343
PRODUCTIVITY FOR YOUR N-F SEMIFINISHED PRODUCT PROCESSING

Niemet_Buch_En_72dpi

Embed Size (px)

Citation preview

Page 1: Niemet_Buch_En_72dpi

PRODUCTIVITY

FOR YOUR

N-F SEMIFINISHED PRODUCT PROCESSING

NiemannENG_001-053 04.10.2007 12:19 Uhr Seite U1

Page 2: Niemet_Buch_En_72dpi

PRODUCTIVITY FOR YOUR N-F SEMIFINISHED PRODUCT PROCESSING

Published by: Manfred J. C. Niemann · Head OfficeAuf dem Dreieck 6 · 28197 Bremen · Tel.: 04 21/5490213

NIE•MET can accept no liability for any technical or printing errors

Editing and Design: Michael LeweTechnical editor: Axel Karstendiek, MSc (Eng.)

Sources: Pechiney Rhenalu,Paris · German Copper Institute, DüsseldorfPrinting and Lithography: Rosebrock Media-Service, Sottrum, Germany

NiemannENG_001-053 04.10.2007 16:54 Uhr Seite 1

Page 3: Niemet_Buch_En_72dpi

2

As long as we produce benefits

for our customers, we are working

productively. Anything else is

a waste of time!

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 2

Page 4: Niemet_Buch_En_72dpi

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 3

Page 5: Niemet_Buch_En_72dpi

4

LIST OF CONTENTS

Page

The royal road to productivity .................................................. 7

Cause and effect ...................................................................... 14

The full range .......................................................................... 17

Broad performance for specialists ............................................ 18

NIE•MET processing ................................................................ 20

NIE•MET raw material cycle .................................................... 23

NIE•MET Marine Division ....................................................... 25

NIE•MET Export Company ....................................................... 27

NIE•MET Dealer Service ........................................................ 28

System solutions for facades and metalwork ............................. 31

Precision and speed for your slit strip processing ...................... 32

Think global! – Act local ......................................................... 34

The NIE•MET principle ............................................................ 37

How much storage can your pricing support? ........................... 39

Outsourcing makes your purchasing

better, not superfluous! ............................................................ 40

Bargain hunting is dangerous! .................................................. 42

Proximity makes you strong ..................................................... 45

Chip chip hurrah! .................................................................... 46

First in the market – first out again ........................................... 48

Flexibility beats growth ........................................................... 50

NIE•MET quality ..................................................................... 52

NIE•MET conditions ................................................................ 53

NIE•MET logistics ................................................................... 54

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 4

Page 6: Niemet_Buch_En_72dpi

5

LIST OF CONTENTS

Page

Aluminium – NIE•MET and its hardware ................................ 55

Aluminium, material description and material specification .... 106

Warehouse range, aluminium ................................................ 115

Copper – NIE•MET and its hardware ..................................... 163

Copper, material description and material specification .......... 177

Warehouse range, copper ...................................................... 183

Brass – NIE•MET and its hardware ......................................... 197

Brass, material description and material specification ............. 213

Warehouse range, brass ......................................................... 233

Bronze – NIE•MET and its hardware ...................................... 251

Bronze, material description and material specification .......... 265

Warehouse range, bronze ...................................................... 269

Warehouse range, stainless steel ............................................ 277

Plastics, material description and material specification ......... 283

Warehouse range, plastics ..................................................... 295

Weight calculation of semifinished products .......................... 303

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 5

Page 7: Niemet_Buch_En_72dpi

6

If we don’t ask ourselves every day what we could do better, others will.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 6

Page 8: Niemet_Buch_En_72dpi

7

THE ROYAL ROAD TO PRODUCTIVITY In the value chains of the future,

superfluity and roundabout routes will no longer be marketable.

For any product more complicated than a toothpick, added value has

to run through many companies as well as many departments with-

in them. Everyone will at first harness their

own (often obsolete) capacity, reduce their

own (often superfluous) stock and promote

careers. Without painfully exact differentia-

tion between customer benefit and pure dissipation in every activity

along the entire value chain, the wrong product would be presented with

the maximum efficiency – the mother of all wastefulness.

If all the unnecessary paths in and between companies are eliminated, the

remaining value-adding steps can be smoothly arranged. Then we can all

have ready for delivery what the customer really needs, and just when

when he actually needs it.

And only then can we let the customer extract our product from the pro-

duction flow, instead of having it pressed in.

In such a stream of added value, which is kept in motion only by the pull

of customer demand and is released from the pressure of superfluity, lies

the royal road to productivity.

As far as the procurement,stocking, processing and shipment of NFSF are

concerned, NIE•MET customers can go down this road.

The work-related optimization ofNFSF product logistics means sayingfarewell to long-cherished habitsand taking a view of the whole.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 7

Page 9: Niemet_Buch_En_72dpi

8

As the leading supplier of the full range of NFSF products, NIE•MET

stands for guaranteed branded quality, awareness of customer needs

and highly specialised services centred round the procurement and pro-

cessing of NFSF products. A team of more than 300 qualified personnel

with 33 NIE•MET service partners and comprehensive capacity in storage,

NIE•MET main warehouse Bremen

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 8

Page 10: Niemet_Buch_En_72dpi

9

processing and logistics ensure the availability of these services – if

required, just-in-time. With project- and customer-related services,

NIE•MET relieves the stress for small and medium-size companies of NFSF

product purchase, production planning and logistics. This strengthens you

in the ever-increasing competition concerning quality, costs and time.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 9

Page 11: Niemet_Buch_En_72dpi

10

To relieve our regional customer servicing on site and ensure eco-

nomical procedures, warehousing, handling, commissioning, order

processing, we plan and control packaging and transport centrally at

NIE•MET main warehouse and administration in Bremen

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 10

Page 12: Niemet_Buch_En_72dpi

11

NIE•MET. The entire ordering process is continuously checked and

optimized via networking.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 11

Page 13: Niemet_Buch_En_72dpi

12

As a just-in-time partner, we have conceived our central stocking sys-

tem in such a way that the respective amount, quality, and cuts

ordered are guaranteed round the clock. We are therefore extending our

storage facilities

NIE•MET main warehouse Bremen

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 12

Page 14: Niemet_Buch_En_72dpi

13

by approximately a further 10,000 m2 (see photo). A modern warehousing

system is developing here, specialised in supplying our customers with extrud-

ed and drawn semifinished products.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 13

Page 15: Niemet_Buch_En_72dpi

14

CAUSEWe provide you with the

following facilities:

Semifinished product warehouse

(centrally organized)

� 40,000 m2 of hall space

� 8,000t of long-term stock

� 6,000 different dimensions

� constant material

quality from leading

German and other West

European producers

Sawing and blanking section

(centrally organized)

� 9 plate saws

6 bar saws

� max. plate / bar thickness

500mm

� precision blanks of every type

Just-in-Time Services

� delivery on deadline as

required independently of

quantities and locations

� our own comprehensive,

round-the-clock transport

capacity

Long and transverse part workshop

(centrally organized)

� 5 precision slit strip machines

of 0.14 to 3.00 mm

� long and transverse part

machines max.width 1,600 mm,

max. thickness 3mm

Approval acc.to ISO 9002

� fast and smooth order control

(order receipt,order

processing, storage, work

process, documentation and

logistics all share one

network)

� work-related optimization of

all areas of

Close Customer Ties

� service partners throughout

Federal Germany

� service partners in Austria,

Denmark, Holland and

overseas

� all service partners are in a

network with Bremen head office

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 14

Page 16: Niemet_Buch_En_72dpi

15

EFFECTMore than 18,000 metalwork companies utilize our

facilities to great benefit

You lower your costs. Your own warehouses, logistics and processing tie

up personnel, space, time and capital. As an NFSF full range specialist

and service partner, we supply this capacity on a long-term basis.

You improve your production! Whether standard format or constantly

changing batch size, large and small quantity: we guarantee constant,

tested material quality from leading producers, maximum precision in

blanking and processing as well as safe shipment on deadline of the

quantity required – if desired, just-in-time.

You deliver on time. Even if you have tight deadlines, complicated orders

and customers who expect wonders: you get what you need! As your ser-

vice partner, we have the assortment, capacity and networked order pro-

cessing, not only for normal but also special cases, since they point to

the future.

You get the best. Everyone wants the best for you, but not necessarily the

optimum for your company. We know the market, and the market knows

us! As hard-negotiating, independent buyers, we compare, test and select

the best in price and performance – in German and other European NFSF

product markets.

You strengthen your purchasing. Comprehensive capacity, certified per-

formance, just-in-time service and strong customer ties make your pur-

chasing simpler. Together we fix targeted costs and optimize your entire

NFSF product processing - from product development to market readi-

ness - and link up your areas of activity to reduce reaction times and

boost your purchasing power.

That’s NIE•MET service!

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 15

Page 17: Niemet_Buch_En_72dpi

16

A challenge for just-in-time suppliers

We deliver the material for hulls to win races and set records –for example in the construction of top-performance yachts

Short routes, complete stocks andquality checks – everything in

order for your new supplies

Attractive, light and weather-proof – aluminium façades

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 16

Page 18: Niemet_Buch_En_72dpi

17

THE FULL RANGE

In combination with our just-in-time shipment we can tailor the complete range to suit your processing needs,

i,e. synchronous with manufacture

More than 8,000 tons of NFSF products are constantly available in

stock, manufactured by leading West-European producers, tested

according to strict criteria and proven successful under extreme condi-

tions.After processing by our customers, NIE•MET products are therefore

to be found in the aerospace industries, in shipbuilding and the automo-

bile and electrical industries, in the operating theatre or the building

industry. Proof of all quality tests and specifications (mechanical proper-

ties, surface characteristics, chemical analyses, hardness, conductivity,

etc.) is taken for granted by NIE•MET, as well as minimal processing and

the strictest tolerances. You have our word on this, not only in the stan-

dard field, but also for special alloys and formats. (Exact information on

materials, dimensions, blanks and processing can be found in the stock-

list in this manual.)

The optical industry makesstrict demands on the

quality of our products.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 17

Page 19: Niemet_Buch_En_72dpi

18

PERFORMANCE IN DEPTH FOR SPECIALISTS Experts make strict demands on the range,

quality, blanking, and just-in-time availability of our services,independent of the quantities required.

Where “standard“ ends, “custom-built“ steps in. This is why we are

perfectly familiar with the requirements of highly specialized,

complex production.Blanking and machining according to drawings are

just as much part of our services as,for example,the procurement and

processing of difficult alloy castings for use in aircraft construction and

off-shore technology. Constant, tested quality, comprehensive documen-

tation and fair conditions are a feature of our services, also in the case of

special orders.

Even with really difficult alloy castings we supply

the exact quality, dimensions and quantities you need.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 18

Page 20: Niemet_Buch_En_72dpi

19

The aerospace indus-tries set the higheststandards in materialsand processing. Weguarantee and docu-ment these require-ments completely frommanufacture through toprocessing of NF metalsand semifinished products.

Blanking and machiningaccording to drawings arepart of the NIE•MET service

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 19

Page 21: Niemet_Buch_En_72dpi

20

NIE•MET PROCESSING

� in widths of 3 to 1600 mm� in thicknesses from 0.2 to 3.0 mm� with ring weights up to

4.5 kg/mm

� with tolerances acc. to EN (finer tolerances possible by agreement)

� with the internal dimensions150, 300, 400, or 500/508 mm

On 5 modern sliting machines, we cut

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 20

Page 22: Niemet_Buch_En_72dpi

21

On our cut-to-length plant we prepare sheet metal in� thicknesses of 0.3 to 3mm� lengths up to 6,000mm� widths up to 1,600mmLength, width and diagonal tolerances acc. to EN 485/3/4 (finer tolerances possible on request).

Available round theclock in tested quality,in every cut , everyquantity and just-in-time for you –NIE•MET offers solu-tions to your NFSF product problems, allunder one roof!

NIE•MET PROCESSING

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 21

Page 23: Niemet_Buch_En_72dpi

22

NIE•MET PROCESSING

Material preparation and machiningare all under one roof at NIE•MET.With our processing centre (9 platesaws, 6 bar saws) we make a broadrange spectrum of NFSF metals andalloys in various conditions andthicknesses available to you.

Among other things, we offer thefollowing services:� sawing aluminium sheets up to

500mm thickness� automatic sawing of squares,

rectangles, circles and rings� cutting round and rectangular

bars up to 500mm

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 22

Page 24: Niemet_Buch_En_72dpi

23

N-F chips are pressed intopellets here, collected and

returned to the manufacturer’smaterial cycle

NIE•MET RAW MATERIAL CYCLELower costs for you, a more economical cycle

for all – a NIE•MET service with a future!

The less loss of material, the less effort you have to put into further

processing, the better. NIE•MET precision-cutting to size and our

strict tolerances take these requirements into

account. Beyond that, with NIE•MET rework-

ing we offer a service that is specially suited to

processing that produces high levels of scrap,

as for example in the fabrication of turned and

blanked parts. We take over the scrap you pro-

duce and in return deliver the corresponding new material in the form of

bars or strip. You bear only the relevant smelting and processing costs.

NIE•MET reworking is at any rate more economical than dispatching the

waste metals to a scrap merchant.

NIE•MET reworking is logisti-cally detailed work. Small(waste) amounts must be collected and transported bythe shortest possible routes forreworking, then returned tothe customer.

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 23

Page 25: Niemet_Buch_En_72dpi

NiemannENG_001-053 19.09.2007 8:50 Uhr Seite 24

Page 26: Niemet_Buch_En_72dpi

25

NIE•MET’S MARINE DIVISION

Waves up to ten metres high, engine capacity of up to 10,000 kW

and growing worldwide pressure on travel and docking periods

set the standards for the quality and service of the NIE•MET Marine

Division: marine technology is advanced technology, proven under

extreme conditions on the high seas and in the transport and logistics

markets. Faults in machinery, supply lines and cooling systems can have

unforeseeable consequences for human beings, the environment and the

economy. Repair and waiting-time costs run here into five or six figures.

As a supplier and service partner for piping systems in shipping and off-

shore technology, we therefore offer quality and precision work, tested

and certified according to Lloyds, DNV and GL requirements.

NIE•MET pipes and fittings made from seawater-resistant alloys can be relied

on!

The experts at NIE•MET’s MarineDivision are well acquainted, notonly with the perils of the highseas, but also with the finer aspectsof international codes.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 25

Page 27: Niemet_Buch_En_72dpi

26

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 26

Page 28: Niemet_Buch_En_72dpi

27

NIE•MET EXPORT COMPANYAllrounders in international NFSF product logistics

Europe, South Africa, South America, South-East Asia, Australia –

NIE•MET Export Company improves the acquirement and delivery

of NFSF products worldwide. Supported by comprehensive,centralized

facilities and a tightly-knit, rapid-action network of NIE•MET service and

export partners, producers are evaluated and selected. Partners for inter-

mediate stages in refining, machining, installation and logistics are also

determined and coordinated in compliance with the order. Transport

routes and means are examined for security and speed, then utilized. It

is a matter of course in an era of globalization to take accurate account

of international codes, dimensions, specifications

and legal regulations, right down to the last detail. An

added benefit, in the interest of our customers, is the

harmonization of different notions of punctuality,

transport security and and fair pricing.

We are thoroughly familiar with ceremonies, taboos and

sensitivities in the vast area encompassed by Johannesburg, Shanghai and Sao

Paulo, and assert typically German conceptions here in accordance with your

requirements: NIE•MET Export Company guarantees the punctual and safe

delivery of NFSF products at acceptable prices – even to the ends of the earth.

You need the skin of a crocodile, thestrength of an anacondaand the speed of a jaguar to do businesshere.(Brazilian saying)

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 27

Page 29: Niemet_Buch_En_72dpi

28

NIE•MET DEALER SERVICEWith this service the NFSF product business is not costlier, but better

NIE•MET Dealer Service customers are NFSF product traders who

have recognized the mood of the times: growing concentration on

the production side, the tightening up of purchasing and sales via the

Internet and e-commerce, as well as tougher competition, with corre-

sponding pressure on profit margins.

Against this background our customers are developing the strengths that

will drive the NFSF product business in the future and are not exchange-

able: services that correspond closely to customer needs (e.g. either as

suppliers with considerable in-depth performance, specialization and

exclusive qualities, or as suppliers who prefer to count on a price-quan-

tity strategy and wide distribution), demand-orientated, speedy shipment

and close customer ties.

Guarantees of material quality, immediate supply in the event of stock

shortages, rapid shipment even of small quantities and the procurement

of rare alloys – all this can be left to

us.This also applies to marginal assort-

ments that our customers have on

offer but do not want to stock them-

selves. With a complete customer guarantee, NFSF product dealers buy

in more competitively. They improve their stocks by avoiding incorrect

quantities and redundant material and boost their readiness for shipment.

Over-large stocks and incorrect quan-tities – both are too costly. Betweenthese lies the cost minimum, and thatmeans the optimum for your business!

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 28

Page 30: Niemet_Buch_En_72dpi

29

With NIE•MET Dealer Service, the NFSF product business is free of the

ups and downs of customer needs, producer policy and stock exchange

listings. Our customers reduce the pressure of overflowing warehouses,

but still react more flexibly to slumps and peaks in demand. This way,

NIE•MET Dealer Service contributes to improvements in profit margins

and creates room for the decisive factor in today’s NFSF product busi-

ness: customer orientation, not at any price, but at yours.

Nothing protects you betteragainst aggressive competitors

than satisfied customers.NIE•MET Dealer Service brings

customer satisfaction withineconomic reach.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 29

Page 31: Niemet_Buch_En_72dpi

30

Precision in metalwork construction:The aluminium façade of the weekly newspaper “Die Zeit“ in Vienna, 1909.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 30

Page 32: Niemet_Buch_En_72dpi

31

SYSTEM SOLUTIONS FORFAÇADE AND METALWORK CONSTRUCTION

In the design, prefabrication and installation of profiles and sheet metal, façade-con-struction and metalwork companies profit from system partnership with NIE•MET

With the NIE•MET Service Centre we optimize all the services

required by façade and metalwork specialists for the treatment

and use, both interior and exterior, of NFSF products. This applies above

all to precision cutting of sheet metal and the manufacture of profiles in

every shape, colour and dimension according to drawings. Profiles are

also produced by special order as

regards statics, shapes and designs in

precise adherence to your instruc-

tions. Packaging, shipment size and

deadlines are arranged to suit your

production and installation ( metre-

weight from 0.05kg to 39kg). You are supplied with cladding up to 5mm

thickness, fixed format sheets up to 10m length, 6 standard formats for

sheets, as well as anodisation both indoors and outdoors. Surface pro-

tection with paper inlays for transport and storage, plus UV protection

with special foil, are guaranteed with this service.

NIE•MET project teams, which are thoroughly prepared for (early) col-

laboration with concrete, steel, structural and sales experts, round off this

system partnership: planning and design, purchasing, prefabrication and

installation are no longer a costly “after-each-other“ but a cost-cutting

“with-each-other“.

The higher the degree of prefabri-cation, the quicker the installation.The NIE•MET Service Centre takesinto account both the requirementsof series projects and individualprojects with just-in-time capacity,and simplifies the prefabricationprocess.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 31

Page 33: Niemet_Buch_En_72dpi

32

PRECISION AND SPEED FOR YOUR SLIT STRIP PROCESSING

Reshaping, blanking, refining, rolling, deep drawing – the path taken by our precision-slit strips from the coil to the finished

product is tough and cost-intensive.

We have materials from reputable producers on hand – in guaran-

teed quality and in quantities of more than 1000 tons. We slit

strip for you on five modern sliding line machines, if required, in sub-

contract work. In widths of 3 to 1600mm, in thicknesses of 0.2 to 3.0mm,

with ring weights of up to 4.5 kg/mm, with internal dimensions of 150,

300, 400 or 500/508 mm and the strictest tolerances. It speaks well for

our precision that we carry out contract work for world-renowned pro-

ducers. It reduces your processing and waste

material costs, and avoids machinery stop-

pages.

You receive any amount of specialized prod-

ucts, just in time – even in very small quan-

tities! That saves time, space and money. Nor

do you need security supplies any longer for

special orders. As a leading full range supplier and specialist for preci-

sion-slit strip, we deliver surface-treated coils, tin-plated, silver-plated or

finished according to your wishes on a just-in-time basis.This also applies

to slit strip with rounded edges or flat wire and coils of plain or stainless

steel.

In the processing chain, economy is what counts. And this is founded on

a fast, trouble-free production line flow. Curvature, strip widths and

thickness tolerances thereby gain just as much importance as supply and

logistics. To guarantee all the physical and mechanical characteristics of

the coils and ensure their availability.

Minimum-quantity pur-chase, lengthy deliverytimes and your own stor -age costs nibble away atthe productivity of slitstrip processing, as dofaulty materials andimprecision in blanking.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 32

Page 34: Niemet_Buch_En_72dpi

33

We do not supply ’raw materials’, but solutions to problems in slit strip processing

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 33

Page 35: Niemet_Buch_En_72dpi

34

THINK GLOBAL!

www.niemet.de

AT YOUR SERVICE - NO MATTER WHERE

A l u m i n i u m - C o p p e r B r a s s - B r o n z e - P l a s t i c s

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 34

Page 36: Niemet_Buch_En_72dpi

35

ACT LOCAL!

NIE•MET Service Partners:

Amersfoort, Augsburg, Berlin, Bielefeld, Bremen, Ditzingen, Dresden,

Durban (25%), Erfurt, Essen, Hamburg, Hanau, Hanover,

Johannesburg (25%), Cape Town (25%), Kassel, Kolding, Cologne,

Kuala Lumpur, Leipzig, Munich, Neumarkt (49%), Nuremberg, Rodgau,

Rostock, Schwenningen, Shanghai, Singapore, Velbert, Vienna (49%)

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 35

Page 37: Niemet_Buch_En_72dpi

36

No vision, no strategy can findfulfilment without competentstaff who are encouraged toshow initiative

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 36

Page 38: Niemet_Buch_En_72dpi

37

THE NIE•MET PRINCIPLE

Unsere Alternative zum „Dienst nach Vorschrift“

In every personal contact with NIE•MET you are dealing with an entre-

preneur. He knows that he can only have success if his performance

contributes measurably to lowering your logistics costs and improving

your NFSF product supplies for further processing. Bearing all this in

mind, your NIE•MET partner decides on and supervises the correspond-

ingly optimum application of our

resources to fulfill your order. For this he

uses the latest information technology,

professional skills and sound common

sense, which he certainly doesn’t leave

to the computer! This protects you from roundabout routes. None of us

will pass on responsibility to his superiors. None of us will blame the

weather, the traffic or suppliers for any faults that arise.

On the contrary, we do our job with determination and with an eye to

results. We can’t do otherwise.

As entrepreneurs we take personal responsibility for our work. That’s why

we work productively.

Every NIE•MET manager hasagreed to care for the well-beingof his personnel and his customers. By definition, thisincludes both his supervision ofthis care and his obligation to it.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 37

Page 39: Niemet_Buch_En_72dpi

38

Please do not disturb

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 38

Page 40: Niemet_Buch_En_72dpi

39

HOW MUCH STORAGE CAN YOUR PRICING SUPPORT?

On the advantages of the NIE•MET just-in-time partnership

New dynamics are good for business. Their power to change is

increasing, because digital networking has coincided with growing

globalization and an expanding capital market.At the final count, share-

holders are demanding more than ever. Competitors are waiting only a

mouse-click away.Not only individual compa-

nies, but logistically-linked supply chains are

competing with one another – stripped for

action round the clock in fast-flowing process-

es. A selection process that makes every unnec-

essary extra in the company, no matter how well hidden, a dis, on the

other hand, any slowdown in material flow is noticed immediately. Faults

are located quicker and eliminated.

As you work practically without your own st s. They act as a brake on the

processing chain and make improvements difficult. In lean production

ocks in this NIE•MET just-in-time partnership, your NFSF product pro-

cessing improves. Independently of quantity, time and location, we sup-

ply you with exactly what your prices can support. ruptive factor for all

those involved, and punishes it drastically.

The fact is, your own NFSF stocks tie up capital. But it’s not only for this

reason that we have on hand some 8000 tons of NF metals and just-in-

time services for processing and shipment.

Storage facilities of your own cover up errors – this applies especially to

valuable NFSF product

In the past, to stay flexibleyou kept your stocks high.Today they are run downfor the same reason(Manfred J. C. Niemann)

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 39

Page 41: Niemet_Buch_En_72dpi

40

OUTSOURCING MAKES YOUR PURCHASINGBETTER, NOT SUPERFLUOUS!

In lean companies,the entrepreneurial responsibility for purchasing is growing.

It is becoming a centre of buying competence.

By outsourcing your NFSF product logistics within the framework of

the NIE•MET Outsourcing Partnership, your share of outside costs

in your total costs increases. Your purchasing activities gain in signifi-

cance for company productivity. Besides the cost of materials, the cost of

the procurement process itself earns increasing attention. In the out-

sourcing partnership we firstly take account of the basic aims and

responsibility of your purchasing : we guarantee shorter procurement

times (fewer suppliers, less loss of time between order and receipt of

goods) and secure supplies of NFSF products

– independently of the ups and downs of the

NF metal markets. On the other hand, the

collaboration in outsourcing improves the

NFSF purchasing process itself. Both partners

make use of timely information and simpli-

fied communication. By the earliest possible

recognition of requirements and notification

thereof, the deployment of resources is made easier. The cost of the

whole purchasing process becomes clearer and - by constant evaluation

of performance – is reduced in a job-related fashion.

Lean companies don’tbuild up stocks, theyimprove processes.They only build uptheir strengths.Everything else isfarmed out to special-ists. This way, purchas-ing takes on key impor-tance.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 40

Page 42: Niemet_Buch_En_72dpi

41

In this sense of profitable cooperation for both sides, NIE•MET out-

sourcing does not represent a shift in the (cost) problem from you to us

with the aim of rationalizing purchasing away. On the contrary, your

buying will become more responsible, since its share in company pro-

ductivity will increase.

Outsourcing is not a pillow forpurchasing to rest on, but thebasis for cutting costs and boost-ing performance, which is whatwe expressly promise to do.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 41

Page 43: Niemet_Buch_En_72dpi

42

BARGAIN HUNTING IS DANGEROUSIn NFSF product purchase, the price isn’t the problem

but the solution

After a look at the NF metal prices, the first alternative is adopted:

buyers achieve rock-bottom prices in the wheeling and dealing over

terms and conditions. In view of ever-increasing concentration on the pro-

duction side, this is hardly possible without concessions on quantities and

delivery dates. This way, purchasing brings full stocks, and then pressure:

difficult orders with minor interruptions in processing and supply chains,

unexpected changes in batch size, or new, last-minute demands on pro-

duction quality by the customer, ‘stupid

coincidences’ in the worldwide network

of suppliers, producers, final assembly

and consumers. With full NFSF-product warehouses, that costs nerves and

money! Quite apart from the fact that low prices can be followed not only

by high prices, but by even lower ones. In any case, the following applies

here too: a warehouse of your own ties up your capital, conceals bottle-

necks in material flow and makes improvements difficult.

The second alternative: occasional purchase in small quantities of NFSF

products, a few kilos here, a few tons there – without your own stocks

but also without reliable partners for stocking up. It has to be cheap! A

serious risk for the security of processes in full flow in the supply chains,

and one that puts a strain on all partners.

Whether large-scale or occasional purchase, bargain hunting is danger-

ous, especially for buyers who are process-orientated and aim to produce

value. They do not push down prices, but cut costs for their company –

constantly and sustainably.

Modern NFSF product purchaseis not bargain-hunting, but creating lasting value foryour company

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 42

Page 44: Niemet_Buch_En_72dpi

43

In the battle for leadership in cost,time and quality, the buyer is notjust fighting for more NFSF productsfor his money, but for continuousimprovement in performance,

as well as lower costs.

For this you need good and stable prices. You need stocks and logistics

that secure the supply flow of NFSF products independently of the

required quantity, quality and deadlines. You also need the proven readi-

ness of your supplier to cut costs steadily and optimize these services.

As a strong, independent buyer we obtain good prices in the interna-

tional markets, protected long-term by our high stocks.

As a leading full-range supplier we secure the supply flow for your NFSF

product processing with our comprehensive storage, processing and

transport facilities.

As a value-adding partner we offer you the potential for constant cost

reduction, supported by a flexible performance package. It is continu-

ously improved according to the latest technical, logistic and economic

criteria.

This has made us a worthwhile alternative for those hunting for bargains.

You produce extra value with NIE•MET!

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 43

Page 45: Niemet_Buch_En_72dpi

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 44

Page 46: Niemet_Buch_En_72dpi

45

PROXIMITY MAKES YOU STRONGHow we acquire information and knowledge for more productivity.

33NIE•MET Service Partners in Germany, Europe and overseas,

together with the capacity for digital networking with your pur-

chasing and production departments are good prerequisites to create

‘proximity’ – but no more than that. Proximity is created through collab-

oration, mutual obligations, well-balanced

give and take, and understanding for your

partner’s possibilities and limitations.

Basically it is founded on the regular

exchange and responsible handling of information and knowledge. Our

customers and suppliers have contributed decisively to such a climate of

productive cooperation. By informing, criticising and including us in

their improvement schemes, they strengthen the work-related learning

process and thereby the willingness to change. Knowledge stored in our

minds begins to take effect and becomes a factor that contributes more

and more to product value.

Real proximity creates aclimate in which bothpartners breathe informa-tion in and out withouthindrance

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 45

Page 47: Niemet_Buch_En_72dpi

46

CHIP CHIP HURRAH!As a system partner we know that fast logistics

have to back up fast information flow

More and more NIE•MET customers are developing from parts pro-

ducers,via just-in-time shipment, into ‘just-in-sequence’ partners.

They supply whole systems punctually, in exactly timed manufacture and

unconditional quality, to the respective points of final assembly. In

answer to this development, we have conceived the stocking, machining

and logistics of NFSF products as ‘building blocks’. With standardized

elements this ensures great variety and variability in the provision of

NFSF products and services.

All the process-related work cycles in this system are linked up in such a

way that constant updating of all information follows, data that is close-

ly tied to your order.Through the networking of all 33 NIE•MET service

partners with the headquarters in Bremen and the centralized control of

warehousing, product handling, commissioning, order processing, pack-

aging and transport, we guarantee:

� Careful advance planning for every shipment and

comprehensive supervision in every phase

� Complete, quick supervision of the supply situation from

the producer to the customer, so providing the opportunity

for rapid changes in deployment.

� An immediate status report, e.g. on processing

and packaging condition, availability, etc.

� Optimum dispatch planning for speedy,

economical shipment to you.

Order-relatedspecifications inproduction andlogistics can becoordinated vianetwork with allthose involved inthe supply chain

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 46

Page 48: Niemet_Buch_En_72dpi

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 47

Page 49: Niemet_Buch_En_72dpi

48

FIRST IN THE MARKET –FIRST OUT AGAIN

From a momentary head start to a lasting advantage over the competition –demands on NIE•MET SF product logistics in the innovation process

The market decides whether new products, processes or services are innovations or not.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 48

Page 50: Niemet_Buch_En_72dpi

49

Market pioneers don’t have a head start, just an opportunity on the

road to market leadership. As first in the field, you have to be

lean, quick and keenly-priced right from the outset to keep development

costs down, achieve lasting returns and hold the entry barriers high

against powerful pursuers.

As far as this concerns the processing of NFSF products, we prepare

the way through early cooperation.

We adapt purchasing, processing, stocking and shipment to the

requirements of the innovation process. We thereby consider new

techniques and processes in materials, processing and in the timing

of supplies, as well as the provision of new alloys via our links to

leading international NF metal producers. Our competence in early

cooperation with your experts in design, purchasing, logistics and

and production rounds off this partnership in innovation.With

NIE•MET, you transform your momen-

tary head start as first in the field into a

lasting advantage over the competition!

Competitive productprices are created notonly by economical seriesproduction, but early onin product development.Early collaboration inNFSF product logisticscontributes to the quicklaunching of your newproducts on the market.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 49

Page 51: Niemet_Buch_En_72dpi

50

FLEXIBILITY BEATS GROWTHOn the factory of the future and its demands on logistics

The factory of the future will have a technologically optimum size

and capacity and operate in

open production networks. It will be located where the largest markets

are situated, to avoid unnecessary logistic transactions and be able to

react quicker to customer needs. It will probably be managed and oper-

ated by those who adapt the whole networking system fastest and con-

trol it best.The factory of the future will work only according to customer

orders and adapt processes and structures to every change in order to

reach the optimum point of operation. It will be linked to all the other

partners in the network via a higher-level order management. The facto-

ry of the future will create a rela-

tionship of simultaneousness

between versatility and economy.

An important impulse in this

regard is the progress in informa-

tion and system techniques. So-

called ‘autonomous cells’ are already in a position to seek out their

optimum work areas independently. For this they exploit ‘technical intel-

ligence’ combined with sensory equipment to steer manufacturing

processes. They thereby go beyond the limits of current automation,

which is still tied to individual work processes and machines.

A company’s competitiveness willvery soon rest on its ability to enternetworks, select suitable logisticspartners and react as fast as possi-ble to changes in the value-addingchain.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 50

Page 52: Niemet_Buch_En_72dpi

51

Serious obstacles on the way lie in the limited scope for speedy

adaptation:

� factories are built to last 30 years.

� Machines and plant facilities have a technical lifespan of 15 years.

Logistics offers useful space for rapid development in versatility. .

Significant improvements in features such as processing times, material

stocks, SF product stocks and sticking to deadlines therefore gain in

importance, also for NFSF product processing. In partnership with

NIE•MET, delivery synchronized with manufacture or installation (just-

in-sequence) is a vital step on the way to more flexibility. If we describe

the quickest possible readjustment of production to changing demands

by the ancient term ‘to arm oneself’, then our customers are well armed

against

� more disturbance caused by batch sizes, overflowing order books,

arrangement of orders

� more changes and innovations in current product programmes

� last-minute fixing of production procedures

� greater product complexity

… we think this way too.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 51

Page 53: Niemet_Buch_En_72dpi

52

NIE•MET QUALITY

Our customers’ high standards can only be fulfilled by a performance

package that goes far beyond guarantees of material quality and

demand-driven delivery. Like many of our customers, we have made a

pledge for quality in every work process. That also means our notion of

quality is not limited to mere examination of results or filtering out the

rejects at the end of the work cycle. It begins in the heads of our person-

nel. Every member of NIE•MET staff is for example in a position to

include competent advice on your problem in the ‘quality’ principle. Our

personnel are given constant further training in this respect. Certification

according to DIN EN ISO 9002 rounds off our package

and ensures continuous

improvement in our perfor-

mance.

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 52

Page 54: Niemet_Buch_En_72dpi

53

NIE•MET TERMS AND CONDITIONS

NF metals are noted on the stock market, so can vary considerably in

price. Planning their further processing, however, calls for calculability

from product development through to shipment. We offer you, on the one

hand, stable and competitive prices for the NFSF products we have in stock.

On the other hand we can, as independent and hard-bargaining buyers, exploit

all the price advantages on the NFSF product markets. We take it for granted

that neither tight delivery schedules nor procurement problems should be too

costly for you: at NIE•MET, you’re not just a buyer but a customer!

NiemannENG_001-053 19.09.2007 8:51 Uhr Seite 53

Page 55: Niemet_Buch_En_72dpi

54

NIE•MET LOGISTICS

With logistics accounting for 15 to 60% of the total cost of a product, a pro-

ductivity potential of 30% by outsourcing logistic functions to NIE-MET is

equivalent to potential savings of some 5-20% of total costs. For customers, NIE-

MET logistics means in concrete terms:

• a smaller vehicle fleet

• simpler warehousing, commissioning and packaging

• less stock control

• less order processing

• easier dispatch operations

Our own transport facilities, plus on-line haulage contractors, combine to provide a 24-hour delivery service for NIE-MET customers.

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 54

Page 56: Niemet_Buch_En_72dpi

ALUMINIUM

NiemannENG_054-162_ALU 04.10.2007 12:20 Uhr Seite 55

Page 57: Niemet_Buch_En_72dpi

NiemannENG_054-162_ALU 27.09.2007 12:26 Uhr Seite 56

Page 58: Niemet_Buch_En_72dpi

57

ADVANTAGES OF ALUMINIUM

Aluminium as SF product

The unproblematical processing and versatile connection techniques ofaluminium do not require special equipment or tooling in most cas-

es.They should however be carried out in a separate workshop if possible,i.e. separated from steel workpieces and especially copper alloys.

