-06 1.4254E-05 3.4308E-05 1.0481E-04 5.46E-05 1.05E-04 144.3-' 61.30 1.051E-13 5.46E-05 2.09E-09 8.68048 4,841,000 1.0070E-06 1.8622E-05 4.5256E-05 1.0481E-04 6.99E-05 1.05E-04 139.4 61.39 9.084E-14 6.99E-05 2.60E-09 8.58572 4,841,000 1.0070E-06 2.2785E-05 5.3018E-05 1.0481E-04 8.18E-05 1.05E-04 136.5 61.44 8.32E-14 8.18E-05 3.62E-09 8.44196 4,841,000 1.0070E-06 2.6753E-05 5.9165E-05 1:0481E-04 9.19E-05 1.05E-04 134.4 61.47 7.801E-14 9.19E-05 6.06E-09 8.218120 4,841,000 1.0070E-06 3.0536E-05 6.4242E-05 1.0481E-04 1.01E-04 1.05E-04 132.8 61.50 7:424E-14 1.01E-04 1.84E-08 7.735144 4,841,000 1.0070E-06 3.4141E-05 6.8525E-05 1.0481E-04 1.09E-04 1.05E-04 131.6 61.52 7.152E-14 1.05E-04 3.89E-06 5.410168 4,841,000 1.0070E-06 3.7577E-05 7.2188E-05 1.0481E-04 1.16E-04 1.05E-04 130.5 61.54 6.919E-14 1.05E-04 1.10E-05 4.959192 4,841,000 1.0070E-06 4.0852E-05 7.5347E-05 1.0481E-04 1.22E-04 1.05E-04 129.5 61.56 6.703E-14 1.05E-04 1.74E-05 4.759216 4,841,000 1.0070E-06 4.3973E-05 7.8090E-05 1.0481E-04 1.28E-04 1.05E-04 128.7 61.57 6.524E-14 1.05E-04 2.33E-05 4.633240 4,841,000 1.0070E-06 4.6948E-05 8.0486E-05 1.0481E-04 1.33E-04 1.05E-04 127.9 61.59 6.364E-14 1.05E-04 2.86E-05 4.543

pH

Page 112: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

Table 5-1: GGNS BenchmarkPost-LOCA pH Calculation without SLCS

Calculation No. H21C-097Revision 0

Page 5-4

Pool [HI] jHNO3 ] [HCI] [CsOH] Total [H÷] Total [OHi- Pool Water Kw at x [H] . Pool

Time Volume * Temp Density Pool Temp pH(hr) (liter) (g-moles/I) (g-,moles/I) (g-moles/i) (g-moles/I) (g-moles/I) (g-moles/I) (°F) (Ibm/ft3 ) - (g-molesll)' (g-molesll)j ()

28B 4,841,000 1.0070E-06 5.2487E-05 8.4442E-05 1.0481E-04 1.43E-04 1.05E-04. 126.6 61.61 6.109E-14 1.05E-04 3.81E-05 4.419336 4,841,000 1.0070E-06 5.7519E-05 8.7538E-05 1.0481E-04 1.51E-04 1.05E-04 125.5 61.62 5.897E-14 1.05E-04 4.63E-05 4.335384 4,841,000 1.0070E-06 6.2090E-05 9.0002E&05 1.0481E-04 1.58E-04 1.05E-04 -124.6 61.64 5.721E-14 1.05E-04 - 5.33E-05 4.273432 4,841,000 1.0070E-06 6.6242E-05 9.1991E-0.5 1.0481E-04 1.64E-04 1.05E-04 123.8 61.65 5.574E-14 1.05E-04 5.94E-05 4.226480 4,841,000 1.0070E-06 7.0015E-05 9.3624E.05 1.0481E-04 1'.70E-04 1.05E-04 123.0 61.66 5.435E-14 1.05E-04 6.48E-05 4.188528 4,841,000 1.0070E-06 7.3442E-05 9.4984E-05 1.0481E-04 1.74E-04 1.05E-04, 122.4 61.68 5.322E-14 1.05E-04 6.96E-05 4.157576 4,841,000 1.0070E-06 7.6556E-05 9.6136E-05 1.0481E-04 1.79E-04 1.05E-04 121.7 61.69 5.212E-14 1.05E-04 7.39E-05 4.131624 4,841,000 1.0070E-06 7.9384E-05 9.7125E-05 1.0481E-04 1.83E-04 1.05E-04 121.1 61.69 5.113E-14 1.05E-04 7.77E-05 4.109672 4,841,000 1.0070E-06 8.1954E-05 9.7987E-05 1.0481E-04 1.86E-04 1.05E-04 120.6 61.70 5.025E-14 1.05E-04 8.11E-05 4.091720 4,841,000 1.0070E-06 8.4288E-05 9.8748E-05 1.0481E-04 1.89E-04 1.05E-04 120.1 61.71 4.941E-14 1.05E-04 8.42E-05 4.074

Adjustments made in Table 4-1 of Attachment 4 (see Notes 1-3) are not made for the benchmark.

pH

Page 113: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5 Table 5-1a: GGNS BenchmarkNine Mile Point Nuclear Station Post-LOCA Suppression Pool pH perUnit 2 GGNS Calc. No. XC-Qt111-98013, Rev. I

CAlculation No. H21C-097Revision 0

Page 5-5

Time pH -(hr) H-)0 5.300

0.03361 5.2970.1 5.650

0.53361 8.0031 • 8.4112 8.699

2.0361 8.7093 8.7115 8.71912 8.71618 8.70124 I 8.68148 8.56872 8.39596 8.098120 6.783150 4.995200 4.606240 4.461300 4.327360 4.241400 4.199480 4.135600 4.070700 4.033720 4.027

The pH values presented inthis table are taken from CaseI in Attachment 3 to XC-Q1111-98013, Revision I(main body Ref. 7.12.3).

Page 114: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Core iodine inventory

Core iodine - gap releaseCore iodine - EIV release

Fraction of release as HI

Gap release onsetGap release durationEIV duration

Table 5-2: GGNS BenchmarkHydriodic Acid (HI) Production

calculation No. H21C-097Revision 0

Page 5-6

325

16.2581.25

0.05

1213090

Time(hr)

g-mole

g-moleg-mole

max

secminutesminutes

cumulativHI

(g-mole)

Ref. 7.12.3

=0.05*325 g-mole.

=0.25*325 g-mole

Reg Guide 1.183 (main body Ref. 7.10.2)

Ref. 7.12.3Reg Guide 1:183 (main body Ref. 7.10.2)Reg Guide 1.183 (main body Ref. 7.10.2)

/esuppression

poolvolume

(liter)

cumulative. HI

(g-mole/I)I I I I

onset

end of gap release

end of EIV i

0.0340.1000.5341.0002.034

0.000.110.812.084.88

4,841,0004,841,0004,541,0004,541,0004,841,000

0.0000E+002.2285E-081 .6784E-074 *2876E-07I .0070E-06

HI

Page 115: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-3: GGNS BenchmarkNitric Acid (HNO 3) Production

Calculation No. H21C-097.Revision 0

Page 5-7

HNO 3 generation 7.3E-06 g-mole/l per MRad

;SuppressionPool

TID @Time 3467 MWt

(hr) (rad)

NUREG/CR-5950 (main body Ref. 7.13)

cumulative

HNO 3

(g-mole/I)onset 0.034

end of gap release 0.5341

end of EIV 22.034

3456121824487296120144168192216

.240288336384432480528576624672720

I1.3783E+061.3792E+061i .4049E+06.1.4315E+06

1.4581E÷061.4846E+061.6425E+0611.7985E+06

S.19526E+062.5509E+063.1213E+063.6648E+064.1830E+064.6768E+065.1475E+065.5961E+066.0237E+066.4313E+067.1900E+067.8793E+068.5054E+069.0743E+069.5911 E+061.0061 E+071.0487E+071.0875E+071.1227E+071.1546E+07

1.0061 E-051.0068E-051.0256E-051.0450E-051.0644E-051.0837E-051.1990E-051.3129E-051.4254E-051.8622E-052.2785E-052.6753E-053.0536E-053.4141 E-053.7577E-054.0852E-054.3973E-054.6948E-055.2487E-055.7519E-056.2090E-056.6242E-057.0015E-057.3442E-057.6556E-057.9384E-058.1954E-058.4288E-05

HNO3

Page 116: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

. Table 5-4: GGNS BenchmarkHydrochloric Acid (HCi) Production

Calculation No. H21C-097Revision 0Page 5-8

Cables

hypalon properties:radiolysis yield, G 2.192E-06 g-mole HCI per MRad-g

linear absorption coefficient 52.08 cm"1 for beta radiationlinear absorption coefficient 0.099 cm"1 for gamma radiationdensity 1.55 glcm3

Cable jacket and Insulation:

D ryweIl Cable Inventor

cable outer radius 0.35 incable OD (max guar.) 0.7 in

jacket thickness 280 r miljacket material hypalon

insulation thickness milinsulation material

length in free air linear ft. length in tray linear ft

NUREG/CR-5950 (main body Ref. 7.13)

NUREG-1081 (main body Ref. 7.15)

NUREG-1081 (main body Ref. 7.15)

NUREG-1081 (main body Ref. 7.15)

Containment CaJle Inventorv

cable outer radius 0.35 incable OD (max guard) 0.7 in

jacket thickness 280 miljacket material hypalon

insulation thickness milInsulation material

length in free air - linear ftlength in tray linear ft

chlorine-bearing material:

volume In free air cm3

volume in tray cm3

mass in free air 873.65 Ibm

mass in free air 396,287.6 gram

mass in tray 673.65 Ibmmass In tray 396,287.6 gram

I.

volume in free air cm3

volume In tray cm3

mass in free air 1,561.03 Ibmmass In free air 708,083.2' gram

mass in tray 14,049.27 Ibmmass in tray 6,372,748.9 gram

Irradiation:

Drywell Cable Inventory Containment Cable Inventory

I I beta :gamma I free air I tray I

I beta agamma I free air I tray -I

cable radius (cm)jacket thickness (cm)mass irradiated (g)

flux averaging factorabsorption factor

0.889 0.889 0.8890.7112 0.7112 0.7112

792,575.3 396,287.6 198,143.8

0.889 0.889 0.8890.7112 * 0.7112 0.7112

7,080,832.1 708,083.2 3,186,374.4

0.973 0.044 0.0440.068 1.000 1.000

0.973 0.0440.068 1.000

0.0441.000

HCI

ii

Page 117: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-4: GGNS BenchmarkHydrochloric Acid (HCI) Production

Calculation No. H21C-097Revision 0

Page 5-9

poolTime volumeihr) iliterl

Drywell7 TID(rad)

Containment7TID(rad!

Drywellr TOI

(rad)

ContainmentJ TID(rad)

Drvwell HCI Containment HCI

gamma beta Total gamma(g-mole) (g-mole) (gImolel) (g-mole)

beta Total(a-mole) ta-mole/li

HCI(g-mole/A)

(radl0.0340.534

1

22.034

3456121824487296

120144168192216240288336384432480528576624672720

4,841,0004,841,000

4,841,000

4,841,0004,841,0004,841,0004,841,0004,841,0004,841,0004,841,000

4,841,0004,841,0004,841,0004,841,000

4,841,0004,841,0004,841,0004,841,0004,841,000

4,841,0004,841,0004,841,0004,841,0004,841,0004,841,000

4,841,0004,841,0004,841,0004,841,000

4,841,000

4.841,000

O.0000E+00O.OOOOE+00O.O000E+001. 7595E+071.7973E+07

2,6800E+07.3.3331E+073.8397E+074.2537E+075.8273E+076. 7478E+07

7.4010E+078.9746E+07

9.8951E+07

1.0548E+081.1055E+08

1.1469E+081.1819E+081.2122E+081.2389E+081.2628E+08

1.3042E+081.3392E+08

1.3696E+08

1.3963E+081.4202E+081.4419E+081.4616E+08

1.4798E+081.4966E+081.5123E+08

O.0000E+00O.'O000E+0000000E+00O.OOOOE+000..OOOOE+006.2920E+054,8748E+068.0128E+061.0577E+072.0324E+072.6026E+073.0072E+073.9819E+074.5521E+074.9567E+075.2705E+075.5269E+075. 7436E+075.9314E+076.0971E+076.2452E+076.5016E÷076.7184E+076.9062E+077.0718E+077.2200E+077.3540E+077.4764E+077.5889E+077.6932E+07.7902E+07

O. 0000+00

O.OOOOE+00O.0008E+003.5600E+073.5663E+073. 7461E+073.9309E+074.1145E+074.2969E+075.3664E+076.3944E+077.3824E+071.0966E+081. 4024E+081.6634E+081.8862E+082.0764E+082.2387E+082.3772E+082.4954E+082.5963E+082. 7559E+082.8722E+082.9570E+083.0187E+083.0636E+083.0964E+083.1202E+083.1376E+083.1503E+083.1595E+08

O.OOOOE+00O.0000E+000.0000E+001.5019E+071.5051E+07

1.5993E+071.6962E+07

1.7926E+071.8884E÷07

2.4518E+072.9963E+073.5225E+075. 4563E+077.1428E+07

8.6137E+07.