Aluminium alloys are, like all other common metals, well suited to the fol-lowing jointing techniques:

- welding

- bolting

- riveting

- clinching

- bonding

- brazing

Decades of experience in the building industry, as well as in transportationfacilities and shipbuilding, have confirmed the high corrosion resistance ofaluminium and its alloys (Series 1000, 3000,5000,6000 and 8000) under awide range of environmental influences.

Finally it should be mentioned that an anodised coating of just a few mmthickness can maintain the optical characteristics (e.g. reflection capacity,especially important for reflector manufacture) and decorative appearanceof the product (e.g. for sophisticated cosmetic packaging or building façadecladding) for a considerable period.

Aluminium belongs to the metals whose recycling is well worthwhile, bothfrom economic and energy-related considerations. In aluminium reprocess-ing, only some 5% of the energy required for the new metal is needed.

SF production of sheet metal

SF metals of aluminium and aluminium alloys are produced by rolling orextrusion. These are the two most important working techniques.

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 57

Page 59: Niemet_Buch_En_72dpi

58

As a rule, rolling is carried out in two stages (hot and cold), whereby thecold rolling process can be interrupted by intermediate annealing. CertainSF products are only hot rolled. As a final measure the working is complet-ed by the so-called dressing or finishing process.

In hot rolling, the sheets used as raw material in the foundry are producedin a vertical casting process. They can reach over 10 tons in weight. Anydefects arising from the initial casting, or any caused by the foundryman,are removed with the cropping saw. To eliminate any possible segregations,each sheet is then roughly milled. Finally, they are heated in a furnace to thetemperature required for hot rolling. The temperature and duration of thisheating process can be so set that homogenisation of the metal is achieved.The actual hot rolling takes place in a reverse rolling mill, which is alsoreferred to as a breakdown mill. The hot rolling forces vary according to thealloy, temperature and forming speed.

The sheet thickness at the end of the rolling mill line can lie between 350and 12mm. The SF product at the end of this hot rolling process (or anydressing that follows) is described as a plate.

At the other end of the spectrum stands sheet metal that is processed in atandem mill and wound up in coils at the end of the line. Before coiling, theedges are straightened with trimming shears.

After hot rolling a number of cold rolling processes follow, between whichthe material can be reheated to soften it and therefore achieve higher reduc-tion levels. This procedure can also be accompanied by a trimming process.

In continuous casting, the molten metal is cast continuously and directlyinto running rollers. Strip of several millimetres thickness is obtained inthis way. The strip produced in this way is then cold rolled. This process isusually reserved for alloys designed to be used in the production of metalfoil. Extremely fine products (<12mm) are rolled in multiple layers, thenseparated again.

Checker plate is rolled at the end on a roller with an engraved pattern.

The manufacture of products with high-gloss surfaces (so-called specialqualities) requires special measures during the cold rolling process.

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 58

Page 60: Niemet_Buch_En_72dpi

59

Clad sheet is produced by hot rolling a multiple-layer composite material.This consists of a plate (the core), to which a sheet (cladding) is attached onone or both sides before the first rolling process.The thickness of the plat-ing varies according to the desired degree of cladding.

This cladding can serve several purposes:

- protection against pitting corrosion in certain alloys of the series 2000,7000 and 3000

- hard-soldering qualities in the production of heat exchangers for automo-bile and refrigeration technology

- increasing surface purity in the case of cladding made from alloy 1199 onalloy 1200 (special quality).

Finishing (or dressing)

After rolling, finishing follows. This term describes a series of workprocesses applied to rolled SF products to ensure their compliance with :

- current standards ( limit deviations, shape, surface condition, etc.) as wellas

- customer specifications, with the aim of optimizing them for their intend-ed purpose.

For example, sawn products display much finer tolerances than those cutwith shears. Sawn sheets are also lighter and more easily welded.

As a rule, finishing involves the following processes:

Heat treatment:

Soft, recovery and solution annealing, quenching and/or artificial ageing ofsheets or coils

Surface treatment:

- pickling

- degreasing

- surface conversion

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 59

Page 61: Niemet_Buch_En_72dpi

60

- various coatings (priming, painting, foil)

- anodisation

Forming processes:

- flattening, stretching, ( stretch bending if required)

- stretching (Condition TX51)

- upsetting (Condition T52)

Finishing to size:

- trimming

- slitting strip on sliding lines

- cutting to sheet

- sawing

- blanking (circles, etc.

SF product profile section

With extrusion, the metal is pressed into an extruding machine through aforming die. The parts produced ( pipes, bars, profiles) have the same cross-section throughout their length and can be shaped in a variety of ways,whereby complex geometries and multi-functional designs are possible.

As raw material for the extrusion process, cylindrical or rectangular extru-sion billets are used which are produced by casting and before beingextruded can be agitated and homogenized.

In the extrusion of aluminium alloys, two different processes, described asforward or reverse extrusion, are followed.

As with rolling, extrusion is followed by a series of finishing processes. Thefollowing are mentioned in particular:

Forming processes:

- flattening, with controlled stretching if required

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 60

Page 62: Niemet_Buch_En_72dpi

61

Finishing to size:

- sawing

- drawing

Heat treatment:

According to the critical quenching speed and the desired strength, extrud-ed SF products can be press quenched and also naturally cooled in an air-flow, water spray, or by dipping in a water bath. After the quenchingprocess, hot or cold ageing can follow. Heat treatment can also be appliedafter extrusion within the finishing process. For hardenable alloys, the SFproduct is given the complete treatment (solution annealing, quenching, hotor cold ageing).

CRITERIA FOR THE CHOICE OF ALUMINIUM

Physical properties

Experience shows that constructions made of aluminium are 50% lighterthan comparable constructions of steel or stainless steel.The differing

elasticity modulus (a third of the steel modulus), and the vibration fatiguestrength of welded or bolted constructions of aluminium alloys are therebytaken into account, as well as the fact that the rules of calculation for steelcannot be automatically applied to aluminium alloys.

The reflection capacity of untreated and anodised aluminium depends onthe optical qualities of the surface, as well as the wavelength of the light. Ingeneral, it increases in proportion to surface purity: e.g. the reflectioncapacity of gloss-anodised metal (5mm coating thickness) with 99.6% Alcontent at 75% amounts to 85% in a material with 99.99% Al content.

Pure aluminium displays excellent heat conductivity properties. Thisamounts to about 60% of that of copper, the most outstanding standardmaterial in this respect. The heat conductivity of aluminium alloys dependson the composition and condition of the material. The high conductivity ofaluminium also explains the use of this metal in the manufacture of sol-

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 61

Page 63: Niemet_Buch_En_72dpi

62

dered radiators in the automobile industry (e.g. the alloys30003,3005,6063). For the same reason, considerably shorter manufactur-ing time (about 30%) whatever the process used, is achieved with highlyresilient aluminium castings in the plastics industry.

The electrical conductivity of aluminium amounts to two thirds of that ofcopper. For this reason, pure aluminium as well as certain alloys are used inthe form of bars and pipes in numerous electrotechnical applications, e.g.for connection systems, power bus bars, etc.

The physical properties of aluminium are noticeably altered by the use ofalloys and other elements

In addition, certain features, e.g. the heat conductivity and specific electri-cal conductivity, depend on the material condition of the alloy.

Aluminium alloys are not flammable in the event of fire and it has beenproven that molten aluminium is not flammable even at very high tempera-tures and under oxygen pressure. The material does not therefore contributeto the so-called fire load.

Further physical properties will be mentioned when alloys are considered.

Mechanical properties at low temperatures:

Aluminium alloys display good low temperature qualities. In contrast tosteel, they have no ductile-to-brittle transition temperature (by intercrys-talline separation) at low temperatures.

Instead, the mechanical stability and ductility of the material increase par-allel to each other. Fracture toughness also increases in the low temperaturerange. For example, the alloy 5083 0 achieves its highest K1c value at lowtemperatures.

Mechanical properties at high temperatures:

The physical and mechanical properties of aluminium alloys change withrising temperatures. The elasticity modulus, as well as the linear coefficientof thermal expansion, are directly dependent on temperature.

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 62

Page 64: Niemet_Buch_En_72dpi

63

These changes are an expression of irreversible microstructural modifica-tions, which are the more marked the longer the heat penetration (or soak-ing) time lasts. The influence of the soaking time is more marked in pre-cipitation-hardenable alloys (e.g. 7075 in T6 condition) than innon-hardenable material such as 5052 H34.

Under mechanical stress at high temperatures, plastic flow known as‘creep’ affects the material in the course of time. This is an important indi-cator in determining the heat resistance of constructions under constantstress.

The creep characteristics of the material are measurable in two ways: bystress, which causes the material to expand definably after a certain lengthof time, as well as fracture stress after a certain heat penetration period.

Further details on mechanical properties can be found in the description ofaluminium alloys.

ALUMINIUM ALLOYS

Aluminium materials

The choice of a suitable alloy and the condition of the material is, as arule, a matter for the user, who must therefore know that the selection

criteria depend to a large extent on the respective applications. Thisbecomes clear in the following examples:

- In the building industry, the durability of the optical qualities as well ascorrosion resistance are important.

- In sheet metal processing, workability and unproblematical jointing areparamount.

- In mechanical engineering, the mechanical characteristics, as well as themachining properties of the material, are essential factors.

- For electrical conductors, electrical resistivity is the decisive criterium.

- The performance of heat exchangers depends mainly on the thermal con-ductivity of the material.(Bitte Zahlen in 4. Zeile drucken!Mein Comput-er will das nicht.)

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 63

Page 65: Niemet_Buch_En_72dpi

64

(It is also important that as accurate a definition as possible of the condi-tions of use is available. For example, details on resistance to corrosion areproblematical if no information on the medium is supplied; by the sameanalogy, the vibration fatigue strength of a component cannot be satisfacto-rily defined if the loadcycles or endurance (106, 107 etc.) are not known.

Help in selecting the correct aluminium alloy

In the choice of an alloy, the relevant concrete application conditions,besides its properties and technical characteristics, are of essential impor-tance. Here follows a list of the most frequently applied selection criteria:

- mechanical properties

- workability

- machineability

- weldability

- anodisability

- corrosion resistibility

There are alloys (or alloy groups within the individual series) which are inpractice well suited to certain applications or have been specially developedparticular applications. This applies especially to:

- alloys 2011, 2030 and 6262, which are excellent free machining alloys

- the alloy 5005, which is widely used in the building industry

- the alloy 3104, which is used in drink-can manufacture.

These are, however, by no means purely ‘single-purpose’ alloys.

At the beginning of every decision there stands the choice of the correctseries of alloys, as hardenable and non-hardenable alloys differ widely intheir properties and processing characteristics.

For this reason it would not be advisable to display all the alloy propertiesof all eight series in a single table.

The alloys 1050A, 8011 and 7049A have little in common, both from themetallurgical point of view as well as from that of application techniques.

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 64

Page 66: Niemet_Buch_En_72dpi

65

In the selection of material condition this is an important criterium whichthe mechanical stability and formability depend on.

The non-hardenable conditions 0 and H111 offer the best workability. Theworkability of non-hardenable alloys in the condition H1X decreases withthe degree of strain hardening. So for the same alloy, the H14 condition ismore difficult to form than H12, and H16 is more difficult than H14, etc.

At the same degree of stability, materials in the reverse-annealed conditionsH2X are more easily workable than in condition H1X.

Hardenable alloys are best formable in the soft or newly quenched condi-tion.

In this respect it is worth mentioning that the condition of the material hasa considerable influence on resistance to corrosion of alloys in the series2000 and 7000. A lower quenching speed and an underaged condition pro-mote the corrosibility of these materials.

The 4-figure numerical designations of the Aluminium Association haveapplied since 1970. The first digit thereby always signifies the alloy series.

aluminium NIE•MET and its hardware

ALUMINIUM ALLOY SERIES

Type ofHardening

Series Alloyelement

Contentspectrum

(%)

Additionalelements

Tensile strength

Rm (Mpa)

Strain

hardening

1000

3000

5000

8000

none

manganese

magnesium

iron and silicium

0.5 - 1.5

0.5 - 5

Si: 0.3 - 1

Fe: 0.6 - 2

Cu

Mg, Cu

Mn, Cr

50 - 160

100 - 240

100 - 340

130 - 190

Hot or cold

precipitation

hardening

6000

2000

7000

4000

magnesiumand silicium

copper

zink andmangnesium

silicium

Mg: 0.5 - 1.5Si: 0.5 - 1.5

2 - 6

Zn: 5 - 7Mg: 1 - 2

0.8 - 1.7

Cu, Cr

Si, Mg

Cu, Cr

200 - 320

300 - 480

without copper320 - 350cooper430 - 600

150 - 400

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 65

Page 67: Niemet_Buch_En_72dpi

66

NIE•MET and its hardware aluminium

The European norms (EN 573) are based on two systems:

- on a first system using numerical designations acc. to the A.A. system,whereby the abbreviation ‘EN AW’ is placed before the four figures (complemented when required by the letters A or X) , ( e.g. EN AW –3003).

- on a second system based on chemical symbols in square brackets, e.g.[Al Mn 1 Cu]. This system, which derives from ISO designations, will nolonger be used in the future.

According to the EN 573 Code, the complete designation of a wroughtalloy is then, for example:

EN AW-3003 [Al Mn 1 Cu]

Examples of the use of aluminium and its alloys

Application User’s Alloys normally Remarksselection criteria used

Automotive Workability 5251, 5754, 5182, For soldered heatindustry Mechanical 5083 exchangers: 3003

properties 6060, 6005A, 6106 and 3005 (clad)Appearance of 6082, 6016painted componentResistance to corrosion

Exteriors, Workability 3003 Checker plate madeUrban Ease of assembly 5052, 5086, 5083, from 3003, 5754, 5086,decoration (e.g.weldability) 6005A, 6082,

Semifinished 6060, 6106functionalityResistance to corrosion

Sheet metal Workability 2618A, 2024, 2014processing Weldability 2214, 2219,Aerospace Low weight 2214, 2219,industry Mechanical 7020, 7075, 7175

Properties 7475, 7050, 7010WorkablityMachineabilitySuitability for diverseResistance to corrosion

Sheet metal Workability 1200, 1100, 1050Aprocessing Weldability 3105, 3003, 3004

5049, 5052, 54545754, 5086, 5083

6082, 6061

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 66

Page 68: Niemet_Buch_En_72dpi

67

aluminium NIE•MET and its hardware

Examples of the use of aluminium and its alloys

Application User’s Alloys normally Remarksselection criteria used

Wire Mechanical 5051, 5052, 5754 Welding wireproperties 5056Resistance 6101 4043to corrosion 5754, 5356, 5183

Electrical Electrical 1050A, 1350, 1370conductors resistivity 6101

Construction Workability 1050A Pre-painted strip made industry paintable qualities 3105, 3003, 3005 from 1050A, 3105, 3003,

Anodisable and 5005, 5052 3005, 5052Resistance to corrosion 6060, 6005A, 6106 Voranodisiertes Band ausEase of installation 5005

Kitchen cutlery Deep drawing 1200, 1050A, 3003 The alloys 4006manufacture capacity 3004 and 4007 are

Coatability 4006, 4007 specially suitable5052, 5754 for enamelling

Plastics technology Mechanical properties 2017AMachineability 5083Thermal conductivity 6061

7075Fortal, Alumold

Lighting, Optical appearance of 1199, 1198, 1095, 1090, Special qualities apply Decorative surface. 1085, 1080 here.Purposes Suitability for diverse 5005, 5657

surface treatments

Mechanical Mechanical properties, 2618A, 2024, 2017A, For the alloys 2030,2011,Applications Machineability 2014, 2214, 2030, 2011 6012 and 6262, free

5086, 5083, machining alloys apply.6005A, 6082, 6061,6012, 62627075, 7049, Fortal

Commercial Workability 3003, 3004 Wide strip made from vehicle Ease of assembly 5052, 5454, 5754, 5086, 5052,57543003,industry (e.g. weldability) 5083, Checker plate from 3003,

Semifinished product 6005A, 6082 5052,5754,5086functionalityAppearanceResistance to corrosion

Shipbuilding Workability 5754, 5086, 5383, 5083, Checker plate from 5086Weldability 6005A, 6082,Resistance to corrosion

Packaging Low weight 1200Workability 3000Decorative qualities 3104, 3004Insulation qualities 5052, 5154A, 5182Alloy additions

Heat exchangers Thermal conductivity 1050A, 1100, For soldered heat Workability 3003, 3005, exchangers: Ease of installation 6060, 6063, 3003 and 3005 (clad) (1)Soldering qualitiesResistance to corrosion 8011

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 67

Page 69: Niemet_Buch_En_72dpi

68

Series 1000:

Within this series a distinction is made between Reinstaluminium and oth-er materials such as 1050A and 1200.

Reinstaluminium (1199 [Al99.99], 1198 [Al99.98(A)]) has a purity ofbetween 99.98 % and 99.999 % and is used above all in the manufacture ofelectrochemical condensers (EC metal), in the fabrication of lighting appli-ances (special qualities), for decorative purposes in the building industryand for high quality packaging (cosmetics, perfume), mostly in anodisedform.

The material 1050A [Al99.5], belongs with its aluminium content of>99.50% to the commonest sorts and offers a balanced combination ofmechanical stability, plastic workability and decorative qualities. Its enor-mously wide application range extends from packaging, the building indus-try, sheet metal processing and roofing, ribbing and piping for heatexchangers, right through to electrical conductors.

The material 1200 [Al99.0] has an aluminium content between 99.0 and99.5%. It is used in place of 1050 [Al99.5] for all applications where itsplasticity meets requirements (packaging, circles for cooking utensils, etc.).

Series 2000:

These materials are mainly alloyed with copper, but also with smallamounts of magnesium and silicium. These alloys are used principally forthe following reasons:

- mechanical stability in condition T6

- great fracture toughness in condition T4

- heat resistance

- suitability as free machining alloy

In simple terms, three main groups can be distinguished according to theircondition:

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 68

Page 70: Niemet_Buch_En_72dpi

69

Cold naturally aged (T4 or T451):

The alloy 2017A [AlCu4MgSi(A)] displays average mechanical stabilityand good machineability and is often used in mechanical applications (inthe form of extrusion- moulded products or plates).

The alloy 2024 [Al Cu 4Mg1], with its higher magnesium content, repre-sents an optimum alternative to the alloy 2017A [AlCu4MgSi(A)]. Besidebetter mechanical properties, it is marked by good toughness and fracturetenacity. It is used mainly in the form of thin and medium-thickness sheet(Condition T351) and extrusion-moulded products in the aerospace indus-try.

As a variant of the material 20024 [AlCu4Mg1], the alloy 2124[AlCu4Mg1(A)] T351 should be mentioned, which differs from the formerby a low iron and silicium content of the basic material (1080 [Al99.8]) andis therefore tougher.

Hot naturally-aged T6 (T651) or T8 (T851):

The alloy 2014 [AlCu4SiMg] has a higher silicium level (0.5 – 1.2%) andachieves great mechanical stability, especially in the T6 condition. It is usedmainly in the aerospace and mechanical engineering industries.

The alloy 2214 [AlCu4SiMg(B)] is a variant of the material 2014[AlCu4SiMg], but with reduced iron content, so that the toughness andfracture tenacity of medium-thickness sheet and plate for aerospace tech-nology is improved. This material is also used in some mechanical applica-tions (e.g. in the production of magnetoscope drums).

The alloy 2024 [AlCu4Mg1] achieves great mechanical stability in the T8condition in thick material and also displays sufficient resistance to grainboundary corrosion for the manufacture of products below 0.1mm thick-ness. Its mechanical properties can be further improved by cold workingbetween quenching and hot ageing (condition T8). It is mainly used in aero-space and defence technology.

Adequate heat resistance at temperatures between 100° and 300° areachievable with the further addition of nickel, manganese and vanadium,

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 69

Page 71: Niemet_Buch_En_72dpi

70

e.g. in the alloys 2618A [AlCu2Mg1.5Ni] and 2219 [AlCu6Mn], whichdisplay great heat resistance and creep strength at temperatures up to100/150°.

The alloy 2618A [AlCu2Mg 1.5Ni] is used in the aerospace and mechanicalengineering industries.

The alloy 2219[AlCu6Mn] has the highest copper content (6%) of all indus-trial alloys; to this are added manganese, vanadium, zirconium and titani-um. The mechanical properties of these alloys, which can be supplied in theT3,T6 and T8 conditions, can be further improved by cold working afterquenching.

This material therefore offers a range of advantages:

- creep resistance and tensile strength in the 200-300° range, good mechan-ical properties in the low temperature range

- electrical weldability (WIG and MIG)

- resistance to stress corrosion in T6 condition

Using the additional alloys lead and/or bismuth, high-quality free machin-ing alloys with improved machineability, such as the materials2011[AlCu6BiPb] and 2030 [AlCu4PbMg], can be produced.

It is also worth mentioning that these alloys – with the exception of 2219[AlCu6Mn] are not weldable with the standard WIG and MIG processesand have only average resistance to corrosion. They should therefore besuitably coated for use in damp or specially aggressive conditions.

Series 3000:

Industrial alloys of the 3000 series contain 1–1.5 % manganese.This alloyelement considerably increases the mechanical properties of aluminium.The guaranteed minimum strength is so increased by 40 – 50 MPa withoutaffecting workability to any great extent.

The most representative material in this series is the alloy 3003[AlMn1Cu]. By adding up to 0.20% copper, its mechanical stability is onceagain slightly increased. The additional iron content (max. 0.7%) promotes

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 70

Page 72: Niemet_Buch_En_72dpi

71

the formation of a fine-grained structure.

Like all materials in this series, the previously mentioned alloys reach theiroptimum plastic workability in the soft condition (Condition 0).

The alloy 3003 [AlMn1Cu] is primarily used in the building industry(cladding, roofing), but also in sheet metalwork, heat exchanger piping andin the form of circle plates for cooking utensils, etc.

The alloy 3103 [AlMn1] represents the copper-free variant of the material3003 [AlMn1Cu].

The alloy 3004 [AlMn1Mg] has slightly better mechanical properties due toits additional share of about 1% magnesium, but otherwise corresponds tothe alloy 3003 [AlMn1Cu] in its general characteristics. It is used in theproduction of preserve cans, for kitchen utensils (circles) as well as in thebuilding trade (painted products), etc.

The mechanical properties and workability of alloys 3005[AlMn1Mg0.5]and 3105 lie between those of materials 3003 [AlMn1Cu] and 3004[AlMn1Mg1].Their areas of application are the building trade, roofing,sheet metalwork, insulation, capsules and lids.

Series 4000:

Two main alloy groups are to be distinguished here:

Materials with a low silicium content (<2%), with or without the additionof manganese:

The alloy 4006 [Al Si 1Fe] and 4007 [AlSi 1.5 Mn]. Non-cutting formingmust be carried out in the soft condition. The main use is for enamelledkitchen utensils. By quickly burning in the enamel at 550° and coolingquickly at once, a light solution-annealing and quenching effect is pro-duced, sufficient to harden the material.

Materials with increased silicium content and various other alloy elements:

The alloy 4004 [AlSi10Mg1.5], 4104 [AlSi10MgBi], 4043A [AlSi7.5].These are rolled in layers a number of times with the alloys in the series

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 71

Page 73: Niemet_Buch_En_72dpi

72

3000 and 6000, and are used as cladding material in the production of carradiators, in natural gas liquefaction equipment, etc.The alloy 4043A[AlSi7.5] is used today as filler metal in WIG and MIG welding.

Series 5000:

The mechanical properties of the alloys in this series increase with the mag-nesium content. Industrial wrought alloys, however, never contain morethan 5% magnesium, because above this concentration the stability of thealloy decreases, especially at high temperatures. Continuous soaking leadsto grain boundary precipitation of the intermetallic compound Al2Mg2.Alloys with magnesium content of >3% are, as far as their use requires it,stabilizable by heat treatment (condition H3X,H116). Alloys of the series5000 mostly contain further additives (e.g. chrome, titanium), whichimprove their mechanical properties or simply particular features (resis-tance to corrosion, weldability).

Features of this alloy are:

- good weldability (exception: alloys with 1.8 – 2.2% magnesium content).The mechanical stability of the seam essentially corresponds to that of thebasic metal in the annealed condition.

- good low temperature qualities

- high resistance to corrosion (welded or not)

By surface treatment such as burnishing or anodising, a very attractiveappearance can be given to these alloys, especially by using raw materialswith low iron and silicium content (e.g. alloy 5657 [Al99.85Mg1(A)] fromthe raw material 1080 [Al99.8]).

The most important alloys are:

5005 (0.6 % magnesium): This is used in place of the material 1050A[Al99.5 (A)] and 1200 [Al99.0], if a slight increase in mechanical proper-ties is desired. This alloy is widely used in anodised or coil-coated form inthe building trade (façades, etc.).

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 72

Page 74: Niemet_Buch_En_72dpi

73

5657 [Al99.85Mg1(A)]: a variant of the alloy 5005 [AlMg1(B)] which ishowever based on a purer raw material (1085 [Al99.85]). It is suited for theproduction of special qualities for cosmetic packaging, lighting appliancesand decoration.

5052 [AlMg2.5] (2.5% magnesium and chrome added): this offers a goodcompromise between mechanical stability, workability, as well as resist-ance to fatigue and corrosion. In condition H28 this material is often usedin the production of preserve cans, but also frequently in sheet metalwork(commercial vehicles, car bodies,street signs, etc.).

5049 [AlMg2Mn 0.8] (without chrome, but with manganese): this is a vari-ant of the alloy 5052 [AlMg2.5], which is often used in sheet metalwork incoil form for heat insulation.

5454[AlMg3Mn], 5754 [AlMg3] and 5154A [AlMg3.5(A)] (2.5 – 4% magnesium, low share of manganese or chrome): these alloys are oftenused in building, in public facilities, transportation and for mechanicalengineering purposes. The alloy 5154A [AlMg3.5(A)] is also used in themanufacture of rivets, fly screens and coaxial conductors.

5086 [AlMg4] and 5083 [AlMg4.5Mn0.7] (3.5% magnesium, manganeseand chrome): these alloys display the best mechanical properties of allrolled semi- finished products in the series 5000 – also in the low tempera-ture range. They are easily weldable and extremely resistant to corrosion,especially in marine areas. They are therefore widely used in shipbuildingand in sheet metal processing.

5183: This alloy also contains 4 – 5% magnesium but differs from thematerials just mentioned in its very high manganese (0.7%) and low ironcontent. Compared with the alloys 5086 [AlMg4] and 5083[AlMg4.5Mn0.7], this new alloy displays better mechanical properties inthe welded condition.

5182 [AlMg 4.5Mn 0.4] (4.5% magnesium, but reduced iron and siliciumcontent): this material offers a good compromise in the soft conditionbetween mechanical stability and workability and among other things isused for the interior stiffening of car bodies. In the condition H28 (painted)

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 73

Page 75: Niemet_Buch_En_72dpi

74

it shows great mechanical stability and displays the necessary capacity forfurther working in drinking-can production.

5019 [AlMg5] (5% magnesium, but reduced iron and silicium content): thismaterial is reserved for selected special applications (rivet wire, zips, cansfor food products).

Series 6000:

Materials in series 6000 are alloyed with magnesium and silicium.

They mainly show the following features:

- good hot workability (rolling, extrusion, forging)

- good resistance to corrosion,especially out of doors

- good mechanical properties, which are improved by the addition of cop-per or of silicium (in concentrations above the stoichiometric content ofthe stabilizing precipitation compound Mg2Si).

- good electrical weldability and hard-solderability

- good cold workability (bending profiles, deep drawing) in condition 0, aswell as – even if in lesser measure – in condition T4

- attractive surface appearance after burnishing or anodising

The above-mentioned advantages have led to the creation of a variety ofapplications for this alloy series, especially in metalwork construction.These materials can be supplied in the following forms:

6005A [AlSiMg(A)], 6106 [AlMgSiMn], 6056 [AlSi1MgCuMn], 6060[AlMgSi], 6262 [AlMg1SiPb]: only extruded products.

The alloy 6060 [AlMgSi] is regarded as the ideal extruded alloy, and is suit-able for very complex forms. Quenching can be carried out directly afterpressing (condition T5). This material also exists in a number of variantswith deviations in Mg and Si content as well as copper or chrome additives,if necessary, to improve specific qualities or groups thereof (extrudability,appearance, anodisability, mechanical properties, etc.).

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 74

Page 76: Niemet_Buch_En_72dpi

75

The alloy 6005A [AlSiMg(A)] is also easily extrudable and can be pressquenched. In condition T5, a mechanical stability of about 290 MPa isachieved. This material is also marked by extreme toughness. It is thereforevery suitable for metalwork for construction, for commercial and railwayvehicles, as well as for mechanical engineering processes.

The alloy 6106 [AlMgSiMn] represents an extruded material speciallydeveloped by Pechiney for light construction applications. It displays goodextrusion characteristics, as well as good press quenching, and with its highmechanical stability is located between the alloys 6060 [AlMgSi] and6005A [AlSiMg].

The alloy 60056 [AlSi1MgCuMn] in condition T6 displays most mechani-cal properties in this alloy family (Rm= 450 – 470 MPa). It is used tostrengthen car doors.

The alloy 6262 [AlMg1SiPb], with its lead and bismuth additives, is a typ-ical free machining material used to optimize machining qualities.

The alloy 6082 [AlSi1MgMn] achieves, in condition T6, increased tensilestrength of 320 – 340 MPa. Like the material 6005 [AlSiMg], this alloy isoften used in commercial vehicle, wagon and ship construction, as well asin forging.

The alloy 6061 [AlMg1SiCu] displays average stability (310 MPa in condi-tion T6) and is used both as an extruded product (bars, profiles, piping) aswell as in drawn, rolled and forged forms. It is applied wherever corrosion-resistant constructions of medium tensile strength are required, e.g. in thefields of transportation (commercial and rail vehicles), mechanical engi-neering, piping for furniture and interior decoration, etc.

Series 7000

Copper-free alloys in the series 7000:

The alloy 7020 [AlZn4.5Mg] is the material used most for rolled andextruded products in widely differing fields (transportation, mechanics,defence technology).

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 75

Page 77: Niemet_Buch_En_72dpi

76

In its normal, artificially-aged condition (T5 or T6), this material shows atensile strength of about 360 – 400 MPa. It is also worth mentioning its sat-isfactory resistance to corrosion in the unwelded state.

Heat resistance at temperatures over 120 - 130° is relatively low. Heating toover 200°C can promote grain boundary corrosion.

Electrical weldability (with material 5356 added) is good. The tensilestrength after welding corresponds to the level of the basis metal in condi-tion T4. However, a marked tendency towards exfoliation corrosion existsin the heat-affected zone on both sides of the welding seam. Because of thisdisadvantage, its use in welded constructions should be limited to selectedand especially well-supervised applications.

Cupriferous alloys in the series 7000:

By adding copper to the alloys containing aluminium, zinc and magnesium,the aluminium alloys in condition T6 display the highest tensile strength.

To achieve the appropriate resistance to corrosion in aggressive conditions,as well as sufficient resistance to stress corrosion in the short transversedirection, duplex ageing is required (conditions T73 and T76), whereby thetensile strength is, however, reduced by 20%.

The alloy 7075 [AlZn5.5MgCu] is at present the most widely used materialfor rolled, extruded, forged and drop-forged products in the fields of aero-space and mechanical engineering, as well as for sports and leisure goods.

The alloy 7475 [AlZn5.5MgCu(A)] represents a variant of the material 7075[Al Zn5.5MgCu] with reduced iron and silicium content (base material1080 [Al99.8]), which is marked by good toughness or fracture tenacity. Itsarea of application is aerospace technology.

The need for products with thicknesses of over 80mm led to the develop-ment of the variant 7050 [AlZn6CuMgZr] and 7010 [AlZn6MgCu]. Thesediffer essentially from the alloy 7075 [AlZn5.5MgCu] by

- the use of zirconium in place of chrome to achieve better quenching char-acteristics.

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 76

Page 78: Niemet_Buch_En_72dpi

77

- an increase in copper content, which gives these alloys, after duplex age-ing (conditions T73 and T76), a good mixture of mechanical propertiesand resistance to corrosion.

The alloy 7049A [AlZn8MgCu] belongs to the aluminium alloys with thebest mechanical properties (condition T6). The following mean values areachieved:

- Rp0.2 = 570 MPa

- Rm = 650 MPa

- A = 10%

Series 8000:

The simultaneous addition of iron (for finer grains) and silicium gives thesealloys increased mechanical stability. Due to their fine grains and goodisotropy they are also easily workable, even under difficult conditions (e.g.in thicknesses of only 50 – 200 µm). This explains their widespread use inthe manufacture of heat exchanger ribbing, flexible piping, metal runwaysand foil, etc. The most often used are the alloys 8006 [AlFe1.6Mn] (withmanganese) and 8011(A) [AlFeSi1(A)].

PROCESSING ALUMINIUM

Non-cutting forming

In the choice of tools it should be noted that the surface hardness of alu-minium is less than that of steel. For this reason it is advisable to use spe-

cial tools such as hammers of boxwood or reinforced plastic, which do notdamage the metal.

If the use of a metal hammer (e.g. a dinging or chasing hammer) is unavoid-able, then their sharp edges should be filed off and polished.

Forming tools must themselves be deformable and be made of a soft mate-rial (over- or underlays of sand-filled leather or wood). Forming tools ofsteel (beaks, stakes, anvils, etc.) must not be sharp-edged. The use of ordi-

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 77

Page 79: Niemet_Buch_En_72dpi

78

nary vices is permissible as long as a jaw chuck of aluminium plate (notlead!) is used.

In general, any possibility of contact with chips or dust of iron or copper isto be avoided, as local corrosion can thereby occur in constructions madefrom aluminium alloys.

In hollow shaping by hand from blanks, the work should be carried outfrom the edge inwards to avoid folding. Any folds that occur must not behammered flat but but completely driven out.

Reductions are to be made in small stages, whereby the material shouldonly lie directly under the tool. The distance between the individual stagesshould amount to about 15 – 20mm for thicknesses of 1.5 – 2mm.

As with other metals and alloys, aluminium alloys are strain-hardened bynon-cutting shaping. Compared with steels, which must be annealed afterevery processing stage, intermediate annealing can be carried out less oftenwith aluminium alloys – intermediate annealing after 5-6 work stages issufficient. This is normally executed with a propane/air or acetylene/airburner. For smaller workpieces, thermal softening can be made in the fur-nace at the annealing temperature of the respective alloy.

Annealing with the burner is problematical insofar as the surface of alu-minium does not discolour according to temperature. Other means musttherefore be used (e.g. spreading tallow or soap on the surface,whichchanges to yellow with increasing temperature, then black). A dark browncolouring corresponds to a temperature of approx. 400°, the annealing tem-perature of aluminium alloys.

The same process is used for hot working, as for example, in bending pipesor profiles. To prevent grain growth in intermediate annealing, the work-piece should always be processed to the limits of its workability capacityand the number of annealing stages kept as low as possible.

Hardenable alloys can be worked in the freshly quenched condition, wherethe material displays its highest level of plasticity.

When widening, it is advisable to smooth the edges of the workpieces toavoid breaking, even if abrasive work (filing, sand-papering) on the edgesis necessary.

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 78

Page 80: Niemet_Buch_En_72dpi

79

Slight sheet deformation of up to some 3mm can be removed with the ding-ing or rubber hammer.

Deformation caused by longitudinal shrinkage of welding seams can becorrected by hammering. A reduction in channeling thickness is oftenthereby required. This is achieved by grinding off with grinding wheels of50 – 80 graining.

Before hammering it is advisable to file the bulb ends, as the pressure-defor-mation of any irregularities present there can lead to the formation of cracks.

Flattening can be carried out by local heating to produce selective shrink-age effects (so-called flame flattening). Because of the high thermal con-ductivity of aluminium alloys the workpiece must however be allowed tocool down to ambient temperature after every heating process. By selectinga suitable combination of hammering and heating, the flattening processcan be simplified and accelerated.

To flatten larger surfaces, the possibility exists, instead of point by pointheating, of mounting the burner and cooling-water nozzle on a carriage,with steady and even forward feed.The distance between flame and sheetcan thereby be controlled by way of rollers.

The mechanical qualities of strain-hardened alloys in annealed condition (0or H111) are not adversely affected by flame flattening.The toughness ofalready strain-hardened or precipitation-hardened alloys (Series 2000,7000or 6000) is however noticeably reduced by heating.

For bending aluminium no special facilities are required. Very good resultsare achieved with traditional folding presses. The permissible bending radiidue to the delivery condition of the material should however be considered.The direction of bending should if possible run transversely to the rollerdirection, where the tightest bending radii are achievable.

When angle-bending, a hole should be drilled at the intersection of thebending lines to prevent the formation of cracks. For the same reason it isadvisable, for material over 5mm thickness, to compress the edges in thevicinity of the bending lines by manual hammering or brief pressure, espe-cially if work is going on near the critical bending radius.

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 79

Page 81: Niemet_Buch_En_72dpi

80

For manual bending, two processes are available:

- cold: using wooden forming shapes (suitable for thin profiles and piping)under constant removal of any folds arising.

- hot: using steel forming shapes (for thick profiles and piping). The tem-perature, controlled by applying tallow, must not exceed 400°.

For alloys in the series 2000, 7000 and 6000, the material should not bebent hot, as the heat softens it. It is however possible to process these alloysin condition T4 and anneal them afterwards.

Bending by machine is carried out in cold condition in pipe-bendingdevices with or without mandrels, reducing machines or stretchingmachines.

Pipe expansion is a simple mechanical process whereby pipes, by expan-sion in cold condition, can be fixed in the holes drilled in a plate. This tech-nique is often used in the production of heat exchangers.

The expansion, made via the pipe interior, is carried out in a variety ofways:

- hammering with conical or cylindrical rollers

- hydraulic or mechanical expansion with a mandrel

- using the shock wave of explosives

The first-mentioned alternative is the most widely used and allows theexpansion of all pipes, also in the semi-hard condition (HX4).

In deep drawing, several kinds of local deformation occur, e.g. two-dimen-sional expansion, bending under traction, reduction and one-dimensionalstretching.

The quality of deep drawing depends not only on the properties of the metal,(more exactly, on its workability capacity), but also on the following factors:

- the process chosen: the type of press and control of its effect

- the design of the tool

- the contact conditions between sheet and tool (material and roughness ofthe tool surfaces, roughness of the sheet surface, lubricant)

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 80

Page 82: Niemet_Buch_En_72dpi

81

The deep drawing process, as a rule, involves one or more working stages,as well as the subsequent blanking and trimming work .

To fully exploit the workability capacity of aluminium alloys, it is advisableto observe the following rules:

- The application of appropriate workpiece geometry, especially the avoid-ance of corners and curves with an excessively narrow bending radius.

- The choice of the optimum alloy and the appropriate material condition totake into account the requirements for the workpiece as well as any prob-lems arising during deep drawing.

- The fixing of a multistage deep drawing process where in the first stagethe general form of the workpiece is produced, and the final contours inthe following stages by reduction and/or stretching.

- Adaptation of tooling geometry to the limits of the form-changing capac-ity of the alloy selected. The shape of the drawing beads at the blank hold-er, which is essential for the workability of the material, as well as the cor-ner radii of the die and drawing punch, are decisive for the trouble-freeexecution of the deep drawing process.

- Avoidance of deep drawing already-blanked workpieces in which a defor-mation of any openings present is required in the deep drawing tool.

The choice of an alloy depends on the following factors:

- Material properties (workability capacity, anisotropy)

- Demands on the end product

- Mechanical stability of the workpiece

As a rule the following materials are used in deep drawing:

- In condition 0 and H111:- 1200 [Al99.0], 10550A [Al99.5]- 3003 [AlMn1Cu]- 5052 [AlMg2.5], 5454 [AlMg3Mn], 5754 [AlMg3], 5086 [AlMg4],- 5083 [AlMg4.5Mn0.7], 5183 [AlMg4.5Mn0.7(A)]- 4006 [AlSi1Fe], 4007 [AlSi1.5Mn].

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 81

Page 83: Niemet_Buch_En_72dpi

82

- in condition T4:- 2017A [AlCu4MgSi(A)]- 6061 [AlMg1SiCu].

Precipitation-hardenable alloys (2017 A [AlCu 4MgSi(A)], 6061[AlMg1SiCu] are usually deep drawn in condition T4 and then heat treatedto improve or balance out the mechanical properties of the workpiece.

Workability capacity is the degree of workability of a material without theappearance of faults such as cracks, impermissible local thinning or folding.

The workability capacity is mainly determined by the following features:

- breaking-elongation behaviour

- elongation on necking (where, when this is exceeded, the workingremains limited to localised areas, i.e. no longer proceeds evenly

- material hardening due to working

The alloys used in deep drawing show less breaking-elongation than steel,but are marked by about the same uniform elongation and strain-hardening.

Even if uniform elongation is decisive for deep drawing, the metal mustalso show sufficient tenacity for distribution of the working forces as wellas a sufficiently high elongation limit for any elongation forces that arise.

For this reason the harder, if less elongatable, alloys in series 5000 are pre-ferred to the material 1050.

For the choice of alloy, the prescribed mechanical properties of the finishedcomponent as well as their homogeneity are decisive. As a result of the dis-tribution and varying intensity of the localised deformation caused by thedeep drawing process, the value of the mechanical properties can vary con-siderably between different areas of the workpiece.

In the interests of optimum homogeneity the use of a precipitation-hard-ened alloy such as 2017A [AlCu4MgSi(A)] or 6061 [AlMg1SiCu], whichis processed in condition T4, is advisable. After working, the workpiece isgiven conventional heat treatment (solution annealing, quenching, artificialor natural ageing). Rolling has a flattening effect on the structure of the

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 82

Page 84: Niemet_Buch_En_72dpi

83

metal which finds expression in the flattening and stretching of the grain inthe rolling direction. The result is a difference in mechanical properties inlongitudinal and transverse direction, so-called anisotropy.

In the deep drawing of cylindrical cans, this effect causes the formation ofears and dents in the upper edge of the workpiece. These indentations usu-ally run at an angle of 45° to the rolling direction, but are vary greatlyaccording to the alloy and material condition. The work effort required fordeep drawing increases with the height of the ears, as the diameter of theblank must be increased correspondingly. By otherwise identical parame-ters, the drawing sequence also affects ear formation. The necessary blankdimensions for simple workpieces are determined by conventional process-es. A basic shape is sketched geometrically for this and optimized afterpractical testing. To determine dimensions and form of the blanks, softwareon the basis of the Finite Element Method can be used. However, in the pro-duction of complex workpiece shapes, the traditional process of stage bystage optimization has its own justification.

Experience shows that:

- For the first drawing stage (with an even blank-holder), a drawing gap of1.1 to 1.4 times the sheet thickness (t) is recommended, whereby for thin-ner material a factor of 1.05t can be permitted.

- For subsequent stages, a gradual enlargement of the drawing gap shouldbe made so that any folding (more likely with thinner sheet) is prevent-ed.Drawing gaps >1.65t should be avoided.

- For the last pass (e.g. for calibration of the workpiece) a drawing gap of 1tcan be made, whereby, however, working still takes place at this value.

The optimum value corresponds to the thickness of the material to be deepdrawn. For rectangular deep-drawn pieces, the height and width of theworkpiece are the important factor.

The deeper the drawing, the larger the corner radii to be selected.

The deep drawing ratio Rc, calculated from:

Rc = diameter of the disc / diameter of the drawing punch

must not exceed a value of 1.5 – 2.2

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 83

Page 85: Niemet_Buch_En_72dpi

84

The correct value in individual cases depends on the alloy and its condition.The optimum holding pressure must be determined empirically. As thepressure decreases with continuing cup formation, a press with progres-sively sinking holding pressure could be used in the ideal case. In view ofthe fact that the holding pressure is not variable in most machines, a valuemust be selected that is sufficient for the first drawing stages, without sub-sequent formation of folding.

The lubricant plays an important role in the outcome of the deep drawingprocess. An unsuitable lubricant can in certain cases lead to cracks or evento scuffing (the aluminium sticks to the tooling).

The lubricant works in two ways:

- mechanically (reduction or control of friction forces)

- physically/chemically (separation of material and tool surfaces)

For the selection of the optimum lubricant, several factors are thereforeimportant, e.g.:

- alloys

- drawing tool material

- conditions of work done

- drawing sequence

In general, mixed lubrication is applied, i.e. areas with thick lubricationfilm vary with areas where the metal is in contact with the tooling. Whilecomplete greasing can be achieved with high-viscosity lubricants, this canhowever lead to difficulties in degreasing the workpiece. The lubricationconditions can therefore only be considered for a given area.

Metal-cutting forming

When cutting with shears, breakage is caused over about two-thirds of thethickness of the material. Marked edge deformation in thick material can bethe result. For a clean cut it is therefore advisable to use a saw from a mate-rial thickness of 8mm. Sawing represents a widely used and very economi-cal process for cutting aluminium and its alloys. Belt saws as well as circu-

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 84

Page 86: Niemet_Buch_En_72dpi

85

lar saws are used for this. The capacity of the machine must be essentiallythe same as that required to cut through unalloyed, low-carbon steel. Forrectangular blanks, lever shears as well as guillotine shears are used. Themost widely used saw can be a simple wood saw, but the the blade must bedesigned for the particular machining capacity and swarf removal. This isproduced by a corresponding alternating arrangement of the saw teeth aswell as the choice of an effective cutting angle.

The remaining values are as follows:

- thickness: D = wheel diameter (mm) / 1000

- width: 10 – 30mm

- tooth spacing: 2.5 – 8mm, whereby it is important that two teeth arealways gripping

- lubricant: tallow or soluble oil

As with the belt saw, the tooth spacing of the circular saw is arrangedaccording to the thickness or cross-section of the workpiece. The cuttingprocedure determined by the characteristics of the machine, however,makes this kind of work rather similar to a milling process.

The following machining speeds apply for belt and circular saws, inde-pendent of the alloy:

- high-speed tool: 600 – 1000 m/min

- high-carbon steel: 800 – 1500 m/min

For thicknesses up to max. 6mm, the use of a jigsaw is possible; it is easyto handle and better suited for more complicated machining.

Aluminium alloys are well suited for the classic machining processes suchas turning, milling, drilling, thread-cutting and sawing.

The same machines can be used as for steel. Optimum processing condi-tions for aluminium alloys (e.g. number of revolutions, forward feed) canbe achieved with the appropriate machinery. The specific properties of thematerial should thereby be considered:

- The specific weight of aluminium allows the use of a high number of rev-olutions and feed speeds. At the same time, aluminium cuttings show lessinertia compared with steel.

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 85

Page 87: Niemet_Buch_En_72dpi

86

- Due to the smaller elasticity modulus, (only a third of the E-modulus ofsteel) special clamping techniques must be used to prevent overhangs anddeformation.

- The thermal conductivity guarantees rapid heat dispersion. Due to thehigh machineability, the heat is dispersed with the chips without first col-lecting in the tool.

- The linear thermal expansion coefficient (twice as high as that of steel)prohibits any heating, if moderate results are to be achieved.

Other than with steel, no heat treatment (recovery annealing) is required inthe course of the metal-cutting process. Certain SF products to be machinedfrom alloys in the series 2000 and 7000 are supplied in conditions T451 orT615 to reduce the level of internal stress caused by deformation and heattreatment. Annealing these SF products would destroy the mechanicalproperties of the material, as well as the features typical of this supply con-dition.

By identical chip dimensions, the forces required for processing aluminiumare three times lower than those for soft steel.A three-times higher metalremoval is achieved at the same cutting force with aluminium alloys such asthe material 2017A [AlCu4MgSi(A)] (mechanical properties comparablewith soft steel).

To guarantee trouble-free chip removal and prevent chips sticking to themachine, a very sharp cutting edge and and a polished face should be used.The optimum cutting angle depends on the alloy. The clearance angle mustbe over 6° and can amount to 12°.

To machine alloys with more than 7% silicium content, it is advisable to usetools with a TiN or TiCN coating (exclusively vacuum metallized in thePVD process).

Under otherwise identical conditions, considerably longer service life canbe expected from a tool suitable for work on aluminium alloys than from atool used in the machining of steel. All rolled and extruded alloys aremachineable at very high cutting speeds. With special devices (high speedspindles), cutting speeds of 2000 – 3000 m/min and more can be achieved

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 86

Page 88: Niemet_Buch_En_72dpi

87

with alloys of the series 2000 and 7000. At a tool diameter of 12mm and afeeding speed of 10m/min, processing can be carried out at up to 50,000revs/min. At these very high cutting speeds, extremely thin wall thickness-es and corresponding reductions in weight can be achieved.

Due to the low elasticity modulus of aluminium alloys, excessively fastfeeding speeds are not advisable, even for coarse work. By no means mustthe feed amount to more than 0.3mm per revolution.In final processing, theforward feed corresponds to the surface quality to be achieved.

Cutting-oil fulfills three functions:

- Cooling (dispersion of the heat created by cutting and friction)

- Prevention of the swarf sticking to the tool

- Chip removal from the work area

Of the three available lubrication techniques, i.e.

- fine spraying

- conventional cutting-oil

- oil emulsions

the last-named is the most widely used today, as it guarantees the mosteffective heat dispersion per kilogram of lubricant (approx. 200 kJ kg-1)

Cutting-oil reduces friction particularly well and is very suitable for thread-cutting. Fine spraying is not recommended for dispersing intense heat.

The composition of the lubricant must also fulfill other requirements, e.g.

- compatibility of the lubricant with aluminium alloys, i.e. causing no stain-ing or surface corrosion (absence of chlorine and sulphur compounds)

- anti-bacterial effect (prevention of fungus formation)

- observation of relevant environmental regulations

Aluminium alloy workpieces should, not as a rule, be stored in cutting-oiloutside the machining process, as staining (especially in the presence ofparticles of other metals such as steel, copper, etc.) through more or lesssuperficial material corrosion can occur.

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 87

Page 89: Niemet_Buch_En_72dpi

88

JOINTING ALUMINIUM

Welding

In the choice of a welding process, the MIG process should always be pre-ferred where possible. Experience has shown that due to the higher weld-

ing speed compared with the WIG (Wolfram Inert Gas) method, the mate-rial suffers less deformation. On the one hand, with the WIG process, highquality fillet welds can be made. On the other, the uniformity of weld qual-ity is more difficult to maintain by the MIG technique than by WIG weld-ing; this applies especially to obtaining the lowest possible porosity levels.In addition, in manual WIG welding, a proper connection is usually onlyachieved by welding on a metal reinforcement or by welding afterwards onthe back of the seam, which must be preceded by gouging out with a goug-ing torch down to sound material. At material thicknesses below 1.5mm,MIG welding is problematical, even with pulsating current.

In the WIG process, an arc is produced between the workpiece and a heat-resistant electrode surrounded by a protective gas envelope (usually argon).In this way the weld pool is protected from oxidation. During the welding,a filler metal in the form of a welding filler rod is added.

In contrast to welding equipment for non-rusting steels, which work withdirect current, the systems used to weld aluminium alloys utilize an alter-nating current to destroy the oxide layer and melt the metal. A high fre-quency current to ignite the arc overlies this welding current in everychange of phase.

The WIG technique is suitable for material thicknesses from 1–6mm andcan be carried out mechanically. The manual variant of MIG welding is alsodescribed as semi-automatic welding. By this method, the welding wireacts both as an electrode and a deposited metal. It is held on a spool andgradually fed to the burner as it melts.

Direct current provides the welding energy. To dissolve the oxide coatingeffectively, the appliance is switched to reverse polarity, i.e. the workpiecelies at the negative pole.

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 88

Page 90: Niemet_Buch_En_72dpi

89

This technique is suitable for workpieces over 4mm thickness. Using a pul-sating direct current, workpieces of only 1mm thickness can be welded.

MIG welding can be easily automated and carried out by robots.

For some years now, regulated welding equipment has been on the market;it automatically adapts the electrical values of the welding process (voltage,current, frequency) to the welding wire supply, depending on the diameterand composition of the welding wire.

With this equipment, the number of defects in the form of fusion penetra-tion faults (sticking) at the start of the seam, or of crater cracking at the end,are noticeably reduced. All the alloys in the series 1000, 3000, 5000 and6000 are weldable by the arc process. These alloys are also weldable toeach other. Alloys in the series 2000 and 7000 are however not weldable,apart from a few exceptions (2219 [AlCu6Mn], 7020 [AlZn4.5Mg1].

The alloys in the series 1000 and 5000 (1050, 5754, 5356, etc.) are, on theother hand, weldable by the WIG process, and mostly without filler metal.This is not possible at all in series 6000.

In the choice of alloy and the form of the material added (wire, rods) thefollowing criteria apply:

- suitability for the production of a crack-free weld

- the mechanical properties that the weld is given

Most filler metals derive from the series 1000, 4000 and 5000. In some cas-es, certain alloys are demanded on the basis of codes or regulations of theclassification societies (Lloyds Register, German Lloyd, etc.). For example,most societies prescribe the alloy 5183 [AlMg4.5Mn0.7(A)] as filler metalfor welding sheet in the 5000 series.

If the welded parts are to be subsequently anodised, it is advisable in theinterests of uniform appearance to use a filler metal whose composition isas close as possible to that of the parent metal. The quality and properties ofthe welding connection are thereby not as good as in the use of convention-al filler metals. For example, the following are used:

- the alloy 3103 [AlMn1] for welding the material 3000,

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 89

Page 91: Niemet_Buch_En_72dpi

90

- the alloys 5554 [AlMg3Mn(A)] or 5654 [AlMg3.5Cr] for welding thealloy 5454 [AlMg3Mn].

Aluminium tends to absorb hydrogen. This tendency increases with risingtemperature. Hydrogen can develop due to the disintegration of the follow-ing substances in the arc:

- lubricants from the rolling, working or machining processes

- water condensing on the metal or filler

- air humidity

This hydrogen escapes from the welding pool when cooling takes place, butsome remains in the seam when the metal hardens. The resulting porosityaffects the quality of the weld connection. For the reasons mentioned, it isessentially advisable to degrease the workpiece before welding, using a sol-vent. After this degreasing the welding edges should be brushed off byhand, or by using an electric brush with bristles of non-rusting steel.

Dampness due to condensation on the parent or filler metal, or dampnessfrom the ambient atmosphere, should be prevented by the following meas-ures:

- Storage of the parent and filler metals under the same temperature andhumidity conditions before welding, to prevent condensation from the airfrom forming.

- Carrying out welding, where possible, in an area protected from theweather. Welding in the open air should be avoided. Where this is not pos-sible, the welding area should be at least provisionally shielded (e.g. witha tarpaulin).

The clean, smooth condition of the surfaces to be connected is very impor-tant. Differences in height and excessively large gaps are to be avoided atall costs. Because of the high thermal conductivity of aluminium alloys,uneven joint conditions lead to thermal imbalance which causes deforma-tion (e.g. distortion) of the welded parts. In thin materials, an uncontrol-lable, complete melting of the material can result.

To improve the fatigue resistance of butt-welded joints it may be necessaryto remove the raised part of the seam. It must, however, be certain that the

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 90

Page 92: Niemet_Buch_En_72dpi

91

seam is internally sound, in order that internal inequalities are not trans-formed into surface defects. Resistance to fatigue is also improved by ham-mering or shot blasting, which reduces superficial residual stress.

SURFACE TREATMENT OF ALUMINIUM

Cleaning and coating

These processes were for a long time wrongly regarded simply as corro-sion protection measures. The aim of surface treatment is however,

much more importantly, a change in the condition or in the characteristicsof the metal surface with the goal of

- optimizing the adhesion of a coating (paint, cement)

- working on concrete properties of the metal surface (e.g. surface hard-ness, abrasion resistance)

- changing the optical appearance of the material

- giving the metal decorative qualities

- maintaining the long-term appearance of the material by applying corro-sion protection.

In the following pages, the usual objectives and processes of the surfacetreatment mentioned above will be briefly discussed. A description of theconcrete composition of the treatment baths would, however, go beyond theframework of this survey, and would actually be better left to the compe-tence of the companies specialising in the relevant processes, products andbaths.

The most widely used surface treatments for aluminium alloys are:

- degreasing

- mechanical surface treatment processes

- chemical surface treatment processes

- chemical burnishing and electrolytic polishing

- anodization

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 91

Page 93: Niemet_Buch_En_72dpi

92

Degreasing

The aim of degreasing is the removal of lubricant traces from rolling orextrusion processes, or from working processes requiring the use of lubri-cants (e.g. deep drawing, machining). It is therefore a processing stage pre-ceding any other surface treatment. There are two possible degreasingmethods:

Degreasing with chlorinated solvents, mostly in the vapour phase. Theapplication is less widespread today, for two reasons:

- Increasingly strict regulation of the use of chlorinated solvents, which areregarded as toxic.

- Possible danger of surface corrosion by inappropriate use of these com-pounds.

Degreasing by removing with alkaline compounds that

- are either strongly alkaline (pH > 10), are passivated with silicates orchromates, and are well suited as preparation for chemical conversion orpainting,

- or are slightly alkaline on the basis of phosphates or their derivates andbetter suited for subsequent chemical or electrolytic surface treatments(anodisation, electrolytic polishing, etc.).

After chemical degreasing, care should be taken that the colloid film leftbehind on the metal is completely removed by acid neutralisation.

Mechanical surface treatment

Mechanical surface treatments were long regarded as very cost-intensive.These costs have, however, been considerably reduced by increasingautomation. For example, the following processes are routine today:

- polishing (mechanical, or by means of a vibration system)

- brushing

- surface-hardening shot blasting to increase resistance to fatigue in alloysof the series 2000 and 7000

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 92

Page 94: Niemet_Buch_En_72dpi

93

Chemical surface treatment processes

We distinguish between:

- oxidisation, which serves the purpose of removing the oxide layer createdby the conversion or forming process, without damaging the metal. Awell-proven medium for this until today is the phosphorus-chrome bath,in which the metal under the natural oxide coating is not attacked.

- chemical pickling, which has a considerably higher efficacy comparedwith de-oxidisation, but attacks the metal. The most common technique istreatment in alkaline baths, mostly on a sulphur basis, whereby addedmaterials ensure that a high aluminium content remains in the solution.The pickling process requires close supervision to guarantee uniformremoval speed and avoid the enrichment of the solution with heavy metals(zinc, iron), which could be detrimental to the appearance of the pickledsurface.

Unevenness in general appearance, which is quite often to be found afterpickling in alkaline baths, also develops through differences in removalspeed between the aluminium matrix and the intermetallic compounds suchas Al3Fe.The metal has a satin finish.The reproducibility of the appearancedepends on the condition of the bath, as well as the amount and distributionof the proportion of intermetallic compounds. To achieve the most uniformappearance possible, melting charges of the same composition, that havebeen converted under identical conditions, should be used.

The alkaline pickling must be followed in any case by neutralisation in acold acid bath (as a rule, a 50% nitric acid concentration) to remove the jelly-like aluminium residue, which makes the material appear dull andgrey, from the surface.

Pickling is only rarely carried out in the acid bath today. For alloys in the2000 and 7000 series, however, pickling on a sulphur/chrome basis hasproved a very suitable process.As a preliminary surface treatment beforebonding or painting, it gives the coating good adhesion and great creepstrength.

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 93

Page 95: Niemet_Buch_En_72dpi

94

Chemical glossing and electrolytic polishing:

The aim of glossing is the reduction of surface roughness to increase thelight-reflecting capacity of the material. This measure is mainly reservedfor special qualities. After glossing, anodisation normally follows. Baths ofvarying compositions (mostly concentrated acid mixtures on a phosphorus,sulphur or saltpetre basis) are used. The optimum treatment conditions inindividual cases depend on the metal used (chemical composition, formingconditions) as well as the desired application for the product. The same fol-lows for electrolytic polishing in an acid or alkaline bath.

Anodisation:

This surface treatment serves to produce oxide coatings which differ fromthe natural oxide coating of aluminium with regard to structure and charac-teristics. Their thickness can amount to anything from a few µm up to100µm.It is a process which is only performed for aluminium and alumini-um alloys. Anodisation can serve various purposes:

- achieving optical effects

- maintaining appearance

- protection against corrosion due to the atmosphere

- surface hardening

- increasing resistance to abrasion

- optimizing frictional or anti-stick qualities

- increasing the adhesion of organic coatings (cements, paints)

- changing the electrical properties (insulation)

- changing the optical qualities (reflection capacity)

In all, six anodisation types are used which are implemented by means ofvarious processes:

- barrier layer anodisation (only with Reinstaluminium, for electrical appli-cations)

- sulphur anodisation (mainly as protection from atmospheric corrosion)

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 94

Page 96: Niemet_Buch_En_72dpi

95

- Chrome anodisation (a process reserved for selected applications in spacetechnology)

- Inherent colour anodisation

- Hard anodisation (to achieve greater surface hardness)

- Phosphorus anodisation (as preliminary surface treatment before bonding)

In general, the anodisability depends on the composition and condition ofthe material. It varies according to the alloy series, whereby the propertiesof the anodisation coating do not necessarily have to be the same. Just likethe natural oxide coating, the anodisation coating is only weakly resistantto acidic or alkaline substances. The care of anodised aluminium surfacesin the building industry must therefore involve the use of products special-ly adapted to this material. It is also worth mentioning that the risk of gal-vanic corrosion (in correspondingly critical situations) is not reduced by theanodisation coating.

Sulphur anodisation:

This is at present the most widely practised anodisation method, and is usedfor decorative purposes, as well as for surface hardening and the improve-ment of application qualities. Traditionally, the following treatments areselected for the manufacture of a product to be used in the building indus-try:

- H2SO4 content: 200 ± 20 g1-1,

- Proportion of dissolved aluminium in bath: max. 15 g1-1

- Stirring the bath to prevent the temperature from exceeding 20ºC,

- Direct current density: 1.5 ± 0.2 Adm-2.

This process is performed discontinuously on profiles or plate as well ascontinuously on running strip. The thickness of the oxide coating dependson the application:

- Reflectors: 1 –2 µm,

- Decorative parts (interior decoration, automobiles) : 5 – 8 µm

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 95

Page 97: Niemet_Buch_En_72dpi

96

- Building trade: 50 – 100 µm

The structure of the anodisation coating depends on the type of bath and thetreatment conditions. It consists of hexagonal cells full of microscopicallysmall pores. The diameter of these pores is, for example, a thousand timessmaller than the coating thickness, for a coating thickness of 15µm.Thecoating thereby lies, not directly on the metal, but on a boundary layer.

These porous layers can be easily painted (e.g. by absorption, dipping orelectrolytic coating process). To achieve the desired durability, painted aswell as unpainted anodisation layers must be treated to subsequent densifi-cation by hydration. This closes the pores by making the oxide swell up andis achieved by dipping the material in boiling, fully desalted water (withadditives if necessary)

To increase the resistance of certain alloys (especially in the series 2000and 7000) to atmospheric corrosion, potassium bicarbonate is frequentlyadded to the water as a sealant. The anodisation coating then takes on aslightly yellowish-green colouring.

Inherent colour anodisation:

To this end, since 1965 special electrolytes have been developed which as arule are composed of sulphurous acids. These permit the production of adark, usually bronze-coloured anodisation layer on numerous alloys. Therelevant processes were widely used for building industry products, due tothe excellent features of the coatings coloured in this manner.

Today, these anodisation processes, at least in Europe, have been replacedby electrolytic colouring techniques on a sulphur basis, which guaranteebetter reproducibility of the colour between different charges.

Chrome anodisation:

This technique, which actually belongs to the semi-barrier layer anodisa-tion processes, can be performed in various ways. It is widely used for air-craft materials (series 2000 and 7000) to test material homogeneity and

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 96

Page 98: Niemet_Buch_En_72dpi

97

aluminium NIE•MET and its hardware

optimize application behaviour, whereby the thinnest oxide layers (5µm)can be worked with. The anodisation coating, which is naturally grey onunalloyed aluminium, can appear more or less dark on alloys, depending ontheir composition. It is well suited as a paint and cement undercoat for theprocesses applied in the aerospace industries.

Hard anodising:

This term embraces various anodising techniques where thick (50 - 100µm)and dense oxide layers can be produced. These are more abrasion-resistantthan the best tempering steels and display an electrical insulation capacitycomparable with that of porcelain. Hard-anodised products are used in theelectrical industry and in mechanical engineering. To reduce the coefficientof friction, various impregnation materials are suitable, such as lanolin,teflon, molybdenum sulphide, etc. In view of the very large coat thickness-es, it can in certain cases be necessary to take changes in workpiece dimen-sions into account.

Phosphorus anodising:

This recently developed process prduces strongly porous oxide layers andis therefore suitable for preliminary surface treatment before bonding.

There are two techniques:

- with direct current (Boeing process), duration 10 minutes, for bonding inspace technology

- with alternating current

The surface characteristics remain unaltered for months. In industrial prac-tice this anodisation is executed in long-term baths without toxic con-stituents.

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 97

Page 99: Niemet_Buch_En_72dpi

98

CORROSION CHARACTERISTICS OF ALUMINIUM

Corrosion resistance

The corrosion resistance of a metal or alloyed material depends onnumerous factors. These are, amongst other things:

- the metal itself (composition, condition of the material and surface, etc.)

- the nature of the surrounding medium (humidity, temperature, contami-nants, etc.)

- conditions of the intended application

- type of connection technique, building regulations – expected lifespan,frequency of servicing.

The corrosion behaviour of individual metals is in any case a complex sub-ject which cannot be comprehensively covered within the restricted frame-work of this survey, not even for aluminium. The following overview is lim-ited to selected, important aspects of aluminium corrosion, such as, e.g.:

- the role of the natural oxide layer

- common corrosion forms of aluminium and its alloys

- the special case of galvanic corrosion

Special attention is thereby given to those applications where the corrosioncriteria are considered in the selection of use of material – e.g. in the build-ing industry, the automotive industry (commercial vehicles), shipbuilding,transportation, etc. These are applications where the material is exposed toan urban, marine or industrial atmosphere and/or to humidity, seawater etc.

The high resistance to corrosion of aluminium and its alloys is due to thelasting aluminium oxide layer which passivates the material against ambientinfluences. This layer is created as soon as the metal comes into contact withan oxidising medium (e.g. air oxygen, water), and forms again immediatelyon air contact in the course of working and processing (bending, cutting,drilling), on welding, and during the age hardening of welding seams.

Although this layer is only about 5 – 6 nm thick, it provides an effectivebarrier between the metal and its surroundings. Its physical and chemical

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 98

Page 100: Niemet_Buch_En_72dpi

99

stability therefore plays an important role in the corrosion behaviour of alu-minium and its alloys. This depends above all on the characteristics of thesurrounding medium (amongst other things, the pH value), as well as thetype of alloy. The speed at which the oxide layer dissolves is determined bythe pH value of the surrounding medium. It is very high in acidic or alka-line media and is at its minimum in the neutral region of about pH5– 9.

The pH value of river, spring, rain and tapwater generally lies around 7.Seawater has a pH level of about 8. In all these surroundings the oxide lay-er proves to be very stable. This explains the durability, sometimes runninginto many decades, of roofs, façades, communal buildings and transportfacilities made of aluminium and its alloys, even when they stand unpro-tected in all weathers.

Contrary to widespread opinion, the corrosion resistance of aluminium inwet conditions is not dependent on the pH level alone. A crucial part isplayed by the type of acid or alkaline medium or the salts dissolved in it.Aluminium is strongly attacked by hydrogen acids such as hydrochloricacid, whereby the speed of the attack increases with the concentration. Onthe other hand, concentrated nitric acid has no aggressive influence at all onaluminium, but tends to strengthen its natural oxide layer due to its oxidis-ing effect. This acid is therefore used in concentrations of over 50% to pick-le aluminium. It is similar with alkaline media; whereas sodium hydroxideand potassium attack aluminium even in small concentrations, ammoniacsolutions with identical pH levels have only a moderate effect on this material.

Types of corrosion

There is no specific form of corrosion which only affects aluminium alloys.The following kinds exist:

- Surface corrosion

- Pitting corrosion

- Crevice corrosion

- Exfoliation corrosion

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 99

Page 101: Niemet_Buch_En_72dpi

100

- Intercrystaline corrosion

- Stress corrosion

- Galvanic corrosion

Surface corrosion:

This kind of corrosion appears in strongly acidic or alkaline environments.The thickness of the material thereby decreases evenly over its entire sur-face. The speed of diminution can amount to anything from a few _m peryear in non-aggressive surroundings up to several _m per hour (acc. to acidor hydroxide). The aluminium corrosion rate, for example in a 5%hydrochloric acid solution at ambient temperature, amounts to about 77mmper year, in sulphamic acid of the same concentration and ambient temper-ature, however, to only 0.01 mm per year.

In a damp environment, in the open air and in natural water conditions (sur-face water, seawater) the material loss through surface corrosion remainssmall, as a rule, due to the almost neutral pH level. For example, the rate forthe alloy 1050A [Al99.5] H24 in seawater is 1µm per year.

Pitting corrosion:

Like all metals whose corrosion resistance depends on the presence of apassivating layer, aluminium is also vulnerable to pitting corrosion. Thisappears in places where the natural oxide layer has been damaged byreduced thickness, holes, or similar detrimental effects. The reasons for thiscan be varied (e.g. experience shows that, above all, pitting corrosion devel-ops on surfaces damaged by grinding, non-cutting working or welding, andmainly during the first few weeks after commissioning, in products cominginto contact with a humid environment.The danger of pitting corrosion inaluminium therefore exists above all in watery conditions with a practical-ly neutral pH value, i.e. in all natural environments (e.g. tapwater, sea -water), whereby these corroded areas spread by electrochemical means.

Pitting corrosion appears in aluminium in the form of cavities in the metalwhich are usually concealed by large white layers of a jelly-like aluminium

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 100

Page 102: Niemet_Buch_En_72dpi

101

hydroxide Al(OH)3, the volume of which is considerably larger than that ofthe corrosion layer beneath it.

The diameter and depth of the corrosion holes depends on a number of fac-tors, e.g.

- on the metal: type of alloy, production conditions, etc.

- the constructive design: jointing process, contact with other materials, etc.

- the application conditions: duration, dust accumulation, frequency ofservicing, etc.

Experience shows that the depth of these holes decreases with increasingdensity of the holes. It is also worth mentioning that pitting corrosion is byno means inevitable when the metal is used in the open air or in humid con-ditions.

For the user it is important to know how quickly any corrosion holesformed increase in depth.

In contrast to other metals (e.g. zinc), whose corrosion products are solublein water, aluminium oxide is insoluble and adheres to the metal.

In practice, the speed of pitting corrosion in aluminium and its alloys rap-idly decreases in time in most environments (different atmospheres, water,humidity).

When aluminium SF products are stored in the open (or in closed buildingswith high humidity), superficial pitting corrosion can occur in the first fewweeks, whereby experience shows that the depth of the corrosion holes sel-dom exceeds a few 1/100mm – even in sea air or very high humidity.

Crevice corrosion:

This form of corrosion, also known as deposit attack, forms in crevices andcorners as well as under coatings, i.e. in any place where water and humid-ity can penetrate, but does not renew itself.

As a rule, crevice corrosion hardly spreads any further on aluminium,above all due to formation of aluminium oxide, which rapidly closes thecrevice opening. On dismantling riveted and bolted component connections

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 101

Page 103: Niemet_Buch_En_72dpi

102

NIE•MET and its hardware aluminium

made of aluminium sheet, which had lain in water for a long time, continu-ous aluminium oxide layers were found between the two metal surfaces.When designing components, crevices and corners, which can act as corro-sion niches, should be avoided wherever possible. In particular, discontinu-ous welding (beads set at intervals) is not advisable.

Intercrystalline corrosion:

Inspection of metallographic sections shows that corrosion can spread intwo ways:

- Spreading in all directions, so-called transcrystalline corrosion

- over a preferred path along grain boundaries, so-called intercrystallinecorrosion

In both cases it is structural corrosion, i.e. the corrosion is directly orientat-ed to grain structure. The preferred spreading of intercrystalline corrosionalong grain boundaries is explained by the potential difference betweengrain boundary and grain body, which again results from the continuousprecipitation of intermetallic compounds, whose solution potential differsby at least 100mV from the matrix at the corn boundaries or edges.

Two important aspects of intercrystalline corrosion must be noted:

- In contrast to other forms of corrosion such as pitting corrosion and exfo-liation corrosion, intercrystalline corrosion is not visible to the naked eyebut can only be detected by microscope with at least 50-fold enlargement.