9.8965E+071.1015E+081.1991E+081.2842E+081.3584E+081.4232E+081.5288E+08

1.6092E+08

1.6704E+081.71698-+081.7523E+081.7792F+081.7997E+081.8152E+081.8271E+08

1.8361E+08

0.OOE+000.00E+000.OOE+002.01E+012.05E+013.06E+013.81E+014.38E+014.86E+016.65E+017.71E+018.45E+011.02E+021.13E+021.20E+021.26E+021.31E+021.35E+021.38E+021.41 E+021.44 E+021.49E+021.53E+021.56E+021.59E+021.62E+021.65E+021.67E+021.69E+021.71E+021.73E+02

0.0OE+000.00E+000.00E+001.54E+011;54E+01

1.62E+011.70E+011.78E+011.86E+012.32E+012.77E+013.20E+014.75E+01

6.08E+017.21E+01

8.17E+018.99E+01

9.70E+011.03E+021.08E+021.12E+021.19E+021.24E+02

1.28E+02

1.31E+021.33E+021.34E+021.35E+021.36E+021.36E+021.37E+02

O.OOE+00

O.OOE+00O.OOE+00.7.34E-067.43E-069.67E-061.14E-051.27E-051.39E-051.85E-052. 16E-052.41E-053.10E-053.59E-053.98E-054.30E-054.56E-054.79E-054.99E-055.16E1-055.30E-055.54E-055. 73E-055.88E-05,5. 998-05

6.09E-056.17E-056;24E-05

6. 30E-056.35E-056.39E-05

O.OOE+00O.OOE+00O.OOE+00O.OOE+00O.OOE+009.47E-015.57E+009. 15E+O01.21E+01

2.32E+012.97E+013.43E+014.55E+015208E+01

5.66E+01

6.02E+016.31E+016.56E+016.77E+016.96E+017.13E+01

7.42E+017.67E+017.89E+01

8.08E+018.24E+018.40E+018.54E+018.67E+01

8. 78E+01

6.90E+01

O.OOE+00O.OOE+000. OOE+006.51E+006.52E+006.93E+007.35E+007.77E+008. 16E+001.06E+011.30E+011.53E+012.36E+013.09E+013.73E+014.29E+014.77E+015.19E+015.56E+015.88E+016.17E+016.62E+016.97E+017.24E+017.44E+017.59E+017.71E+01'7.80E+017.86E+017.91E+017.95E+01

O.OOE+00O. OOEO000.00E+00

1.34E-061.35E-06

1.63E-062.67E-063.49E-06

.4. 18E-066.99E-068.82E-061.02E-051.43E-05

1.71E-051.94E-05

2.13E-052.29E-052.43E-052. 558-05

2.65E-052. 75E-05

* 2.90E-053.02E-05

3.12E-053.20E-05

3.27E-05

3.33E-053.37E-053. 41E-05

3.45E-05

3.48E-05

O.00008E00O.O000E+00O.0000E+008.6798E-068.7776E-061.1300E-051.4047E-051.6233E-051.8063E-052.5535E-053.0458E-053.4308E-054.5256E-05'5.3018E-055.9165E-056.4242E-056.8525E-057.2188E-057.5347E-057.8090E-058.0486E-058.4442E-058.7538E-059.0002E-059.1991E-059.3624E-059.4984E-059.6136E-059.7125E-059. 7987E-059.8748E-05

HCI

ii

Page 118: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Core cesium inventory

Core cesium - gap releaseCore cesium - EIV release

Csl - gap releaseCsl - EIV release

CsOH - gap releaseCsOH - EIV release

Table 5-5: GGNS BenchmarkCesium Hydroxide (CsOH) Production

2400 g-mole Ref. 7.12.3

120.00 g-mole =0.05*2400 g-mole480.00 g-mole =0.20*2400 g-mole

Calculation No. H21C-097Revision 0Page 5-10

15.4477.19

g-mole fraction iodine release in form of CsIg-mole fraction iodine release in form of Csl

Gap release onsetGap release durationEIV duration

1.04.56 g-mole402.81 g-mole

121 sec30 minutes90 minutes

cumulativeTime CsOH(Hr) (g-mole)

Ref. 7.12.3Reg Guide 1.183 (main body Ref. 7.10.2)Reg Guide 1.183 (main body Ref. 7.10.2)

suppressionpool

volume(liter)

cumulativeCsOH

(g-mole/l)onset 0.034

0.100end of gap release 0.534

1.000end of EIV 2.034-

0.0013.88104.56229.81507.38

4,641,0004,841,0004,841,0004,841,000

4,841,000

0.OOOOE+002.8679E-062.1599E-054.7471 E-051.0481 E-04

CsOH

Page 119: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2,

Table 5-6: GGNS BenchmarkEffect of SLCS Addition

on Post-LOCA Suppression Pool

Calculation No. H21C-097Revision 0Page 5-11

Buffering by sLcs

SLCS:Min SLC pump flow rateMin SLC injection tank volumeMax SLC tempMin SLC tempSLC SPB conc. by weightSpecific gravityDensity (T=850F)

Final suppression pool temp (bounding)

- gpm- gal-

0F

- ibm/ft3

120 OF

Boric acid K 8.33E-10 at 120 OF

MW sodium pentaborate (Na 2 B 1o 016)

Volume sodium pentaborateMass sodium pentaborateMass sodium pentaborate

unbuffered pH

unbuffered [HISuppression Pool volume

Equivalents unbuffered [HI

Final pH

Time to inject boron

410

5,800.06,416.8

4.07

8.425E-054,841,000

407.8

ft3

Ibmg-mole

g-mole/lliterg-mole

minutes

8.46

SLCS

Page 120: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-7: GGNS BenchmarkGamma and Beta Radiation Doseused to Determine Post-LOCA pH,

Calculation No. H21C-097Revision 0Page 5-12

Suppression Drywell Containment Drywell Containment Drywell Containment Drywell ContainmentTime Pool y TID TID -f TID PTID PTOD -yTID "yTID 1TlD TTID[hrl [rad] [MeV/cc] [MeV/ccj [MeV/cc]j [MeV/cc] frad] [rad] [red] [tadi0 0 0 0 0 0 0 0 0 0.

0.034 0 0 0 .0 0 0. 0 0 00.534 0 0 0 .0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 02 1.3783E+06 1.4201E+12 O.O000E+00 2.8733E+12 1.2122E+12 1.7595E+07 O.OOOOE+00 3.5600E+07 1.5019E+07

2.034 1.3792E+06 1.4506E+12 O.O000E+00 2.8784E+12 1.2148E+12 1.7973E+07 O.OOOOE+00 3.5663E+07 1.5051E+073 1.4049E+06 2.1630E+12 6.6925E+10 3.0235E+12 1.2908E+12 2.6800E+07 8.2920E+05 3.7461E+07 1.5993E+074 1.4315E+06 2.6902E+12 3.9344E+11 3.1726E+12 1.3690E+12 3.3331E+07 4.8748E+06 3.9309E+07 1.6962E+075 1.4561E+06 3.0991E+12 6.4671E+11 3.3208E+12 1.4468E+12 3.8397E+07 8.0128E+06 4.1145E+07 1.7926E+076 1.4846E+06 3.4331E+12 8.5365E+1I 3.4680E+12 1.5241E+12 4.2537E+07 1.0577E+07 4.2969E+07 1.8884E+07

.12 1.6425E+06 4.7032E+12 1.6404E+12 4.3312E+12 1.9789E+12 5.8273E+07 2.0324E+07 5.3664E+07 2.4518E+0718 1.7985E+06 5.4462E+12 2.1006E+12 5.1609E+12 2.4183E+12 6.7478E+07 2.6026E+07 6.3944E+07 2.9963E+0724 1.9526E+06 5.9733E+12 2.4271E+12 5.9584E+12 2.8430E+12 7.4010E+07 3.0072E+07 7.3824E+07 3.5225E+0748 2.5509E+06 7.2434E+12 3.2138E+12 8.8503E+12 4.4036E+12 8.9746E+07 3.9819E+07 1.0966E+08 5.4563E+0772 3.1213E+06 7.9863E+12 3.6740E+12. 1.1319E+13 5.7649E+12 9.8951E+07 4.5521E+07 1.4024E+08 7.1428E+0796 3.6648E+06 8.5135E+12 4.0005E+12 1.3425E+13 6.9521E+12 1.0548E+08 4.9567E+07 1.6634E+08 8.6137E+07120 4.1630E+06 8.9224E+12 4.2538E+12 1.5224E+13 7.9874E+12 1.1055E+08 5.2705E+07 1.8862E+08 9.8965E+07144 4.6768E+06 9.2564E+12 4.4607E+12 1.6758E+13 8.890,IE+12 1.1469E+08 5.5269E+07 2.0764E+08 1.1015E+08168 5.1475E+06 9.5389E+12 4.6357E+12 1.8068E+13 9.6780E+12 1.1819E+08 5.7436E+07 2.2387E+08 1.1991E+08192 5.5961E+06. 9.7836E+12, 4.7873E+12 1.9186E+13 1.0365E+13 1.2122E+08 5.9314E+07 2.3772E+08 1.2842E+08216 6.0237E+06 9.9994E+12 4.9209E+12 2.0140E+13 1.0964E+13 1.2389E+08 6.0971E+07 2.4954E+08 1.3584E+08240 6.4313E+06 1.0192E+13 5.0405E+12 2.0955E+13 1.1486E+13 1.2628E+08 6.2452E+07 2.5963E+08 1.4232E+08288 7.1900E+06 1.0527E+13 5.2475E+12 2.2243E+13 1.2339E+13 1.3042E+08 6.5016E+07 2.7559E+08 1.5288E+08336 7.8793E+06 1.0809E+13 5.4224E+12 2.3182E+13 -1.2988E+13 1.3392E+08 6.7184E+07 2.8722E+08 1.6092E+08384 8.5054E+06 1.1054E+13 5.5740E+12 2.3866E+13 1.3482E+13 1.3696E+08 6.9062E+07 2.9570E+08 1.6704E+08432 9.0743E+06 1.1269E+13 5.7077E+12 2.4364E+13 1.3857E+13 1.3963E+08 7.0718E+07 3.0187E+08 1.7169E+08480 9.5911E+06 1.1463E+13 5.8272E+12 2.4727E+13 1.4143E+13 1.4202E+08 7.2200E+07 3.0636E+08 1.7523E+08528. 1.0061E+07 1.1637E+13 5.9354E+12 2.4991E+13 1.4360E+13 1.4419E+08 7.3540E+07 3.0964E+08 1.7792E+08576 1.0487E+07 1.1797E+13 6.0342E+12 2.5183E+13 1.4525E+13 1.4616E+08 7.4764E+07 3.1202E+08 1.7997E+08624 1.0875E+07 1.1943E+13 '6.1250E+12 2.5324E+13 1.4651E+13 1.4798E+08 7.5889E+07 3.1376E+08 1.8152E+08672 1.1227E+07 1.2079E+13 6.2091E+12 2.5426E+13 1.4746E+13 1.4966E+08 7.6932E+07 3.1503E+08 1.8271E+08720 1.1546E+07 1.2205E+13 6.2875E+12 2.5500E+13 1.4819E+13 1.5123E+08 7.7902E+07 3.1595E+08 1.8361E+082400 1.4610E+07 1.4412E+13 7.6540E+12 2.5700E+13 1.5050E+13 1.7856E+08 9.4833E+07 3.1842E+08 1.8647E+084320 1.4718E+07 1.5489E+13 8.3211E+12, 2.5700E+13 1.5050E+13 1.9190E+08 1.0310E+08 3.1842E+08 1.8647E+088760 1.4720E+07 1.6784E+13 9.1235E+12 2.5700E+13 1.5050E+13 2.0795E+08 1.1304E+08 3.1842E+08 1.8647E+08

Eguafim"Ysp (Mrad] -- 14.72*[1-0.91*exp(-0.002*t,,jj]106

ylm, [MeV/cc] = [0.15+1.83235*ln(tr)]*10•,10 6

ycNr [MeV/cc] = [-1.18+1.135*In(thr)]*10s;10eDow [MeV/cc] = 25.7*[1-0.9*exp(-0.0066*thr)]*10*106

PCNT [MeV/cc] = 15.05*[1-0.93*exp(-0.0057*t)r10*10e

1 rad = 8.071x10 4 MeV/cc for air at S.T.P. per Radiological Health Handbook (main body Ref. 7.8)

NotesIf the curve fits above yield a negative TID due to curve fit inacurracies, the TID is assumed to be zero consistent with Ref. 7.12.3.

Rad Dose,

Page 121: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-8: GGNS BenchmarkPost-LOCA Suppression Pool

Temperature Response

Calculation No. H21C-097Revision 0Page 5-13

From Data (Ref. 7.12.3)

Time Post-LOCA Temp- -l~/*.' Ihri I*F)

1 : 2.778E-04 160.08 '2.222E-03 160.010 2.778E-03 160.030 8.333E-03 160.0100 0.028 160.0

0.034 160.0300 0,083 160.0

1,000 0,278 160.0

Used for pH Analysis

Time Temp* (hr) (°F)

0 77.00.034 160.00.534 160.0

1 .160.02 160.0

2.034 160.03 159.14 157.35 155.56 .154.612 149.218 146.424 144.348 139.472 136.596. 134.4120 132.8144 131.6168 130.5192 .129.5216 128.7240 127.9288 126.6336 125.5384 124.6432 123.8480 123.0528 122.4576 121.7624 121.1672 120.6720 120.1

3. 5 o9.14 157.3ýý- N' ý1055.5f

20,000 5.556 155.06 154.6

42,000 11.67 149.5

0 ' 1• 141.0

7 168 130.5

8 .192 129.5 The shaded values are takeni200 .••1, " '2 f••r from either Reference 7.12.3.

9 216 128.7 Other other values areE 0i -T" 24O -27. 9 interpolated.

12 288 126.6

'W300 ,46314 336 125.5

384 124.6

432 123.8207ýE 1 =4~ ~123!04§'

528 122.4576 121.7

624 121.1672 120.6 * Seconds are the units for t=0 toF700 27.78 hours; days are the units

for t=48 to 720 hours.

SP Temp

Page 122: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-1 Eqs: GGNS BenchmarkPost-LOCA pH Calculation without SLCS

Calculation No. H21IC-097Revision 0Page 5-14

A B C D E F G H1 Initial conditions2

3 Suppression pool mass . Ibm4 RCS mass Ibm5 Total post-LOCA SP mass Ibm6

7 suppression pool pH 5.38 reactor coolant pH 5.39

1" initial [H] =1^OA(-D7) g-molell weighted average not required since pH spj = PH" RCSJ

11 initial [OHi =1OA(- 14+D7) g-molell weighted averea'e not required since pH spj = pHRci120

13 Pool [HI] [HNO3 1 [HCI] [CsOH] Total 1H-] Total [OH1-1.4 . Time Volume ,

15 (hr) (liter) (g-moles/l) (g-moles/l) (g-moles/I) (g-moles/I) . (g-molesll) (g-moles/I)

16 ='Red Dose (eqs)'!A6 4841000 _ =D$10+SUM(C16:E16) =D$11+F1617 ='Rad Dose (egs)'1A7 4841000 =D$10+SUM(C17:E17) =D$11+F1718 0.1 4841000 ='HI (eqs)'!E17 _ ='CsOH (eqs)PE21 =D$1O+SUM(C18:E18) =D$11+F1819 ='Rad'Dose (eqs)'!A8 4841000 ='HI (eqs)'IE18 _='CsOH (eqs)'!E22 =D$10+SUM(C19:E19) =D$11+F1920 ='Rad Dose (eqs)'!A9 4841000 =HI (eqs)'1E19 ='CsOH (eqs'!E23 =D$10+SUM(C20:E20) =D$1 1+F2021 ='Rad Dose (eqs)'IA10 4841000 ='HI (eqs)!E$20 ='HN03 (egs)'/DII ='HCI (eqs)'IN50 ='CsOH (eqs)!E$24 =D$10+SUM(C21:E21) =D$11+F2122 ='Rad Dose (egs)lA11 4841000 ='HI (es)'IE$20 ='HNO3 (eqs)'/D12 ='HCI (eqs)'1N51 ='CsOH (e4s)7'E$24 =D$10+SUM(C22:E22) =D$11+F2223 ='Rad Dose (egs)'!A12 4841000 ='HI (eqs)'!E$20 ='HNO3 (egs) 'D13 ='HCI (eqs)'!N52 ='CsOH (eqs) E$24 =D$10+SUM(C23:E23) =D$11+F2324 ='Rad Dose (eqs)'!A13 4841000 =-HI (eqs)'!E$20 =HN03 (eqs)'!D14 ='HCI (eqs).'N53 ='CsOH (eqs)'!E$24 =D$10+SUM(C24:E24) =D$11+F2425 ='Red Dose (egs)'1A14 4841000 ='HI (eqs)'!E$20 ='HNO3 (eqs)'0D15 =-HCI (eqs)'/N54 ='CsOH (eqsq7E$24 =D$10+SUM(C25:E25) =D$11+F2526 ='Red Dose (egs)'!A15 4841000 ='HI (eqs)'!E$20 =HN03 (eqs)'!D 16 ='HCI (eqs)'7N55 ='CsOH (eqs)tE$24 =D$10+SUM(C26:E26) =D$11+F2627 ='Red Dose (egs)'lA16 4841000 ='Hl (eqs)'!E$20 ='HN03 (eqs)'ID17 ='HCI (eqs)'!V56 ='CsOH (eqs)'!E$24 =D$10+SUM(C27:E27) =D$11+F2728 ='Red Dose (egs)'!A17 4841000 ='HI (eqs)'/E$20 ='HNO3 (eqs)!D18 ='HCI (eqsY'tN57 ='CsOH (eqs)/E$24 =D$10+SUM(C28:E28) =D$1 1+F2829 ='Rad Dose (egs)'IA18 4841000 ='HI (egs)'IE$20 ='HN03 (eqs)'/D19 ='HCI (eqs)'/N58 ='CsOH (eqs)'E$24 =D$10+SUM(C29:E29) =D$11+F2930 ='Rad Dose (egs)'!A19 4841000 ='HI (eqs)'IE$20 ='HN03 (eqs)'D20 ='HCI (eqs)!N59 ='CsOH (eqs)'IE$24 =D$10+SUM(C30:E30) =D$1 1+F3031 ='Red Dose (eqs)'1A20 4841000 ='HI (eqs)'!E$20 ='HN03 (eqs)'!D21 =-HCI (eqs)'!N60 ='CsOH (eqsg'!E$24 =D$10+SUM(C31:E31) =D$1 1+F3132 ='Rad Dose (eqsy'!A21 4841000 ='HI (eqs)'IE$20 ='HN03 (eqs)'1D22 ='HCI (eqs)'!N61 ='CsOH (eqs)'!E$24 =D$10+SUM(C32:E32) =D$11+F3233 ='Red Dose (e s)'!A22 4841000 ='HI (eqs)'IE$20 ='HN03 (egs)'/D23 ='HCI (egs)'/N62 ='CsOH (eqs)'IE$24 =D$10+SUM(C33:E33) =D$1 1+F3334 ='Red Dose (egs)'1A23 4841000 ='HI (eqs)'/E$20 'HNO3 (eqs)'1D24 ='HCI (egs)'!N63 ='CsOH (eqs)'lE$24 =D$10+SUM(C34:E34) =D$11+F3435 ='Red Dose (eqs)'!A24 4841000 ='HI (eqs)'tE$20 ='HN03 (eqs)'/D25 ='HCI (eqs)'/N84 ='CsOH (eqs)!E$24 =D$10+SUM(C35:E35) =D$11+F3536 ='Red Dose (egs)'!A25 4841000 =HI (eqs)'IE$20 ='HN03 (eqs)'lD26 ='HCI (eqs)7'N65 ='CsOH (eqs)'tE$24 =D$10+SUM(C36:E36) =D$11+F3637 ='Red Dose (egs)'lA26 4841000 ='HI (eqs)'E$20 ='HN03 (eqs)'!D27 ='HCI (eqs)'!N66 ='CsOH (eqs)'lE$24 =D$10+SUM(C37:E37) =D$11+F3738 ='Red Dose (eqs)'!A27 4841000 ='HI (eqs)'IE$20 ='HN03 (eqs)'!D28 ='HCI (egs)'/N67 =CsOH (eqs)'tE$24 =D$10+SUM(C38:E38) =D$11+F3839 ='Rad Dose (egs)'!A28 4841000 =HI (eqs)'IE$20 ='HN03 (eqs)'7D29 ='HCI (eqs)'/N68 ='CsOH (eqs)'fE$24 =D$10+SUM(C39:E39) =D$11+F39

I

pH (eqs)

Page 123: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Stationt)n't 2

Table 5-1 Eqs: GGNS Benchmark

Post-LOCA pH Calculation without SLCS

Calculation No. H21C-097Revision 0Page 5-15

A B C D E F G H

13 Pool [HI] • HNO 3A IHCI] [CsOH] Total IH+] Total [OH'-

14 Time Volume -

15 (hr) (liter) (g-mes-moles/) (g-moles/l) ,,_(g-molesil) (g-moles/l____-moes/_)__,

40 ='Rad Dose (egs)'lA29 4841000 ='HI (eqs)VE$20 =-'HN03 (egs)'D30 ='HCI (egs)IN69 ='CsOH (eqs)'IE$24 =D$10+SUM(C40:E40) =D$11+F40

41 ='Rad Dose (egs)'lA30 4841000 ='HI (eqs)'!E$20 ='HN03 (egs)'!D31 ='HCI (eqs)/N70 ='CsOH (egs)!E$24 =D$10+SUM(C41:E41) =D$1 1+F4142 ='Rad Dose (egs)'!A31 4841000 ='HI (eqs)!E$20 ='HN03 (eqs)'D32 ='HCI (egs)'/N71 ='CsOH (eMs)'IE$24 =0$10+SUM(C42:E42) =D$11+F42

43 ='Rad Dose (e s)'A32 4841000 ='HI (egs)'IE$20 ='HN03 (eqs)'l33 ='HCI (eqs)'!N72 ='CsOH (egs)'IE$24 =D$10+SUM(C43:E43) =D$11+F4344 ='Rad Dose (egs)'lA33 4841000 ='HI (eqs) 7E$20 ='HN03 (egs) 7D34 =HCI (egs)'!N73 ='CsOH (eqs)'IE$24 =D$10+SUM(C44:E44) =D$11+F44

45 ='Rad Dose (egsYIA34 4841000 ='HI (eqs)'IE$20 =HN03 (egsytD35 =7HCI (eqs sN74 =CsOH (eqsyIE$24 =0$10+SUM(C45:E45) =D$11+F45

46 ='Rad Dose (egs)'1A35 4841000 ='HI (egs)'lE$20 ='HN03 (egqsY36 ='HCI (egs)'1N75 ='CsOH (egs)!E$24 =D$10+SUM(C46:E46) =D$11+F46

47 ='Rad Dose (eqs)'lA36 4841000 ='HI (eqs)'!E$20 =HN03 (egs)'ID37 =-HCI (egs)'IN76 ='CsOH (eqs)'IE$24 =D$10+SUM(C47:E47) =D$11+F47

48 ='Rad Dose (eqs)'lA37 4841000 ='HI (egs)'IE$20 ='HN03 (egs)'tD38 ='HCI (egs)'/N77 =CsOH (eqs)'/E$24 =D$10+SUM(C48:E48) =D$11+F48

49 Notes50 Adjustments made in Table 4-1 of Attachment 4 (see Notes 1,-3) are not made for the benchmark. ,,.....__51

56557

pH (eqs)

Page 124: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-1 Eqs: GGNS BenchmarkPost-LOCA pH Calculation without SILCS.

Calculation No. H21C-097Revision 0Page 5-16

JK L M N

2 _

2 3________________________ ______

7

10 _____

11 _______

12___________________

13 Pool Water If, at. x [Hij Pool14 .Temp Density Pool Temp _____________________ ____ pH151 (ff) (-)~t' . -molesll) (g-molesll) )116 90 =1/vftsat(l116) 1=1 0A-(15.5129-0.0224*116+0.00003352*116 6A2) =(H16+GI6-SQRT((Hl 6+GI6)A 2-4(H1 6*G16-Ki 6)))/2 =G1-6-L1 6 =-LOG(MI6)17 ='SP Temp (egs)'IF6 =1/vftsat(l117) =10'-(15.5129-0.0224*11 7+0.00003352*117 A2) =(H1 7+GI 7-SQRT((H1 7+G17)A 2-4*(H1 7*G17-KI 7))Y/2 =G1 7-LI7 =-LOG(M17)18 160 = l/vftsat(118) =10A-(15.5129-0.0224*I18+0.00003352*I18A2) =(Hl8+G18-SORT((H16+G 18A 2-4*H18*G18-K16fl)/2 =G18-L08 =-LOG(M18.)19 ='SP Temp (egs)VF7 =llvftsat(119) =IOA.(15.51 29-0.0224*119+0.00003352*11 9A2) =(H19+G19-SORT((H1 9+G 19)A2-4*(H19*G19-K19)))/2 =G19-LI9 =-LOG(M19)20 ='SP Temp (egs)1IF8 =llvftsat(120) =1 0A-(15.51 29-0.0224*120+0.00003352*120A2) =(H20+G20-SQRT((H20+G20)A2-4*(H20*G20-K20)))/2 =G20-L20 =-LOG(M20)21 ='SP Temp (eqs)'VF9 =I/vftsat(121) =1 OA_(1 5.5129-0.0224*121 +0.00003352*121A2) =(H21+G21-SQRT((H21 +G21 )A2-4*(H21 G21-K21 )))/2 =G21-L21 .- LOG(M21)22 ='SP Temp( (es)'!FIO =i/vftsat(122) =10k'(1 5.51 29-0.0224*122+0.00003352*122 A2) =(H22+G22-SQRT((H22+G22)A2-4*(H22*G22-K22)))I2 =G22-L-22 =-LOG(M22)23 =SP Temp (egs)'!F1 I =Ilvftsat(123) 1=1 0'-(i5.51 29-0.0224*123+0.00003352*123 A2) =(H23+G23-SQRT((H23+G23)A2-4*(H23*G23-K23)))/2 =G23-L23 =-LOG(M23)24 ='SP Temp (egs)'IF12 =Ilvftsat(124) I=10'-(1 5.5129-0.0224*124+0.00003352*124 A2) =(H24+G24-SQRT((H24+G24)A 2-4*(H24*G24-K24)))12 =G24-1-24 =-LOG(M24)25 ='SP Temp (egs)'IF1 3 =I/vftsat(125) I=10'-(l5.5l29-0.0224*1250.0.0003352*125 A2) =(H25.G25-SQRT((H25+G25)A2-4*(H25*G25-K25)))12 =G25-L25 =-LOG(M25)26 ='SP Temp (eqs)'1F14 =1Itvftset(126) 1=10A-(1 5.5129-0.0224*126+0.00003352*126A2) =(H26+G26-SQRT((H26+G26)A 2-4(H26*G26-K26)))I2 =G26-1-26 =-LOG(M26)27 ='SP Temp (eqs)'!FI 5 =1/vftsat(127) I=10'- 15.5l 29 -0, 224*12 7+O.OOOO 3352127 A2 ) =(H27+G27-SQRT((H27+G27)A2-4(H27*G27-K27)))/2 =G27-1-27 .=-LOG(M27)28 =SP Temp (eqsyIF16 =11vftsat(128) 10'.A(1 5.51 29-0.0224*128.0.00003352*128A 2) =(H28+G28-SQRT((H28+G28)A2-4P(H28*G28-K28)))I2 =G28-1-28 1=-LOG(M28)29 ='SP Temp (egs)1IF1 7 =1/vftsat(129) I=lOA-(l 5.5129-0.0224*129+0.00003352*129A 2) =(H29+G29-SQRT((H29+G29)A2-4(H29*G29-K29)))/2 =G29-1-29 1-LOG(M29)30 ='SP Temp (eqsyt'FIB 8 I/vftsat(130) I=1 0'(1 5.51 29-0.0224*130+0.00003352*130A2) =(H30+G30-SQRT((H30+G30)A 24*(H30*G30-K30)))I2. =G30-L30 1=-LOG(M30)31 ='SP Temp (eqs)'!F1 9 =1/vftsat(131) I=10'-(1 5.5129-0.0224*131 +0.00003352*131A 2) =(H31 +G31-SQRT((H31 +G31 )A2-4(H31*G31-K31 )))/2 =G31-1-31 =-LOG(M31)32 ='SP Temp (egsylIF20 =1/vftsat(132) I=1 0'(1 5.51 29-0.0224*132+0.00003352*132A2) =(H32+G32-SQRT((H32+G32)A2-4*,(H32*G32-K32)))I2 =G32-1-32 =-LOG(M32)33 F'SP Temp (egs)'!F21 =1/vftsat(133) I=IOA-(15.5129-O.0224*133+O.00003352*133A2) =(H33+G33-SQRT((H33+G33)A2-4*(H33*G33-K33)))12 =G33-1-33 =-LOG(M33)34 1=SP Temp (egs)'IF22 =llvftsat(134) 1=1 0A.(15.5129-0.0224*134+0.00003352*134 A2) =(H34G34-SQRT((H34+G34)A 2-4*(H34*G34-K34))W2 =G34-L34 =-LOG(M34)35 1='SP Temp (egs)'!F23 =Ilvftsat(135) I=10'-_(15.5129-0.0224*135+0.00003352*135A 2) =(H35+G35-SORT((H35+G35)A 2-4*(H35*G35-K35)))12 =G35-1-35 =-LOG(M35)36 =SP Tmp (e s '1F24 1I/vttsat(136) =10A-I 15.5129-0.0224*136+0.00003352*136A2) =(H36+G36-SQRT((H36+G36)A2-'P(H36*G36-K36)))/2 =G36-1-36 =-LOG(M36)37 ='SP Temp (egs)'!F25 =1lvftsat(137) =J0A_(1 5.51 29-0.0224*137+0.00003352*137 A2) =(H37+G37-SQRT((H37+G37)A2-4*(H37*G37-K37)))12 =G37-L37 =-LOG(M37)38 ='SP Temp (egs)1IF26 =llvftsat(138) =10A-(1 5.5129-0.0224*138.0.00003352*138A2) =(H38+G38-SQRT((H38+G386r2-4(H38*G38-K38)))/2 =G38-1-38 =-LOG(M38)39 ='SP Tamp (egs)'!F27 =llvftsat(139) =10'- 15.51 29-0.0224*139.0.00003352*139A 2) =(H39+G39-SQRT((H39+G39)A2-4(H39*G39-K39)))/2 =G39-1-39 =-LOG(M39)