- This form of corrosion can be extremely detrimental to mechanical prop-erties and if allowed to continue can lead to the complete collapse of thestructure.

Precipitation-hardened alloys are those most affected by this type of corro-sion (especially alloys in the series 2000 and 7000), when, due to incorrectheat treatment, a tendency to uncontrolled precipitation along the cornboundaries is created. I is quite different with the alloys in the series 5000,with over 4% magnesium. As previously explained, precipitation of theintermetallic compound Al3Mg2 can occur at the corn boundaries,

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 102

Page 104: Niemet_Buch_En_72dpi

103

especially under the influence of continuing heat penetration. Corrosiontesting is prescribed for certain aluminium alloys and application areas byexisting codes to determine the susceptibility of the material to exfoliationcorrosion or intercrystaline corrosion.

Exfoliation corrosion:

This type of corrosion spreads through several levels running parallel to therolling or extrusion direction. Between these levels very thin layers of intactmetal remain which, due to the swelling of the corrosion products in thedirection of the surface of the material, are pressed to the surface and andunfold like the pages of a book. Exfoliation corrosion appears mainly instrongly deformed material whose grains have been greatly stretched by therolling or extrusion processes. A slight risk of this form of corrosion exists- depending on the conditions of non-cutting working – for the alloys in the5000 series. However, in the material conditions normally applied, i.e. 0,H111, H116, H22 and H24, these materials are not endangered as a rule. Asfor intercrystalline corrosion, there are testing procedures to determine thesusceptibility of materials to exfoliation corrosion.

The conditions T76 in the series 7000 and H321 in series 5000 displayqualities leading to a reduction in this susceptibility.

Stress corrosion:

It is well known that structures can fail through forced rupture as a result ofsimultaneous loading through stress (bending and traction forces, internalstress due to quenching, etc.) and corrosive media (humidity, together withmore or less intensive chloride contamination). In this case we speak ofstress corrosion. In microscopic analysis, the spreading of intercrystallinecracks can be detected.

The processes leading to this form of corrosion have been thoroughly inves-tigated over the last fifty years. It would go well beyond the limits of thissurvey to discuss the numerous attempts at explanation.

aluminium NIE•MET and its hardware

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 103

Page 105: Niemet_Buch_En_72dpi

104

The following points should however be mentioned:

- The tendency towards stress corrosion exists mainly in alloys withincreased mechanical properties (series 2000 and 7000).

- Heat treatment plays an important role.For example, as high aquenchingspeed as possible should be selected. Underaged materials are more sen-sitive than overaged alloys.

- The resistance of thick sheet against stress corrosion depends on the direc-tion stress loading and is lowest in the direction of the short transversedimension.

- In industrial practice, special modifications were made to the condition ofthe material to reduce susceptibility to stress corrosion. The conditions areas follows:

- TX51 or TXX51, in which a controlled 2% expansion after quenchingleads to a reduction of internal stress.

- T77351, which is achieved by duplex ageing some alloys in series 7000.

Influence of the properties of the other metal

The relative position of both metals or alloys on the solution potential scaleonly indicates the possibility of a galvanic process at adequate potential dif-ference. However, this does not provide information on the speed or inten-sity of the galvanic corrosion, which may be zero or very slight. This inten-sity depends on the type and surface characteristics of the metals, especiallytheir capacity for inherent passivation.

Unalloyed steel:

Experience shows that aluminium alloys in the series 3000, 5000 and 6000are susceptible, in contact with normal steel, to very superficial corrosionwhich remains limited to the contact areas. However, rust patches which arenot detrimental to the aluminium alloy in any way penetrate deep into theoxide layer and give the surface an unpleasant appearance. Contact withuntreated steel therefore has an adverse effect on the general appearance

NIE•MET and its hardware aluminium

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 104

Page 106: Niemet_Buch_En_72dpi

105

aluminium NIE•MET and its hardware

and aesthetic qualities of aluminium structures rather than on their corro-sion resistance.

Galvanized or cadmium-plated steel:

On the potential scale, zinc shows higher electronegativity than aluminium,whereas the potential of cadmium is very close to that of aluminium. Theuse of galvanized or cadmium-plated connecting elements for the assemblyof aluminium structures is therefore a distinct possibility. It should howev-er be noted that after complete removal of these protective layers the origi-nal condition of material pairing between aluminium and untreated steeloccurs.

Non-rusting steel:

The potential difference between non-rusting steel and aluminium alloys is,at about 650 mV, rather considerable. Nevertheless no galvanic corrosionappears on contact between aluminium and non-rusting steel. The use ofscrews of non-rusting steel for connecting construction components madeof aluminium alloys are therefore common practice in the metalworkingindustry today.

Copper and cupriferous alloys:

Contact in the open air by copper and cupriferous alloys or bronze andbrass with aluminium alloys does not lead to noticeable galvanic corrosion.However, it is advisable to separate both metals by an insulating material,to prevent a superficial and locally confined corrosion of the aluminium. Itshould also be kept in mind that the corrosion product of copper (verdigris)attacks aluminium and combines with it in reduction reaction in which fineparticles of copper are precipitated. These again cause local pitting corro-sion on the aluminium.

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 105

Page 107: Niemet_Buch_En_72dpi

106

ALUMINIUM

EN EN DINNumber Designation Designation

1050 Al99.5 AL99.51060 Al99.6 –1070A Al99.7 AL99.71080A Al99.8(A) AL99.81085 Al99.85 –1090 Al99.90 –1098 Al99.98 AL99.98R1100 Al99.0Cu –1198 Al99.98(A) AL99.81199 Al99.99 AL99.99R1200 Al99.0 AL991200 Al99.0(A) –1235 Sl99.35 –1350 EAl99.5(A) –1350 EAl99.5 E–AL1370 EAl99.7 –1450 Al99.5Ti –

2001 AlCu5.5MgMn –2007 AlCu4PbMgMn ALCUMGPB2011 AlCu6BiPb ALCUBIPB2011A AlCu6BiPb(A) –2014 AlCu4SiMg ALCUSIMN2014A AlCu4SiMg(A) –2017A AlCu4MgSi(A) ALCUMG12024 AlCu4Mg1 ALCUMG22030 AlCu4PbMg (ALCUMGPB)2031 AlCu2.5NiMg –2091 AlCu2Li2Mg1.5 –2117 AlCu2.5MG ALCU2.5MGO.52124 AlCu4Mg1(A) –2214 AlCu4SiMg(B) –2219 AlCu6Mn –2319 AlCu6Mn(A) –2618A AlCu2Mg1.5Ni –

3002 AlMn0.2Mg0.1 –3003 AlMn1Cu ALMNCU3004 AlMn1Mg1 ALMN1MG13005 AlMn1Mg0.5 ALMN1MG0.53017 AlMn1Cu0.3 –3102 AlMn0.2 –3103 AlMn1 ALMN13103A AlMn1(A) –3104 AlMn1Mg1Cu –3105 AlMn0.5Mg0.5 ALMN0.5MG0.53105 AlMn0.5Mg0.5(A) –3207 AlMn0.6 ALMN0.63207 AlMn0.6(A) –

EN EN DINNumber Designation Designation

4004 AlSi10Mg1.5 L–ALSI104006 AlSi1Fe –4007 AlSi1.5Mn –4014 AlSi2 –4015 AlSi2Mn –4032 AlSi12.5MgCuNi –4043A AlSi5(A) S–ALSI7.54045 AlSi10 –4046 AlSi10Mg –4047A AlSi12(A) S–ALSI124104 AlSi10MgBi –4343 AlSi7.5 L–ALSI7.5

5005 AlMg1(B) –5005A AlMg1(C) ALMG15010 AlMg0.5Mn –5018 AlMg3Mn0.4 –5019 AlMg5 ALMG55040 AlMg1.5Mn –5042 AlMg3.5Mn –5049 AlMg2Mn0.8 ALMG2MN0.85050 AlMg1.5(C) –5050A AlMg1.5(D) ALMG1.55051A AlMg2(B) ALMG1.85052 AlMg2.5 ALMG2.5(5056) (AlMg5) –5058 AlMg5Pb1.5 –5082 AlMg4.5 ALMG4.55083 AlMg4.5Mn0.7 ALMG4.5MN5086 AlMg4 ALMG4MN5087 AlMg4.5MnZr –5110 Al99.85Mg0.5 –5119 AlMg5(A) –5149 AlMg2Mn0.8(A) –5154A AlMg3.5(A) –5154B AlMg3.5Mn0.3 –5182 AlMg4.5mn0.4 S–ALMG4.5MN5183 AlMg4.5Mn0.7(A) S–ALMG4.5MN5210 Al99.9Mg0.5 –5249 AlMg2Mn0.8Zr –5251 AlMg2 ALMG2MN0.35252 AlMg2.5(B) –5283A AlMg4.5Mn0.7(B) –5305 Al99.85Mg1 –5310 Al99.98Mg0.5 –5352 AlMg2.5(A) –5354 AlMg2.5MnZr –5356 AlMg5Cr(A) –5454 AlMg3Mn ALMG2.7MN

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 106

Page 108: Niemet_Buch_En_72dpi

107

ALUMINIUM

EN EN DINNumber Designation Designation

5456A AlMg5Mn1(A) –5505 Al99.9Mg1 –5554 AlMg3Mn(A) –5556A AlMg5Mn –5605 Al99.9Mg1 –5654 AlMg3.5Cr –5657 Al99.85Mg1(A) –5754 AlMg3 ALMG3

6003 AlMg1Si0.8 –6005 AlSiMg –6005A AlSiMg(A) ALMGSI0.76005B AlSiMg(B) –6011 AlMg0.9Si0.9Cu –6012 AlMgSiPb ALMGSIPB6013 AlMg1Si0.8CuMn –6015 AlMg1Si0.3Cu –6018 AlMg1SiPbMn –6056 AlSi1MgCuMn –6060 AlMgSi ALMGSI0.56061 AlMg1SiCu ALMGSICU6061A AlMg1SiCu(A) –6063 AlMg0.7Si (ALMGSI0.5)6063A AlMg0.7Si(A) –6081 AlSi0.9MgMn –6082 AlSi1MgMn ALMGSI16082A AlSi1MgMn(A) –6101 EAlMgSi –6101A EAlMgSi(A) –6101B EAlMgSi(B) E–ALMGSI0.56106 AlMgSiMn –6181 AlSi1Mg0.8 ALMGSI0.86201 EAlMg0.7Si –6261 AlMg1SiCuMn –6262 AlMg1SiPb –6351 AlSi1Mg0.5Mn –6351A AlSi1Mg0.5Mn –6401 Al99.9MgSi –6463 AlMg0.7Si(B) AL99.85MGSI6951 ALMgSi0.3Cu –

7003 AlZn6Mg0.8Zr –7005 AlZn4.5Mg1.5Mn –7009 AlZn5.5MgCuAg 3.43547010 AlZn6MgCu –7012 AlZn6Mg2Cu –7015 AlZn5Mg1.5CuZr –7016 AlZn4.5Mg1Cu –7020 AlZn4.5Mg1 ALZN4.5MG1

EN EN DINNumber Designation Designation

7021 AlZn5Mg3Cu –7022 AlZn5Mg3Cu ALZNMGCU0.57026 AlZn5Mg1.5Cu –7029 AlZn4.5Mg1.5Cu –7030 AlZn5.5Mg1Cu –7039 AlZn4Mg3 –7049A AlZn8MgCu –7050 AlZn6CuMgZr –7060 AlZn7CuMg –7072 AlZn1 ALZN17075 AlZn5.5MgCu ALZNMGCU1.57108 AlZn5Mg1Zr –7116 AlZn4.5Mg1Cu0.8 –7129 AlZn4.5Mg1.5Cu(A) –7149 AlZn8MgCu(A) –7150 AlZn6CuMgZr(A) –7175 AlZn5.5MgCu(B) –7178 AlZn7MgCu –7475 AlZn5.5MgCu(A) –

8006 AlFe1.5Mn –8008 AlFe1Mn0.8 –8011 AlFeSi(A) ALFESI8014 AlFe1.5Mn0.4 –8016 AlFe1Mn –8018 AlFeSiCu –8079 AlFe1Si –8090 AlLi2.5Cu1.5Mg1 –8111 AlFeSi(B) –8112 Al95 –8211 AlFeSi(C) –

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 107

Page 109: Niemet_Buch_En_72dpi

108

ALUMINIUM AS ROLLED SF PRODUCT

Material Tickness Tensile strength0.2% elongation

limitRm Rp0.2

Strip mm Sheet mm N /mm2 N /mm2

Designation No. over till over till min. max. min.

Al99.5 W 7 3.0255.10 0.35 3.0 0.35 6.0 65 95 ≤ 55W 7 .10 – – 6.0 25.0 65 95 20F 8 .07 – – 5.0 50.0 75 110 20F 9 .24 0.35 3.0 0.35 6.0 90 130 60G 9 .25 0.35 3.0 0.35 5.0 90 130 60

F 11 .26 0.35 3.0 0.35 10.0 110 150 90G 11 .27 0.35 3.0 0.35 10.0 110 150 90F 13 .30 0.35 3.0 0.35 10.0 130 170 110G 13 .31 0.35 3.0 0.35 10.0 130 170 110F 15 .32 0.35 3.0 0.35 6.0 150 – 130

AlMg1 W 11 3.3315.10 0.35 3.0 0.35 10.0 105 140 35F 13 .24 0.35 3.0 0.35 10.0 125 165 95G 13 .25 0.35 3.0 0.35 10.0 125 165 80F 15 .26 0.35 3.0 0.35 10.0 145 185 120G 15 .27 0.35 3.0 0.35 6.0 145 185 110F 17 .28 0.35 3.0 0.35 4.0 165 205 145G 17 .29 0.35 3.0 0.35 4.0 165 205 130F 19 .30 0.35 3.0 0.35 3.0 190 – 170G 19 .31 0.35 3.0 0.35 2.0 190 – 160F 21 .32 0.35 2.0 0.35 2.0 210 – 190

AlMg3 W 19 3.3535.10 0.35 3.0 0.35 6.0 190 230 80W 19 .10 – – 6.00 50.0 190 230 80F 19 .07 – – 25.00 50.0 190 – 80F 20 .07 – – 10.00 25.0 200 – 120F 21 .07 3.00 10.0 5.00 10.0 210 – 140F 22 .24 0.35 3.0 0.35 10.0 220 260 165G 22 .25 0.35 3.0 0.35 10.0 220 260 130F 24 .26 0.35 3.0 0.35 10.0 240 280 190G 24 .27 0.35 3.0 0.35 10.0 240 280 160F 27 .28 0.35 3.0 0.35 4.0 265 305 215G 27 .29 0.35 3.0 0.35 4.0 265 305 190F 29 .30 0.35 3.0 0.35 3.0 290 – 250

AlMg4.5Mn W 28 3.3547.10 0.35 3.0 0.35 50.0 275 350 125F 28 .07 – – 4.00 50.0 275 – 125G 31 .26 – – 2.00 40.0 310 380 205G 35 .27 1.00 3.0 1.00 6.0 345 405 270

AlMgSi1 W 3.2315.10 0.35 3.0 0.35 10.0 – 150 ≤ 85F 21 .51 0.35 3.0 0.35 3.0 205 – 110*)F 21 .61 – – 3.00 20.0 205 – 110F 28 .71 0.35 3.0 0.35 3.0 275 – 200F 28 .71 – – 3.00 60.0 275 – 200F 32 .72 0.35 3.0 0.35 10.0 315 – 255F 30 .72 – – 0.35 20.0 295 – 245F 30 .72 – – 20.00 100.0 295 – 240

AlCuMg1 W 3.1325.10 0.35 3.0 0.35 12.0 – 215 ≤ 140F 40 .51 0.35 3.0 0.35 3.0 395 – 265F 39 .51 – – 3.00 12.0 390 – 265F 39 .51 – – 12.00 60.0 385 – 245

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 108

Page 110: Niemet_Buch_En_72dpi

109

ALUMINIUM AS ROLLED SF PRODUCT

Breaking Brinell StaticallyElongation hardness Condition Age- Galvanising Seawater stressed Easily

A5 % A10 % HB hardenable quality resistance contr. weldedmin. min. 2.5 /62.5

40 35 20 soft m m c

35 – 20 soft m m c

20 – 22 hot rolled m m c

9 6 30 cold rolled m m c

13 10 30 part. anneal. m m c

6 4 35 cold rolled m m c

9 6 35 part. anneal. m m c

4 3 40 cold rolled m m c

6 4 40 part. anneal. m m c

3 2 45 cold rolled m m c

24 21 32 soft c c c

8 6 42 cold rolled c c c

10 8 42 part. anneal. c c c

5 4 47 cold rolled c c c

8 6 47 part. anneal. c c c

4 3 52 cold rolled c c c

6 5 52 part. anneal. c c c

3 2 57 cold rolled c c c

5 4 57 part. anneal. c c c

3 2 60 cold rolled c c c

20 17 50 soft m c c c

18 – 50 soft m c c c

12 – 50 hot rolled m c c c

10 – 60 hot rolled m c c c

12 – 60 hot rolled m c c c

9 7 65 cold rolled m c c c

14 12 65 part. anneal. m c c c

5 4 73 cold rolled m c c c

10 8 73 part. anneal. m c c c

4 3 80 cold rolled m c c c

7 6 80 part. anneal. m c c c

3 2 85 cold rolled m c c c

17 15 70 soft c c c

12 – 70 hot rolled c c c

10 – 85 part. anneal. c c c

6 5 100 part. anneal. c c c

18 15 35 soft c c c c c

16 14 65 natural. aged c c c c c

14 12 65 natural. aged c c c c c

14 12 85 artifically aged c c c c c

12 - 85 artifically aged c c c c c

10 8 95 artifically aged c c c c c

9 – 95 artifically aged c c c c c

8 – 90 artifically aged c c c c c

13 11 50 soft c c

13 11 100 natural. aged c c

13 – 100 natural. aged c c

12 – 95 natural. aged c c

m = conditionally applicable

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 109

Page 111: Niemet_Buch_En_72dpi

110

ALUMINIUM AS ROLLED SF PRODUCT

Material Thickness Tensile strength 0.2% elongation limitRm Rp0.2

Strip mm Sheet mm N /mm2 N /mm2

Designation No. over till over till min. max. min.

AlZn4.5Mg1 W 3.4335.10 – – 1.50 6.0 – 220 ≤ 140F 35 .71 0.35 3.0 0.35 15.0 350 – 275F 34 .71 – – 15.00 60.0 340 – 270

AlZnMgCu0.5 F 45 3.4345.71 – – 6.00 25.0 450 – 370F 46 .71 – – 25.00 50.0 450 – 370F 43 .71 – – 50.00 100.0 430 – 350F 41 .71 – – 100.00 200.0 410 – 330

AlZnMgCu1.5 F 53 3.4365.71 – – 6.00 12.0 530 – 450F 53 .71 – – 12.00 25.0 530 – 450F 53 .71 – – 25.00 50.0 530 – 450F 50 .71 – – 50.00 63.0 500 – 430F 48 .71 – – 63.00 75.0 480 – 410F 48 .71 – – 75.00 100.0 480 – 390

ALUMINIUM AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Rectang. /Hexag. Tensile

bar Square strengthCircular rod Edge length bar Rm

Diameter Spanner- Thicknesswidth N /mm2

Designation Nr. mm max. mm max. mm max. min.

Al99.5 F 7 3.0255.08 each each each 65W 7 .10 30 30 6 65F 10 .28 18 18 5 100F 3 .30 10 10 3 130

AlMg3 F 18 3.3535.08 each each each 180W 18 .10 each each each 180F 25 .28 20 10 5 250

AlMg5 F 25 3.3555.08 each each each 250W 25 .10 each each each 250F 28 .24 60 60 15 255F 28 .26 35 25 10 280

AlMg4.5Mn F 27 3.3547.08 each each each 270W 27 .10 each each each 270

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 110

Page 112: Niemet_Buch_En_72dpi

111

ALUMINIUM AS ROLLED SF PRODUCT

Breaking Brinell StaticallyElongation hardness Condition Age- Galvanising Seawater stressed Easily

A5 % A10 % HB hardenable quality resistance contr. weldedmin. min. 2.5 /62.5

15 13 45 soft c c c

10 8 105 artific. aged c c c

9 – 105 artific. aged c c c

8 – 125 artific. aged c c

7 – 125 artific. aged c c

5 – 110 artific. aged c c

3 – 100 artific. aged c c

8 – 140 artific. aged c c

5 – 140 artific. aged c c

3 – 140 artific. aged c c

2 – 130 artific. aged c c

2 – 130 artific. aged c c

2 – 130 artific. aged c c

m = conditionally applicable

ALUMINIUM AS EXTRUDED / DRAWN SF PRODUCT

0.2% Breaking elongation Brinell hardness Indication as toElongation-

limitRp0.2 A5 A10 HB

N /mm2 % % 2.5 /62.5min. min. min. ≈ Condition Extruded Drawn

20 25 22 20 extruded p z≤ 60 27 23 20 soft p z

70 7 6 30 drawn – z110 4 3 38 drawn – z80 14 12 45 extruded p –80 16 14 45 soft p z

180 4 3 75 drawn – z110 13 11 60 extruded p –110 14 12 60 soft p z145 10 8 70 drawn – z200 6 5 80 drawn – z140 12 10 65 extruded p –110 12 10 60 soft p z

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 111

Page 113: Niemet_Buch_En_72dpi

112

ALUMINIUM AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Rectang. /Hexag. Tensile

bar Square strengthCircular rod Edge length bar Rm

Diameter Spanner- Thicknesswidth N /mm2

Designation Nr. mm max. mm max. mm max. min.

AlMgSi0.5 F 13 3.3208.51 each each each 130F 22 .71 – 50 – 50 – 50 215F 25 .72 – 50 – 50 – 50 245

AlMgSi1 F 21 3.2315.51 – 80 – 80 – 50 205F 28 .71 – 60 – 60 – 50 275F 31 .72 – 60 – 60 – 50 310F 30 .72 60 200 60 200 50 100 300F 27 .72 200 250 200 250 100 200 270

AlMgSiPb F 20 3.0615.51 – 80 – 80 – – 200F 28 .71 – 80 – 80 – – 275

AlCuBiPb F 32 3.1655.51 – 40 – 40 – – 320F 30 .51 40 50 40 50 – – 300F 28 .51 50 80 50 80 – – 280F 37 .71 – 50 – 50 – – 370

AlCuMgPb F 37 3.1645.51 – 50 – 50 – – 370F 34 .51 50 80 50 80 – – 340

AlCuMg1 F 38 3.1325.51 – 50 – 50 – 20 380F 40 .51 – 80 – 80 – 30 400F 36 .51 80 200 80 200 30 70 360F 33 .51 200 250 200 250 70 200 330

AlCuMg2 F 44 3.1355.51 – 50 – 50 – 30 440F 47 .51 – 100 – 100 – 60 470F 40 .51 100 200 100 200 60 150 400

AlCuSIMn F 44 3.1255.71 – 50 – 50 – 30 440F 4e .71 – 100 – 100 – 60 460F 43 .71 100 200 100 200 60 150 430

AlZn4.5Mg1 F 35 3.4335.71 – 50 – 50 – 30 350F 35 .71 – 100 – 100 – 60 350F 5 .71 100 250 100 250 60 200 350

AlZnMg F 46 3.4345.71 – 50 – 50 – 30 460F 49 .71 – 80 – 80 – 50 490F 47 .71 80 200 80 200 50 150 470

AlZnMgCu1.5 F 51 3.4365.71 – 50 – 50 – 30 510F 52 .71 – 80 – 80 – 50 520F 51 .71 80 120 80 120 50 80 510F 50 .71 120 200 120 200 80 150 500

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 112

Page 114: Niemet_Buch_En_72dpi

113

ALUMINIUM AS EXTRUDED / DRAWN SF PRODUCT

0.2% Breaking elongation Brinell hardness Indication as toElongation-

limitRp0.2 A5 A10 HB

N /mm2 % % 2.5 /62.5min. min. min. ≈ Condition Extruded Drawn

65 15 13 45 natur. aged p z160 12 10 70 artif. aged p z195 10 8 75 artif. aged p z110 14 12 65 natur. aged p z200 12 10 80 artif. aged p z260 10 8 95 artif. aged p z240 8 – 95 artif. aged p –200 6 – 95 artif. aged – –100 10 8 60 natur. aged p z200 8 6 80 artif. aged p z270 10 8 90 natur. aged p z250 10 – 90 natur. aged p z210 10 – 90 natur. aged p z270 8 6 110 artif. aged – z250 7 5 100 natur. aged p z220 7 – 90 natur. aged p z260 10 8 110 natur. aged – z270 10 8 110 natur. aged p –220 7 – 110 natur. aged p –200 6 – 110 natur. aged p –310 10 8 115 natur. aged – z330 8 6 120 natur. aged p –260 6 – 105 natur. aged p –360 8 7 120 artif. aged – z400 7 6 125 artif. aged p –350 6 – 120 artif. aged p –280 10 8 100 artif. aged – z290 10 8 105 artif. aged p –270 7 – 100 artif. aged p –380 7 6 125 artif. aged – z420 7 6 130 artif. aged p –400 7 – 130 artif. aged p –440 7 6 140 artif. aged – z460 7 6 140 artif. aged p –450 7 5 140 artif. aged p –440 5 – 140 artif. aged p –

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 113

Page 115: Niemet_Buch_En_72dpi

114

Comprehensive documentation and continuous quality management are prerequisitesfor the cooperation we guarantee.

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 114

Page 116: Niemet_Buch_En_72dpi

RANGE OF STOCKALUMINIUM

We expand our range almost daily, especiallywhere customer-related requirements are concerned.

We take care of your stocks.Just tell us what you need.

NiemannENG_054-162_ALU 04.10.2007 12:20 Uhr Seite 115

Page 117: Niemet_Buch_En_72dpi

116

SHEET

DIN 1712, 1725,1745, 1783

EN 485, 515, 573

For series requirements in sheet blanks, pleaseenquire about our package blanking.No minimum quantities – strictest tolerances –flat-stretched surface.Plastic foil coating if required.

Al99.5 AlMg1 AlMg3Format W 7 G 11 F 15 G 15 G 15 W 19 G 22 F 27

Thickness Width x Length 1050A 1050A 1050A 5005A 5005A 5754 5754 57540 H 24 H 19 H 24 H 24 0 H 22 H 16

mm mm NQ EQ

0.3 1000 x 2000 c c

0.4 1000 x 2000 c

0.5 1000 x 2000 c c c c c

1250 x 2500 c c c c

1500 x 3000 c

0.6 1000 x 2000 c c c c

0.7 1000 x 2000 c c

1250 x 2500 c

0.8 1000 x 2000 c c c c c

1250 x 2500 c c c c c

1.0 1000 x 2000 c c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c

1.2 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c

1500 x 3000 c c c c c

1.5 1000 x 2000 c c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c

1.6 1250 x 2500 c

2.0 1000 x 2000 c c c c c c c c

1250 x 2500 c c c c c c

1500 x 3000 c c c c c

1500 x 4000 c c

1500 x 5000 c c

1500 x 6000 c c

2000 x 4000 c c

2000 x 5000 c c

2.5 1000 x 2000 c c c c c c c c

1250 x 2500 c c c c c

1500 x 3000 c c c c c

3.0 1000 x 2000 c c c c c c c c

1250 x 2500 c c c c c

1500 x 3000 c c c c c

3.5 1000 x 2000 c

4.0 1000 x 2000 c c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c

2000 x 5000 c c

5.0 1000 x 2000 c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 116

Page 118: Niemet_Buch_En_72dpi

117

SHEET

DIN 1712, 1725,1745, 1783

EN 485, 515, 573

For series requirements in sheet blanks, pleaseenquire about our package blanking.No minimum quantities – strictest tolerances –flat-stretched surface.Plastic foil coating if required.

AlMg4.5Mn AlMgSi1 AlZn4.5Mg1 AlCuMg1/2 AlZnMgCu1.5Format W 28 F 21 F 28-30 F 35 F 40/44 F 53

Thickness Width x Length 5083 6082 6082 7020 2017A/2024 70750 T 4 T 5/6 T 6 T 4/T 6 T 6

mm mm

0.3 1000 x 20000.4 1000 x 20000.5 1000 x 2000 c c c c

1250 x 25001500 x 3000

0.6 1000 x 2000 c

0.7 1000 x 20001250 x 2500

0.8 1000 x 2000 c c c

1250 x 25001.0 1000 x 2000 c c c c c

1250 x 2500 c c c c

1500 x 3000 c

1.2 1000 x 2000 c c c c c

1250 x 2500 c

1500 x 3000 c c

1.5 1000 x 2000 c c c c c

1250 x 2500 c c c c c

1500 x 3000 c c

1.6 1250 x 2500 c

2.0 1000 x 2000 c c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c

1500 x 40001500 x 50001500 x 60002000 x 40002000 x 5000

2.5 1000 x 2000 c c c c c

1250 x 2500 c c c

1500 x 3000 c c c

3.0 1000 x 2000 c c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c c

3.5 1000 x 2000 c c

4.0 1000 x 2000 c c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c

2000 x 50005.0 1000 x 2000 c c c c c c

1250 x 2500 c c c

1500 x 3000 c c c c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 117

Page 119: Niemet_Buch_En_72dpi

118

PLATES

DIN 1712, 1725,1745, 59600

EN 485, 515, 573 Our processing centre supplies every type of blank !

Al99.5 AlMg3 AlMg AlMgSi1 AlMgSi1 AlZn AlCuMg AlZnMgFormat W 7/F 8 W 19/G 22 4.5Mn F 21 F 28-30 4.5Mg1 1/2 Cu1.5

Thickness Width x Length 1050A 5754 W 28 6082 6082 F 34-35 F 39/44 F 53/480/H 112 0/H111/H22 5083 T 4 T 6 7020 2017A/2024 7075

mm mm 0/H 111 T 6/T 651 T 451/T 351 T 6/T 651

6.0 1000 x 2000 c c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c c

7.0 1000 x 2000 c

1250 x 2500 c

8.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c c

10.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c c

12.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c

1500 x 3000 c c c c c c

15.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c c

20.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c c

25.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c c

30.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c c

1500 x 3000 c c c c c c

35.0 1000 x 2000 c c c c c

1250 x 2500 c c c c c

1500 x 3000 c c c c c c

40.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c

1500 x 3000 c c c c c

45.0 1000 x 2000 c c c

1500 x 3000 c c c c c

50.0 1000 x 2000 c c c c c c c

1250 x 2500 c c c c c c

1500 x 3000 c c c c c c

1000 x 2000 c c c c c

1250 x 2500 c c c

55.0 1500 x 3000 c c c c c

60.0 1000 x 2000 c c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c c c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 118

Page 120: Niemet_Buch_En_72dpi

119

PLATES

DIN 1712, 1725,1745, 59600

EN 485, 515, 573 Our processing centre supplies every type of blank !

Al99.5 AlMg3 AlMg AlMgSi1 AlMgSi1 AlZn AlCuMg AlZnMgFormat W 7/F 8 W 19/G 22 4.5Mn F 21 F 28-30 4.5Mg1 1/2 Cu1.5

Thickness Width x Length 1050A 5754 W 28 6082 6082 F 34-35 F 39/44 F 53/480/H 112 0/H111/H22 5083 T 4 T 6 7020 2017A/2024 7075

mm mm 0/H 111 T 6/T 651 T 451/T 351 T 6/T 651

65.0 1000 x 2000 c c c c c c

1250 x 2500 c c

70.0 1000 x 2000 c c c

1250 x 2500 c c c c

1500 x 3000 c c c c c

75.0 1000 x 2000 c c

1250 x 2500 c c

1500 x 3000 c c

80.0 1000 x 2000 c c c c c

1250 x 2500 c c c c c

1500 x 3000 c c c c c c

85.0 1000 x 2000 c c c c

1250 x 2500 c c

1500 x 3000 c c c

90.0 1000 x 2000 c c c c c c

1250 x 2500 c c

1500 x 3000 c c c c

95.0 1000 x 2000 c c c

1500 x 3000 c c

100.0 1000 x 2000 c c c c c c

1250 x 2500 c c c c

1500 x 3000 c c c c c

105.0 1000 x 2000 c

1250 x 2500 c c

110.0 1000 x 2000 c c c

1250 x 2500 c c

1500 x 3000 c c

120.0 1000 x 2000 c c c c

1250 x 2500 c

1500 x 3000 c c c c

125.0 1000 x 2000 c c

130.0 1000 x 2000 c c c c

1250 x 2500 c c

1500 x 3000 c c

135.0 1000 x 2000 c

140.0 1000 x 2000 c c c c c

1500 x 3000 c c c

150.0 1000 x 2000 c c c c

1250 x 2500 c c

1500 x 3000 c c c c

160.0 1000 x 2000 c c c

1250 x 2500 c

1500 x 3000 c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 119

Page 121: Niemet_Buch_En_72dpi

120

PLATES

DIN 1712, 1725,1745, 59600

EN 485, 515, 573 Our processing centre supplies every type of blank !

Al99.5 AlMg3 AlMg AlMgSi1 AlMgSi1 AlZn AlCuMg AlZnMgFormat W 7/F 8 W 19/G 22 4.5Mn F 21 F 28-30 4.5Mg1 1/2 Cu1.5

Thickness Width x Length 1050A 5754 W 28 6082 6082 F 34-35 F 39/44 F 53/480/H 112 0/H111/H22 5083 T 4 T 6 7020 2017A/2024 7075

mm mm 0/H 111 T 6/T 651 T 451/T 351 T 6/T 651

170.0 1000 x 2000 c

1500 x 3000 c

180.0 1500 x 3000 c c

190.0 1000 x 2000 c

200.0 1000 x 2000 c c

220.0 1000 x 2000 c

1150 x 2500 c

230.0 1000 x 2000 c

240.0 1000 x 2000 c

250.0 1000 x 2000 c c

270.0 1000 x 2000 c

280.0 1000 x 2000 c c

300.0 1000 x 2000 c c

330.0 1000 x 2000 c

350.0 1400 x 1500 c

380.0 1400 x 1400 c

400.0 1400 x 1200 c

450.0 1400 x 1100 c

500.0 1300 x 1000 c

NIEc MET produces every type of blank – also to drawings – on the most

up-to-date maschines to the strictest tolerances. This way, you cut out

costs of blanking and further processing.

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 120

Page 122: Niemet_Buch_En_72dpi

121

PLATESin superformat

DIN 1712, 1725,1745, 59600

EN 485, 515, 573For shipbuilding and apparatus engineering - we supplywith certification of all classifications.

AlMg3 AlMgFormat W 19/G 22 4.5Mn

Thickness Width x Length 5754 W 28/G 310/H111/H22 5083

mm mm 0/H 22

3.0 2000 x 8000 c

4.0 2000 x 6000 c c

x 8000 c c

2400 x 8000 c

5.0 2000 x 6000 c c

x 8000 c c

2400 x 6000 c

x 8000 c

6.0 2000 x 6000 c c

x 8000 c

2400 x 6000 c

x 8000 c

7.0 2000 x 6000 c

x 8000 c

2400 x 8000 c

2500 x 6000 c

AlMg3 AlMgFormat W 19/G 22 4.5Mn

Thickness Width x Length 5754 W 28/G 310/H111/H22 5083

mm mm 0/H 22

8.0 2000 x 6000 c

2000 x 8000 c

2400 x 8000 c

9.0 2000 x 6000 c

x 8000 c

10.0 2000 x 6000 c c

x 8000 c

12.0 2000 x 6000 c c

x 8000 c

15.0 2000 x 6000 c c

x 8000 c

20.0 2000 x 6000 c

x 8000 c

25.0 2000 x 8000 c

30.0 2000 x 4000 c

x 8000 c

Quality – signed and sealed

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 121

Page 123: Niemet_Buch_En_72dpi

122

FLOORING SHEET

DIN 1725, 59605EN 515, 1386

AlMg3 AlMgSi1Thickness Format F 19/H 114 6082min/max Width x Length 5754

Duet Quintet Duet Quintetmm mm 2 bar 5 bar 2 bar 5 bar

1.0 /1.5 1250 x 2500 c c

1500 x 3000 c c

1.5 /1.8 1500 x 3000 c

1.5 /2.0 1500 x 3000 c

1.5 /2.5 1000 x 2000 c c

1250 x 3000 c c

2.0 /2.5 1500 x 3000 c

2.0 /3.2 1250 x 2500 c

2.5 /4.0 1000 x 2000 c c

1250 x 2500 c c

1500 x 3000 c c

3.0 /4.5 1000 x 2000 c c

1250 x 2500 c

1500 x 3000 c

3.5 /5.0 1000 x 2000 c c c

1250 x 2500 c c c c

1500 x 3000 c c c

4.0 /5.5 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

5.0 /6.5 1000 x 2000 c c

1250 x 2500 c c

1500 x 3000 c c

6.0 /7.5 1250 x 2500 c

8.0 /9.5 1000 x 2000 c c

1250 x 2500 c c

1500 x 3000 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 122

Page 124: Niemet_Buch_En_72dpi

123

STRIP

DIN 1712, 1725, 1745,1783, 1784

EN 485, 515, 573We slit every width from 10mm to 1600mm.Naturally, no minimum quantities !

AL99.5 AlMg1 ALMg3W 7 G 11 G 13 G 15 G 15 W 19 G 22 G 27

Thickness 1050A 1050A 1050A 5005A 5005A 5754 5754 57540 H 24 H 26 H 24 H 24 0 H 22 H 26

mm NQ EQ

0.20 c c

0.30 c c c c c

0.40 c c c c c

0.50 c c c c c c

0.60 c c c c c c

0.70 c c c c c c

0.80 c c c c c c c c

1.00 c c c c c c c

1.20 c c c c c c c

1.25 c c c c c c c c

1.30 c

1.50 c c c c c c c c

2.00 c c c c c c c

2.50 c c c c c c

3.00 c c c c c c

Precision and strictest tolerances cut out costs for waste and processing

work. Take advantage of the NIEc MET raw material cycle.

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 123

Page 125: Niemet_Buch_En_72dpi

124

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall- F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

5 1.0 c c

6 1.0 c c

7 1.0 c c

8 1.0 c c

1.5 c c

3.0 c

9 1.0 c

10 1.0 c

1.5 c

2.0 c

3.0 c

12 1.0 c

1.5 c

2.0 c

3.0 c

13 1.1 c

1.5 c

2.0 c

14 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

15 1.0 c c

1.5 c

2.0 c

3.0 c

16 1.0 c

1.5 c

2.0 c c c c

2.5 c

3.0 c c

4.0 c c

18 1.0 c

1.5 c c

2.0 c c

3.0 c

4.0 c

19 1.5 c

20 1.0 c c

1.5 c

2.0 c c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 124

Page 126: Niemet_Buch_En_72dpi

125

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

messer dicke 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

20 2.5 c

3.0 c c

4.0 c

5.0 c c

6.0 c

21 3.0 c c

22 1.0 c

1.5 c c

2.0 c

2.5 c c

3.0 c c

4.0 c

5.0 c c c

24 3.0 c

25 1.0 c

1.5 c

2.0 c c c c c

2.5 c c c

3.0 c c c c

4.0 c c

5.0 c c c c

6.5 c c

26 2.0 c

3.0 c

27 1.0 c

4.0 c c c

5.0 c

28 1.0 c

1.5 c

2.0 c c

2.5 c

3.0 c

4.0 c c c

5.0 c c c c

6.0 c c

30 1.0 c

1.5 c

2.0 c c c

2.5 c

3.0 c c c

4.0 c c c c c

5.0 c c c c c

6.0 c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 125

Page 127: Niemet_Buch_En_72dpi

126

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

30 7.0 c c

10.0 c c

31 3.0 c c

8.0 c c

32 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c c

4.0 c

5.0 c

6.0 c c

7.0 c

8.0 c

33 2.5 c c c

4.0 c c c

34 3.0 c

4.0 c

35 1.0 c

1.5 c c

2.0 c c c

2.5 c c

3.0 c c c

4.0 c c

5.0 c c

6.0 c c

7.0 c

7.5 c

8.0 c c c

10.0 c

36 1.0 c

2.0 c

3.0 c

4.0 c c

5.0 c

7.0 c

8.0 c

37 2.5 c

38 1.5 c

2.0 c

3.0 c

4.0 c c

5.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 126

Page 128: Niemet_Buch_En_72dpi

127

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

38 8.0 c c c

10.0 c

39 3.0 c

5.0 c

40 1.5 c

2.0 c c

2.5 c c c

3.0 c c c c

4.0 c c c c

5.0 c c c c c

6.0 c c

7.0 c

8.0 c c c c

9.0 c

10.0 c c c c

11.0 c

42 1.0 c

2.0 c c

2.5 c

3.0 c c

5.0 c c

6.0 c c c

7.0 c

8.0 c

10.0 c c

10.5 c

43 1.5 c

45 1.0 c

1.5 c

2.0 c c c

2.5 c c

3.0 c c

4.0 c c c

5.0 c c c c c c

6.0 c c

7.0 c

8.0 c

9.0 c

10.0 c c

11.0 c c

12.5 c c

15.0 c

46 3.0 c c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 127

Page 129: Niemet_Buch_En_72dpi

128

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

46 6.0 c

47 2.0 c

5.5 c

48 1.5 c

3.0 c c

4.0 c c

5.0 c

12.5 c

50 1.0 c c

1.5 c

2.0 c c

2.5 c c

3.0 c c c c

3.5 c

4.0 c c c c c c

5.0 c c c c

6.0 c c c c

8.0 c c c

10.0 c c c c

12.0 c

15.0 c c c

52 1.5 c

4.0 c

8.0 c

53 10.0 c

2.0 c

55 2.0 c

2.5 c c

5.0 c c

6.0 c c c

8.0 c c c

10.0 c c c

12.0 c

15.0 c c

17.5 c

56 3.0 c c c

16.0 c

57 2.5 c

3.5 c

58 3.0 c

8.5 c

10.0 c

15.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 128

Page 130: Niemet_Buch_En_72dpi

129

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

58 16.0 c

60 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c c

4.0 c

5.0 c c c c c c

6.0 c c c

7.5 c

8.0 c c c

10.0 c c c c

12.0 c c

15.0 c c

16.0 c

20.0 c c

61 2.0 c c

62 6.0 c

7.0 c

63 3.0 c c

5.0 c

8.0 c

10.0 c

15.0 c

16.0 c c

64 3.0 c

12.0 c

65 1.0 c

2.0 c

2.5 c

3.0 c

5.0 c c

6.0 c c

7.0 c c

8.0 c

10.0 c c c c c

11.0 c

12.0 c

12.5 c

66 3.0 c

8.0 c

67 2.0 c

69 3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 129

Page 131: Niemet_Buch_En_72dpi

130

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

70 1.4 c

1.5 c

2.0 c

2.5 c

3.0 c c

4.0 c c

5.0 c c c c

6.0 c c c

7.0 c

8.0 c c c c

10.0 c c c c c

12.0 c c

12.5 c

15.0 c c c

16.0 c

20.0 c c

71 3.0 c c

75 2.5 c

5.0 c c c c c c

6.0 c

7.0 c

8.0 c

10.0 c c

12.5 c

15.0 c c

16.0 c

20.0 c

76 2.5 c

3.0 c c c

4.0 c

5.0 c

9.0 c

80 1.5 c c

2.0 c c

2.5 c c

3.0 c c

4.0 c

5.0 c c c

6.0 c c c

7.0 c

8.0 c c c c c

10.0 c c c c c c

12.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 130

Page 132: Niemet_Buch_En_72dpi

131

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

80 12.5 c

15.0 c c c

16.0 c

20.0 c c c

25.0 c

82 6.0 c

85 1.5 c

2.5 c c

5.0 c c

6.0 c

10.0 c c c

15.0 c c c

18.0 c

20.0 c c

86 3.0 c c c

9.0 c

88 1.5 c

10.0 c

89 3.0 c

90 2.0 c c

2.5 c

3.0 c

5.0 c c c c c c

6.0 c

8.0 c c

10.0 c c c c

12.0 c

15.0 c c

20.0 c c

25.0 c

92 2.0 c

95 2.5 c

3.5 c

5.0 c

7.5 c c c

10.0 c c

15.0 c

20.0 c

96 3.0 c

13.0 c

100 2.0 c

2.5 c c

3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 131

Page 133: Niemet_Buch_En_72dpi

132

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

100 4.0 c c

5.0 c c c c

6.0 c c

7.5 c

8.0 c c

10.0 c c c c c

12.0 c c

15.0 c c

16.0 c

20.0 c c c

25.0 c c

30.0 c c

102 8.0 c

105 2.5 c

6.0 c c

8.0 c

10.0 c

12.5 c

15.0 c

16.0 c

106 3.0 c c c

8.0 c

108 2.5 c

3.0 c

4.0 c c

110 2.0 c

2.5 c

3.0 c

5.0 c c c c c c

8.0 c

10.0 c c

15.0 c c c

20.0 c c

25.0 c c c

30.0 c c

112 2.5 c

15.0 c

114 3.0 c

10.0 c

115 5.0 c

10.0 c

12.0 c

15.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 132

Page 134: Niemet_Buch_En_72dpi

133

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

120 2.0 c

2.5 c

3.0 c

4.0 c

5.0 c c

6.0 c

8.0 c c

10.0 c c c

12.5 c c

15.0 c c c

20.0 c c

25.0 c c

30.0 c

125 2.0 c

2.5 c

3.0 c c

3.5 c

4.0 c

5.0 c

6.0 c

8.0 c

10.0 c c

12.0 c

12.5 c

15.0 c c

20.0 c c

130 3.0 c

4.0 c

5.0 c c c

7.0 c

10.0 c c

15.0 c c c

20.0 c c

30.0 c c

131 3.0 c

133 3.0 c

4.0 c

135 5.0 c

10.0 c

20.0 c

136 3.0 c

33.0 c

138 3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 133

Page 135: Niemet_Buch_En_72dpi

134

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

140 1.8 c

3.0 c

4.0 c

5.0 c c

7.0 c c

8.0 c

9.0 c

10.0 c c c c

12.0 c c

15.0 c c c

20.0 c c

25.0 c c

30.0 c

143 3.0 c

144 6.0 c

150 2.0 c

2.5 c

3.0 c

5.0 c c c

6.5 c

7.5 c

8.0 c

10.0 c c c

12.0 c

15.0 c c c

16.0 c

20.0 c c c

25.0 c c

30.0 c c

156 3.0 c

157 3.5 c

159 3.0 c

4.5 c

160 3.0 c

5.0 c c c

6.0 c

8.0 c

10.0 c c c c

12.0 c

12.5 c

15.0 c c

16.0 c

20.0 c c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 134

Page 136: Niemet_Buch_En_72dpi

135

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

160 30.0 c c

35.0 c

166 20.0 c

168 4.0 c c

4.5 c

170 5.0 c c

10.0 c c c

12.5 c

15.0 c c c

20.0 c c

30.0 c

40.0 c

175 5.0 c

35.0 c

180 5.0 c c

6.0 c c

10.0 c c

15.0 c c c

20.0 c c c

30.0 c

40.0 c

185 10.0 c

190 3.5 c

5.0 c

6.0 c

10.0 c c c

15.0 c

20.0 c c

193 5.0 c

194 5.0 c

200 4.0 c

5.0 c c

6.0 c c

8.0 c c

10.0 c c c c

12.5 c c

15.0 c c

20.0 c c

25.0 c c

30.0 c c

40.0 c

205 12.0 c

206 3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 135

Page 137: Niemet_Buch_En_72dpi

136

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

208 4.0 c c

210 6.0 c

10.0 c c

15.0 c

20.0 c

219 4.0 c

5.0 c

220 5.0 c

8.0 c

10.0 c c

12.5 c c

15.0 c

20.0 c

25.0 c

30.0 c

230 5.0 c c

6.0 c

10.0 c c

15.0 c

16.0 c

20.0 c

30.0 c

238 4.0 c

240 5.0 c

10.0 c c

15.0 c

20.0 c c

30.0 c

245 10.0 c

250 5.0 c

6.0 c

8.0 c

10.0 c

15.0 c

20.0 c

50.0 c

258 4.0 c

260 3.5 c

5.0 c

10.0 c

12.0 c

15.0 c

30.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 136

Page 138: Niemet_Buch_En_72dpi

137

PIPES

DIN 1712, 1725, 1746, 1795, 9107, 59751EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg4.5Mn AlMgSi0.5/0.7 AlMgSi1 AlCuMgPbDia- Wall F 13 F 18 Optical quality F 27 F 22 F 28-31 F 37

meter thickness 1050A 5754 5019 5083 6060/6005A 6082 20070/H 111 0/H 111 H 111 0/H 111 T 6/T 66 T 6 T 3/T 4

mm mm NQ EQ

265 40.0 c

270 6.0 c

280 10.0 c

15.0 c c

30.0 c c

285 20.0 c

300 10.0 c

15.0 c

308 4.0 c

310 15.0 c

20.0 c

320 10.0 c

330 10.0 c

350 10.0 c

365 25.5 c

380 10.0 c

400 4.0 c

16.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 137

Page 139: Niemet_Buch_En_72dpi

138

NIE•MET FOR METAL CONSTRUCTION

Project-related cooperation in every phase of construction ( planning

and design, prefabrication and installation).

Formation of project teams qualified to cooperate with concrete, steel, structural as

well as purchasing experts.

We supply just in time, no matter what the quantity:

Standard profiles

Processing

• mitred sawing to fixed dim.

• bending

• drilling

• punching

• milling

• thread cutting

Design profiles

Surface treatment

•coating acc. to German

RAL colour chart

• grinding

• polishing

• anodising

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 138

Page 140: Niemet_Buch_En_72dpi

139

RECTANGULAR/SQUARE PIPES

DIN 1725, 1748EN 485, 755

AlMg AlMgEdge Wall Si0.5 Si1length thickness F 22 F 28

6060/63 6082mm mm T 6/T 66 T 6

10 x 10 1.0 c

x 10 1.5 c

15 x 10 1.5 c

x 15 1.0 c

x 15 1.5 c

x 15 2.0 c

18 x 18 1.0 c

20 x 10 1.5 c

x 10 2.0 c

x 15 2.0 c

x 20 1.5 c

x 20 1.0 c

x 20 2.0 c

x 20 3.0 c

25 x 10 2.0 c

x 15 2.0 c

x 20 2.0 c

x 25 1.5 c

x 25 2.0 c

x 25 3.0 c

30 x 10 1.5 c

x 15 1.5 c

x 15 2.0 c

x 20 2.0 c

x 20 3.0 c

x 30 2.0 c

x 30 2.5 c

x 30 3.0 c

x 30 4.0 c

34 x 20 2.0 c c

x 20 3.0 c

x 34 3.0 c

35 x 15 2.0 c

x 20 1.5 c

x 20 2.0 c c

x 25 1.5 c

x 25 2.0 c

x 35 2.0 c

x 35 2.5 c

x 35 3.0 c

x 35 5.0 c

40 x 10 2.0 c

x 15 1.5 c

AlMg AlMgEdge Wall Si0.5 Si1length thickness F 22 F 28

6060/63 6082mm mm T 6/T 66 T 6

40 x 15 2.0 c

x 20 1.5 c

x 20 2.0 c c

x 20 2.5 c

x 20 3.0 c

x 20 4.0 c

x 25 2.0 c

x 30 2.0 c

x 30 2.5 c

x 30 3.0 c

x 30 4.0 c

x 40 1.0 c

x 40 1.5 c

x 40 2.0 c c

x 40 2.5 c c

x 40 3.0 c

x 40 4.0 c

x 40 5.0 c c

45 x 20 2.0 c

x 25 2.0 c

x 34 3.0 c

x 45 2.0 c

50 x 15 2.0 c

x 20 1.5 c

x 20 2.0 c c

x 20 2.5 c

x 20 3.0 c

x 20 4.0 c

x 25 2.0 c

x 25 2.5 c

x 25 3.0 c

x 30 2.0 c

x 30 2.5 c

x 30 3.0 c c

x 34 3.0 c

x 40 2.0 c

x 40 2.5 c

x 40 3.0 c

x 40 4.0 c

x 45 3.0 c

x 50 2.0 c

x 50 2.5 c

x 50 3.0 c

AlMg AlMgEdge Wall Si0.5 Si1length thickness F 22 F 28

6060/63 6082mm mm T 6/T 66 T 6

50 x 50 4.0 c c

x 50 5.0 c

55 x 25 2.0 c

x 50 3.0 c

x 55 2.0 c

60 x 20 2.0 c

x 25 2.0 c

x 25 3.0 c

x 30 2.0 c

x 30 3.0 c

x 34 3.0 c

x 40 2.0 c

x 40 2.5 c

x 40 3.0 c

x 40 4.0 c

x 50 3.0 c

x 50 4.0 c

x 60 2.0 c

x 60 3.0 c

x 60 4.0 c

x 60 6.0 c

65 x 65 2.0 c

x 65 2.5 c

70 x 20 2.0 c

x 25 2.5 c

x 30 2.0 c

x 30 2.5 c

x 30 3.0 c

x 40 4.0 c

x 50 2.0 c

x 70 2.0 c

x 70 4.0 c

75 x 50 3.0 c

80 x 18 2.0 c

x 20 2.0 c

x 20 2.5 c

x 25 3.0 c

x 30 2.0 c

x 30 3.0 c

x 30 4.0 c

x 40 2.0 c

x 40 2.5 c

x 40 3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 139

Page 141: Niemet_Buch_En_72dpi

140

RECTANGULAR / SQUARE PIPES

DIN 1725, 1748EN 485, 755

AlMg AlMgEdge Wall Si0.5 Si1length thickness F 22 F 28

6060/63 6082mm mm T 6/T 66 T 6

80 x 40 4.0 c c

x 50 2.0 c

x 50 3.0 c

x 50 4.0 c

x 60 2.5 c

x 60 3.0 c

x 60 4.0 c

x 80 2.0 c

x 80 3.0 c

x 80 4.0 c

x 80 5.0 c

x 80 6.0 c

85 x 85 2.0 c

90 x 40 3.0 c

x 90 4.0 c

100 x 18 2.0 c

x 20 2.0 c

x 25 2.0 c

x 30 2.0 c

x 30 3.0 c

x 40 2.0 c

x 40 2.5 c

x 40 3.0 c

x 40 4.0 c

x 50 2.0 c

x 50 3.0 c

x 50 4.0 c

x 50 5.0 c

x 60 2.0 c

x 60 2.5 c

x 60 3.0 c

x 60 4.0 c

AlMg AlMgEdge Wall Si0.5 Si1length thickness F 22 F 28

6060/63 6082mm mm T 6/T 66 T 6

100 x 80 3.0 c

x 100 2.0 c

x 100 3.0 c

x 100 4.0 c

x 100 5.0 c c

x 100 6.0 c

x 100 10.0 c

110 x 60 4.0 c

x 110 2.5 c

120 x 18 2.0 c

x 20 2.0 c

x 30 2.0 c

x 30 3.0 c

x 40 2.0 c

x 40 2.5 c

x 40 4.0 c

x 50 2.0 c

x 50 4.0 c c

x 60 3.0 c

x 60 4.0 c

x 80 3.0 c

x 120 2.5 c

x 120 4.0 c

x 120 5.0 c

125 x 125 6.0 c

130 x 30 3.0 c

x 50 4.0 c

140 x 18 2.0 c

x 20 3.0 c

x 25 2.0 c

x 40 3.0 c

x 60 2.5 c

AlMg AlMgEdge Wall Si0.5 Si1length thickness F 22 F 28

6060/63 6082mm mm T 6/T 66 T 6

140 x 80 4.0 c

145 x 145 3.0 c

150 x 18 2.0 c

x 25 2.0 c

x 30 2.0 c

x 40 2.5 c

x 40 4.0 c

x 50 4.0 c

x 50 6.0 c

x 60 3.0 c

x 60 5.0 c

x 100 3.0 c

x 120 5.0 c

x 150 3.0 c

x 150 5.0 c

160 x 40 2.0 c

x 60 4.0 c

x 60 5.0 c

170 x 70 4.0 c

180 x 18 2.0 c

x 40 4.0 c

x 50 4.0 c

x 60 3.0 c

200 x 18 2.0 c

x 50 4.0 c

x 80 4.0 c

x 100 4.0 c

240 x 100 4.0 c

300 x 50 4.0 c

x 120 4.0 c

x 120 5.0 c

650 x 65 2.5 c

NiemannENG_054-162_ALU 19.09.2007 9:02 Uhr Seite 140

Page 142: Niemet_Buch_En_72dpi

141

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

8 x 3.0 c

10 x 2.0 c

x 3.0 c c

x 4.0 c c

x 5.0 c c c

x 6.0 c c

x 8.0 c c c

12 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c c

x 6.0 c c

x 8.0 c c

x 10.0 c c

13.5 x 2.0 c

15 x 2.0 c

x 3.0 c c

x 4.0 c

x 5.0 c c c

x 6.0 c c c

x 8.0 c c c

x 10.0 c c

x 12.0 c c

16 x 3.0 c

x 4.0 c

x 5.0 c

18 x 2.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

20 x 2.0 c

x 3.0 c c c c

x 4.0 c c c

x 5.0 c c c

x 6.0 c c c

x 8.0 c c c

x 10.0 c c c c c

x 12.0 c c

x 15.0 c c c c

x 18.0 c

25 x 2.0 c c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 141

Page 143: Niemet_Buch_En_72dpi

142

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

25 x 3.0 c c c

x 4.0 c c c

x 5.0 c c c c c

x 6.0 c c

x 8.0 c c c

x 10.0 c c c

x 12.0 c c c

x 15.0 c c c c

x 16.0 c

x 20.0 c c c

30 x 2.0 c

x 3.0 c c c c c

x 4.0 c c c c

x 5.0 c c c c c

x 6.0 c c c

x 8.0 c c c c c c

x 10.0 c c c c c

x 12.0 c c c

x 15.0 c c c c

x 20.0 c c c

x 25.0 c c c

35 x 2.0 c

x 3.0 c

x 4.0 c c

x 5.0 c

x 6.0 c

x 8.0 c c

x 10.0 c c

x 12.0 c c c

x 15.0 c c c

x 20.0 c c c

x 25.0 c c

x 28.0 c

x 30.0 c

40 x 2.0 c

x 3.0 c c c c

x 4.0 c c c c c

x 5.0 c c c c c

x 6.0 c c c

x 8.0 c c c c c

x 10.0 c c c c c

x 12.0 c c c

x 15.0 c c c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 142

Page 144: Niemet_Buch_En_72dpi

143

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

40 x 20.0 c c c c c

x 22.0 c

x 25.0 c c c c c

x 30.0 c c c

x 35.0 c

45 x 3.0 c

x 4.0 c

x 5.0 c c

x 8.0 c c

x 10.0 c c

x 12.0 c

x 15.0 c c

x 20.0 c c

x 25.0 c c

x 30.0 c c

x 35.0 c c

48 x 5.0 c c

50 x 2.0 c

x 3.0 c c

x 4.0 c c c c

x 5.0 c c c c c c c

x 6.0 c c c c c

x 8.0 c c c c c

x 10.0 c c c c c c

x 12.0 c c c

x 15.0 c c c c

x 18.0 c

x 20.0 c c c c

x 25.0 c c c

x 30.0 c c c c c

x 35.0 c c

x 40.0 c c c c

55 x 5.0 c

x 10.0 c c

x 20.0 c c

x 25.0 c

x 45.0 c

60 x 2.0 c

x 3.0 c

x 4.0 c c

x 5.0 c c c c c

x 6.0 c c c c

x 8.0 c c c c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 143

Page 145: Niemet_Buch_En_72dpi

144

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

60 x 10.0 c c c c c c c

x 12.0 c c c

x 15.0 c c c c

x 20.0 c c c c

x 25.0 c c c c

x 30.0 c c c c

x 35.0 c c c

x 40.0 c c c

x 45.0 c

x 50.0 c c

65 x 4.0 c

x 5.0 c c

x 6.0 c

x 8.0 c

x 10.0 c c

x 15.0 c c

x 20.0 c c c

x 50.0 c

70 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c c

x 6.0 c c c c

x 8.0 c c c

x 10.0 c c c c

x 12.0 c

x 15.0 c c

x 20.0 c c

x 25.0 c c

x 30.0 c c

x 35.0 c

x 40.0 c c

x 45.0 c

x 50.0 c

75 x 5.0 c

x 6.0 c

x 10.0 c c

x 20.0 c

x 50.0 c

80 x 2.0 c

x 3.0 c

x 4.0 c c c

x 5.0 c c c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 144

Page 146: Niemet_Buch_En_72dpi

145

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

80 x 6.0 c c c c

x 8.0 c c c c

x 10.0 c c c c c

x 12.0 c c c

x 15.0 c c c

x 20.0 c c c c

x 25.0 c c c

x 30.0 c c c c

x 35.0 c

x 40.0 c c c c

x 50.0 c c c

x 60.0 c c c

x 65.0 c

85 x 3.0 c

x 10.0 c

x 15.0 c c

x 20.090 x 3.0 c

x 4.0 c c

x 5.0 c c

x 8.0 c c

x 10.0 c c

x 12.0 c

x 15.0 c c

x 20.0 c c c

x 25.0 c

x 30.0 c

x 40.0 c c

x 50.0 c

x 60.0 c

100 x 3.0 c

x 4.0 c c

x 5.0 c c c

x 6.0 c c c

x 8.0 c c c c

x 10.0 c c c c c

x 12.0 c c

x 15.0 c c c c c

x 20.0 c c c c c c c

x 25.0 c c c

x 30.0 c c c

x 35.0 c

x 40.0 c c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 145

Page 147: Niemet_Buch_En_72dpi

146

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

100 x 45.0 c c

x 50.0 c c c

x 60.0 c

x 70.0 c

110 x 10.0 c

x 15.0 c

x 30.0 c

112 x 82.0 c

120 x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c c c c c

x 12.0 c c c

x 15.0 c c c c

x 20.0 c c c

x 25.0 c c

x 30.0 c c

x 40.0 c c

x 50.0 c

x 60.0 c

125 x 10.0 c

x 70.0 c

130 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c c

x 50.0 c

140 x 5.0 c

x 10.0 c c c

x 15.0 c

x 20.0 c

x 30.0 c

150 x 3.0 c

x 5.0 c

x 8.0 c

x 10.0 c c c c c

x 12.0 c

x 15.0 c c c c

x 20.0 c c c

x 25.0 c

x 30.0 c c c

x 40.0 c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 146

Page 148: Niemet_Buch_En_72dpi

147

FLAT

DIN 1712, 1725, 1747, 1769, 1770EN 573, 754, 755

E-Al99.5 AlMgSi0.5 E-AlMgSi0.5 AlMg3 AlMg4.5Mn AlMg5 AlMgSi1 AlCuF 10 F 22 F 17/F 22 F 18/W 18 F 27/W 27 Optical quality F 28-30 (Bi/Mg)Pb

Width x Thickness 1350 6060/6063 6101A 5754 5083 W 25 6082 F 37H 14 T 6/T 66 T 6 H 112 0 5019 T 6 2007/2011

mm H 111 T 3-4/T 6

150 x 50.0 c

x 60.0 c

160 x 6.0 c

x 8.0 c

x 10.0 c c c c

x 12.0 c

x 15.0 c

x 20.0 c c

180 x 10.0 c

200 x 4.0 c

x 5.0 c

x 8.0 c

x 10.0 c c c c

x 15.0 c c c

x 20.0 c c

x 25.0 c

x 30.0 c

220 x 10.0 c

250 x 10.0 c

300 x 20.0 c

340 x 40.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 147

Page 149: Niemet_Buch_En_72dpi

148

SQUARE

DIN 1725, 1747, 1796, 59700EN 573, 754, 755

AlMg3 AlMg5 AlMgSi0.5 AlMgSi1 AlMgSiPb AlCu(Mg/Bi)Pb AlZnMgCu1.5F 18 Optical quality F 22 F 28-31 F 28 F 37 F 50-52

Edge length 5754 F 25 6060 6082 6012 2007/2011 70750/H 111 5019 T 66 T 6 T 6 T 4/T 6 T 6

mm H 111

3.0 c

4.0 c

5.0 c c

6.0 c c c

7.0 c c c c

8.0 c c c

9.0 c

10.0 c c c c c c

12.0 c c c c

14.0 c c c c

15.0 c c c c

16.0 c c

17.0 c c

18.0 c c c

19.0 c

20.0 c c c c c c

22.0 c c c

23.0 c

24.0 c c c

25.0 c c c c c

27.0 c

28.0 c c

30.0 c c c c c c

32.0 c c c c

35.0 c c c

36.0 c c c

40.0 c c c c c

45.0 c c c c

46.0 c

50.0 c c c c c

55.0 c c c

60.0 c c c c c c

65.0 c c

67.0 c

70.0 c c c c

75.0 c c

80.0 c c c c c

85.0 c c

90.0 c c c c

100.0 c c c c c c

105.0 c

110.0 c c

115.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 148

Page 150: Niemet_Buch_En_72dpi

149

SQUARE

DIN 1725, 1747, 1796, 59700EN 573, 754, 755

AlMg3 AlMg5 AlMgSi0.5 AlMgSi1 AlMgSiPb AlCu(Mg/Bi)Pb AlZnMgCu1.5F 18 Optical quality F 22 F 28-31 F 28 F 37 F 50-52

Edge length 5754 F 25 6060 6082 6012 2007/2011 70750/H 111 5019 T 66 T 6 T 6 T 4/T 6 T 6

mm H 111

120.0 c c c c

130.0 c c

140.0 c c

150.0 c c c

160.0 c c c

180.0 c c

200.0 c c

HEXAGONAL

DIN 1725, 1747, 1797, 59701EN 573, 754, 755

AlMgSi1 AlMgSiPb AlCu(Mg/Bi)PbSpanner F 28-31 F 28 F 37

width 6082 6012 2007/2011T 6 T 6 T 6

mm

5.0 c c

6.0 c c

7.0 c c

8.0 c

9.0 c

10.0 c c c

11.0 c c c

12.0 c c c

13.0 c c c

14.0 c c

15.0 c c

17.0 c c c

18.0 c

19.0 c c c

20.0 c

AlMgSi1 AlMgSiPb AlCu(Mg/Bi)PbSpanner F 28-31 F 28 F 37

width 6082 6012 2007/2011T 6 T 6 T 6

mm

22.0 c c c

24.0 c c c

27.0 c c c

30.0 c c

32.0 c c c

36.0 c c c

41.0 c c c

46.0 c c

50.0 c c

55.0 c

60.0 c

65.0 c

70.0 c

80.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 149

Page 151: Niemet_Buch_En_72dpi

150

ROUND

DIN 1712, 1725, 1747, 1998, 1999EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg AlMg AlMg AlMg AlCu AlCu AlZn AlZnMgDia- F 7-13 F 18 Optical quality Si0.5 Si1 4.5Mn SiPb (Bi/Mg)Pb Mg1/2 4.5Mg1 Cu0.5/1.5

meter 1050A 5754 H 112 F 25 F 22 F 28 F/W 27 F 28 2011 2024 F 35 F 49-52H 112/ H 112 5019 5019 6060 6082 5083 6012 2007/ 2017A/ 7020 7022/7075

mm H 16 EQ NQ T 66 T 6 H 111 T 6 T 4/T 6 T 3 T 6 T 6

2.0 c

2.5 c

3.0 c c

4.0 c c c

4.5 c

5.0 c c c c c

6.0 c c c c

6.5 c

7.0 c c c c

8.0 c c c c c c c c

9.0 c c c

10.0 c c c c c c c c c c c

11.0 c

12.0 c c c c c c c c c c

13.0 c c c c c c

14.0 c c c c c c c

15.0 c c c c c c c c c

16.0 c c c c c c

17.0 c c c

18.0 c c c c c c c c

19.0 c c c c

20.0 c c c c c c c c c c

21.0 c c c c

22.0 c c c c c c c c

23.0 c c c c

24.0 c c c c c c

25.0 c c c c c c c c c c c c

26.0 c c c c c c c

27.0 c c c c c

28.0 c c c c c c c c

29.0 c

30.0 c c c c c c c c c c c

31.0 c c c

32.0 c c c c c c c c c c c

33.0 c c c c c

34.0 c c c c c

35.0 c c c c c c c c c c c

36.0 c c c c c c c c

37.0 c

38.0 c c c c c c c c

39.0 c c

40.0 c c c c c c c c c c c c

41.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 150

Page 152: Niemet_Buch_En_72dpi

151

ROUND

DIN 1712, 1725, 1747, 1998, 1999EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg AlMg AlMg AlMg AlCu AlCu AlZn AlZnMgDia- F 7-13 F 18 Optical quality Si0.5 Si1 4.5Mn SiPb (Bi/Mg)Pb Mg1/2 4.5Mg1 Cu0.5/1.5

meter 1050A 5754 H 112 F 25 F 22 F 28 F/W 27 F 28 2011 2024 F 35 F 49-52H 112/ H 112 5019 5019 6060 6082 5083 6012 2007/ 2017A/ 7020 7022/7075

mm H 16 EQ NQ T 66 T 6 H 111 T 6 T 4/T 6 T 3 T 6 T 6

42.0 c c c c c c c c

43.0 c c

44.0 c

45.0 c c c c c c c c c

46.0 c c

48.0 c c c c c c

50.0 c c c c c c c c c c c

52.0 c c c c c c

55.0 c c c c c c c c c c

56.0 c c c c c c c

58.0 c

60.0 c c c c c c c c c c c

62.0 c c c

63.0 c c c c c c

65.0 c c c c c c c c c c

67.0 c

70.0 c c c c c c c c c c c

72.0 c

75.0 c c c c c c c c c c

80.0 c c c c c c c c c c c

82.0 c

85.0 c c c c c c c c c

90.0 c c c c c c c c c c c

94.0 c

95.0 c c c c c

100.0 c c c c c c c c c c c

105.0 c c c c

110.0 c c c c c c c c c

115.0 c c c

120.0 c c c c c c c c c c c

125.0 c c c c c c c

130.0 c c c c c c c c c c c

135.0 c c c

140.0 c c c c c c c c c c c

145.0 c

150.0 c

155.0 c c c c c c c c c

160.0 c c c c c c c c c c c

165.0 c c

170.0 c c c c c c c

180.0 c c c c c c c c c c c

185.0 c c

190.0 c c c c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 151

Page 153: Niemet_Buch_En_72dpi

152

ROUND

DIN 1712, 1725, 1747, 1998, 1999EN 573, 754, 755

Al99.5 AlMg3 AlMg5 AlMg AlMg AlMg AlMg AlCu AlCu AlZn AlZnMgDia- F 7-13 F 18 Optical quality Si0.5 Si1 4.5Mn SiPb (Bi/Mg)Pb Mg1/2 4.5Mg1 Cu0.5/1.5

meter 1050A 5754 H 112 F 25 F 22 F 28 F/W 27 F 28 2011 2024 F 35 F 49-52H 112/ H 112 5019 5019 6060 6082 5083 6012 2007/ 2017A/ 7020 7022/7075