pH (eqs)

Page 125: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-1 Eqs: GGNS BenchmarkPost-LOCA pH Calculation without SLCS

Calculation No. H21C-097Revision 0Page 5-17

S JK L M N13 Pool Water K.at Ix [H*] Pool14 Temp Density P6ol Temp Ij pH15 ('F) (lbmf 3 (. (g-moles/1) j(g-molesll)j (-40 ='SP Temp (egs)'!F28 =1/vftsat(140.) =1 OA-( 5.5129-0.0224*140+0.00003352*140A2) =(H40+G40-SQRT((H40+G40)A2-4'(H40*G40-K40)Wy2 =G40-L40 =.LOG(M40)41 1='SP Temp (eqsy!IF29 =1 /vftsat(l41) =1 OA-(I 5.5129-0.0224*141+0.00003352*141 A 2 ) =(H41 +G41 -SORT((H41 +G41 )A2-4*(H41 *G41 -K41 )))2 =G41-1-411 =-LOG(M41)42 ='SP Temp ( qs)'IF30 =1 (vftsat(142) =1 0,1-(1 5.5129-0.0224*142+0.000C03352*142 A2) =(H424.G42-SQRT((H42.G42)12-4*(H42*G42-K42)))I2 =G42-1-42 =-LOG(M42)43 ='SP Temp (eqs)'!F31 =1 /vftsat(143) =1 Ok(1 5.51 29-0.0294*143+0.00003352*143 A2) =(H43+G43-SQRT((H43+G43)A2-4Q1H43*G43-K43)))I2 =G43-1-43 =-LOG(M43)44 ='SP Temp (eqs)!IF32 =1 lvftsat(144) =1 OA-(I 5.51 29-0.0224*144+0.00003352*144A12) =(H44+G44-SQRT((H44+G44)A2-4*(H44*G44K44)))I2 =G44-1-4 =-LOG(M44)45 ='SP Temp (eqs)'IF33 =1/vftsat(145) =10A-(1 5.5129-0.0224*145*0.00003352*145A2) =(H45+G45-SQRT((H45+G45)A2-4*(H45*G45-K45)))J2 =G45-1-45 .=LOG(M45)46 ='SP Temp (eqsylIF34 =1/vftsat(-146) =1 0A-(l 5.51 29-0.0224*146+0.00003352*146 A2) =(H46+G46-SORT((H46+G46)A 2-4*(H46*G46-K46)))/2 =G46-1-46 =-LOG(M46)47 ='SP Tem p (eqs)'!F35 =I/vftsat(147) =10A_(i 5.5129-0.0224*147+0.00003352*147 A2) =(H47+G47-SORT((H47+G47)A 2-4(H47*G47-K47))y2 =G47-L47 =.LOG(M47)48 ='SP Temp (egs)'1F36 =llvftsat(.148) 1 0A-(1 5.5129-0.0224*148+0.00003352*148A2) =(H48+G48-SQRT((H48+G48)A 2-4*(H48*G48-K48)))12 =G48-1-48 =-LOG(M48)49 ______________

53 _________

54 _ _ _ _ _ _ _ __ _ _ _

551_______________ ____________________ ___________________________

pH (eqs)

Page 126: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-2 Eqs: GGNS BenchmarkHydrlodic Acid (HI) Production

Calculation No. H21C-097Revision 0Page 5-18

A B C D EI Core iodine inventory 325 g-mole Ref. 7.12.32 !

3 Core iodine - gap r'elease =0.05*B1 g-mole =0.05!325 g-mole

4 Core iodine - EIV release =0.25*B1 g-mole_.. =0.25*325 g-mole5

6 Fraction of release as HI 0.05 , max __Reg Guide 1.183 (main body Ref. 7.10.2)7

8 Gap release onset 121 sec Ref. 7.12.39 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)10 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2)11

12 suppression

13 cumulative pool cumulative14 Time HI volume HI15 (hr) (g-mole) (liter) (g-mole/I)

16 onset =18/3600 0 4841000 =C16/D1617 0.1 =C164-(B17-B16)/(B9160)*B3*B6 4841000 =C17/D17

18 endof gap release =B16+B9/60 =C17+(B18-B17)/(B9160)*B3*B6 4841000 C18/D1819. 11 =C18ý(B19-B18)/(B10/60)*B4*B6 4841000 =C19/D19

20 end of EIV =B18+B10/60 =C18+B4*B6 4841000 =C20/D20

HI (eqs)

Page 127: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-3 Eqs: GGNS BenchmarkNitric Acid (HNO 3) Production

Calculation No. H21C-097Revision 0Page 5-19

A B .C D ENUREG/CR-5950 (main

I HNO 3 generation 0.0000073_ g-molell per MRad body Ref. 7.13)23

4 Suppression5 Pool cumulative

TOD @

6 Time 3467 MWt HNO 3

7 (hr) (rad) I(g-mole/1)8 onset ='Rad Dose (eqs)'yA79 end of gap release ='Rad Dose (eqs)'1A810 ='Rad Dose (eqs)'!A9.11 end of EIV ='Rad Dose (eqs)'IAlO ='Rad Dose (eqs)'1B10 =$B$1"Cl1/100000012 .... ='Rad Dose (eqs)'!AII ='Rad Dose (eqs)'IB11 =$B$1"C12/100000013 ='Rad Dose (eqs)'!A12 ='Rad Dose (eqs)'!B12 =$B$1*C13/100000014 ='Rad Dose (eqs)'!A13 ='Rad Dose (eqs)'!B13 =$B$1*C14/100000015 _'Rad Dose (eqs)'!A14 ='Rad Dose (eqs)'tB14 =$B$1C*15/100000016 =_Rad Dose (eqs)'lA15 ='Rad Dose (eqs)'iB15 =$B$1"C16/1000000171 ='Rad Dose (eqs)'!A16 ='Rad Dose (eqs)'IB16 =$B$1"C17/100000018] ='Rad Dose (eqs)'!A17 ='Rad Dose (eqs)'!B17 =$B$1*C18/1000000191 ='Rad Dose (eqs)'!A18 ='Rad Dose (eqs)'!B18 =$B$1"C19/100000020 ='Rad Dose (eqs)'tA19 ='Rad Dose (eqs)'1B19 =$B$1"C20/100000021 ='Rad Dose (eqs)!A20 ='Rad Dose (eqs)'!B20 =$B$1*C21/100000022 ='Rad Dose (eqs)'!A2.1 =Rad Dose (eqs)'!B20 =$B$1"C221/1000000

23 ___._ ='Rad Dose (eqs)'!A22 ='Rad Dose (eqs)'!B22 =$B$1*C23/100000024 ='Rad Dose (eqs)'!A23 ='Rad Dose (eqs)'!B23 =$B$1*C24/100000025 ='Rad Dose (eqs)'!A24 ='Rad Dose (eqs)'!B24 =$B$1"C25/100000026 ='Rad Dose (eqs)'!A25 ='Rad Dose (eqs)'!B25 =$B$1"C26/100000027 ='Rad Dose (eqs)'!A26 ='Rad Dose (eqs)'!B26 =$B$1"C27/100000028 ='Rad Dose (eqs)'!A27 ='Rad Dose (eqs)'!B27 =$B$1"C28/100000029 . ='Rad Dose (eqs)'yA28 ='Rad Dose (eqs)'!B28 =$B$1"C29/100000030 ='Rad Dose (eqs)'!A29 ='Rad Dose (eqs)'IB29 =$B$1"C30/100000031- -........ ='Rad-Dose-(eqs)"A30- ='Rad.Dose-(eqs)'!jB30- =$B$1*C3111000000.32 ='Rad Dose (eqs)'!A31 ='Rad Dose (eqs)'!B31 =$B$1"C32/100000033 _='Rad Dose (eqs)'!A32 ='Rad Dose (eqs)'!B32 =$B$1*C33/100000034 ='Rad Dose (eqs)'!A33 ='Rad Dose (eqs)'!B33 =$B$1"C34/100000035 ='Rad Dose (eqs)'!A34 ='Rad Dose (eqs)'!B34 =$B$1"C35/100000036 ='Rad Dose (eqs)'!A35 ='Rad Dose (eqs)'lB35 =$B$1"C36/1000000371 ='Rad Dose (eqs)'!A36 ='Rad Dose (eqs)'!B36 =$B$1"C37/100000038 ='Rad Dose (eqs)'!A37 ='Rad Dose (eqs)'!B37 =$B$1*C38/1000000

HN03 (eqs)

Page 128: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-4 Eqe: GGNS BenchmarkHydrochloric Acid (MCI) Production

Calculation No. H21C-097Revision 0Page 5-20

A B C E F GI Cables

3 hypalon properies:4 radiolysis yield, G 0.000002192 g-mole MCI per MRad-g NUREGICR-5950 (main body Ref. 7.13).5 linear absorption coefficient 52.08 cmt' for beta radiation NUREG-1081 (main body Ref. 7.15)

6 linear absorption coefficient 0.099 cmr' for gamma radiation NUREG-1081 (main body Ref. 7.15)7 density 1.55 glcm3 NUREG-1081 (main body Ref. 7.15)81

9 Cable jacket and insulation:1011 ____________ wlC, aeJmovati __________ _________ otimn . bl lnanlw

12 cable outer radius 0.35 in cable outer radius 0.3513 cable OD (max guar.) =2.B.12 In cable 00 (max gusr.) =2*G 1214 jacket thickness 280 mil -jacket thickness 28015 jacket material - hypalon . _jacket material hypelon

16 insulation thickness - m insulation thickness1_7 insulation material . insulation material '"

18 length in free air linear I . length in free air ,

19 length in tray linear ft ._length in tray .20

21 chlorina-bearing material:2.2

23 volume in free air cm5

volume In free air

24 volume in tray cm3 volume.in bay -

25 mass in free air 873.65 IbmI mass in free air 1561.0326 mass in free air =825*453.6 gram mass in free air =G25*453.627" mass.in tray 873.65 Ibm mass in tray 14049.2728 meas in tray =827*453.6 gram mass in tray =G27"453.82930 Irradiation:

3132 =allB1,

33 1 .... beta34 gamma free air -- tray gamma

36 cable radius (cm) =$B13*2.5412 =$B13"2.54/2 =$Bi3"2.54/2 *$G13'2.54/237 jacket thickness (cm) =($B14y1000"2.54 =($14Y/000"2.54 =($814Y)0002.54 ... =(SG14)/1000"2.54

38 mass Irradiated (g) =926+B28 =B26 =0.5*B28 =G26+G28

39

i(1/($B$5'2)r(EXP(- =(.f1($8$5^2)(EXP(-=(1I(SB$6^2)(EXP(- $B$5"C37)($B$5,C37+1)- $B$5"b37)($B$5*037-1)• -•(1I(SB$6^2)(EXP(-Bs$6°B37)($SB5B374-1 )-1)- 1)-C361$S$5'(EXP(-' 1)-03615B$5'(EXP(- $B$5*G37)($B$OG37.+l1)-1)-B36/$B$6"(EXP(-$B$6"B37)- $B$5"C37)-1))(C36"C37- $B$5"D37)-l))I(D36"D37- G365$B$6"(EXP(-$B$6G37)-

40 flux averaging factor 1))/(B365B37-B37^2l2) C37^2I2) D37L2I2) 1))/(G36*G37-G37^2l2)41 absorption factor =1-EXP(-$B$6*B37) =i-EXP(!$8$5"C37)-. =I-EXP(-$8$5"D37) _f-EXP(-$B$6°G37)

4243

HCI (eqs)

Page 129: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5

Nine Mite Point Nuclear Station

Unit 2

Table 5-4 Eqs: GGNS Benchmark

Hydrochloric Acid (HCI) Production

Calculation No. H21 C.097Revision 0

Page 5.21

A C D E F G.

44 pool Drywall Containment Drywall Containment45 Time volume y TID .TID TID . TID

46 (hr) (fiter) (red) (red) (red)

47 ='Rad Dose (eqs)'1A7 4841000 ='Red Dose (eqs)'IG7 ='Rad Dose (eqas)'1H7 ='Red Dose (eqs)'I7 ='Rod Dose (eqs)'IJ7

48 -'Red Dose (eqs)'PA8 4841000 ='Rad Dose (Oqs)!G8 -'Red Dose (eqs)'lH8 ='Red Dose (eqs)'118 ='Red Dose (eqs 'lJ849 ='Red Dose (eqs)'1A9 4841000 ='Red Dose (eqs)'7G9 .'Red Dose (eqs)'1H9 ='Red Dose (eqs),'t9 ='Red Dose (eqs)'1J9

50 ='Red Dose (eqs)'tA10 4841000 ='Re d Do se (eqs)7 GI10 'RedRDosos(eqs)10 -l10 ='Red Dose (eqs)'IJlO

51 ='Rad Dose (eqs)'tAl 1 4841000 ='Red Dose (eqs)'1G11 ='Red Dose (eqs)'IHII ='Red Dose (eqs)'Il =&Red Dose (eqs)'UJ11

52 -'Red Dose (eqs)'tA12 4841000 ='Red Dose (eqs) 7G12 ='Red Dose (eqs)'IH12 -'Red Dose (eqs)'l112 ='Red Dose (eqs)'lJ12

53 -'Red Dose (eqs)'tA13 4841000 'Red Dose (eqs)'1G13 ='Red Dose (eq;)'1H13 -'Red Dose (eqsY!113 ='Red Dose (eqs)'IJ1354 ='Red Dose (eqs)'lA14 4841000 ='Red Dose (eqs)'7G14 ='Red Dose (eqs)'1H14 ='Red Dose (eqs)'1114 ='Red Dose (eqs)'lJ14

55 ='Red Dose (eqs)'tAl5 4841000 ='Red Dose (eqs)7G15 ='Red Dose (eqs)'lH15 ='Rad Dose (eqs)j !15 ='Red Dose (eqs)'IJ1556 ='Red Dose (eqs)'lA18 4841000 ='Rd Dose (eqs)'fGf8 =Reol Dose (eqe)'lH16 -'Red Dose (eqs)'1118 ='Rad Dose (eqs)'VJ1857" ='Rod Dose (eqs)'IA17 4841000 ='Red Dose (egs) IG17 ='Red Dose (eqs)'lH17 -'Red Dose (eqs).7117 -'Red Dose (eqs)'lJ17

58 -'Red Dose (eqs)'lAl8 4841000 ='Rod Dose (eqs)'7G18 W'Red Dose (eqs)'1H18 ='Red Dose (eqs)'1n18 ='Red Dose (eqs)'lJ18

59 ='Rod Dose (eqs)'lA19 4841000 ='Red Dose (eqs)'7G19 ='Red Dose (eqs)'lH19 ='Red Dose (eqs)'1119 ='Red Dose (eqs)'1J1960 ='Red Dose (eqs)'IA20 4841000 ='Red Dose (eqs)'IG20 ='Red Dose (eqs)'lH20 ='Red Dose (eqs)'7120 ='Red Dose (eqs)'IJ2061 ='Rad Dose (eqs)'IA21 4841000 ='Red Dose (eqs) ?G21 ='Red Dose (eqs)'1H21 ='Rad Dose (eqs) '121 ='Red Dose (eqs,)'J21

62 ='Red Dose (eqs)'ytA22 4841000 ='Red Dose 'eqs)'fG22 ='Red Dose (eqs)'IH22 -'Red Dose (eqs)'1122 ='Red Dose (eqs)'IJ22

63 -'Red Dose (eqs)'tA23 4841000 ='Red Dose (eqs)'7G23 -'Red Dose (eq;s)'IH23 ='Red Dose (eqs)'1123 ='Red Dose (eqs)'IJ23

64 ='Red Dose (eqs)'1A24 4841000 ='Red Dose (eqs)'fG24 ='Red Dose (eqs)'lH24 ='Red Dose (eqs)7124 ='Red Dose (eqs) 1J2465 ='Rad Dose (eqs)'IA25 4841000 ='Red Dose (eqs)'IG25 'RdDo'Red Dose (eqs)'125 ='Rd Dose (eqs)'1J25

61 -'Red Dose (eqs)'IA28 4841000 ='Red Dose (eqs)'IG28 ='Rod Dose (eos)'1H28 ='Red Dose (eqs) 7128 ='Red Dose (eqs) '1J2867 -'Red Dose (eqs)'IA27 4841000 ='Red Dose (eqs)'IG27 ='Red Dose (eqs)'1H27 -'Red Dose (eqs)'1127 ='Red Dose (eqs)'1J27

68 ='Red Dose (eqs)'1A28 4841000 'Red Dose (eqs)'7G28 -'Red Dose (eqs)'lH28 ='Red Dose (eqs)'7128 ='Red Dose (eqs)'lJ28

69 ='Red Dose (eqs)'IA29 4841000 ='Red Dose (eqs)'1G29 ='Red Dose (eqs)'1H29 ='Red Dose (eqs)'t129 ='Red Dose (eqs)'IJ29

70 ='Rod Dose (eqs)'1A30 4841000 ='Red Dose (eqs)'7G30 ='Red Dose (aes)'IH30 ='Red Dose (eqs)'7130 ='Red Dose (eqs)'1J3071 -'Red Dose (eqs)'lA31 4841000 ='Red Dose (eqs)'fG31. ='Red Dose (eqs)'1H31 -'Red Dose (eqs)'t131 ='Red Dose (eqs)' J31

72 ='Red Dose (eqs)'IA32 4841000 Red Dose (eqs)'1G32 ='Red Dose (eqs)'IH32 ='Red Dose (eqs)'1132 ='Red Dose (eqs) 1J3273 ='Red Dose (eqs)'IA33 4841000 =Red Dose (eqs)'fG33 "'Red Dose (eqs)'1H33 ='Red Dose (eqs)1133 ='Red Dose (eqs)'LJ33

74 ='Red Dose (eqs)'IA34 4841000 ='Red Dose (eqs)7G34 ='Red Dose (eqs)'IH34 a'Red Dose (eqs)'1134 ='Red Dose (eqs)'IJ3475 ='Red Dose (eqs)'1A35 4841000 -'Red Dose (eqs)7'G35 -'Red Dose (eqs)'1H35 -'Rod Dose (eqs)'l135 ='Red Dose (eqs,)'J35

76 ='Red Dose (eqs)'IA36 4841000 -=Red Dose (eqs)7(336 ='Red Dose (eqs)'IH38 ='Red Dose (eqs)'1136 ,'Rae Dose (eqs)'lJ3077 ='Red Dose (eqs)'IA37 4841000 =Red Dose (eqs)'IG37 ='Red Dose (es)'1H37 ='Red Dose (as) '137 -'Red Dose (eqs)'137

HCI (eqs)

Page 130: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5KMZ VM P.Itvn~ udest stafimr

Unit 2

Table 5-4 Eqs: GGNS Benchmark Calculation No. H21C-097

Page 5-22

234

5

6

7

9101112 in

13 lin14 mil

1516 mil17is linear It19 linear ft0

21

23 cm'

24 cm'25 Ibm

_L6 gram27 Ibm

28 gram

29303132 =Gi i

33 beta

34 free air

3536 =$G13*2.54/2 =$G13*2.5412

=($G14yjaOG*2.54 =($G14)/10Q0*2.54

38 =G26 -0.5*G28

39

=(11($B$SA2)*(EXP(-$B$S*H37r(se$S*H37+iYIYH36/$8$5*(EkP(-

40 $B%5'H37)-1))/(H36'H37-H37A2J2) 1=(11($B$SA2r(EXP(-$B$5-137)-($8$5*137+iýlý136/$6$5'(EXP(.$B$5'137YI)Y(136'137-137A2/2)=I- XPJ-$B$S'H37) I XP(-$B$5-137)

42

143

HCa (eqs)

Page 131: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

Table 5-4 Eqs: GGNS Benchmark

Hydrochloric Acid (HCI) ProductionCalculation No. H21C-097

Revision 0

Page 5-23

H44Dryll HCI45 gamma beta •_Tota_46 (g-mole) _____________call

47 =$B$4(($B38"SB$401$B$41)+($GS38"SG$40°SG$41))D47/1OOO000 =(($C$38I$C$4OS$C$41+$D$38$D$405$D$41)+($H$38S$H$40'$H$41+$i$38••1$4O$i$41i) $* 41F4711000•••• -(H47+147)/C4748 =$$4($B$38*$B$40"$B$41+$G$38'$G$40"$G$41)*D481t000000 =(($C$38*$C$40*$C$41+$D$38"$D$401$D$41 )+($H$38"$H$40'$H$41+$1$38"$1540*$1541))$BS4"F48110000 =(H48+I48)/C48

49 =$B$4°(SB$38*$B$401$5$41+$G$38&$G$40"$G$41)0D4911000000 =(($C$38"$C$40"$C$41.$D$38*$D$40$D$41)+($H$38$H$d0*$H$41$538$140$$541))$B$4-F49/1100000 =(H49+149)/C49=$SB$4*($$38"$$S40"SB4 +$G$38S$G$40"$G$41)'D501000000 =(($C$38$C$4O$C$41 .$D$38$D$40$D$41)+($HS38*$H$40$H$41+i$3f$$4O$I$41 ))1$$4*F5W/10 = +(H5O+I5O)/C`5

1 =$B$4"($B$38*$B$40"$B$41+$G$38"$G$40"$G$41)0D51t1000000 =(($C$38$C$40"$C$41÷$D$38*$D$40"$D$41 +($H$38"$HS40*$H$41+$1538*$1540"$1$41))B$4*F51/10000 =(H51+151)/C5l5 =$B$4($B$38"$B$40"S$41+$G$38"$G$40"$G$41)*D52/1000000 =(($C$381$C$40*$C$41÷$D$381$D$40$D$41)+($H$38$$H$40$H$41+$I$38$$40$$•41))!$0$4*F52110000 =(H52+I52)/C52

5 =$B$4($B$38"$B$401$B$41+$GS38"$G$40"$G$41)*D5311000000 =(($C$38$C$40$C$41+$D$38*$D$40$D$41)+($H$381$H$40*$H$41+$I$38'$1$40$$•41))*$B$4*F531100=0H53+1532)C535 =$B$4($B$38$B$40"$B$41+$G$38*$G$40*$G$41)*D54/1000000 =(($C$38"$C$40'$C$41+ $D$38*$D$40*$D$41)+($H$38*$H$405$H$41+$1538"$1540"$1$41 )$B$4"F54/10000 a(H54+154)/C5455 =$O4S'($B$38 $40"$B$41S$G$38"$G$40"$G$41)0D5511000000 =(($C$38*$C$40*$C$41÷$D$38*$D$40*$D$41)+($H$38$H$40*H$41+S$I38$i$40*$$41))*$B$4*F5510000 =(H55+155)/C5

5 =$BS4"($B$38"$B$40"$B$41+SGS38"$GS40"$G$41) D56/1000000 =(($C$38°$C $4$40C$41$$+$38*$D$40*$D$41)+($H$38*$H$40*$H$41+$1$38*$1$40$$$$41))-B$4*F56/10000••••= H56+I5)C557 =$B$4($B$38"$B$40"$B$41+$G$381$G$40"$G$41)D57/1000000 =(($C$38$CC$40'$CS41+$D$38'$D$40"$D$41)+($H$38"$H$40"$H$41+$1538e$1$40"$1$41)o B$4"F571100000 =(H57÷+57y)C5858 =$B$4'($B$38"$B$40*$B$4 1$G$38"$G$40$G$41 )*D5811000000 =(($C$38"$C$40$C$41+$D$38'$D$401$D$41 )+($H$38"$H$0"$H$41+$1538"$1$40$1S41))*$B$4F58/100000 =(H57+158)/C585 =$B$4($B$38"$B$401$B$41+$G$38*$G$40*$GS41)D59/1000000 =(($C$38*$C$40*$C$41+$D$38*$D$40"$D$41) ($H$38*$H$40"$H$41+$1538*$1$40°$1541))$B$4*F59/100000 =(H59+i59)1C590 =$$4'($B$38"$B$40"SB$41+$G$38*$G$40"$G$41sD5011000000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$D$41)+($H$38*$H$4OI$H$41+$1538$1540"$1541 )1SB$4"F601100000 =(H5+601)/C60

61 =$B$4"($$38$B$40$B$41 $G$38"$G$40"$G$41)D6111000000 =(($C$381$C$40S$C$41÷$D$38"$D$40"$D$41)+($H$38S$H$40"$H$41+$1$38"$1540$1541)sB$S4"F61/100000 =(H61+I61)/C616 =$B$4($B$38"$B$40$B$41+$G$38*$GS40"$G$41 621/1000000 =(($C$38"$C$40S$C$41+$D$38"$D$40*$D$41)÷($H$38"$H$40*$H$41+$1538"$1540S$1S41 )$B$4F621/10000 =(H62+162)/C6263 =$$4($B$38*$B$40*$B$41+$G$38*$G$40S$G$41)*D6311000000 ( ($C$38&$C$40*$C$41+$D$381$D$40*$D$41)+($H$38$$H$40$HS41+$1$38.$1$40*$i$41))*$B$4*F63/100000 =(H63+163)/ýC3