mm H 16 EQ NQ T 66 T 6 H 111 T 6 T 4/T 6 T 3 T 6 T 6

200.0 c c c c c c c c c c c

210.0 c c c c c c

220.0 c c c c c c c c c

230.0 c c c c c

240.0 c c c c c

250.0 c c c c c c c

255.0 c c

260.0 c c c c c

270.0 c c c c c c c

280.0 c c c c c

290.0 c

300.0 c c c c c c c c

310.0 c c c c c

320.0 c c c c c

330.0 c c c

340.0 c

350.0 c c c c c

355.0 c c

360.0 c c

370.0 c

380.0 c c c

400.0 c c c c

410.0 c

420.0 c

430.0 c c

450.0 c c c

480.0 c

500.0 c c

510.0 c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 152

Page 154: Niemet_Buch_En_72dpi

153

T-PROFILE

DIN 1725, 1748, 9714EN 573, 755

AlMgSi0.5 AlMg4.5MnF 22 F 27

Height x width x thickness 6060/6063 5083T 66/T 6 H 112

mm

15 x 15 x 1.5 c

x 15 x 2.0 c

x 15 x 3.0 c

x 30 x 2.0 c

20 x 10 x 2.0 c

x 20 x 2.0 c

x 20 x 3.0 c

x 40 x 2.0 c

25 x 25 x 2.0 c

x 25 x 3.0 c

30 x 30 x 2.0 c

x 30 x 3.0 c

x 50 x 4.0 c

x 120 x 2.6 c

35 x 35 x 2.0 c

x 35 x 3.0 c

40 x 25 x 2.0 c

x 30 x 3.0 c

x 40 x 2.0 c

x 40 x 3.0 c

x 40 x 4.0 c c

x 40 x 12.0 c

x 60 x 4.0 c

x 60 x 5.0 c

x 80 x 6.0 c

x 100 x 3.0 c

45 x 105 x 2.6 c

AlMgSi0.5 AlMg4.5MnF 22 F 27

Height x width x thickness 6060/6063 5083T 66/T 6 H 112

mm

45 x 120 x 2.0 c

50 x 50 x 3.0 c

x 50 x 4.0 c

x 50 x 5.0 c

x 50 x 6.0 c

x 100 x 1.8 c

x 100 x 9.0 c

60 x 40 x 4.0 c

x 40 x 5.0 c

x 60 x 5.0 c c

x 60 x 6.0 c

x 80 x 2.5 c

x 80 x 3.0 c

x 80 x 4.0 c

x 100 x 5.0 c

x 120 x 8.0 c

70 x 70 x 8.0 c

80 x 50 x 4.0 c

x 50 x 5.0 c

x 60 x 4.0 c

x 80 x 4.0 c

x 80 x 7.0 c

x 100 x 5.0 c

100 x 60 x 5.0 c

x 80 x 5.0 c

x 100 x 6.0 c

x 100 x 10.0 c

FLAT BULB PROFILE

DIN 1725, 1748EN 573, 755

Dimensions AlMgSi16082

mm

HP 60 x 5.0 c

HP 65 x 3.5 c

HP 75 x 4.0 c

Dimensions AlMgSi16082

mm

HP 85 x 4.5 c

HP 100 x 5.0 c

HP 120 x 5.0 c

Dimensions AlMgSi16082

mm

HP 140 x 6.0 c

HP 160 x 6.5 c

HP 180 x 7.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 153

Page 155: Niemet_Buch_En_72dpi

154

U-PROFILE

DIN 9713, 1725, 1748EN 573, 755

Height x width AlMgSi0.5x thickness F 22

6060/6063T 66/T 6

mm

8 x 8 x 1.0 c

10 x 10 x 1.0 c

x 10 x 2.0 c

x 20 x 2.0 c

12 x 12 x 2.0 c

x 15 x 1.5 c

13 x 20 x 1.5 c

15 x 15 x 1.5 c

x 15 x 2.0 c

x 20 x 1.5 c

x 25 x 1.5 c

16 x 28 x 1.2 c

17 x 25 x 1.2 c

18 x 18 x 2.0 c

x 25 x 1.2 c

x 28 x 1.2 c

19 x 25 x 1.5 c

20 x 8 x 1.5 c

x 10 x 2.0 c

x 15 x 1.5 c

x 15 x 2.0 c

x 20 x 1.2 c

x 20 x 1.5 c

x 20 x 2.0 c

x 20 x 3.0 c

x 25 x 1.2 c

x 25 x 1.5 c

x 30 x 2.0 c

x 35 x 2.0 c

x 40 x 2.0 c

x 40 x 2.5 c

25 x 10 x 1.5 c

x 15 x 2.0 c

x 20 x 1.5 c

x 20 x 3.0 c

x 25 x 1.5 c

x 25 x 2.0 c

x 25 x 3.0 c

x 32 x 2.0 c

x 50 x 3.0 c

30 x 10 x 2.0 c

x 15 x 2.0 c

x 15 x 3.0 c

Height x width AlMgSi0.5x thickness F 22

6060/6063T 66/T 6

mm

30 x 20 x 2.0 c

x 20 x 3.0 c

x 30 x 2.0 c

x 30 x 3.0 c

x 30 x 4.0 c

x 40 x 3.0 c

35 x 20 x 2.0 c

x 35 x 2.0 c

x 35 x 3.0 c

40 x 15 x 2.0 c

x 20 x 2.0 c

x 20 x 2.5 c

x 20 x 3.0 c

x 20 x 4.0 c

x 30 x 2.0 c

x 30 x 3.0 c

x 30 x 4.0 c

x 40 x 2.0 c

x 40 x 2.5 c

x 40 x 3.0 c

x 40 x 4.0 c

x 50 x 2.0 c

x 50 x 4.0 c

x 60 x 4.0 c

x 60 x 5.0 c

x 100 x 4.0 c

45 x 12 x 2.5 c

x 25 x 3.0 c

x 45 x 2.5 c

x 45 x 4.0 c

50 x 15 x 2.0 c

x 20 x 2.0 c

x 25 x 2.5 c

x 25 x 3.0 c

x 25 x 4.0 c

x 30 x 2.0 c

x 30 x 3.0 c

x 30 x 4.0 c

x 32 x 3.0 c

x 40 x 2.0 c

x 40 x 3.0 c

x 40 x 4.0 c

x 40 x 5.0 c

Height x width AlMgSi0.5x thickness F 22

6060/6063T 66/T 6

mm

50 x 50 x 2.0 c

x 50 x 3.0 c

x 50 x 4.0 c

x 50 x 5.0 c

54 x 54 x 3.0 c

55 x 25 x 2.0 c

x 45 x 2.0 c

56 x 56 x 2.0 c

60 x 15 x 2.0 c

x 20 x 2.0 c

x 20 x 2.5 c

x 25 x 2.5 c

x 30 x 3.0 c

x 30 x 4.0 c

x 40 x 2.5 c

x 40 x 3.0 c

x 40 x 4.0 c

x 40 x 5.0 c

x 50 x 2.0 c

x 50 x 2.5 c

x 50 x 3.0 c

x 60 x 4.0 c

x 60 x 5.0 c

x 60 x 6.0 c

x 60 x 8.0 c

65 x 25 x 2.5 c

x 40 x 6.0 c

x 45 x 2.0 c

x 55 x 2.5 c

69 x 69 x 3.0 c

70 x 20 x 2.0 c

x 30 x 3.0 c

x 35 x 3.0 c

x 40 x 4.0 c

75 x 30 x 2.0 c

x 55 x 2.5 c

80 x 20 x 2.0 c

x 24 x 2.0 c

x 30 x 3.0 c

x 40 x 3.0 c

x 40 x 4.0 c

x 40 x 6.0 c

x 45 x 6.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 154

Page 156: Niemet_Buch_En_72dpi

155

U-PROFILE

DIN 9713, 1725, 1748EN 573, 755

Height x width AlMgSi0.5x thickness F 22

6060/6063T 66/T 6

mm

80 x 45 x 8.0 c

x 50 x 2.5 c

x 50 x 5.0 c

x 60 x 5.0 c

x 60 x 10.0 c

x 80 x 4.0 c

84 x 50 x 2.5 c

x 84 x 3.0 c

85 x 25 x 3.0 c

x 85 x 3.0 c

86 x 40 x 3.0 c

x 86 x 3.0 c

90 x 40 x 3.0 c

x 50 x 3.0 c

94 x 94 x 3.0 c

96 x 96 x 2.0 c

99 x 99 x 3.0 c

100 x 20 x 2.0 c

x 40 x 2.0 c

x 40 x 3.0 c

x 40 x 4.0 c

Height x width AlMgSi0.5x thickness F 22

6060/6063T 66/T 6

mm

100 x 40 x 10.0 c

x 50 x 3.0 c

x 50 x 5.0 c

x 50 x 6.0 c

x 50 x 8.0 c

x 50 x 9.0 c

x 50 x 10.0 c

x 55 x 10.0 c

x 100 x 5.0 c

x 200 x 9.0 c

101 x 101 x 2.0 c

104 x 104 x 3.0 c

105 x 40 x 3.0 c

106 x 40 x 3.0 c

x 106 x 3.0 c

108 x 50 x 3.0 c

110 x 110 x 5.0 c

114 x 114 x 3.0 c

116 x 116 x 2.0 c

120 x 20 x 2.5 c

x 40 x 3.0 c

Height x width AlMgSi0.5x thickness F 22

6060/6063T 66/T 6

mm

120 x 45 x 10.0 c

x 55 x 7.0 c

x 60 x 8.0 c

x 65 x 7.5 c

x 65 x 8.0 c

135 x 135 x 2.5 c

140 x 40 x 3.0 c

x 60 x 6.0 c

x 60 x 8.0 c

150 x 50 x 10.0 c

152 x 152 x 4.0 c

160 x 80 x 8.0 c

x 160 x 3.0 c

174 x 174 x 3.0 c

180 x 50 x 6.0 c

x 64 x 4.0 c

x 180 x 3.0 c

200 x 40 x 3.0 c

x 40 x 5.0 c

x 100 x 12.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 155

Page 157: Niemet_Buch_En_72dpi

156

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

10 x 10 1.5 c

x 10 2.0 c

12 x 12 2.0 c

15 x 10 1.0 c

x 10 1.5 c

x 10 2.0 c

x 15 2.0 c c

x 15 2.5 c

x 15 3.0 c

20 x 10 1.0 c

x 10 1.5 c

x 10 2.0 c c

x 10 3.0 c

x 15 2.0 c

x 15 3.0 c

x 20 1.0 c

x 20 1.5 c

x 20 2.0 c c

x 20 3.0 c c

x 20 4.0 c

x 20 5.0 c

25 x 10 2.0 c

x 10 3.0 c

x 15 2.0 c

x 15 2.5 c

x 15 3.0 c

x 20 2.0 c

x 20 2.5 c

x 20 3.0 c c

x 25 1.0 c

x 25 1.5 c

x 25 2.0 c

x 25 2.5 c

x 25 3.0 c c

x 25 4.0 c

x 25 5.0 c

x 25 6.0 c c

30 x 10 2.0 c

x 15 2.0 c

x 15 3.0 c

x 15 5.0 c

x 20 2.0 c

x 20 2.5 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 156

Page 158: Niemet_Buch_En_72dpi

157

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

30 x 20 3.0 c

x 20 4.0 c

x 25 2.0 c

x 25 3.0 c

x 30 2.0 c

x 30 3.0 c c c

x 30 4.0 c c c c

x 30 5.0 c

x 30 8.0 c

35 x 10 2.0 c

x 15 3.0 c

x 15 2.0 c

x 20 2.0 c

x 20 3.0 c

x 25 3.0 c

x 35 2.0 c

x 35 2.5 c

x 35 3.0 c

x 35 4.0 c c c

x 35 4.0 c

x 35 5.0 c

x 35 6.0 c

40 x 10 2.0 c

x 15 2.0 c

x 15 2.5 c

x 20 2.0 c c

x 20 3.0 c

x 20 4.0 c

x 20 5.0 c

x 25 2.0 c

x 25 2.5 c

x 25 3.0 c

x 25 4.0 c c c

x 30 2.0 c

x 30 3.0 c

x 30 4.0 c

x 30 5.0 c

x 40 1.5 c

x 40 2.0 c

x 40 3.0 c c

x 40 4.0 c c c

x 40 5.0 c c c c

x 40 6.0 c c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 157

Page 159: Niemet_Buch_En_72dpi

158

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

45 x 10 2.0 c

x 15 2.0 c

x 20 2.0 c

x 20 3.0 c

x 25 2.0 c

x 30 3.0 c

x 30 5.0 c

x 45 2.0 c

x 45 3.0 c

x 45 4.0 c

x 45 5.0 c

50 x 10 2.0 c

x 15 2.0 c

x 15 2.5 c

x 15 3.0 c

x 20 2.0 c

x 20 2.5 c

x 20 3.0 c

x 20 4.0 c

x 25 2.0 c

x 25 2.5 c

x 25 3.0 c c c

x 25 4.0 c c

x 25 5.0 c

x 30 2.0 c

x 30 3.0 c c c

x 30 4.0 c c c c

x 30 5.0 c

x 35 4.0 c

x 35 5.0 c c

x 40 2.0 c

x 40 3.0 c

x 40 4.0 c

x 40 5.0 c c c

x 50 2.0 c

x 50 3.0 c c

x 50 4.0 c c c

x 50 5.0 c c c

x 50 6.0 c c c

x 50 8.0 c c

x 50 10.0 c

60 x 10 2.0 c

x 10 2.5 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 158

Page 160: Niemet_Buch_En_72dpi

159

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

60 x 15 2.0 c

x 20 2.0 c

x 20 2.5 c

x 20 3.0 c

x 25 2.0 c

x 25 2.5 c

x 25 3.0 c

x 25 4.0 c

x 30 2.0 c

x 30 3.0 c c c

x 30 4.0 c c

x 30 5.0 c c

x 30 6.0 c

x 40 2.0 c

x 40 3.0 c

x 40 4.0 c

x 40 5.0 c c

x 40 6.0 c c

x 50 2.0 c

x 50 4.0 c c

x 50 5.0 c

x 60 2.0 c

x 60 2.5 c

x 60 3.0 c c

x 60 4.0 c c c

x 60 5.0 c c

x 60 6.0 c c c c

x 60 7.0 c

x 60 8.0 c

x 60 10.0 c

65 x 15 2.0 c

x 20 2.0 c

x 20 3.0 c

x 25 2.5 c

x 50 5.0 c

x 50 6.0 c

x 65 6.0 c c

70 x 15 2.0 c

x 20 2.0 c

x 25 2.5 c

x 30 2.0 c

x 30 3.0 c

x 50 3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 159

Page 161: Niemet_Buch_En_72dpi

160

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

70 x 60 6.0 c

x 70 2.5 c

x 70 5.0 c

x 70 6.0 c

x 70 7.0 c

75 x 50 4.0 c

x 50 5.0 c c c

x 50 6.0 c c

x 50 7.0 c c

x 50 8.0 c

80 x 15 2.0 c

x 20 2.0 c

x 25 2.5 c

x 30 3.0 c

x 40 2.0 c

x 40 3.0 c

x 40 4.0 c c c

x 40 5.0 c c

x 40 6.0 c c

x 40 8.0 c

x 50 4.0 c

x 50 5.0 c

x 50 6.0 c c

x 60 4.0 c

x 60 6.0 c

x 80 3.0 c c

x 80 4.0 c

x 80 5.0 c

x 80 6.0 c

x 80 8.0 c c c c

x 80 10.0 c c

90 x 30 2.5 c

x 90 3.0 c

100 x 20 2.0 c

x 30 2.0 c

x 30 3.0 c

x 40 3.0 c

x 40 4.0 c

x 40 6.0 c

x 50 3.0 c

x 50 5.0 c c c

x 50 6.0 c c

x 50 10.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 160

Page 162: Niemet_Buch_En_72dpi

161

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

100 x 60 2.0 c

x 60 6.0 c c c

x 60 8.0 c

x 60 10.0 c

x 65 5.0 c

x 65 7.0 c

x 70 2.0 c

x 75 2.0 c

x 80 2.6 c

x 80 3.0 c

x 80 4.0 c

x 80 10.0 c c

x 100 3.0 c

x 100 4.0 c

x 100 6.0 c

x 100 8.0 c

x 100 9.0 c

x 100 10.0 c

105 x 105 4.0 c

110 x 30 2.0 c

120 x 20 2.5 c

x 40 3.0 c

x 40 4.0 c

x 44 3.2 c

x 50 5.0 c

x 60 2.0 c

x 60 6.0 c c

x 60 8.0 c

x 60 10.0 c

x 80 2.6 c

x 80 10.0 c

x 100 4.0 c

x 100 8.0 c

x 120 10.0 c

x 120 12.0 c

125 x 80 8.0 c

130 x 30 3.0 c

x 65 9.0 c

x 80 6.0 c

x 80 8.0 c

140 x 40 3.0 c

x 40 4.0 c

x 40 6.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 161

Page 163: Niemet_Buch_En_72dpi

162

ANGLES

DIN 1725, 1748, 1771EN 573, 755

AlMg3 AlMgSi0.5 AlMg4.5Mn AlMgSi1F 18 F 22 F 27 F 28

Height x width Thickness 5754 6060/6063 5083 6082H 111 T 66/T 6 H 112 T 6

mm mm

150 x 40 4.0 c

x 50 4.0 c

x 50 8.0 c

x 75 8.0 c

x 75 10.0 c

x 100 5.0 c

160 x 40 3.0 c

x 40 4.0 c

x 40 12.0 c

180 x 80 10.0 c

x 150 6.0 c

200 x 100 10.0 c

230 x 100 3.0 c

250 x 100 3.0 c

NiemannENG_054-162_ALU 19.09.2007 9:03 Uhr Seite 162

Page 164: Niemet_Buch_En_72dpi

COPPER

NiemannENG_163-196_KUP 04.10.2007 16:57 Uhr Seite 163

Page 165: Niemet_Buch_En_72dpi

NiemannENG_054-162_ALU 27.09.2007 12:26 Uhr Seite 56

Page 166: Niemet_Buch_En_72dpi

165

ADVANTAGES OF COPPER

Copper as an SF product

We distinguish between types of copper that are

- oxidised

- oxygen-free, non-deoxidised and

- oxygen-free, deoxidised with phosphorus.

The oxidised forms of copper E-Cu58 and E-Cu57 contain from 0.005 to0.040% oxygen, present in the copper as copper(1) oxide. These forms ofcopper, with the high electrical conductivity of at least 58 and 57 m/Ω·mm2

respectively, are used in the electrical industry. When annealing in ahydrogenous atmosphere, or when welding or hard soldering with an openflame, oxidised copper is endangered by brittleness (or gassing). Thehydrogen can thereby penetrate into the red-hot copper, reacts with the cop-per(1) oxide present and forms steam, which expands the structure of themetal and causes brittleness. The danger of this brittleness epecially greatduring gas welding and open flame soldering with hardly viscous brazingsolder. It can be prevented by heat treatment which supplies no oxygen tothe copper. The inspection of resistance to hydrogen in wire of copper andcopper wrought alloys is prescribed in DIN 17677.

The oxygen-free, non-deoxidised copper variety OF-Cu is melted fromcathodes under exclusion of oxygen and deoxidisation means. It is wellsuited to welding and brazing as well as being resistant to hydrogen, has anelectrical conductivity of at least 58 m/Ω·mm2 and is suppliable in specialquality, free of evaporatable elements. The oxygen-free copper varietiesdeoxidised with phosphorus, SE-Cu, SW-Cu and SF-Cu are also resistant tohydrogen. For deoxidisation, a slight excess of phosphorus in the form of acopper-phosphorus pre-alloy with about 10 to 15% P is added to themolten, tough pitch copper. SE-Cu has a high electrical conductivity of over57 m/Ω·mm2 due to its low residual phosphorus content, can however besupplied with a conductivity of over 58 m/Ω·mm2, and is used mainly in the

copper NIE•MET and its hardware

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 165

Page 167: Niemet_Buch_En_72dpi

166

electro-technical and electronic industries. SE-Cu is easily welded andbrazed. Like OF-Cu, SE-Cu is also available in special quality, free of evap-oratable elements, which is well suited for use in vacuum technology.

SW-Cu is a copper variety with a limited, low, residual phosphorus contentof 0.005 to 0.040%, without an exactly determined electrical conductivityand good suitability for welding and brazing. It is used in apparatus engi-neering.

SF-Cu is a form of copper with a limited, low, residual phosphorus contentof 0.015 to 0.040% which does not have to fulfill any requirements regard-ing electrical conductivity. It is well suited for welding and brazing and isthe most important variety of copper for piping systems, apparatus engi-neering and the construction industry.

CRITERIA FOR THE SELECTION OF COPPER

Physical properties

Copper is the only metal with a salmon-red colouring. It is the onlycoloured metallic element besides gold. With a density of 8.9 kg/dm3,

copper belongs, like gold, to the heavy metals. It has a melting point of1083ºC and a boiling point of 2595ºC. The most outstanding property ofcopper is its high thermal and electrical conductivity, which is only sur-passed by that of silver.

The electrical conductivity of very pure copper (Ä 99.998 % Cu) can almostreach the level of 60 m/Ω·mm2.

Phosphorus, like all the soluble ingredients in solid copper, reduces its elec-trical conductivity. For this reason the electrical conductivity of the phos-phorus-deoxidised, oxygen-free copper varieties is more or less reduced,according to the amount of residual phosphorus.

An influence on the electrical conductivity of copper is also noticeablethrough increasing cold working. SE-Cu, for example, has an electricalconductivity of at least 57 m/Ω·mm2 in the soft condition (F20), but a val-ue of only 55 m/Ω·mm2 in the cold worked condition (F37).

NIE•MET and its hardware copper

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 166

Page 168: Niemet_Buch_En_72dpi

167

copper NIE•MET and its hardware

The thermal conductivity of very pure copper can reach almost 395 W7m·Kat 20ºC. By admixturing, for example, phosphorus, it can be correspond-ingly reduced. A phosphorus content of about 0.05% reduces the themalconductivity of copper to 293 W/m·K.

Thermal expansion, at 17·10-6/K (from 25 to 300˚C), is greater than that ofiron, but less than that of many other metals.

Mechanical properties

The mechanical properties of strip and sheet set out in the DIN codes 17670and DIN 1787, depending on the condition of the material. For the strip andsheet made from E-Cu58, E-Cu57 and SE-Cu, DIN 40500 T1 applies. Inthis norm, different dimension categories of the strip and sheet are pre-scribed, in accordance with electrotechnological requirements, from thosein DIN 17670. Soft wrought copper has a tensile strength of at least 2000MPa and a breaking elongation of over 40%. Through increasing coldworking, the tensile strength of pure copper can be increased to levelsabove 400 MPa, and the Brinell hardness from 50 up to over 100 HB; how-ever, the expansion decreases considerably. It follows from this that purecopper has no hot-brittle phase and can be easily worked in the hot condi-tion. The strength properties of copper at increased temperatures and afterlong-term stress are described in its creep characteristics. At low tempera-tures copper shows no brittleness, so that it is ideally suited for applicationsin low temperature technology, e.g. in the construction of refrigerationmachinery. As copper also displays impressive long-term resistance tooscillation, it is also suitable as a material exposed to vibration stress, toavoid any danger of fracture due to brittleness. The strength properties ofcasting copper varieties are set out in DIN 17655. They will not be dis-cussed here in any detail.

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 167

Page 169: Niemet_Buch_En_72dpi

168

COPPER ALLOYS

Copper materials

By adding relatively small amounts of other elements, one or more ofthe properties of pure copper – e.g. strength, softening temperature

and machineability, can be considerably increased, whereby other charac-teristics such as electrical and thermal conductivity and resistance to corro-sion are generally maintained. Elements of this nature are arsenic, berylli-um, cadmium, chrome, iron, cobalt, manganese, nickel, sulphur, silver,silicium, tellurium, zinc, tin, zircon, both alone or in combination. Someelements such as arsenic, manganese and silicium reduce conductivity tosome extent, but improve heat resistance, weldability and resistance to cor-rosion in certain environments. The influence on the properties dependslargely on the amount of the elements added.

Copper alloys with low amounts of the elements mentioned form the groupof ‘low alloy copper materials’. In most cases the concentration of individ-ual elements remains below 1%.

Copper alloys with about 5% Zn, or 2%-5% Ni, or 5% Al do not form partof this group, as they are usually assigned to the copper-zinc, copper-tin,copper-nickel or copper-aluminium alloys.

We distinguish between non-heat-treatable and heat-treatable alloys. Thisdifferentiation is usual commercial practice.

Those alloys whose strength properties can only be improved by cold work-ing are classified as non-heat-treatable. The strength properties of heat-treatable alloys can be improved above all by appropriate heat treatment, aswell as cold working. The prerequisites for heat treatment are:

1. Reduction in solubility of the alloy additives on decreasing temperature,

2. Quenchability of the homogenous condition to low temperature,

3. Precipitation of a second phase at medium temperature,

4. Strain-hardening properties of the precipitated phase.

The division into non-heat-treatable and heat-treatable alloys is not appliedhere.

NIE•MET and its hardware copper

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 168

Page 170: Niemet_Buch_En_72dpi

169

The composition of the low-alloy copper wrought materials is defined inDIN 17 666.

Semifinished products made from copper/silver for the electrical industryare supplied according to DIN 40500.

Other codes to be mentioned with regard to low-alloy copper wroughtmaterials are e.g.: DIN 1780, coils and strip for leaf springs,DIN 1785,pipes for condensers and heat exchangers, DIN 17471, resistance alloys,DIN 17679, pipes with rolled ribbing for heat exchangers, DIN 17682,round spring-wire.

The only low-alloy copper casting material defined in DIN 17655 is castingcopper-chrome. Composition, strength properties and electrical conductiv-ity are set out in the code.

PROCESSING COPPER

Smelting and casting

The smelting of copper takes place either in a fuel or an induction fur-nace.

A neutral or oxidising smelting process is recommended for copper. In thelatter case, hydrogen absorption (high hydrogen solubility of the moltenmass) is prevented by a surplus of oxygen. Subsequently, appropriate mate-rials are to be used for deoxidising, usually a copper-phosphorus masteralloy.

The neutral smelting process takes place under a protective smelting bathcover to prevent the influence of atmospheric air and humidity. This formof smelting has the advantage that smelting loss is reduced to a minimumand non-metallic impurities are avoided.

To prevent the absorption of harmful impurities from the furnace atmos-phere, it is advisable to cover the molten surface in both processes withabout 15cm of charcoal cinders. Any hydrogen present can best be removedwith circulation gas treatment, e.g. with nitrogen or argon.

copper NIE•MET and its hardware

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 169

Page 171: Niemet_Buch_En_72dpi

170

Copper can be cast according to most casting processes, e.g. sand, chill,continuous, shell mould or waste wax casting. In the production of moulds,shrinkage of 1.8% to 2.2% must be taken into account.

Non-cutting forming

Cast copper, because of its excellent formability, can be easily worked intoevery semifinished shape, such as sheet, strip, pipes, rods, wire, as well asdrop and free form forgings. Sheet, strip, pipes rods and wire are producedusing formats such as rolling bars, round bars, etc. SF products made fromcopper (except wire) are almost never made directly from the molten state.The format dimensions can however lie very close to the final dimensions.In the production of sheet and strip, copper rolling bars are heated to about800º - 950º and hot rolled to a thickness of about 10mm – 20mm. As a rule,this prerolled sheet is milled and finally rolled in cold condition – if neces-sary, with intermediate annealing and pickling – down to the required thick-nesses. Copper sheet and strip can be further processed, due to their goodworkability, by means of deep drawing (deep drawing index, see DIN17670,T.1), pressing, and beating, etc.

Copper bars are normally produced from cast round bars, which are extrud-ed to a pipe or hot rolled. The pipe slugs are brought stage by stage to thefinal cross section by cold working on Mannesmann-type pilger mills ordrawing benches. The most economical method is to draw copper pipes ingreat lengths as rings on bull block machines.

For the production of copper bars, preheated round slugs are pressed intobillets on an extruding machine. In subsequent cold working to the requiredfinal cross- section, the extruded material is drawn through a die plate ondrawing benches.

Wires are rolled immediately after casting as cast rolled wire, or wire barsare heated to 800 - 900º and rolled out into wire of 8 or 12 mm ø on groovedrolls, subsequently pickled and, for stricter requirements, preturned. Therolled wire is drawn to the required length on multiple drawing machines.

NIE•MET and its hardware copper

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 170

Page 172: Niemet_Buch_En_72dpi

171

Copper can be worked as drawn wire with a cross-section reduced by 90%without intermediate annealing.

In the production of drop forgings, rod lengths, after being heated, are laidin a hollow mould enclosing the material on all sides and worked, using thepowerful pressure of a press.

On the other hand, open die forgings are SF products worked by beating orpressing, produced with tools ( hammers, saddles, etc.) not enclosing thematerial on all sides.

Non-cutting working is not only used for producing SF products made fromcopper, but also for manufacturing components with dimensions close tothose of the finished product. Components of complicated shape can, forexample, be produced by extrusion, by sintering copper powder or by gal-vanoplastic processes.

Metal-removing working

Unalloyed copper has the desired requirement of great tenacity at extremetension. This property, combined with relatively low strength, producespoor machineability, which has to be accepted. At fairly low cutting forcesthe material allows the formation of built-up edge. Besides this, very longflat helical or snarl chips that are difficult to remove also tend to form. Dis-located pieces of built-up edge and chips, which disturb the cutting process,complicate the production of good surfaces by machining. The prerequi-sites for good, smooth surface quality are a sharp cutting edge, good chipremoval and – to avoid the formation of built-up edge as far as possible –sufficient lubrication with cutting oils. High-speed steel and tungsten car-bide are used for tools, and also diamond tools for tougher requirementsregarding the surface and strict tolerances. The formation of built-up edgecan be reduced by polished surfaces. To reduce friction and remove frictionheat, cooling liquids and lubricants are required. The lubricant filmbetween material and tool reduces wear. As lubrication, cutting-oils or cut-ting-oil-water emulsions are applied. The lubricants for copper must be freeof sulphur as far as possible to avoid discolouring.

copper NIE•MET and its hardware

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 171

Page 173: Niemet_Buch_En_72dpi

172

With the minimal addition of tellurium, sulphur or lead as ‘stress breakers’,the machineability of copper is considerably improved without noticeablyaffecting its conductivity. Such materials are e.g. CuTeP and CuSp accord-ing to DIN 17666. They can be cut by machine.

CONNECTING COPPER

Welding

The common fusion welding processes (gas, WIG and MIG) provide nodifficulty insofar as the particular properties of copper are considered.

As welding filler, S-CuAg or S-CuSn according to DIN 1733 are used.Because of the high thermal conductivity of copper, it is necessary to pre-heat any copper parts of larger wall thickness in the welding zone that areto be welded, depending on wall thickness and process, to 200º - 600º.

Oxygen-free copper varieties should preferably be used for fusion weldingbecause, due to the influence of the welding heat and the simultaneouseffect of hydrogen in the welding flame, oxygenated copper can becomebrittle. This applies especially to gas welding, which is still widely used forcopper, for example in building and installation work. Today copper ismainly welded under the protection of inert gas. The MIG process is suit-able above all for large filling quantities at wall thicknesses of over 10mm.For wall thicknesses under 6mm and up to 16mm, the WIG process is supe-rior if both sides can be welded simultaneously.

The copper casting materials according to DIN 17655 are also suitable forfusion welding. However, successful welding cannot be guaranteed for G-CuL50 and GK-CuL50, due to the oxygen content.

Of the resistance welding processes, butt-welding is used for copper (e.g.for connecting wires). The use of spot and seam welding is limited to thinand extremely thin cross-sections due to the high conductivity of copper.For certain applications, some of the newer welding processes are advanta-geous, such as cold pressure welding, cold extrusion welding, ultrasonicwelding, friction welding, diffusion welding, constricted arc welding

NIE•MET and its hardware copper

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 172

Page 174: Niemet_Buch_En_72dpi

173

(WD), micro-plasma welding, (pulsed current) arc welding (MIG andWIG), electron beam welding (EB), laser beam welding (LB) and blastwelding (cladding by weld deposition).

Soldering

To hard-solder thicker copper pieces, brass solder as well as copper soldercontaining phosphorus (DIN 8513,T.1) can be used. More important, how-ever, are hard solders containing silver (DIN 8513, T.2 and 3). They have alower working temperature, reduce the danger of coarse grain formationand allow higher soldering speeds. The flux-free hard soldering of copperwith solder containing phosphorus is widespread.

For autogenic soldering processes (open flame soldering) oxygen-free cop-per varieties are to be used. It should be noted that in hard soldering thegreater strength properties of copper achieved by cold working are lost.

Solder compounds are most important in copper pipe installation. Largerdiameter pipes are thereby soldered without reservation. The hard soldersL-CuP6/CP 203 or L- Ag2P/CP 105 are preferably used for copper/coppercompounds in pipe installation, without using flux. In the food industry, sil-ver hard solders containing tin (DIN 8513, T.3) are applied. For health rea-sons, it is not advisable to use the still widely applied cadmium solders.

The casting copper varieties according to DIN 17655 are hard soldered, likethe wrought copper types, according to DIN 1787. For G-Cu1-50 and GK-CuL50, hard soldering suitability is only guaranteed if, in a rapid solderingprocess, hydrogen absorption is prevented.

For soft soldering, tin-lead compounds are used, generally with 50% or60% Sn according to DIN EN 29453 or DIN 1707 – 100. For coarser parts,soft solders with little antimony can be applied, for fine soldering the anti-mony-free solders. In the food industry, only lead-free solders should beused, and for soldering on drinking water pipes they must be. For detailedregulations, see the DVGW guidelines. For higher temperature resistancerequirements, special heat resistant soft solders are available. For the elec-trical and electronic industries, tin-lead soft solders (antimony-free) for

copper NIE•MET and its hardware

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 173

Page 175: Niemet_Buch_En_72dpi

174

baths and pipe solders with flux filling are very important. Here, the fluxtypes based on colophony are mainly applied.

The casting copper varieties according to DIN 17655 are seldom soft sol-dered. However, they behave for soldering purposes like the wrought cop-per forms according to DIN 1787.

SURFACE TREATMENT OF COPPER

Cleaning and coating

The surface of copper is very easy to process and refine. Grinding is per-formed on discs coated with abrasive grain or fully constituted of it.

Grinding with band or brush is also a well-proven technique. Polishing isexecuted by cloth or felt discs with liquid or paste polishes. Copper can bechemically glossed or electrolytically polished. For this, acid solutions withadditives are applied. To clean by pickling, sulphuric or sulphonamideacids as well as weak borofluoric acid are implemented. If the surfaceshows no scale, then chemical glossing is better than pickling. Metallicallypure copper surfaces can be treated with chromate solution to produce afaint gloss; a temporary protective passivation against tarnishing and weakcorrosive influences is produced. Coatings of tin and tin-lead alloy promotethe soldering suitability of copper. Decorative effects are achieved withnickel coatings. Before galvanic chromium-plating, copper is usually plat-ed with nickel. Nickel-cobalt coatings lead to specific magnetic propertiesbut also to wear resistant surfaces. Nickel-manganese coatings are moreheat resistant than nickel coatings. Functional components made of coppercan be coated with nearly all metals, alloys and hard materials in numerousprocesses, e.g. CVD, PVD, ion plating, in a vacuum or molten, electrolyticor mechanical. Through thermal processes, diffusion zones are created outof alloys with copper.

In artwork, copper is often coloured chemically. In the building industry,copper sheet is blackened through chemical and galvanic techniques for

NIE•MET and its hardware copper

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 174

Page 176: Niemet_Buch_En_72dpi

175

solar collectors, and copper with an artificial patina is supplied for roofing.

Enamelling is also a popular finishing process in artwork and in the metalhardware industry. Enamel is also a preferred coating for copper when plantcomponents, e.g. for the chemical and pharmaceutical industries, have to beprotected against aggressive chemicals. Painting with clear lacquers main-tains the natural colouring of copper, often over many years.

CORROSION BEHAVIOUR OF COPPER

Resistance to corrosion

In its chemical compounds, copper appears in monovalent, bivalent, insome exceptional cases in trivalent or quadrivalent form.

Copper shows excellent resistance to corrosion; this is due to its low reac-tion enthalpy.

In the atmosphere – even in sea air – copper shows great resistance. Its sur-face is covered at first by a dark brown to almost black protective layer,which usually changes with time to the familiar green patina seen on oldcopper roofs. This patina is a mixture of basic copper salts (sulphate, car-bonate, also chloride in marine areas), the proportions of which are deter-mined by the concentration of the corresponding substances in the atmos-phere. Ammoniac and hydrogen sulphide vapours are particularlyproblematical.

Copper is very resistant to drinking and service water (cold and hot), so itis ideal for water pipes. The resistance is related to a uniform protectivecoating. In watery solutions, copper is the only commercial metal to showa normal potential nobler than that of hydrogen. It is therefore not attackedwhen hydrogen develops. However, corrosion in watery solutions in thepresence of oxidising substances – e.g. ions of copper(II) or iron (III) - isnot excluded. Copper, in both oxidisation stages with watery solutions ofcyanides, halogenides and ammoniac, tends to form complex compoundssoluble in water. For this reason, its resistance to corrosion from theseagents is limited.

copper NIE•MET and its hardware

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 175

Page 177: Niemet_Buch_En_72dpi

176

NIE•MET and its hardware copper

The corrosion behaviour of copper with regard to acids depends, apart fromtheir nature and concentration, also on the amount of oxygen or oxidisingsubstances present. In non-oxidising acids containing no dissolved oxygen,copper is resistant.

Alkaline watery solutions of hydroxides and carbonates of alkali earth met-al and alkali metal – with the exception of NH3 – have only a mild effect oncopper.

NIE•MET frees you to a great extent from the often hectic activity in the rawmaterial markets of the world.