6 =$B$4($B$38SB$40°$B$41.$G$38"$G$40"$G$41)0D6411000000 =(($C$38*$C$401$C$41÷$D$38"$D$40I$D$41)+($HS38"$H$40*$H$41+$1$38"$1540S$1S41 ))$$4"F64/100000 =(H64+164)/C6465 B$4*($B$38$B$401$8$41t$G$38S$G$40*$Gd41)*D65/1000000 =(($C$38I$C$40°$C$41+$D$38"$D$40"$D$41 .($H$38S$H$40*$H$41+$1538°$1$40$154I ))Y$B$4F6510000 7H5+165)/C65656 S$4'($B$38"$B$40S$B$41+$G$38'$G$40*$G$41)*D6611000000 =(($C$38*$C$40'$C$41+$D$38*$D$40*$D$41)+($H$38*$H$40*$H$41+S$$38$I$40*•$•41))r$B$4°F661100000 =(H66+160)/C666 =$$4"($B$38*$B$40*$B$41+$G$38*$G$40$G$41l)06711000000 =(($C$38*$C$40$C$41+$D$38*$D$40*$D$41 )+($H$38S$H$40*$H$41+$1$38"$1$40"$1$41)) $B$4"F671100000 =(H67+I67/6;7

6 =$B$4($B$38°$$40S$B$41+$G$38S$G$40"$G$41)D6811000000 =(($C$38*$C$40°$C$41+$D$38*$D$40"$D$41)+($H$38*$H$40"$H$41+$1538*$1540"$1S41))°$8$4"F68/10000( =(H68+168)/C676 =$B4($B$388$B$40$B5$41+$G$38*$G$40"$G$41)*D69/1000000 =(($C$38"$C$40*$C$41+$D$38r$D$40"$D$41)+($H$38"$H$40"$H$41+$1538$1540S$1541))$B$4*F691100000 = H69+1698)C69

S=$B$4*($8$38$B$40*$B$41$G$38"$G$40*$G$41)*D7011000000 =(($C$381$C$40*$C$41+$D$38*$D$40$D$41 )+($H$38"$H$40*$H$41+$1538$1$40*$1$41 )r$B$4F701100000 =(H70+I70)1C7O71 =$$4*($S$38°$8$40$B$41 +$G$38*$G$40*$G$4r)D7111000000 =(($C$38$C$4S0$C$41+$D$38*$D$40*$D$41)+($H$38*$H$40*$H$41+$S$38S1$40$1$$41))y$B$4*F711100000 =(H70+171)/C7172 =$$4($B$38"$B$40'$B$41+$G$38"$G$40*$G$41)D721/1000000 =(($C$38"$C$40*$C$41+$D$38*$D$40*$D$41)+($H$38*$H$40*$H$41+$1538*$1540"$1$41)rsB$4°F721/1000 =(H72+172)/C7273 $B$4($B$38S$B$401$B$41.$G$38$G$40*$G$41)*D7311000000 =(($C$38$C$40rsC$41 +$D$38$D$40*$D$41) ($H$38$H$40*$H$41+$1$38r$1$40"$1$41))$B$4*F73/100000 =(H73+173/C737 =$B$4"($$38S$$401$B$41+$G$38"$G$40*$G$41)*074/1000000 =(($C$38"$C$40"$C$41+$D$38"$D$40"$D$41)+($H$38*$H$40*$H$41+$I$3B*$1540°$1541))sB$4*F741100000 =(H74+174),C74

=$B$4°($B$38"$B$40*$B$41÷$G$3S*$G$40"$G$dl)*07511000000 .= (($C$38"$C$40"$C$4 l+$D$38°$D$40*$D$41 )+($H$38*$H$40*$H $41 +$153S'$1540"$1541))*$B $4"F751100000 =(H7-1754,7)/C7575 =$B$W($B$38*$8$4018B$41.SG$38S$G$40*$G$4lrO7SiOOOOoo =(($C$38*$C$40s$C$41+$D$38B$0s40$0541 +($H$36*$HS40OSH$4i+$1S381$1$40*$1S41 S0S84*F75/l00000 = H75+I75)1C7576 =$B$4"($B$38$B$40S$B$41+$G$38"$G$40'$G$41)°07611000000 =(($C$3$C$40$C$41+$D$380$D$401$D$41)+($H$38$H$40*$H$41+$1$38*$1$40"$1$41) $B$4*F76/100000 =(H76+I7NK/C7677 =$B$4($B$38"$B$40'$B$41.$G$38*$G$40*$G$41)°O7711000000 =(($C$38*$C$40i$C$41+$D$38°$0$40"$D$41)+($H$38*$H$401$H$41+$1538"$1$40i$1541))*$B$4*F771100000 =(H77+177)/C77

HCI (eqs)

Page 132: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

Table 5-4 Eqs: GGNS Benchmark

Hydrochloric Acid (HCI) Production

Calculation No. H2IC-097

Revision 0Pogp 5-24

K L M N

2 ___________

345

78. _ _ _ _

9010 __________________________ _________

12 ________________________________

143____________________________________________ ______ __________

174 ___________________________ __________

is _ _ _ _ _ _ _ _ _

2821 ____________________________

233

36

38391______________________________

4032 ___________________________ __________

4133 __________________________ ______________________________________________ _______ __________

4234 ____________________________ ________________________________________________ ________ ___________

4335 ____________________________ ___________________________________________________________________

HCI (eqs)

Page 133: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

Table 5.4 Eqs: GGNS BenchmarkHydrochloric Acid (HCl) Production

Calculation No. H21C-097Revision 0Page 5-25

K L M, N44 Containment HCI

45 gamma beta Total HCI46 (p-mole) (pgmole) (g-moe/A) (g-mole/i)47 =$8$4(($8$38"BS$40'BS41)+(SGS38*$G$40"SG$41))rE47/1000000 =(($C$38*$C$4OiC$41 +$038$DS40SD$41)+($H$38$HS40SH$41+$l$38$1$40*$$41))$B)4*G47/1000000 K47+L47)/C47 =(H47+l47+K47+L47)/C4748 =$B$"(($BS38"$B$40r$B$41)t($G$38*$G$40$G$41))pE4a/1000000 =(($C$386$C$40I$C$41+DS38r$D$40SD$41)+($H$386$H$40$H$41+$1$38*$1$40*•1$41))$B$4*G41000000 K48+L48)/C48 =(H48+I48+K48+L48)/C4849 =$54(($B$38"SB$40°5BS41)+($GS38°$G$40"$G$41))*E49/1000000 =(($C$38r$C$40*$C$41+$DS38-$DS40*$D$41)÷(SH$38$HS40$H$41+$.38$I$40*S$41))i$B$4G49/1000000 =(K49+L49)/C49 =(H49.I49+K49+L49)/C4950 =$8$4(($B$3r"SB$40"$B$41)+($G$38"$G$404SGS41))°ESO/1000000 =(($C`18°$C540$C$41$D$38-$D$40*$D$41)+($H$38$H$40SH$41+S$38*$1$40'S41))`$B$4G50/1000000 =(K50+L50)/C50 =(H50+l50.K50+L50)/C5O51 =$8$4((SB$38$$40"$B$41)+($G$38"$G$40"$G$41))*E51/1000000 =(($CS38°$C$40I$C$41+$0$38*$D$401$D$41)+($H$38r$H$40I$H$41+$l$38*$$401*$1$41)) $B$4*G511l000000 =(K51+L51)/C51 -(H5l+I51+Kf5+L51)/Cý f52 -B$4(($BS38"$$401BS41)+($G$38"$G$40"$GS41))°E52/1000000 =((SC$38*$C$40*$C$41+$D$38*$DS40I$D$41)+($H$38°$H$40-$H$41+$1$38$*1$40*$1$41))*$B$4*G52/1000000 =(K52+L52)/C52 =(H52.152+K52L52)V/C5253 =$B$4'(($B$38"$B$40"$B$41)+($GS385$G$40"$G$41))PE53/1O00000 =(($C$38*$C$40.$C$41+$D$38i$D$40*$D$41)+($H$38*SH$40*$H$41+$Sl361$43` $l$44))-$8$4*G53/1000000 =(K53+L53)/C53 =(H53+l53+K53+L53)/C5354 =$8$4"(($B$38*BS$40"$B$41)4($G$38°$G$40DSG$41))*E54/1000000 =(($C$38*$CS40`$C$41+$D$38*$D$4O$D$41)÷($H$38$H$4O$H$41+$S$38*$l$40$$41)•$B$4G54/1000000 =(K54+L54 C54 -(H54+154+K54+L54)/C5455 =$B$4"((SB$38"$B$40°$B$41).($G$38"$G$401$G$41))*E5511000000 =(($C$38*SC$40'$C$41+SO$38a$DS40°$D$41)+($H$38.$H$4Oi$H$41+Sl$381$1$40*$$41))$B$4*G55/1000000 =(K55+L55)/C55 =(H55+155+K55+L55)/C5556 =$85$4(($B$38"SBS40"$B$41)÷($G$38"$G$40$G841))'E56/1 000000 =(($C$38C$40$C$41+S $4D$ )$3DS40S41(SHS386$H$4O$H$41+$S$38$$1S40*$1$41)).$8$4.G5/1000000 =(K568L56)/C56 =(H56+l56+K56+L56)/C5617 =$8$4"(($B$38"$8$40"$B$41)+($G$381$G$40"$G$41))*E57/1O00000 =(($C$38*$C$40$C$4l+SD$38r$D$4*D0$41)+($H$38$H$4OS$H$41+$1S38°$'$4011$41))i$B$4G5?/000000 =(K57+L/57 =(H57+l57+K57+L57)/C57

58 =SB$4(($BS38$B$40"$B$41)+($G$38$SGS40"SGS41))°E58/I000000 =(($C$38$SCS40i$CS41+$D$38$$D$40oiDS41)+($H$38.$H$40S$H$41+$S$38*$1l40I$i$41)).BS$4.G58/1100000 =(K58+L58)/C58 =(H58.l58+K58+L5B)/C58

59 =$B$4-(($B$381$B$400$B$41)*(SG$38°$GS40"$G$4I))yE59/1000000 =(($C$38.$C$40$C$41+$$38*S0$4*°$0$41)+($H$38r$H$40°$H$41$1$$38.$1$40*$1$41))°$B$4.G59/1000000 =(K59+L59)/C59 =(H59*l59+K59÷L59)/C5960 =$B$4 (($B$38"$B$401$5541)+($GS38"$G$40"$G$41))PE60/1000000 =(($C$38B$C$40$C$41+$0S381$D$40*$D$40)+($H$38*$H$40*$H$41+$S$386$IS40°$l$41))I$B$4*G60/100 0 =(K60+L60)/060 =(H60+-60+K60+L60)/C6061 =$B$4(($B$38"SB40*BS41)+($G$38"$G$40$GS41)) E61/SI000000 =(($C$38*$C$4°0$C$41+$DS381$D$40s0$D41)+($H$38.$H$4O°SH$41+$.$383$1$40*$4$41))S$B$4*G61/1000000 =(Klf61 )/i C61 =(H61+SI +K61+L6fV/C6162 =$B$4(($BS38"$B$40i$B$41)+($GS38"$G$40*$G$41))YE62/f000000 =(($C$38$C$40*$CS41+$D$381$D$40`$D$41)+($H$38.$H$40Y$H$41+$1$386$SS40••$l$4))$$4.G62/1100OO -(K62+L62L/C62 =(H62+l62+K62+L62)/C62

63 =$B$4"(($BS38"B$40"$B$41).($GS38"$GS40"$G$41))PE63/1000000 =(($C$38r$C$40*$C$41+$D$38r$D$4o-SD$41)+($H$38OSH$40*$H$41+$l$381lS40$1$4l)) $B$4eG63/10 0 =(lK63+L63 /063 =(H63+lG3+K63+L63)1C6364 =$B$4-(($6838*$B$40"$B$41)+($G$38"$G$40*$G$41))pE64/1000000 =(($C$381*c$40*$C$41.$D$38$D$40*$D$41)+($H$381$H$40*H$41.$38$140*$S4l))S$B$4.G64/1000000 =(K64+L64)/C64 =(H64+l64+K64+L64)/C6465 =$5$4"(($S$38°$B$40°$8$41)+($G$38r$G$40*$G$4t))pE65/1000000 =(($C$38*$C$4O*$C$41+SD$38$D$4OIOS414)+($H$38r$H$40*$H$41+$l$38r$1$40••1$41))1$S$4*G65/1000000 = Kg5+L65/C65 =(H65+l65+K65+L65)/X6566 =$B$4"(($B$38"$8540°$B$41)+($G$38"$G$40"$G$41))*E66/I000000 =(($C$38r$C$40$C$41+$D$38r$D$40O$D$41)+($H$38S$H$40*$H$41+$l$38$$1$40*$1$41))°$BS4*G66/1000000 =(K66+L66 /C66 =(H66+l66+K66+L6s)/C6667 =$B$4"(($B$38*$B$40"SB$41)+($G$386SGS40"SG$41))°E67/1000000 =(($C$386$C$40$C$41+$D$38$D$40D$4l)+($H$385$H$40*H$41+$1$38$$40••1$4 ))*$8$4*G7/1000000 =(K67÷L6T)/067 =(H87+l67+K67+L67)/06768 =$B$4"([$B$38"$B$40*$B$41)+(SGS38*$G$40*$G$41))E68/IO100000 =(($C$3B$C$40'$C$41+$D$38*$D$40°$0$41)+ $HS38S$H$4O$H$41+$$38$1$40'$1$41))*$B$4G681000000 =(K68+L68)/C68 a(H88+l68+K68+L68)/Cf869 =$B$4"(($B$38°$B$40"B$41).($G$38*$G$4O"$G$41))*E69/1O000000 =(($C$38*$C$4O$C$4l+$0$38$D$40*$D$41)+($H538.$H$40$H$41+$S$38*$1$40*$1$41))*$B$4G69110000 =(K69+L69)/I69 =(H69+I69+K69+L69)/C6970 =$B$4 (($B$381$B$401$541)+(SG$38"$G$40"$GS41))PE7O/l000000 =(($CS38S$C$40$S$41+$l$38`$DD40$D$41)+'$H$38r$H-t$40*$H$41+$$38*$1$40*$l$41)) $B54.G7011000000 =(K70+L70)/C7O =(H70Ol70+K70TL70)?7071 .$B$4(($B$38*SB$40"SB$41)+($GS38*$G$40*$G$41))pE7111000000 =(($CS3$C$40*$C$41+$D$38i$D$40$D$41)+($H$38r$H$40$H$41+$S$38.$I$40*$1$4))8$4*G71/1000000 =(K7l+L71)/C07 =(H7f+l7l+K7l+L7l)/C71

72 =$B$4(($8$38"$B$40*1B$41)+($G$38"$G$40*$G$41)) E72/1O000000 =(($C$38*$C$40'$C$41+$D$386$0$4019D$41)+($H$38$H$4O$H$41+$l$381$1$40*$4$4flY S'G72/1000000 =(K72+L72)/C72 -(H72+172÷K72+L72)/C7273 =$B$4*(($B$38°$B$40"$BS41)*($G$38*$G$401$G$41))*E73/11000000 =(($C$38*$CS4OIC$4l+$D$381$D$40`D$41)+($H$386$H$40*$H$41+$$38r$S$40*$O$41))$B$46G73/1000000 =K3+73+/073 =(H73+I73.K73+L73)/C7374 =$B$4Y(($B$38"$BS40"$8$41)+($G$38"$G$40"$G$41))PE74/l000000 =(($C$381$C$40*$C$41+$D$38°$D$40*D$41)÷($H$38$H$40*$H541+$S$38$$40*$1$4f))$B$4*G4/1000000 =(K74+L74)/C74 =(H74+l74+K74.L74)XC74

75 =$B$4°(($BS38"$B$40*$B$41)+($G$3B*$G$40"$G$41)) E75/1 000000 =(($C$38°$C$40*$CU41+$D$380$D$40*$D$41)+($H$38$H$40-$4H$41+$l$38*$l$40154$1))-$BS4G75/1000000 =(K75+L75)/C75 =(H75+I75+K75+L75)/C75

76 =$8$4°(($B$38-$B$40*$B$41)+($G$38*$G$401$G$41))PE76/O000000 =(($C$38r$C$40$CS41+$S$38°$D$40*$D$4l)+'$H$38*$H$40*$H$41+$l$38*$1$40$$$41))$8$4G76/1000000 =(K76+L6/6 =(H76+I76+K76+L76)/C7677 =$B$4"(($B$38"$8$40"1B$41)+($G$38"SG$40*$G$41))PE7/IO000000 =(($C$38*$C$40*$C$41+$D$38*$D$400$D$41)4($HS380$H$40*SH$4f+$1$38$$1$40*$1$41))$IB$4*G77/1000000( =K77+L77)/C77 =(H77+I77+K77iL77)/C77

HCI (eqs)

Page 134: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-5 Eqs: GGNS BenchmarkCesium Hydroxide (CsOH) Production

Calculation No. H21C-097Revision 0Page 5-26

A B C D _1 Core cesium inventory 2400 g-mole Ref. 7.12,323 Core cesium - gap release =0.05"B1 g-mole =0.05*2400 g-mole4 Core cesium - EIV release =0.2*BI g-mole =0.20*2400 g-mole56 Csl - gap release =(1-'HI (eqs)'!B$6)*'HI (eqs)'!B3 g-mole fraction iodine release in form of Csl7 Csl - EIV release =(1-'HI (eqs)'!B$6)*'HI (eqs)'!B4 g-mole fraction iodine release in form of Csl8

9 CsOH - gap release =B3-86 g-mole10 CsOH - EIV release =B4-B7 g-mole

12 Gap release onset 121 sec Ref. 7.12.313 Gap release duration 30 minutes Reg Guide 1.183 (main body Ref. 7.10.2)14 EIV duration 90 minutes Reg Guide 1.183 (main body Ref. 7.10.2)15

16 suppression17 cumulative pool cumulative18 Time CsOH volume CsOH19 (Hr) (g-mole) (liter) (g-mole/I)20 onset =B1 2/3600 0 4841000 =C20/D2021 0.1 =C20+(B21-B20)/(B13/60)*B9 4841000 =C21/D2122 end of gap release =B20+B13/60 =C21+(B22-B21)/(B13I60)*B9 4841000 =C221D2223 1 =C22+(B23-B22)/(B24-B22)*B10 4841000 =C23/D2324 end of EIV =B22+B14/60 =C22+B10 4841000 =C24/D24

CsOH (eqs)

Page 135: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table'5-6 Eqs: GGNS BenchmarkEffect of SLCS Addition

on Post-LOCA Suppression Pool

Calculation No. H21C-097Revision 0Page 5-27

A B C D E

I Buffering by SLCS23 SLCS:4 Min SLC pump flow rate - gpm5 Min SLC injection tank volume gal

6 Max SLC temp O 0F

7 Min SLC temp OF

8 SLC SPB conc. by weight9 Specific gravity

10 Density (T=850F) - Ibm/ft3

12 Final suppression pool temp (bounding) 120 OF

14 Boric acid K =(0.0585*B12+1.309)*0.0000000001 at =B12 OF15i

16 MW sodium pentaborate (Na2 B 100 1) 410

18 Volume sodium pentaborate ft3

19 Mass sodium pentaborate 5800 Ibm _

20 Mass sodium pentaborate =B19*453.6/B16 g-mole

22 unbuffered pH ='pH (eqs)'!N48

23 unbuffered (HI 10^A(B22) g-mole/Il

24 Suppression Pool volume 4841000 liter

25 Equivalents unbuffered [H÷] =B23*B24 g-mole

2627 Final pH =-LOG(B14)+LOG((2*B20-B25)/(8*B20+B25))28

M29 Time to inject boron -minutes

SLCS (eqs)

I

Page 136: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

Table 5-7 Eqs: GGNS Benchmark

Gamma and Beta Radiation Doseused to Determine Post-LOCA pH

Calculation No. H21C-097Revision 0Page 5-28

I A .B CE1 ....._ _ ___

-2

3 Suppression Orywe_ Containment Drywall

4 Time PoolyTIO yTID "_TID P _TID

5 ahr . Ie[MeVdcc [MOV)cc1 IMOV/cc)

6 0 0 r 0 O 0 0 , _

7 ='12113600 0 0 0 0

8 =A7+30160 0 0 0 0

9 11• 0 0 0

10 2 'lOO00.0'(14.72*('-0.91_EXP(.0.002A1O)).) "1000000"1000000"(0.15÷1.83235"LN(A10)) 0 =O000000*O100000*(25. 7('-0.9'EXP(-O.0066"AIO)))

11 =2+12113600 =O000000"(14.72"(1-0.91*EXP(-0.002"AIIl O =100000*1000000"(0.15+l.83235'LN All)) 0 =1000000"100000*(25.7'(I.0.9"EXPt.0,0066"AII)))

12 3 =1000000'(14.72"(1-0.91"EXP(-O.002'AI2 I =fO000001000000"(0.15+1.83235'LN(A12)) =1000000*1000000,* 1.18+1.135LN(AI2)) =1000000*1000000"(25.7'(I-C,9"EXP(-O.OO66"A12)))

13 4 =1000000"(14.72'(I-0.91"EXP(-O.002"A13))) =l000000"l000000"(0.15+l.83235'LN(Af3) =1000000"1000000*(..18+l.135'.N(A3)) =I000000"f000000*(25.7"(1.0.9'EXP(-0.0066"AI3)))14 5 =100000"(14.72 (I-0.91I'EXP(O OO2'A14))) =100000"*O00000"*O.15+l.83235*LN(Al4)) =lOOOOOO100000*(-1.18+1.135'LN AI4)) =1000000"1000000(25,7'(1-0.9"EXP(-0.0066'AI4

15 6 =IOO0000*(14.72*(1-0.91*EXP(-O.002*A5))) =1000000'"000000'(0.15+l.83235"LN(Al5)) =1000000*"000000*(-.18+1.135*LN(AIS)) =O000000"1000000' 25,7'"(.0.9'EXP(.0.0066'AI5)))

16 12 =1O000000 14.72*('-0.91"E.XP(-0.002"AI6)) =000000lO00000(0.15+1.83235"LN(AI6) =1000000*IO000.*(.I.18+1.135LN(AI6)) =-100000f000000"(25.7'(l-0.9"EXP(-0.0066"A16

IT 18 =100.0000"14.72'( -O..9lEXP -O.002"A17)T =f000000i00O00000"O.15÷1.63235'LN(All7) =1000000'1000000(-l.18'.135*LN(Al7), =1000000"l000000"(25.7"(1-,.9"EXP-.0066"A7)))18 24 =1000000"(14.72*(f-0.91*EXP(-0.002"AIf))) =O000000"1000000'"(.15+f.83235"LN(Al)) =I000000"f000000"(-f.18+I.135LN(AAB)) =l000000"1000000"(25.7'(1-0.9'EXP(-0.0066AI8)))

19 :A18+24 =,1000000*(14.72'(l-0.9I'EXP(-0.002"A19))) =1000000*1000000. 0.15+1.83235'LN(AI9)) =l000000*O00000*(.f.18+I.135"LN(A19)) =1000000*I000000' 25.7*('.0.9'EXP(-0.0066*AI9)))

20 =A19+24 =1000000'(14.72'(1-0.91'"EXP(-O,.002A20))) =1000000*l000000'0.15+1.83235*LN(AZO)) =1000000°1O00000'(.1.18+1.135*LN(A20)) =1000000"1000000"(25.7'(1-0.9*EXP(-0.0066'A20))

21 =A20-24 =100000'(14.72'(f-0,9l'*EXP(-O.OO2"A2l))) =O000000"1000000"(0.15+I.83235*LN(A21)) =100000"O'000000*(-1.18+1.135*LN(A21)) =1000000*I 00000 (25,7'(1-0.9"EXP(.0.0066"A21

22 =A21+24 =1000000'(14.72(l.0.9g'FXP(-0.002*A22) =f400000"'1000000'(0.15+f.83235*LN(A22) =1000000'l000000*(-I.181. 135'LN(A22)) =1O00000'00000"25.7 '(-O.'EXP(-0.0066"A22)))

23 =A22+24 =1000000'(14.72'(l-0.91'EXP(-0.002"A23))) =000000'1000000'(0.15+l.83235'LN(4A23)) =1000000000000f(-1.f18+1.135*LN(A23) =l000000"1000000"(25.7'"(1-.O9'EXP(.0.0066A23)))

24 =A23+24 =1O000000(14.72(l.-.g91 'FXP(-.002"A24)) =l000000O10000"(O.15+1.83235%LNA24)4 =I000000*l000000(-1. 18+l.135LN(A24)) =1O000000*000000'(25.7'(l-0.9*EXP'1(.0.66*A24)))

25 =A24+24 =1000000'(1472*('-0.91fEXP(-0.002"A25))) 1-O0000000000000(O. 15+1.83235*LN.A25)) =1000000"f000000*(.f.18+f.135"LN(A25f) =000000"f000000(25.7*(1.0.9"ExP(-O.0066"A25)))

26 =A25+24 =1000000"14.72'"f-0.91"EXP(.0002*A2Q) = 1000000*1 000000'(O.15+l.83235LN(A26) =1000000*'000000"(-l.18+1.135"LN(A26) •=1000000"100000"(25.57*' 0.9°ExP(-0.0066'A26)))

27 =A26+24 =1000000'(14.72*('.0.91'EXP(-0.002"A27))) =1000000"l000000"(0.15+1.83235'LN(A27)) =1000000*10000(-1.18.1.135'LN(A27)) =1000000*1000000"(25.7'(1-0.9'EXP(-0.0066'A27))

28 =A27-48 =O000000 (14.72"(f-0.91'EXP(-0.002"A28))) =O00000"lO00000"(0.15+1.83235'LN(A28)) =1000000"IOCO0"(-1. 18+1.135'LN(A28j) =IO00000"IO00000"(257'fl-0.9*EXP0.00.6*A28)))

29 =A28+48 =1000000*(14.72*(1-0.91"'X'-0002"A29))) =1000000°f000000"(0. 15+1.83235*LN(A29)) =1000000"1000000°(-1. 18+1.135*LN(A29)) =1000000°I000000°(25.7(I-0.09"EXP(-0.0066°A29))

30 =A29+48 =1000000'(14.72'(1-0.9.fEXP(-0.002°A30))) =100000"00000'(0. 15+1.83235*LN(A30)) =IO000000°I000000(-.. 181.135*LN(A30)) =IO000*00000'*(25,7*(I-O, '0EXP(-0.0066"A30)))

31 =A30+48 =1000000'(14.72'(1-0.9,1EXP(-0,0022A31))) =1000000"1000000°(0.15+I.83235"LN(A31)) =f000000"'00000'(-1.18+I.l35'LN(A31)) -f00"0000'l00000"(25.7'(1-0.9*EXP(-0.0066"A31)))

32 =A31+48 =1000000*(14.72'(1.0.91"-XP(-o.OO2°A32))) =1000000*1000000('0.1 5+1.83235"LN(A32) =21000000*1000000*(-1.18+1.135%LN(A32)) =1O000001000000*(25.7'(1-0.9*EXP(. 0.0066A32)))

33 =A32+48 =1000000'(14.72'(l-0.91'-.XP(-O.OO2"A33)) =1000000*l000000(O' 15+l.83235*LN(A33)) =1000000'1000000°(-.I8+I.f35"LN(A33)) =1000000'1000000'(25.7' l-0.9*EKXP(..0066°A33)))