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 176

Page 178: Niemet_Buch_En_72dpi

177

COPPER

EN EN DINNumber Designation Designation

– – E-CuCW023A Cu-DLP SW-CuCW024A Cu-DHP SF-Cu– – SE-Cu– – CuAg0.1– – CuAg0.1P– – CuFe2P– – CuMg0.4– – CuMg0.7CW100C CuBe1.7 CuBe1.7CW101C CuBe2 CuBe2CW102C CuBe2Pb CuBe2PbCW104C CuCo2Be CuCo2BeCW106C CuCr1Zr CuCrZrCW109C CuNi1Si CuNi1.5SiCW110C CuNi2Be CuNi2BeCW111C CuNi2Si CuNi2SiCW112C CuNi3Si CuNi3SiCW113P CuPb1P CuPb1PCW114C Cu5P Cu5PCW118C CuTeP CuTePCW119C CuZn0.5 CuZn0.5CW120C CuZr CuZrCW351H CuNi9Sn2 CuNi9Sn2CW352H CuNi10Fe1Mn CuNi10Fe1Mn– – CuNi25CW353H CuNi30Fe2Mn2 CuNi30Fe2Mn2CW354H CuNi30Mn1Fe CuNi30Mn1Fe– – CuNi44Mn1CW702R CuZn20Al2As CuZn20Al2CW704R CuZn23Al6Mn4Fe3Pb CuZn23Al6Mn4Fe3– – CuZn28Sn1CW708R CuZn31Si1 CuZn31Si1CW710R CuZn35Ni3Mn2AlPb CuZn35Ni2CW713R CuZn37Mn1Al2PbSi CuZn40Al2CW715R CuZn38AlFeNiPbSn CuZn38SnAlCW716R CuZn38Mn1Al CuZn37Al1CW717R CuZn38Sn1As CuZn38Sn1CW718R CuZn39Mn1AlPbSi CuZn40Al1CW720R CuZn40MnPb1 CuZn40Mn1PbCW723R CuZn40Mn2Fe1 CuZn40Mn2

DIN EN ENDesignation Number Designation

Cu5P CW114C Cu5PCuAg0.1 – –CuAg0.1P – –CuBe1.7 CW100C CuBe1.7CuBe2 CW101C CuBe2CuBe2Pb CW102C CuBe2PbCuCo2Be CW104C CuCo2BeCuCrZr CW106C CuCr1ZrCuFe2P – –CuMg0.4 – –CuMg0.7 – –CuNi1.5Si CW109C CuNi1SiCuNi2Be CW110C CuNi2BeCuNi2Si CW111C CuNi2SiCuNi3Si CW112C CuNi3SiCuNi9Sn2 CW351H CuNi9Sn2CuNi10Fe1Mn CW352H CuNi10Fe1MnCuNi25 – –CuNi30Fe2Mn2 CW353H CuNi30Fe2Mn2CuNi30Mn1Fe CW354H CuNi30Mn1FeCuNi44Mn1 – –CuPb1P CW113P CuPb1PCuTeP CW118C CuTePCuZn0.5 CW119C CuZn0.5CuZn20Al2 CW702R CuZn20Al2AsCuZn23Al6Mn4Fe3 CW704R CuZn23Al6Mn4Fe3PbCuZn28Sn1 – –CuZn31Si1 CW708R CuZn31Si1CuZn35Ni2 CW710R CuZn35Ni3Mn2AlPbCuZn37Al1 CW716R CuZn38Mn1AlCuZn38Sn1 CW717R CuZn38Sn1AsCuZn38SnAl CW715R CuZn38AlFeNiPbSnCuZn40Al1 CW718R CuZn39Mn1AlPbSiCuZn40Al2 CW713R CuZn37Mn1Al2PbSiCuZn40Mn1Pb CW720R CuZn40MnPb1CuZn40Mn2 CW723R CuZn40Mn2Fe1CuZr CW120C CuZrE-Cu – –SE-Cu – –SF-Cu CW024A Cu-DHPSW-Cu CW023A Cu-DLP

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 177

Page 179: Niemet_Buch_En_72dpi

178

COPPER AS ROLLED SF PRODUCT

MaterialThickness Tensile strength 0.2% Elongation limit

Rm Rp0.2

Designation No. mm N /mm2 N /mm2

E-Cu57 F 20 2.0060.10 from 0.1 tos 1 200 to 250 max. 120F 20 .10 over 1 to 5 200 to 250 max. 120F 25 .26 from 0.1 to 1 250 to 300 min. 200 (to 290)F 25 .26 over 1 to 5 250 to 300 min. 200 (to 290)F 30 .30 from 0.1 to 1 300 to 360 min. 250 (to 350)F 30 .30 over 1 to 5 300 to 360 min. 250 (to 350)F 37 .32 from 0.1 to 1 min. 360 min. 320F 37 .32 over 1 to 3 min. 360 min. 320

E-Cu58 F 20 2.0065.10 from 0.1 to 1 200 to 250 max. 120F 20 .10 over 1 to 5 200 to 250 max. 120F 25 .26 from 0.1 to 1 250 to 300 min. 200 (to 290)F 25 .26 over 1 to 5 250 to 300 min. 200 (to 290)F 30 .30 from 0.1 to 1 300 to 360 min. 250 (to 350)F 30 .30 over 1 to 5 300 to 360 min. 250 (to 350)F 37 .32 from 0.1 to 1 min. 360 min. 320F 37 .32 over 1 to 5 min. 360 min. 320

SE-Cu F 20 2.0070.10 from 0.1 to 1 200 to 250 max. 120F 20 .10 over 1 to 5 200 to 250 max. 120F 25 .26 from 0.1 to 1 250 to 300 min. 200 (to 290)F 25 .26 over 1 to 5 250 to 300 min. 200 (to 290)F 30 .30 from 0.1 to 1 300 to 360 min. 250 (to 350)F 30 .30 over 1 to 5 300 to 360 min. 250 (to 350)F 37 .32 from 0.1 to 1 min. 360 min. 320F 37 .32 over 1 to 3 min. 360 min. 320

CuAg0.1 F 25 2.1203.26 from 0.1 to 1 250 to 300 min. 200 (to 290)F 25 .26 over 1 to 5 250 to 300 min. 200 (to 290)F 30 .30 from 0.1 to 1 300 to 360 min. 250 (to 350)F 30 .30 over 1 to 5 300 to 360 min. 250 (to 350)F 37 .32 from 0.1 to 1 min. 360 min. 320F 37 .32 over 1 to 3 min. 360 min. 320

CuAg0.1P F 25 2.1191.26 from 0.1 to 1 250 to 300 min. 200 (to 290)F 25 .26 over 1 to 5 250 to 300 min. 200 (to 290)F 30 .30 from 0.1 to 1 300 to 360 min. 250 (to 350)F 30 .30 over 1 to 5 300 to 360 min. 250 (to 350)F 37 .32 from 0.1 to 1 min. 360 min. 320F 37 .32 over 1 to 3 min. 360 min. 320

SW-Cu F 20 2.0076.10 over 5 to 15 200 to 250 max. 100F 22 .10 from 0.2 to 5 220 to 260 max. 140F 24 .26 from 0.2 to 15 240 to 300 min. 180F 29 .30 from 0.2 to 10 290 to 360 min. 250F 36 .32 from 0.2 to 2 200 to 250 max. 100

SF-Cu H 40 2.0090.10 over 5 to 15 – –H 40 .10 from 0.2 to 5 – –H 70 .26 from 0.2 to 15 – –H 90 .30 from 0.2 to 10 – –

H 110 .32 from 0.2 to 2 – –

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 178

Page 180: Niemet_Buch_En_72dpi

179

COPPER AS ROLLED SF PRODUCT

Electrical properties (at 20o)Breaking elongation Vickers hardness Brinell hardness Spec. resistance Conductivity

A5 % A10 % HB 2.5 /62.5 Ö x mm2k = 1 m

min. min. min. max. min. m r Ö x mm2

38 32 – – 45 to 70 max. 0.01754 min. 57.045 38 – – 45 to 70 max. 0.01724 min. 58.017 14 – – 70 to 90 max. 0.01786 min. 56.020 16 – – 70 to 90 max. 0.01786 min. 56.07 4 – – 85 to 105 max. 0.01818 min. 55.08 5 – – 85 to 105 max. 0.01786 min. 56.03 2 – – 95 to 120 max. 0.01818 min. 55.05 3 – – 95 to 120 max. 0.01818 min. 55.0

38 32 – – 45 to 70 max. 0.01754 min. 57.045 38 – – 45 to 70 max. 0.01724 min. 58.017 14 – – 70 to 90 max. 0.01737 min. 57.520 16 – – 70 to 90 max. 0.01737 min. 57.57 4 – – 85 to 105 max. 0.01786 min. 56.08 5 – – 85 to 105 max. 0.01770 min. 56.53 2 – – 95 to 120 max. 0.01786 min. 56.05 3 – – 95 to 120 max. 0.01786 min. 56.0

38 32 – – 45 to 70 max. 0.01754 min. 57.045 38 – – 45 to 70 max. 0.01724 min. 58.017 14 – – 70 to 90 max. 0.01786 min. 56.020 16 – – 70 to 90 max. 0.01786 min. 56.07 4 – – 85 to 105 max. 0.01818 min. 55.08 5 – – 85 to 105 max. 0.01786 min. 56.03 2 – – 95 to 120 max. 0.01818 min. 55.05 3 – – 95 to 120 max. 0.01818 min. 55.0

17 14 – – 70 to 90 max. 0.01786 min. 56.020 16 – – 70 to 90 max. 0.01786 min. 56.07 4 – – 85 to 105 max. 0.01818 min. 55.08 5 – – 85 to 105 max. 0.01786 min. 56.03 2 – – 95 to 120 max. 0.01818 min. 55.05 3 – – 95 to 120 max. 0.01818 min. 55.0

17 14 – – 70 to 90 max. 0.01786 min. 56.020 16 – – 70 to 90 max. 0.01786 min. 56.07 4 – – 85 to 105 max. 0.01818 min. 55.08 5 – – 85 to 105 max. 0.01786 min. 56.03 2 – – 95 to 120 max. 0.01818 min. 55.05 3 – – 95 to 120 max. 0.01818 min. 55.0

42 36 – – – – –42 36 – – – – –15 12 – – – – –6 – – – – – –– – – – – – –– – – – 40 to 60 – –– – 40 70 40 to 65 – –– – 70 95 65 to 90 – –– – 90 110 85 to 105 – –– – 110 – 105 – –

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 179

Page 181: Niemet_Buch_En_72dpi

180

COPPER AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Square andhexagonal Rectangular Profiles Tensile

bars bars strenghtRound bars Edge lenght Rm

Diameter Spanner Thickness Width Webwidth thickness

Designation No. mm max. mm max. mm mm mm N /mm2

E-Cu57 p 2.0060.08 all – w. d. s. v.zh .20 all – w. d. s. v.

F 20 .10 10 to 100 10 to 100 2 to 40 10 to 100 2 to 20 200 to 250F 20 .10 10 to 100 10 to 100 5 to 30 o. 100 to 200 2 to 20 200 to 250F 25 .26 6 to 70 6 to 70 2 to 30 10 to 100 2 to 14 250 to 300F 25 .26 6 to 70 6 to 70 5 to 20 o. 100 to 200 2 to 14 250 to 300F 30 .30 4 to 40 4 to 40 2 to 12 10 to 100 2 to 8 300 to 360F 30 .30 4 to 40 4 to 40 5 to 10 o. 100 to 200 2 to 8 300 to 360F 37 .32 2 to 10 2 to 10 2 to 3 10 to 100 2 to 20 200 to 250F 37 .32 2 to 10 2 to 10 o. 3 to 6 10 to 50 – min. 360

SE-Cu zh 2.0070.20 all – w. d. s. v.F 20 .10 10 to 100 10 to 100 2 to 40 10 to 100 2 to 20 200 to 250F 20 .10 10 to 100 10 to 100 5 to 30 o. 100 to 200 2 to 20 200 to 250F 25 .26 6 to 70 6 to 70 2 to 30 10 to 100 2 to 14 250 to 300F 25 .26 6 to 70 6 to 70 5 to 20 o. 100 to 200 2 to 14 250 to 300F 30 .30 4 to 40 4 to 40 2 to 12 10 to 100 2 to 8 300 to 360F 30 .30 4 to 40 4 to 40 5 to 10 o. 100 to 200 2 to 8 300 to 360F 37 .32 2 to 10 2 to 10 2 to 3 10 to 100 2 to 20 200 to 250F 37 .32 2 to 10 2 to 10 o. 3 to 6 10 to 50 – min. 360

CuAg0.1 w 2.1203.19 all – w. d. s. v.F 25 .26 6 to 70 6 to 70 2 to 30 10 to 100 2 to 14 250 to 300F 25 .26 6 to 70 6 to 70 5 to 20 o. 100 to 200 2 to 14 250 to 300F 30 .30 4 to 40 4 to 40 2 to 12 10 to 100 2 to 8 300 to 360F 30 .30 4 to 40 4 to 40 5 to 10 o. 100 to 200 2 to 8 300 to 360F 37 .32 2 to 10 2 to 10 2 to 3 10 to 100 2 to 20 200 to 250F 37 .32 2 to 10 2 to 10 o. 3 to 6 10 to 50 – min. 360

CuAg0.1P w 2.1191.19 all – w. d. s. v.F 25 .26 6 to 70 6 to 70 2 to 30 10 to 100 2 to 14 250 to 300F 25 .26 6 to 70 6 to 70 5 to 20 o. 100 to 200 2 to 14 250 to 300F 30 .30 4 to 40 4 to 40 2 to 12 10 to 100 2 to 8 300 to 360F 30 .30 4 to 40 4 to 40 5 to 10 o. 100 to 200 2 to 8 300 to 360F 37 .32 2 to 10 2 to 10 2 to 3 10 to 100 2 to 20 200 to 250F 37 .32 2 to 10 2 to 10 o. 3 to 6 10 to 50 – min. 360

SF-Cu zh 2.0090.20 by arrangement w. d. s. v.F 20 .10 over 6 over 5 over 5 – 200 to 250F 22 .10 to 6 to 5 to 5 – 220 to 250F 24 .10 to 40 to 35 to 5 – 240 to 300F 29 .10 to 20 to 17 2 to 10 – 290 to 360F 36 .10 to 6 to 5 to 5 – min. 360

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 180

Page 182: Niemet_Buch_En_72dpi

181

COPPER AS EXTRUDED / DRAWN SF PRODUCT

0.2% Breaking elongation Brinell hardness Electrical properties (at 20o)Elongation limit

Specific resistance ConductivityRp0.2 A5 A10 HB

Ö x mm2k = 1 m

N /mm2 % % 2.5 /62.5 m r Ö x mm2

min. min. min. ≈ max. min.

without defined strength values 0.01818 55without defined strength values 0.01818 55

max. 120 38 32 45 to 70 0.01754 57max. 120 38 32 45 to 70 0.01754 57

min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 320 (to 390) 7 5 95 to 115 0.01818 55min. 320 (to 390) 7 5 95 to 115 0.01818 55

without defined strength values 0.01818 55max. 120 38 32 45 bis 70 0.01754 57max. 120 38 32 45 bis 70 0.01754 57

min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 320 (to 390) 7 5 95 to 115 0.01818 55min. 320 (to 390) 7 5 95 to 115 0.01818 55

without defined strength values 0.01754 57min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 320 (to 390) 7 5 95 to 115 0.01818 55min. 320 (to 390) 7 5 95 to 115 0.01818 55

without defined strength values 0.01754 57min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 200 (to 280) 14 10 70 to 95 0.01788 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 250 (to 350) 10 7 80 to 105 0.01786 56min. 320 (to 390) 7 5 95 to 115 0.01818 55min. 320 (to 390) 7 5 95 to 115 0.01818 55

without defined strength values – –max. 100 36 – 55 – –max. 140 36 – 55 – –min. 160 14 – 80 – –min. 250 8 – 95 – –min. 320 5 – 110 – –

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 181

Page 183: Niemet_Buch_En_72dpi

182

NIE•MET-KEY-ACCOUNTS…

are aimed at a target: cutting costs, boosting performance, making profits.

For us that means:

• We assess the value of our services solely from the customer’s point of

view.

• We ensure transparency in the whole value-adding process for each of our

products and services.

• We design this process to be smooth-flowing and flexible.

• We hold in stock what our customers need and supply according to our

customers’ day-to-day requirements.

• We guarantee, through our own regular inspections, quality in materials,

processing and logistics – and back this up with comprehensive documen-

tation.

We supply not only raw materials, but solutions to your NFSF processing problems.

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 182

Page 184: Niemet_Buch_En_72dpi

RANGE OF STOCKCOPPER

We expand our range almost daily, especially where customer needs are concerned.

We will take care of your stocking. Just tell us what you need.

NiemannENG_163-196_KUP 04.10.2007 16:57 Uhr Seite 183

Page 185: Niemet_Buch_En_72dpi

184

SHEET

DIN 1751, 1787, 17670, 40500EN 1652

E-CU = Elektrolytic copperSF-Cu/SE-Cu = Oxigen-free copper

Our processing centre suppliesevery type ov cut !

SF-Cu SF-CuFormat F20-22 F24/WH SE-Cu SE-Cu

Thickness Width x Length E-Cu E-Cu E-Cu E-Cu CW024A CW024A F 25-30 F 30/WHF20 F25 F30 WH R 200/220 R 240

mm mm

0.03 300 x 650 c

0.20 600 x 2000 c c

0.30 600 x 2000 c c

1000 x 2000 c c

0.40 600 x 2000 c c

0.50 1000 x 2000 c c c c c

1250 x 2500 c

0.60 1000 x 2000 c c

0.65 1000 x 2000 c

0.70 1000 x 2000 c c

1250 x 2500 c

0.80 1000 x 2000 c c c c

1250 x 2500 c

1.00 1000 x 2000 c c c c

1250 x 2500 c

1.20 1000 x 2000 c c c

1.50 1000 x 2000 c c c c

1250 x 2500 c

2.00 1000 x 2000 c c c c c

1250 x 2500 c

1500 x 2000 c

2.50 1000 x 2000 c c c c

3.00 1000 x 2000 c c c c c

4.00 1000 x 2000 c c c c c

1250 x 2500 c

5.00 1000 x 2000 c c c c c

6.00 1000 x 2000 c c c c

1000 x 3000 c

8.00 1000 x 2000 c c

10.00 1000 x 2000 c c c c c

1000 x 3000 c

12.00 1000 x 2000 c c

15.00 1000 x 2000 c c

20.00 1000 x 2000 c c

1000 x 3000 c

25.00 1000 x 2000 c

30.00 1000 x 3000 c

35.00 1000 x 3000 c

40.00 1000 x 3000 c

45.00 1000 x 3000 c

50.00 1000 x 3000 c

55.00 800 x 3000 c

60.00 800 x 3000 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 184

Page 186: Niemet_Buch_En_72dpi

185

SHEET

DIN 1751, 1787, 17670, 40500EN 1652

E-CU = Elektrolytic copperSF-Cu/SE-Cu = Oxigen-free copper

Our processing centre suppliesevery type ov cut !

SF-Cu SF-CuFormat F20-22 F24/WH SE-Cu SE-Cu

Stärke Breite x Länge E-Cu E-Cu E-Cu E-Cu CW024A CW024A F 25-30 F 30/WHF20 F25 F30 WH R 200/220 R 240

mm mm

70.00 1000 x 3000 c

80.00 1000 x 2000 c

90.00 800 x 2000 c

100.00 1000 x 2000 c

120.00 1000 x 2000 c

150.00 800 x 2000 c

NIE c MET leadership

as a leading full-range supplier, processing specialist and service partner is

notonlybasedonastatusquo,butontheprocessofconstantoptimization

of all aspects of the company. We know that our top-performance custo-

mers orientate themselves towards the ”best in the class”. And we know

that that our capabilities as suppliers are thereby put to the test, e.g. by

embeddingtheflowofNFSFproductsassmoothlyaspossible inourcostu-

mers’ processing chain. Our own benchmarking, constant analysis of our

process and structure costs, and not least regular exchange of information

with our costumers, therefore back up our claim: a little faster, a little more

precisely, a little more intelligently for our customers – that is NIEc MET.

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 185

Page 187: Niemet_Buch_En_72dpi

186

STRIP

DIN 1787, 1791, 40500EN 1652

We slit every width from 10mm to 550mm.Naturally, no minimum quantities.

Thickness E-Cu E-Cu E-Cu SF-CuF 20 F 25 F 30 F 24-36

mm

0.10 c

0.20 c c c

0.25 c c c

0.30 c c c

0.40 c c c

0.50 c c c

0.60 c c

0.70 c c c

0.79 c c

Thickness E-Cu E-Cu E-Cu SF-CuF 20 F 25 F 30 F 24-36

mm

0.80 c c c

0.90 c

1.00 c c c c

1.20 c c

1.25 c c c

1.50 c c c

2.00 c c c

2.50 c c c

3.00 c c

Raw material cyclePrecision and the strictest tolerances cut the cost of rejects and processing work.Take advantage of the benefits offered by the NIE c MET raw material cycle.

PIPES

DIN 1754, 1755, 1787, 17671EN 12449, 12451

* also in CuAsP** also in SE-Cu*** also in E-Cu

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

3 1.0 c

4 1.0 c

5 1.0 c

6 1.0 c

1.5 c

7 1.0 c

8 1.0 c

1.5 c

2.0 c

9 1.0 c

10 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

11 1.0 c

1.5 c

2.0 c

3.0 c

12 1.0* c

1.5 c

2.0 c

2.5 c

3.0 c

13 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

14 1.0 c

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

14 1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

15 1.0 c

1.2 c

1.5 c

2.0 c

2.5 c

3.0 c

16 0.6 c

0.8 c

1.0 c

1.5*** c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 186

Page 188: Niemet_Buch_En_72dpi

187

PIPES

DIN 1754, 1755, 1787, 17671EN 12449, 12451

* also in CuAsP** also in SE-Cu*** also in E-Cu

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

16 2.0 c

2.5 c

3.0 c

17 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

18 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

19 0.75 c

1.0 c

1.65 c

2.0 c

2.5 c

3.0 c

20 1.0 c

1.5 c

2.0*** c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

22 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

23 1.0 c

24 1.5 c

2.0 c

3.0 c

4.0 c

25 1.0 c

1.5 c

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

25 2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

28 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

6.0 c

30 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

10.0*** c

32 1.5 c

2.0 c

3.0 c

4.0 c

33 1.5 c

1.5 c

3.0 c

34 1.5 c

2.0 c

4.0 c

5.0 c

35 1.0 c

1.5 c

2.0 c

2.5 c

4.0 c

5.0 c

36 2.0 c

3.0 c

6.0 c

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

38 1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

40 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

10.0*** c

42 1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

43 4.5 c

9.0 c

44 1.5 c

4.0 c

45 1.0 c

2.0 c

2.5 c

3.0 c

5.0 c

46 2.0 c

3.0 c

48 1.5 c

2.0 c

3.0 c

4.0 c

50 1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

5.0*** c

7.0 c

8.0 c

10.0*** c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 187

Page 189: Niemet_Buch_En_72dpi

188

PIPES

DIN 1754, 1755, 1787, 17671EN 12449, 12451

* also in CuAsP** also in SE-Cu*** also in E-Cu

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

50 15.0 c

53 1.5 c

54 1.5 c

2.0 c

2.5 c

55 2.5 c

3.0 c

5.0 c

8.0 c

10.0*** c

56 3.0 c

57 1.5* c

2.0 c

2.5 c

3.0 c

3.5 c

5.0 c

60 1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

5.0*** c

6.0 c

10.0** c

15.0 c

61 10.0*** c

12.0 c

63 2.0 c

3.0 c

65 2.5 c

3.0 c

5.0 c

12.0 c

66 1.0 c

3.0 c

70 2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

10.0*** c

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

70 12.5 c

13.0*** c

15.0*** c

72 13.5*** c

75 2.5 c

5.0 c

76 2.0 c

2.5* c

3.0 c

78 1.5 c

3.0*** c

80 2.0 c

2.5 c

3.0 c

5.0 c

10.0 c

11.0 c

15.0 c

20.0 c

85 2.5 c

3.0 c

5.0 c

10.0 c

12.0 c

15.0 c

20.0 c

86 3.0 c

89 2.0 c

2.5* c

12.0 c

90 2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

10.0*** c

100 5.0 c

10.0*** c

104 2.0 c

105 10.0 c

15.0 c

108 2.5 c

Dia- Wall SF-Cumeter thickness F 20-36

CW024Amm mm

108 3.0 c

4.0 c

110 2.0 c

5.0 c

10.0 c

15.0 c

114 4.0 c

120 1.5 c

5.0 c

10.0*** c

15.0 c

124 7.0 c

128 24.0** c

130 10.0** c

133 3.0 c

135 5.0 c

140 5.0 c

6.0*** c

7.5 c

10.0 c

11.0 c

15.0 c

150 10.0*** c

155 5.0 c

20.0 c

159 3.0*** c

160 10.0*** c

165 7.5*** c

170 10.0*** c

190 11.0 c

194 5.0** c

219 3.0 c

220 10.0** c

267 3.0 c

4.5* c

368 4.5 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 188

Page 190: Niemet_Buch_En_72dpi

189

RECTANGULAR / SQUARE PIPES

DIN 17674, 40500

Edge Wall E-Culength thickness F 25

mm mm

4 x 4 0.5 c

x 4 1.0 c

5 x 3 0.5 c

x 5 0.5 c

x 5 1.0 c

6 x 6 1.0 c

7 x 5 1.0 c

8 x 5 1.0 c

x 6 1.0 c

x 8 1.0 c

10 x 5 1.0 c

x 7 1.0 c

x 8 1.0 c

Edge Wall E-Culength thickness F 25

mm mm

x 8 1.5 c

x 10 1.0 c

x 10 2.0 c

12 x 10 1.0 c

x 10 6.0 c

x 10 8.0 c

x 12 1.0 c

15 x 10 1.0 c

x 10 2.0 c

16 x 12 1.0 c

x 14 1.0 c

x 14 2.0 c

18 x 18 1.0 c

Edge Wall E-Culength thickness F 25

mm mm

20 x 10 1.0 c

x 10 2.0 c

x 12 1.0 c

x 20 1.0 c

22 x 16 3.0 c

26 x 17 3.0 c

30 x 10 1.5 c

45 x 35 4.0 c

50 x 15 2.0 c

x 15 4.0 c

60 x 40 4.0 c

CONDENSER PIPES

DIN 1785EN 12451

We cut our stock length to any desired condenserlength, to the strictest tolerances.

Dia- Wall CuZn20Al2 CuNi10Femeter thickness CW702R CW352H

mm mm

6 1.0 c

8 1.0 c c

10 1.0 c c

1.5 c

11 1.0 c

12 1.0 c c

1.2 c c

1.5 c c

2.0 c

14 1.0 c c

1.2 c

1.5 c

15 1.0 c c

Dia- Wall CuZn20Al2 CuNi10Femeter thickness CW702R CW352H

mm mm

15 1.5 c c

16 1.0 c c

1.2 c

1.5 c c

2.0 c c

18 1.0 c

1.5 c c

19 1.0 c

1.2 c

1.5 c

22 1.25 c

1.5 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 189

Page 191: Niemet_Buch_En_72dpi

190

CONDUIT PIPESfor SHIPPING and OFFSHORE

DIN 1755 T03, 86019EN 12449, 12451

Naturally we stock all connections such as:ELBOWS, FLANGES, REDUCERS, SUPPORTERS,JUNCTIONS, COLLARS in all sizes.

Dia- Wall- CuZn20Al2 CuNi10Femeter thickness CW702R CW352H

mm mm

19 1.5 c

20 1.0 c c

1.5 c c

2.0 c c

22 1.2 c

1.5 c

25 1.25 c

1.5 c c

2.0 c c

3.0 c

5.5 c

28 1.25 c

1.5 c c

2.0 c c

30 1.0 c

1.5 c c

2.0 c c

2.5 c c

3.0 c

6.0 c

32 2.0 c

35 1.25 c

1.5 c c

2.0 c c

38 1.5 c c

2.0 c c

2.5 c

4.0 c

6.0 c

40 2.5 c

42 1.5 c c

2.0 c

44.5 1.5 c c

2.0 c c

2.5 c

45 2.0 c

50 2.0 c

3.0 c

52 5.5 c

54 2.0 c c

57 1.5 c c

2.0 c c

2.5 c c

Dia- Wall- CuZn20Al2 CuNi10Femeter thickness CW702R CW352H

mm mm

57 3.0 c

5.0 c

9.0 c

60 2.0 c

63.5 2.5 c c

64 2.0 c c

65 2.5 c c

5.5 c

66 3.0 c

70 2.5 c

76 2.0 c c

2.5 c c

3.5 c

80 2.5 c

83.5 3.0 c

84 6.0 c

88.9 2.5 c c

3.0 c

89 2.0 c

2.5 c

3.5 c

96 3.0 c

108 2.25 c

2.5 c c

3.0 c c

5.0 c

10.0 c

118 2.5 c c

121 2.5 c

133 2.5 c c

3.0 c c

4.0 c

5.0 c

141 4.0 c

142 3.0 c c

159 2.5 c c

3.0 c c

3.5 c

4.0 c

4.5 c

8.0 c

167 3.0 c

177 3.3 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 190

Page 192: Niemet_Buch_En_72dpi

191

CONDUIT PIPESfor SHIPPING and OFFSHORE

DIN 1755 T03, 86019EN 12449, 12451

Naturally we stock all connections such as:ELBOWS, FLANGES, REDUCERS, SUPPORTERS,JUNCTIONS, COLLARS in all sizes.

Dia- Wall- CuZn20Al2 CuNi10Femeter thickness CW702R CW352H

mm mm

94 2.5 c

3.0 c c

206 3.0 c c

208 4.0 c

219 3.0 c

4.0 c c

4.5 c

10.0 c

220 5.0 c

230 4.5 c c

250 5.0 c

267 3.0 c

Dia- Wall- CuZn20Al2 CuNi10Femeter thickness CW702R CW352H

mm mm

267 3.5 c c

4.0 c c

4.5 c

324 4.0 c c

4.5 c

368 4.0 c c

6.0 c

419 4.0 c c

457 4.0 c

508 4.5 c

710 5.0 c

s

a

OD

90°

S

ODl

s 1

OD

1

s 2 OD

2

OD

a

b

s

OD

a

OD2

OD

1s 1

h

s2

l

OD

s

d4

d2

h 1

h 3

Elbows Pipes Reducers Tees

Saddles Welding Collars Pipe Couplings

OD 8-OD 610 mm

Highlights

(Produktliste und Services der NIE•MET Marine Division bitte anfordern. Tel:. 04 21/5 49 96-85)

CuNi10FeDIN 17664/17671 2.0872DIN 86019 2.1972BS 2871 CN 102EEMUA 144 UNS 7060xASTM-B-466 C 70600MIL-T-16420K C 70600JIS H 3300 C 7060T

CuZn20AI2 (Aluminium Brass)DIN 17660/17671 2.0460BS 2871 CZ 110

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 191

Page 193: Niemet_Buch_En_72dpi

192

ROUND

DIN 1756, 1782, 1787, 40500EN 12163, 12164, 12165

Dia- E-Cu 57 SE-Cumeter F 25-37 F 30

mm

1.5 c

2.5 c

3.0 c

4.0 c

4.5 c

5.0 c

5.5 c

6.0 c

6.5 c

7.0 c

8.0 c

9.0 c

10.0 c

11.0 c

12.0 c

13.0 c

14.0 c

15.0 c

16.0 c

18.0 c

19.0 c

20.0 c c

Dia- E-Cu 57 SE-Cumeter F 25-37 F 30

mm

22.0 c

23.0 c

24.0 c

25.0 c

26.0 c

27.0 c

28.0 c

30.0 c

32.0 c

33.0 c

34.0 c

35.0 c

36.0 c

38.0 c c

40.0 c c

42.0 c

45.0 c

46.0 c

48.0 c

50.0 c

51.0 c

55.0 c c

Dia- E-Cu 57 SE-Cumeter F 25-37 F 30

mm

60.0 c c

65.0 c

70.0 c c

75.0 c

80.0 c c

85.0 c

90.0 c c

100.0 c c

110.0 c

115.0 c c

120.0 c

130.0 c

135.0 c

140.0 c

150.0 c

160.0 c

170.0 c

180.0 c

190.0 c

200 0 c c

210.0 c

220.0 c

HEXAGONAL

DIN 1763, 1787, 40500

Spanner E-Cu 57width F 25

mm

12.0 c

13.0 c

14.0 c

Spanner E-Cu 57width F 25

mm

17.0 c

19.0 c

22.0 c

Spanner E-Cu 57width F 25

mm

24.0 c

27.0 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 192

Page 194: Niemet_Buch_En_72dpi

193

SQUARE

DIN 1761, 1787, 40500

Edge length E-Cu 57P

mm

4.0 c

5.0 c

6.0 c

8.0 c

10.0 c

12.0 c

15.0 c

18.0 c

Edge length E-Cu 57P

mm

20.0 c

25.0 c

30.0 c

35.0 c

40.0 c

45.0 c

50.0 c

55.0 c

Edge length E-Cu 57P

mm

60.0 c

70.0 c

75.0 c

80.0 c

90.0 c

100.0 c

120.0 c

150.0 c

FLAT

DIN 1759, 1787, 40500

* also with rounded edges acc. to DIN 46433

Every FLAT DIMENSION not listed is supplied sawnwith a tolerance of 0.1mm from our PROCESSINGCENTRE.

Width x thickness E-Cu 57

mm

6 x 2.0 c

x 3.0 c

x 4.0 c

7 x 5.0 c

8 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

10 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

12 x 2.0 c

x 3.0 c

x 4.0* c

Width x thickness E-Cu 57

mm

12 x 5.0* c

x 6.0 c

x 8.0 c

x 10.0 c

14 x 3.0 c

15 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

16 x 3.0 c

x 4.0* c

x 5.0 c

x 6.0 c

Width x thickness E-Cu 57

mm

16 x 8.0 c

x 10.0 c

18 x 2.0 c

x 3.0 c

x 4.0 c

x 6.0 c

x 10.0 c

20 x 2.0 c

x 3.0* c

x 4.0 c

x 5.0* c

x 6.0 c

x 8.0* c

x 10.0* c

x 12.0 c

x 15.0 c

25 x 2.0 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 193

Page 195: Niemet_Buch_En_72dpi

194

FLAT

DIN 1759, 1787, 40500

* also with rounded edges acc. to DIN 46433

Every FLAT DIMENSION not listed is supplied sawnwith a tolerance of 0.1mm from our PROCESSINGCENTRE.

Width x thickness E-Cu 57

mm

25 x 3.0* c

x 4.0 c

x 5.0* c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

30 x 2.0* c

x 3.0* c

x 4.0 c

x 5.0* c

x 6.0* c

x 8.0* c

x 10.0* c

x 12.0* c

x 15.0* c

x 20.0 c

x 25.0 c

35 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0* c

x 15.0 c

x 20.0 c

x 25.0 c

40 x 2.0 c

x 3.0 c

x 4.0* c

x 5.0* c

x 6.0 c

x 8.0* c

x 10.0* c

x 12.0* c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

Width x thickness E-Cu 57

mm

45 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0* c

50 x 2.0 c

x 3.0* c

x 4.0* c

x 5.0* c

x 6.0* c

x 8.0* c

x 10.0* c

x 12.0* c

x 15.0* c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0* c

x 40.0 c

55 x 40.0 c

60 x 3.0 c

x 4.0 c

x 5.0* c

x 6.0 c

x 8.0 c

x 10.0* c

x 12.0* c

x 15.0* c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

65 x 10.0* c

Width x thickness E-Cu 57

mm

65 x 15.0 c

x 20.0 c

x 30.0 c

x 40.0 c

70 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

80 x 5.0* c

x 6.0 c

x 8.0* c

x 10.0* c

x 12.0* c

x 15.0* c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

x 60.0 c

85 x 3.0 c

x 25.0 c

90 x 4.0* c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

x 50.0 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 194

Page 196: Niemet_Buch_En_72dpi

195

FLAT

DIN 1759, 1787, 40500

* also with rounded edges acc. to DIN 46433

Every FLAT DIMENSION not listed is supplied sawnwith a tolerance of 0.1mm from our PROCESSINGCENTRE.