34 =A33+48 =1000000'(14.72'(-0.9o'1EXP(.0.002"A34)) =00000*10000'O, f0.15+1.83235LN(A34)) =1000000f000000(-1.,18+1.135"LN(A34)) =l000000'l000000'(25.7"(f.o.9'ExP -0.0068"A34)))

35 =A34+48 =1000000'(14.72'(1-0.91°EXP(-O.OO2'A35))) 1000000"1000000*(O. 15÷1.83235"LN(A35)) =10000"fO0000"(.I. 18+1.135*LN(A35J) =1000000°1000000"(25.7'(1.0.9'EXP(-0.0066*A35)))

36 =A35+48 =O00000(14.72'(l-0.91'EXP(-0.002°A36)) =1000000"10000=(0.1 51.83235"LN(A36)) =100000'1000000'(-1.18+1.135*LN(A36)) =100000001000000' 25.7'(f-0.9"EXP(-O.OO66°A36)))

37 720 =1O000000(14.72' I-0.91(EXP(-0.002"A37))) =1O00000"'1000000*(0.151.83235*LN(A37))' 00000000*10000"0'(.1.8+lo35°LN(A37)) 1fO00000"l000000*(25.7'(f-0.9'EXP( .OOO66"A37)))

38 2400 =1000000'(14.72'(1-0.91'F-XP( 0.002*A38))) =1000000"10000000(.15+l.83235*LN(A38) =-1000000*1000000"(.I. 18+1.135*LN(A38)) =1000000°1000000'(25.7"(f-0.9'EXP(-.0066*A38l))

39 4320 =IO00000'(14.72'(1-0.91*EXP(0.002"A39))) =1f00000*'1000000(O. 15+1.83235*LN(A39)) =1000000'100000'(.l.18+1.135"LN(A39)) =1000000'1000000'(25.7'(l.0.9"EXP(.0.0066"A39)))

40 8760 =1000000(14.72*(1-0.91 'EIXP(-O,.002A40))) =10000001000000" 0. 15+1.83235"LN(A40)) =f000001'000000"(.I. 18+1. 135*LN(A40)) =l006000"lO000000(25.7"(1-0.9°EXP(-0.00665A40)))

42 Tsr. IMradI = 14'.72'I1-0.9l°esp(0.002'•).,))10s

43 yow(MeV/cc|= 10.15+¶.83235"ln(Q)|r106

'108

44_ [MaVycc| = -1.18÷1.135*ln(%-)]'l0"10_ _

45 o (MeV/oc] = 25.7*11- 9"exp(-0.0066"l,)rld0l10 _ _ _ _ _

46 Oc,'T [MeV/ccj = 15.05"11-O.93"exp(-0.0057"*10e'10 _____

47 1 red = 8.071x10 MVy/cc for air at S.T.P. per Radiological Health Handbook (main body Re(. 7.8)

49 Note50If the curve file above yield a negative TD due to curve fit inecurracas. the TiO is assumed to be zero consistent with Ref. 7.12.3.

Red Dose (eqs)

Page 137: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

Attachment 5Nine Mile Point Nuclear Station

Unit 2

, Table 5-7 Eqs: GGNS Benchmark

Gamma and Bets Radiation Dose

used to Determine Post-LOCA pH

Calculation No. H21C-097Revision 0Page 5-29

F G H. I

3_ Containment D rywall *Containment Drywll Containment

4 PTO0 yTiD yTt ~ TIO5 a eVco Iya) Iaijad) [red)6 0 =CG*80710 =D6*80710 =E6*8071 0 =F6*80710

1 0 =C?'80710 =D7*807I0 =E7*80710 *7'780710a 0 =CB'80710 =D8'80710 =ES80W710 I=F8*80710

9 0 =Cg*60710 =Dg*80710 =E9'80710 I=F9180710

10 = 1000000*1 00000*(l 5.05*(l-0.93'EXP(-0. 0057A 10))) =CIG'807I0 =D10.80710 =E10/80710 I=FIO/8710

11i =1 000000I 000000*' 15.05*' I'0.93*EXP -O. 0057*A 11)) =CII/80710 =D11/80710 =Ell/BD710 I=F 11/8071012 = 1000000' 1000000*( 5.05*(1 -0. 93'EXP(-q. 0057*A12))) =012/80710 =D2/8710 =EM280710 I=F12J87l0

13. =1000000' 1000000*(15.05*(1-0. 93'ENP(-0. 0057*A 13))) =C13/80710 =D13180710_ =E13/6710 =F13/871014. =1000000'1000000'(15.05'rI'0.93'EXP (-0 .0057'A 14))) =C14180710 zD14/80710 =El4/80710 =F41U/8710

15 1=000000'1000000'(15.05'(1'O.93'EXP(-0.0057'A 5))) =015/8710 =015/80710 =EIS/8710 =FIS/8071016 =1000000'1000000'(15.05*(1.0.93'EXP(.0.0057*A 18f) =CI6/80710 =016.80710 =06190710 =F16.1807I0

17 17000000*1000000 15.05' 1-0.92'EXP -ý0.0057'A17) =C!7/80710 =017/80710 =E17/80710 *1I7180710-18 =1tJ00000'1000000'(15.05' 1-0.93'EXP -0.0057*Al6) =018/80710 =D01B/8010 =E81/80710 =F18180710

19 =i000000'1000000 15.05' 1-O.93'EXP -0.0057'A19)) =019/80710 =0I1/80710 =EI9./80710 =F19/80710

20 =1 00 0000'1000000' 15.05' 1-0.93'EXP .0.0057'A20) =C20/80710 =D20180710 =E20180710 =;20/B0710

21 =1000000'1000000 (15.0.5'(1-0.93'EX(P -0.0057'A21) =C21/80710 =D21/80710 =E21180710 I=F2 118071022 =1000000'1000000' 15.05' I-0.93'EXP -0.0057*A22)) =C22/80710 0D22180710 =E2218710 *=22(80710

23 10000*0000* 5.5'1-.9'"P q.0.057'A23)) =C23180710 =D231807.10 =E23180710 *=2-/0124 -1000000-1000000'(15.05'(1-0.93'E.X -. 574 C/010=2/70=E4010 F4/071025 =1000000'1000000' 15.05' I-0.93'EX(P .0.0057'A25)) =C24/80710 =D24180710 =E24180710 I=F24180710

26 =1000000'1000000' 15.05' I-093'EXP .0.0057A26)) =C2580710 =D25&80710 =E2618710 I=F2&/87l0

27 =1000000'1000000' 15.05' I-0.93'EX(P -0.0057'A26)7 =C26180710 =0261807,10 =E2&/80710 *=27/8071028 =1000000'1050000'15.05' I'O.93'EXP -0.0057'A28)) =C27/80710 =D27180710 =E27180710 I=F2 9180710

29 =1000000'1000000'(1-505' I-0.93'EXP -0.0057'A28)9 =C28/80710 =D28180710 =E28180710 *=2&98071030 =100000'1000000' 1.5.05' I-0.93'E"P .0.0057*A230) =030/80710 =030/80710 =E20180710 =F30/8071031 1000000'O1000000' 15.05' I-0.93'EXP -0.0057'A31)) =C03180710 =031/87.10 =;E3W/0710 *F31/8710

32 1=1000000'I000000. (1&05' I-0.93'EXP -0.0057'A31)2 =C31180710 =0311B0710 =E32180710 =F31180710

33 =1000000*1000000. (15.05' I-0.93'EXPf-0.0057'A33) =C32/80710 =033/8710 =E32t807l0 =F3218071034 =1000000'1000000' 15.05' l-0.93'EXP -0.0057-A334) =C34180710 I=034/80110 =E34/0710 F34/80710

35 =1000000'1000000'(1 5.05' 1-0.93'EXP -0.0057'A35)) =C34180710 =D34180710 =E34180710 =F3418071036 =1000000'I000000' 15.05' 1-0.93'EX(P -0.0057'A35) =C35/80710 =036&80710 =E35190710 *F3680710

37 =W000000'1000000' 15.05' 1-0.93'E.XP -0 0057-A37)) =C37180710 =037/80710 =E37180710 =F37180710

38 =1000000'1000000' 15.05' l-0.93'E.XP -0.0057'A38)) =C3&180710 =03&'80710 =EM680710 =F38R80710

39 =1000000'1000000' 15.05' l-0.93'E.XP .0.0057'A39)) =C39180710 =D39180710 =E39180710 =F3g/6071040 =1000000'1C000000'f15.05'(I-0.93'EX(P(-0.0057'A40))) =C40180710 =D40180710 =E40180710 =F40180710

42434445 _____________________

464? 7 ___________________________ __________

48 _____________________ ____ ____ ____

49 ________________________ _____ _____ _____

50 ______________________ __________ __________

Red Dose (ecls)

Page 138: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

/

Attachment 5Nine Mile Point Nuclear StationUnit 2

Table 5-8 Eqs: GGNS BenchmarkPost-LOCA Suppression Pool

-Temperature Response

Calculation No. H21C-097Revision 0

Page 5-30 Final

A J B I C ID E 1Ff G1 FromData(Ref. 7.12.3) I I lUsed for pH Analyss I Is

3 Time Pos.-LOCA I Temp Time Tempi4 (sec/days) I (hr) (F) (hr) ('F) _ _5 0-K :. ;" 0 ., . 77-";'.. Iw O 1=C5 I

6 ... .. , :. i.. . 0. 160'- .. - * 0336111111111111 2

7 1 =A7/3600 160 0.533611111111111 =C158 8 =A8/3600 1160 1 =C1619 10 =A943600 1160 2 =C171

10 30 =A10/3600 160 2.03361111111111 =C18 _

11 100 =Al1/3600 1160 3 =C20 _

12 0.0336111111111111 1160 4 =C2113 300 =A1313600 1160 5 =C2214 1000 =A1413600 160 6 =C24 !150.533611111111111 160 12=C2616! , 18 =C28117 - 160 24 =C29

18 ý: 2033611141111111 160 .- . 8=C31 ________

19 10000 AI=l6700 =-(B19-1BfSI(B20-B16)'(C20-C18)+C18 72 =C3220 l. 3 K159:1•,;. S 96 =C3321 4(B21-20/(22-B20)(C22-C20)+C20 120 =C3422 1555 I 144 =C35F3 i0000 =A23/3600 =(B23-B22)/(B26-B22) '(C26-C22)+C22 168 =C3724 6 =(B24-822)/(B26-B22)*(C26-C22)+C22 192 =C38

25 42000 =A25/3600 =(B25-B22)/(826-B22) 2)+C22 216 =C4026 " j1 '. -• 1.4g-.• -, . " •- 240 =C4127 60000 =A2713600 (B27-B26)/(B28-B26)*(C28-C26)+C26 288 =C4228 -- -'7 11 .13 =044

29 1Ž4 4., ' ý '38 =C4630 100000 F=A830/3630..B29/ 3(B l-B290)(C31-C29)'-C29 432 =C48

=`93 f__48__4_480

32" =B3212- .72., 136 =C533=833/2 74 96, 1" 4• 576 =C51

34• r,8441_24, 624 -C53

35 =B3524 (C36C34)34 672 =C5436 -15_4 1!. -. s, 720 =C5637 =B37/24 _168 i(37-B361)/(39-B36)'(C39-C36)+C3638 r=38/24 192 (B38-836)/(839-B36) (039-C36)+C36 The shaded values are taken from39 • 20l29,2-: ,3 , • either Reference 7.12.3. Other other40 =B40/24 - 216 =(B40-B39)/(B41-B39)*(C41-C39)+C39 values are interpolated.

41 ý241/2 __42 =B42/24 i288 =(B42-B41)/(B43-B41)(C43-C41)+C4143 I 1 •300 ý•126:-

44 =B44/24 336 =(B44-B43)/(B45-B43)*(C45-C43)+C43 --45 =85/4 . ' . 60 i 5•-.-

46 384 =(B46-B45)/(B47-B45) (C47-C45) +C45

48 . 432 J=(B48-B471)/(B49-B47)*(C49-C47)+C47

50 1528 1=(B50-B49)/(B52-B4g)*(C52-C49) *c4g

51 576 =(851-849)1(852-B49)0(C52-C49)+049

53 1624 =(853-B52)I(B55.B52)*(C55-C52)+C52 -

6 172 l=(B54-B52)/(B55-B52).(C55-C52)+C52 Seconds are the units for t=0 to 27.78

- 1j3'- hours; days are the units for t=48 to 72056 ' . .... h..r.•"-B5/4 ,..•-':'.:.. 20 ,...•,. .,: . .120:-l::.' • •. .-;••.'..,.;,• hours.

SP Temp (eqs)

Page 139: Nine Mile Point Unit 2 Alternative Source Term Calculation ... · The reviewers signature indicates compliance with S&L Procedure SOP-0402 and the verification of, as a minimum, the

(Attachment 6Nine Mile Point Nuclear StationUnit 2

Calculation No. H21C-097Revision 0

Page 6-1 Final

Document being design-verified: 0 3 DCP 0l Calc 0 Spec 0 NER 0 DBD 0 Other

Doc#, Rev and Title: H21 C-097, Revision 0, Post-LOCA Suppression Pool pH Analysis

Extent of Design Verification (Briefly describe):A detailed review of the calculation was performed by the mechanical, radiological, and

chemistry disciplines.

Method of Design Verification:

0 Design Review 0 Qualification TestingQ Alternate Calculations L Applicability of Proven Design

Results of Design Verification:

U Fully acceptable with no issues identified0 Fully acceptable based on the following issues identified and resolved:

0 Continuation Page Follows

Discipline Involvement and Approvals:

Lead Design Matthew B. CooperVerifier:

Name Signature Oate

Discipline Design Verifiers, if required:Chemistry David J. FeingoldRadiological W. Joseph Johnson

/ IDiscipline Name Signature Date

NEP-DES-07Rev 04