Width x thickness E-Cu 57

mm

90 x 60.0 c

100 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0* c

x 12.0* c

x 15.0* c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

x 60.0 c

x 80.0* c

120 x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0* c

x 12.0* c

x 15.0* c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

x 50.0 c

x 60.0 c

Width x thickness E-Cu 57

mm

120 x 80.0 c

125 x 10.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

140 x 6.0 c

x 10.0* c

x 20.0 c

x 30.0 c

x 40.0 c

x 50.0 c

150 x 5.0 c

x 8.0 c

x 10.0* c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

x 50.0 c

160 x 8.0 c

x 10.0* c

x 12.0 c

x 15.0 c

x 20.0 c

Width x thickness E-Cu 57

mm

160 x 25.0 c

x 30.0 c

x 40.0 c

x 60.0 c

x 80.0 c

180 x 10.0 c

x 12.0 c

x 15.0* c

x 20.0 c

x 30.0 c

x 40.0 c

x 50.0 c

200 x 6.0* c

x 10.0 c

x 12.0 c

x 15.0* c

x 20.0 c

x 25.0 c

x 30.0 c

x 50.0 c

x 60.0 c

250 x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 30.0 c

x 40.0 c

x 50.0 c

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 195

Page 197: Niemet_Buch_En_72dpi

196

NIE•MET-PARTNERSHIP...

begins with close attention to your requirements, and does not end in the pro-

vision of comprehensive capacity in procurement, warehousing, processing

and logistics of NFSF products.

NIE•MET partnership is based on the readiness, together with our customers,

to work for cost-cutting and profitable performance. In other words: your

benefit is the prerequisite for ours.

Our own transport facilities, plus on-line shipping, combine to provide a 24-hour deli-very service for NIE-MET customers.

NiemannENG_163-196_KUP 19.09.2007 9:06 Uhr Seite 196

Page 198: Niemet_Buch_En_72dpi

BRASS

NiemannENG_197_250_MES 04.10.2007 16:58 Uhr Seite 197

Page 199: Niemet_Buch_En_72dpi

198

ADVANTAGES OF BRASS

Brass as SF product

Brass is an alloy of copper and zinc. Besides copper, the commonestforms contain 5% - 45% zinc. The copper-rich alloys with up to 30%

zinc are also known as ‘tombak’.

Brass containing lead consists, besides copper and zinc, of up to 3.5% leadto improve cutting characteristics.

Special brass contains, beside copper and zinc, alloy elements such as alu-minium, iron, maganese, nickel, silicium and/or tin, which mainly serve toincrease strength and improve sliding characteristics and corrosion resist-ance. Copper-zinc alloys containing only lead do not count as special brass,because lead, as a heterogenous structural component, is designed exclu-sively to improve machineability.

The special feature of copper-zinc alloys is their attractive colouring. Thecopper colour changes with increasing zinc content from reddish-gold withCuZn5, to yellowish-gold with CuZn15 and greenish-gold with CuZn28,and to a full yellow tone with CuZn37.

It must however be noted that the content of the alloy cannot be assessed onthe basis of its colouring, as colour can change radically through the mini-mal addition of other alloy elements. For example, small amounts of alu-minium added to CuZn40Pb2 produce a greenish-yellow colour, whilemanganese creates a brownish tone.

CRITERIA FOR THE SELECTION OF BRASS

Physical properties

The electrical conductivity of brass falls with increasing zinc content toa value of about 16.5 m/Ω·mm2; CuZn5, which still has a conductivity

of over 33 m/Ω·mm2, is a popular material for special applications in elec-trical engineering.

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 198

Page 200: Niemet_Buch_En_72dpi

199

Electrical conductivity is reduced with an increasing cold working level.

Thermal conductivity decreases with the zinc content and increases withtemperature.

Mechanical properties

Copper-zinc alloys are not heat treatable. Great hardness and strength char-acteristics can therefore only be achieved, apart from strain hardening, bycold working.

Mechanical properties at ambient temperature

With increasing zinc content up to 45% Zn, tensile strength and Brinellhardness also increase. Breaking elongation reaches its highest level atabout 30% Zn. CuZn30 (formerly known as ‘cartridge brass’ = Ms70) isbest cold worked.

CuZn37, for economical reasons the most important alloy in Germany, isonly slightly less effective than CuZn30 in cold working capacity. Certainalloy additives improve the strength properties of copper-zinc alloys, and insome alloys also the abrasion and sliding characteristics. Tensile strengthand hardness increase with the cold working level, while breaking elonga-tion is reduced.

Long-term oscillation resistance is usually defined as fatigue limit. Thefatigue limit increases with decreasing copper content. For special brass thefatigue limit, e.g. of CuZn40A12, stands between 170 MPa in extruded and190MPa in drawn condition. The relationship of fatigue limit to tensilestrength lies between 0.26 and 0.33 within the common framework for cop-per materials.

Wrought alloys

The tensile strength of binary copper-zinc wrought alloys as strip or sheetamounts, according to the composition or cold working level determiningthe material’s condition, to between 220 and over 610 MPa; the Brinell

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 199

Page 201: Niemet_Buch_En_72dpi

200

hardness lies between 60 and about 180 HB, while the Vickers hardness,due to the measuring technique, is slightly higher than the Brinell level.

CuZn37 is a suitable spring material (spring characteristics for strip, seeDIN 1780 and for wire DIN 17 682). Brass can be easily deep drawn. Thedeep drawing values for CuZn36F30 and CuZn37F30 lie, according tosheet thickness, between 11mm and 14.3 mm.

Casting alloys

The tensile strength value scale reaches 800 MPa here. The casting processhas a considerable influence.

Mechanical properties at higher temperatures

Some special brasses, in particular, still display good strength properties atincreased temperatures. The creep strength of copper-zinc alloys rises – atleast at low temperatures – with falling copper content.

Mechanical properties at low temperatures

Copper-zinc alloys do not become brittle at low temperatures. This enablestheir use as construction materials in the low temperature range.

Physiological properties

Copper-zinc alloys are not damaging to health. Brass surfaces have a bac-tericidal effect, and no bacteria can settle there. For this reason, in areasheavily frequented by the public, e.g. in public buildings and transportfacilities, door handles and railings are often made of brass.

Heat treatment

The hardness achieved by cold working can be partly or completelyremoved by heat treatment (annealing). The soft annealing temperaturelies, depending on alloy composition, between 450º and 600º.

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 200

Page 202: Niemet_Buch_En_72dpi

201

Annealing can be performed to various hardness levels between 300º and450ºC. Occasionally it is necessary to relieve the stress in the metal to avoidstress corrosion. This is performed at temperatures between 250º and300ºC. In fast- running continuous furnaces higher temperatures are feasi-ble (with correspondingly reduced heat treatment times) to relieve stress.

BRASS ALLOYS

Brass materials

A) Copper-zinc wrought alloys without further alloy elements:

• CuZn10 (good conductivity; very good cold working); electrotech-nics, hardware, jewellery and watch industry, ammunition cartridges,cladding and enamelling materials.

• CuZn15 (very good cold working): electrotechnics, hardware, jew-ellery industry, metal hoses, pressure measurement devices, sign-plates, casing, spring covers.

• CuZn28 (very good cold working by deep drawing, pressing, border-ing, riveting; very suitable for soldering): deep drawing parts and cas-ing of every kind, car radiators, musical instruments, spring elements,dials, cladding material for soft steel.

• CuZn30 (very good cold working): deep drawn parts, music instru-ments, hosepipes, spring elements, dials, cladding materials.

• CuZn36 (good cold working): deep drawn parts, pressed and punchedparts, dials.

• CuZn37 (main alloy for cold working; good soldering and weldingsuitability; resistant to sweet water corrosion; good for pickling):light bulb caps, terminal clamps for overhead lines, contact springs,metal and wood screws, pressure rollers, zips.

• CuZn40 (good hot and cold working): hot pressed parts, lock compo-nents, nipple wire, condenser bases, watch cases.

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 201

Page 203: Niemet_Buch_En_72dpi

202

B) Copper-zinc wrought alloys with lead:

• CuZn38Pb1.5 (good hot working, good machineability): parts foroptics and fine mechanics, watch parts, plug pins, rulers and profilesfor the graphics industry, armatures.

• CuZn39Pb0.5 (good hot working, sufficient machineability): plugpins, armatures, rivets, condenser plates, ship flooring.

• CuZn39Pb2 (good hot working, very good machineability): parts forfine mechanics, mechanical and apparatus engineering, bottom platesand cog-wheels for watches.

• CuZn39Pb3 (good hot working, main alloy for mechanical cuttingprocesses): form turned parts of all kinds for fine mechanics, watchesand clocks, electrical industry.

• CuZn40Pb2 (good hot working, very good machineability): hot-pressed parts, turned parts for fine mechanics and optics, bottomplates and cog-wheels for watches, clamps for electrical industry.

• CuZn44Pb2 (very good hot working, good machineability): thin-walled extruded profiles, e.g. building sections, hand rails, stair rails,hinge profiles.

C) Copper-zinc wrought alloys with further alloy elements:

• CuZn20A12 (sea water resistant, resistant to zinc elusion and, inrelieved condition, insensitive to stress corrosion): pipes and pipebases for condensers and heat exchangers; sea water conduits; ribbedpiping.

• CuZn28Sn1 (resistant to river and service water; resistant to zinc elu-sion): pipes, bases and plates for condensers and other heat exchang-ers; ribbed piping; cooling systems in agriculture.

• CuZn35Ni2 (medium to high strength; good resistance to weatherconditions and sea water): apparatus engineering, ship-building (e.g.boat-screw shafts).

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 202

Page 204: Niemet_Buch_En_72dpi

203

• CuZn40A11 (medium strength, high tenacity; medium resistance towear; good sliding qualities): journal bushes; sliding bases, slidingelements, worm wheel rims, pinions.

• CuZn40A12 (great strength, high resistance to wear; good resistanceto atmospheric corrosion, to mildly aggressive water and gas, insensi-tive to oil corrosion): construction components in mechanical engi-neering, sliding bases, valve guides, gear parts, piston rings.

PROCESSING BRASS

Smelting and casting

As with other materials, the workability of copper-zinc alloys is of spe-cial interest.

The early application of brass already indicates that there are no particulardifficulties involved in smelting and shaping it. The forming of our com-mercial metals is executed as a rule by mould casting, non-cutting workingin solid condition or by metal removal. Copper-zinc alloys are well suitedfor all three possibilities.

Of course, not all the alloys in this material group are equally well suitedfor every form of processing. There are special casting, working and cuttingalloys. As a rule, the different shaping techniques mutually exclude eachother, but not completely.

The smelting of copper-zinc alloys is preferably performed in an inductive-ly heated medium frequency furnace. Aluminium, lead, copper, zinc and tinare added directly during burden calculation, iron, manganese and siliciumare added in the form of 10% - 25% master alloys.

Due to the deoxidising effect of the zinc, the casting moulds are dense andgas-free.

This has a positive effect on SF product processing. Zinc melting loss isprevented by covering the molten metal with dry charcoal or a neutral flux.

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 203

Page 205: Niemet_Buch_En_72dpi

204

The dead-mould casting of copper-zinc alloys can be performed with all theknown casting processes, such as sand, chill, die, continuous or shell mouldcasting. The relatively high contraction level of the copper-zinc alloys is notthereby problematical, as long as the cast parts are so designed that theysolidify uniformly and can contract freely. In the production of mould cast-ings, shrinkage dimensions of 1.5% - 2.3% must be considered. Compositecasting (e.g. with steel parts added) can be easily performed.

Forming without cutting

The possibility of shaping SF copper-zinc alloy products without cutting isone the most important features for further processing. Materials with acomposition close to CuZn30 are worked easiest. However, copper alloysof both lower and higher zinc content, up to 37%, completely satisfy therequirements of further processing. Over 37%, cold workability diminishesrapidly. Copper-zinc alloys with 44% Zn are difficult to work without cut-ting at room temperature. Above 600º, however, their workability is excel-lent. Copper-zinc materials with over 37% Zn can therefore be easily hot-forged and pressed.

Through hot working such as extrusion or hot rolling, SF products in the formof bars, wires, pipes, sheet, strip and profiles are produced from an ingot.

From lengths of extruded bars, profiles or pipes, pieces are produced byforging, with tools usually completely enclosing the material (forging dies).

Open die forgings, on the other hand, are mainly produced with simpletools which do not enclose the material (hammers, saddles, etc.).

Cold working the extruded or hot rolled raw material leads in SF productsto improved surface quality and so to more accurate dimensions and, aboveall, to higher strength. By drawing and rolling in cold condition, the tensilestrength of the material is considerably increased. Depending on the work-ability level, various stages of strength can be achieved.

The material condition is noted by appended figures. The notations former-ly used, i.e. soft, semi-hard, hard, etc., are not clear enough and shouldtherefore no longer be used.

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 204

Page 206: Niemet_Buch_En_72dpi

205

Not every SF dimension can be produced in all strength stages. The possi-ble strength levels are individually stated in the codes. It should be notedthat the strength properties achieved by cold working sink to lower valueson soft annealing, hot working or welding.

A decrease in further workability is always associated with the increase instrength. If cold working is intended, the material must be selected in thesoftest possible condition so that its workability is not too quickly exhaust-ed on further shaping.

Copper-zinc alloys can be cold worked in many ways. The following tech-niques exist:

stretching and deep drawing, pressing, upsetting, bending, bordering, fold-ing, beading, punching, stamping, riveting, hammering, beating out androlling. The alloy mostly used in Germany for cold working is CuZn37; inthe USA on the other hand, CuZn30 is normally used. Compared with thelatter, CuZn37 offers slight cost advantages for almost the same cold work-ing capacity.

If over-soft, coarse-grained sheet is used for working, an ‘orange-peel’ sur-face may be produced. On slightly working soft sheet, so-called flow linessometimes appear; these can be suppressed by the use of slightly pre-formed material. Special brass with a low Zn content is difficult to hotwork, or only moderately so. Its cold workability is however excellent. Spe-cial brass with a Zn content from 37% upwards is bad for cold working butcan be easily hot worked.

Shaping by metal removal

Copper-zinc wrought alloys are often processed by cutting. In such cases,the excellent machineability of copper-zinc alloys containing lead, espe-cially the following, is used to advantage: CuZn39Pb2 has limited coldworking capacity, but is very suitable for machining involving bending, riv-eting and bordering, as well as for all metal-removing processes.CuZn39Pb3 is best for cutting, and is the main alloy in mechanical pro-cessing. CuZn40Pb2 also has limited cold working capacity and is suitable

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 205

Page 207: Niemet_Buch_En_72dpi

206

for all metal-removing processes. The special brass CuZn40Mn1Pb is afree-cutting alloy with good cutting qualities and medium strength.

CONNECTING BRASS

Welding

In the fusion welding of copper-zinc alloys, zinc evaporation is an impor-tant factor. By incorrect welding work, evaporation can be very high due

to the low boiling point of zinc (906ºC); it obstructs the welder’s view,causes porosity and is detrimental to seam formation.

Additional difficulties are caused by copper-zinc alloys with lead, if thelead content is over 1%. For such copper-zinc alloys, their suitability forfusion welding is no longer guaranteed, due to contraction strain. Throughappropriate generation of heat, this effect can be reduced.

Gas and WIG welding are well suited to fusion welding. MIG weldingrequires the use of zinc-free welding fillers. Metal arc welding has onlylimited application, even with zinc-free fillers.

All fusion welding processes combat zinc evaporation by limiting fusionpenetration and preventing overheating of the flux. It is welded with a rela-tively low flame or soft arc.

In gas welding, zinc evaporation is restricted by oxide formation in the flux.For this purpose the welding fillers of similar type contain silicium and tin.Welding is performed with an oxidising flame setting (for brass, up to 30%,for special brass up to 50% surplus of oxygen).

In gas welding, the appropriate flux must always be used. For special brasscontaining aluminium, an oxygen surplus is not permissible due to alu-minium oxide formation.

The WIG process, with fillers of similar type, produces seams with fewerpores than in gas welding, even without a covering of oxide.

The use of zinc-free fillers (e.g. S-CuSi, S-CuSn6 or S-CuAL8 acc.to DIN1733) restricts zinc evaporation further and improves the strength proper-

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 206

Page 208: Niemet_Buch_En_72dpi

207

ties of the welding compounds. The use of flux is limited to special cases inWIG welding, e.g. protection of the seam-root side when carrying out rootpenetration on one side. Special brass containing aluminium (e.g.CuZn20AL2) is preferably WIG-welded with overlaid high frequencyalternating current, without flux and S-CuAl8 as filler. When applying thefirst welding layer of zinc-free filler, deeper penetration into the base mate-rial is avoided with the aid of brazing techniques. The welding flux is driv-en forwards with the arc so that the direct contact of the arc with the evap-oration-endangered foundation is restricted to the start of the welding fluxbuild-up.

Welding is best performed with relatively thin wire electrodes, becausethereby the proportion of penetration to smelting shifts towards the smelt-ing capacity. The brazing technique described above is particularly impor-tant when applying the first welding layer. Flux is only seldom used in theMIG welding of copper-zinc alloys.

Copper-zinc alloys are treated like the corresponding wrought alloys infusion welding. However, copper-zinc alloys, especially those of higherstrength, are sensitive to heat shock and stress cracks. Preheating is recom-mended, not only out of consideration for zinc evaporation, but also toreduce heat shock and contraction stress.

Among the resistance welding processes, butt, spot and seam welding, aswell as impulse and high frequency welding, are easily performed. Thesame applies, among the newer welding processes, to blast, friction and dif-fusion welding. For smaller wall thicknesses, ultrasonic and cold extrusionwelding are performed. On the other hand, electron beam and submergedwelding are not suitable for copper-zinc alloys.

Soldering

For soft soldering copper-zinc alloys, lead-tin solders with little antimonyand tin-lead soft solders with max. 0.5% Sb are used. A surplus of antimo-ny in soft solder leads to soldering brittleness. Soft soldering is performedwith flux of the type F-SW21 or F-SW22 ( DIN 8511, p.2.)

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 207

Page 209: Niemet_Buch_En_72dpi

208

In electrotechnics and electronics, thin wires and soldering tags made ofbrass are often soft soldered. For this, the soft solders L-Sn50Pb and L-Sn60P6 are used, together with flux of the types F-SW26, F-SW31 and F-SW32.

In the automobile industry, the soft solders L-PbSn8Sb to L-PbSn20Sb,which contain little tin, are suitable for soft soldering brass radiators inwatercooled engines up to operating temperatures of 150º.

In the food industry,the special soft solders L-SnAg5 or L-SnCu3 (DIN1707), together with the flux F-SW12, are used in place of solders contain-ing lead, antimony and cadmium. For hard soldering, brass solders are onlyapplicable in certain cases for copper-zinc alloys rich in copper. Low-smelting silver hard solders with a silver content between about 20% and40% Ag (e.g. L-Ag40Cd), together with the flux F-SH1, are especially suit-able. Flux of the type F-SH1 is also needed when using silver hard solderscontaining phosphorus, as these solders no longer flow independently onbrass.

Copper-zinc alloys with lead can be hard soldered with low-flowing hardsolders on the basis of Ag-Cu-Zn or Ag-Cd-Cu-Zn, together with flux of thetype F-SH1. Hard soldering suitability is somewhat reduced by a lead con-tent above 3%.

To hard solder special brass containing aluminium, special fluxes of thetype F-SH1 are required. Where corrosion can occur, silver hard solderswith a higher silver content are used. For example, for CuZn20AL in seawater conditions, the silver hard solder L-Ag40Cd ( DIN8513, Part 3) isrecommended.

In the food industry, silver hard solders containing tin replace those con-taining cadmium, e.g. L-Ag34Sn or L-Ag45Sn acc. to DIN 8513, Part 3,with flux of the type F-SH1 acc.to DIN 8511, Page 1.

Copper-zinc casting alloys have largely the same soldering characteristicsas wrought alloys.

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 208

Page 210: Niemet_Buch_En_72dpi

209

Mechanical Connections

Riveting is a reliable mechanical connecting technique. Rivets made fromcopper-zinc alloys – mostly from CuZn37 – are, as a rule, cold-riveted(clenched) or crushed. Where the risk of stress corrosion exists, copper-zincalloys with less than 20% Zn or corrosion-resistant copper materials shouldbe used as riveting materials.

SURFACE TREATMENT OF BRASS

Cleaning and coating

Finished products made of brass are often only treated mechanically, chem-ically or electrochemically due to their attractive inherent colour.

All kinds of brass can be polished easily, as well as chemically or electro-chemically glossed. The increasing alloy hardness associated with risingzinc content leads to excellent polishing characteristics.

Cleaning and degreasing is performed in organic solutions (pre-cleaning),in alkaline and in acid agents. With the help of electrochemical processesand using ultrasonic equipment the cleaning procedure is intensified andaccelerated.

Pickling takes place in a salt or sulphuric acid solution, burning and gloss-ing in saltpeter solutions. These and other processes are also on the marketin the form of finished solutions and concentrates, as well as salts.

The inherent colour of brass lasts a long time if the surface is coated with aclear lacquer. Whereas, for indoor applications, colourless zapon varnishoffers sufficient protection, for outdoor purposes, high quality paints basedon artificial resin (e.g. acrylic, polyester, epoxy and polyurethane paints)are used.

Tinted products create special surface effects. They are used, for example,to tint brass surfaces bronze and gold. In artwork, surface treatment bychemical tinting or enamelling processes is very popular. Chemical andelectrochemical colouring techniques offer a versatile spectrum of green,

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 209

Page 211: Niemet_Buch_En_72dpi

210

brown, grey and black tones. Brass with max. 10% Zn can be enamelled.The preferred pickling quality for dials, for example, is CuZn36.

Coatings of other metals and numerous alloys that have decorative andfunctional purposes are galvanized on brass electrolessly. The currentlesstechnique is important for nickel. If treated properly beforehand, brass canbe easily galvanised. This must be considered in the range around 37%Zn,as a heterogenous structure can be present there, depending on the heattreatment. In initial treatment, brass containing lead must not be pickled insulphuric acid, as the lead sulphate thereby produced can create blistering,or even cause the coatings to flake off. Pickling should be done here withdilute nitric acid, or even better with a10-20% fluoroboric acid solution.Fluoroboric acid, however, etches the brass surface weakly, so that mechan-ical polishing may afterwards be necessary.

Initial treatment of CuZn20Al2, CuZn28Sn1, etc., for galvanising is oftenmore difficult, as they must be additionally brushed after pickling. Duringpreparatory treatment, the danger of overpickling certain alloys (e.g.CuZn39Pb3) must be taken into account, to avoid any risk of zinc evapora-tion or stress corrosion.

Tin coatings improve soldering suitability or are applied if brass surfacescome into contact with food and drink. Besides pure tin coatings, tin-cop-per and tin-nickel alloys are also used.

Nickel and chrome are the most important coating metals for brass. Fit-tings, soap and wax forms made of brass are hard chrome plated, as well asrollers for textile and paper printing.

Noble metals and their alloys are mainly applied galvanically. They aredesigned to take on specific electrical and tribological tasks or to improvewear or corrosion resistance. In the watch and jewellery industry, coatingsof silver, gold and platinum are applied. Dinner services and table decora-tion are gold and silver plated. Components of platinum plated brass areutilized in chemical and process technology.

NIE•MET and its hardware brass

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 210

Page 212: Niemet_Buch_En_72dpi

211

CORROSION BEHAVIOUR OF BRASS

Resistance to corrosion

The corrosion resistance of copper-zinc alloys is determined to a greatextent by their proportion of zinc. Brass with up to 37% zinc is similar in itscorrosion behaviour to pure copper. It is very resistant to water, steam, var-ious salt solutions and many organic liquids. With increasing zinc content,the corrosion resistance of brass sinks, because in the higher zinc range thestructure of brass is susceptible to corrosive influences.

The corrosion resistance of brass can be improved even more by adding fur-ther alloy elements in special brass. Nickel and manganese have a benefi-cial effect on corrosion resistance to the atmosphere and water.

By adding elements such as aluminium and tin, resistance is also improved,especially to flowing sea water. DIN 1785, with CuZn20AL2 containingaluminium and CuZn28Sn1 with tin are utilized for condenser and heatexchanger piping.

CuZn20AL2 has proved itself in cooling water with a salt content above0.2%, e.g. sea water, and is resistant to erosion corrosion up to water speedsof about 2.5 m/s. The protective coatings are ‘self-healing’ in the event ofdamage.

CuZn28Sn1 is used if the cooling water does not contain dissolved sub-stances above 0.1% and the pH value of the water does not sink below 7.CuZn28Sn1 is also resistant to attack by precipitation and can be used,especially in brackish water, for cooling water piping at water speeds up toabout 2 m/s.

For alloys with more than 20% tin, a corrosion in the form of zinc ‘elusion’can occur under certain circumstances; its mechanism has not yet beenexplained. This expression is not exactly accurate as a description of theactual corrosion process. The copper as well as the zinc dissolves. After dis-solution of the brass, however, the copper is precipitated again in a spongyform due to its nobler potential, while the zinc eludes as a solution. Both CuZn30 and CuZn37 are endangered by zinc elusion. The addition of 0.02 to0.035% As as an inhibitor for wrought alloys, and up to 0.2% As for cast-

brass NIE•MET and its hardware

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 211

Page 213: Niemet_Buch_En_72dpi

NIE•MET and its hardware brass

ing alloys, can considerably reduce the tendency of CuZn30 towards elu-sion. As a rule, protective layers form under the influence of the corrosiveagents on the surface of As-alloyed copper-zinc alloys. This does not how-ever apply to copper-zinc alloys with 37% - 44% tin, which therefore mustnot be exposed to more intensive corrosion influences.

Moreover, copper-zinc alloys with over 15% Zn are in danger of stress cor-rosion if they are exposed to internal or external stress while at the sametime influenced by specific aggressive substances (ammoniac, ammoniumsalts, sulphur dioxide). As well as the commoner intercrystalline cracks,transcrystalline cracking has also been identified.

By appropriate heat treatment (stress-relieving anneal), the tensile stresscan be removed without essentially affecting the strength properties. If heattreatment after cold working is not possible, stress-corrosion-resistant cop-per materials must be used.

Galvanic coatings improve resistance to stress corrosion, but do not guar-antee absolute protection, especially in thin coatings.

212

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 212

Page 214: Niemet_Buch_En_72dpi

213

BRASS / SPECIAL BRASS

EN EN DINNumber Designation Designation

CW351H CuNi9Sn2 CuNi9Sn2CW352H CuNi10Fe1Mn CuNi10Fe1Mn– – CuNi25CW353H CuNi30Fe2Mn2 CuNi30Fe2Mn2CW354H CuNi30MnFe1 CuNi30Mn1Fe– – CuNi44Mn1CW500L CuZn5 CuZn5CW501L CuZn10 CuZn10CW502L CuZn15 CuZn15CW503L CuZn20 CuZn20– – CuZn28CW505L CuZn30 CuZn30CW506L CuZn CuZn33CW507L CuZn36 CuZn36CW508L CuZn37 CuZn37CW509L CuZn40 CuZn40CW601N CuZn35Pb2 CuZn36Pb1.5CW603N CuZn36Pb3 CuZn36Pb3CW604N CuZn37Pb0.5 CuZn37Pb0.5– – CuZn38Pb1.5CW610N CuZn39Pb0.5 CuZn39Pb0.5CW612N CuZn39Pb2 CuZnPb2CW614N CuZn39Pb3 CuZnPb3CW617N CuZn40Pb2 CuZn44Pb2CW623N CuZn43Pb2 CuZn40Pb2CW702R CuZn20Al2As CuZn20Al2CW704R CuZn23Al6Mn4Fe3Pb CuZn23Al6Mn4Fe3– – CuZn28Sn1CW708R CuZn31Si1 CuZn31Si1CW710R CuZn35Ni3Mn2AlPb CuZn35Ni2CW713R CuZn37Mn1Al2PbSi CuZn40Al2CW715R CuZn38AlFeNiPbSn CuZn38SnAlCW716R CuZn38Mn1Al CuZn37Al1CW717R CuZn38Sn1As CuZn38Sn1CW718R CuZn39Mn1AlPbSi CuZn40Al1CW720R CuZn40MnPb1 CuZn40Mn1PbCW723R CuZn40Mn2Fe1 CuZn40Mn2

DIN EN ENDesignation Number Designation

CuNi9Sn2 CW351H CuNi9Sn2CuNi10Fe1Mn CW352H CuNi10Fe1MnCuNi25 – –CuNi30Fe2Mn2 CW353H CuNi30Fe2Mn2CuNi30Mn1Fe CW354H CuNi30MnFe1CuNi44Mn1 – –CuZn5 CW500L CuZn5CuZn10 CW501L CuZn10CuZn15 CW502L CuZn15CuZn20 CW503L CuZn20CuZn20Al2 CW702R CuZn20Al2AsCuZn23Al6Mn4Fe3 CW704R CuZn23Al6Mn4Fe3PbCuZn28 – –CuZn28Sn1 – –CuZn30 CW505L CuZn30CuZn31Si1 CW708R CuZn31Si1CuZn33 CW506L CuZnCuZn35Ni2 CW710R CuZn35Ni3Mn2AlPbCuZn36 CW507L CuZn36CuZn36Pb1.5 CW601N CuZn35Pb2CuZn36Pb3 CW603N CuZn36Pb3CuZn37 CW508L CuZn37CuZn37Al1 CW716R CuZn38Mn1AlCuZn37Pb0.5 CW604N CuZn37Pb0.5CuZn38Sn1 CW717R CuZn38Sn1AsCuZn38SnAl CW715R CuZn38AlFeNiPbSnCuZn38Pb1.5 – –CuZn39Pb0.5 CW610N CuZn39Pb0.5CuZn40 CW509L CuZn40CuZn40Al1 CW718R CuZn39Mn1AlPbSiCuZn40Al2 CW713R CuZn37Mn1Al2PbSiCuZn40Mn1Pb CW720R CuZn40MnPb1CuZn40Mn2 CW723R CuZn40Mn2Fe1CuZn40Pb2 CW623N CuZn43Pb2CuZn44Pb2 CW617N CuZn40Pb2CuZnPb2 CW612N CuZn39Pb2CuZnPb3 CW614N CuZn39Pb3

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 213

Page 215: Niemet_Buch_En_72dpi

214

BRASS AS ROLLED SF PRODUCT

MaterialThickness Tensile strenght 0.2% Elongation limit

Not heat Heat- Rm Rp0.2

Designation treated treated No. mm N/mm2 N/mm2

CuAl8 F 37 – – 2.0920.10 from 3 to 15 min. 370 min. 130H 80 – – .10 from 3 to 15 – –F 45 – – .26 from 3 to 15 min. 450 min. 170H 125 – – .26 from 3 to 15 – –

CuAl8Fe3 F 48 – – 2.0932.10 from 3 to 15 min. 480 min. 210H 110 – – .10 from 3 to 15 – –

CuAl9Ni3Fe2 F 49 – – 2.0971.10 from 3 to 15 min. 490 min. 180H 105 – – .10 from 3 to 15 – –F 62 – – .10 from 3 to 15 min. 620 min. 290H 150 – – .10 from 3 to 15 – –

CuAl10Ni5Fe4 F 63 – – 2.0966.10 from 3 to 15 min. 630 min. 270H 160 – – .10 from 3 to 15 – –

CuBe1.7 F 39 – – 2.1245.40 from 0.2 to 3 390 to 520 180 to 250H 80 – – .40 from 0.2 to 3 – –F 103 – – .60 from 0.2 to 3 1030 to 1240 880 to 1120H 330 – – .60 from 0.2 to 3 – –F 51 – – .54 from 0.2 to 3 510 to 610 350 to 550H 135 – – .54 from 0.2 to 3 – –F 110 – – .74 from 0.2 to 3 1100 to 1270 900 to 1150H 340 – – .74 from 0.2 to 3 – –F 58 – – .55 from 0.2 to 3 580 to 680 450 to 620H 175 – – .55 from 0.2 to 3 – –F 117 – – .75 from 0.2 to 3 1170 to 1340 1000 to 1200H 350 – – .75 from 0.2 to 3 – –F 68 – – .56 from 0.2 to 3 680 to 830 620 to 800H 210 – – .56 from 0.2 to 3 – –F 124 – – .76 from 0.2 to 3 1240 to 1380 1050 to 1300H 360 – – .76 from 0.2 to 3 – –

CuBe2 F 41 – – 2.1247.40 from 0.2 to 3 410 to 540 190 to 270H 90 – – .40 from 0.2 to 3 – –F 114 – – .60 from 0.2 to 3 1140 to 1310 980 to 1200H 350 – – .60 from 0.2 to 3 – –F 52 – – .54 from 0.2 to 3 520 to 600 410 to 550H 140 – – .54 from 0.2 to 3 – –F 121 – – .74 from 0.2 to 3 1210 to 1370 1050 to 1250H 360 – – .74 from 0.2 to 3 – –F 59 – – .65 from 0.2 to 3 590 bis 690 530 bis 630H 180 – – .65 from 0.2 to 3 – –F 127 – – .75 from 0.2 to 3 1270 to 1450 1080 to 1300H 370 – – .75 from 0.2 to 3 – –F 69 – – .56 from 0.2 to 3 690 to 820 650 to 790H 215 – – .56 from 0.2 to 3 – –F 131 – – .76 from 0.2 to 3 1310 to 1480 1100 to 1350H 380 – – .76 from 0.2 to 3 – –

CuCo2Be F 25 – – 2.1285.40 from 0.2 to 3 250 to 380 140 to 280CuNi2Be H 60 – – 2.0850.40 from 0.2 to 3 – –

F 65 – – .60 from 0.2 to 3 650 to 820 500 to 690H 195 – – .60 from 0.2 to 3 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 214

Page 216: Niemet_Buch_En_72dpi

215

BRASS AS ROLLED SF PRODUCT

Breaking Elongation Vickers hardness HV Brinell hardness HB Grain sizeA5 % A10 % AL 50 %min. min. min. min. max. min. max. mm

30 – – – – – – –– – – 80 130 75 120 –

25 – – – – – – –– – – 125 – 120 – –

30 – – – – – – –– – – 110 – 100 – –

25 – – – – – –– – – 105 150 100 140 –

15 – – – – – – –– – – 150 – 140 – –8 – – – – – – –– – – 160 – 150 - –– – 35 – – – – –– – – 80 135 – – –– – – – – – – –– – – 330 380 – – –– – 10 – – – – –– – – 135 190 – – –– – – – – – – –– – – 340 390 – – –– – 5 – – – – –– – – 175 220 – – –– – – – – – – –– – – 350 400 – – –– – – – – – – –– – – 210 250 – – –– – – – – – – –– – – 360 420 – – –– – 35 – – – – –– – – 90 140 – – –– – – – – – – –– – – 350 400 – – –– – 10 – – – – –– – – 140 195 – – –– – – – – – – –– – – 360 410 – – –– – 5 – – – – –– – – 180 225 – – –– – – – – – – –– – – 370 430 – – –– – – – – – – –– – – 215 260 – – –– – – – – – – –– – – 380 450 – – –– – 20 – – – – –– – – 60 95 – – –– – 8 – – – – –– – – 195 245 – – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 215

Page 217: Niemet_Buch_En_72dpi

216

BRASS AS ROLLED SF PRODUCT

MaterialThickness Tensile strenght 0.2% Elongation limit

Not heat Heat- Rm Rp0.2

Designation treated treated No. mm N /mm2 N /mm2

CuCu2Be F 48 – – .56 from 0.2 to 3 480 to 590 400 to 550CuNi2Be H 145 – – .56 from 0.2 to 3 – –

F 75 – – .76 from 0.2 to 3 750 to 920 690 to 850H 220 – – .76 from 0.2 to 3 – –F 55 – – .59 from 0.2 to 3 550 to 700 450 to 650H 160 – – .59 from 0.2 to 3 – –F 85 – – .79 from 0.2 to 3 850 to 1000 750 to 980H 240 – – .79 from 0.2 to 3 – –

CuCrZr F 37 – – 2.1293.60 from 3 to 15 min. 370 min. 270H 125 – – .60 from 3 to 15 – –F 33 – – .53 from 0.3 to 10 min. 330 min. 310H 95 – – .53 from 0.3 to 10 – –F 44 – – .73 from 0.3 to 10 min. 440 min. 390H 140 – – .73 from 0.3 to 10 – –F 49 – – .79 from 0.3 to 6 min. 490 min. 450H 155 – – .79 from 0.3 to 6 – –

CuFe2P F 30 – – 2.1310.10 from 0.2 to 5 300 to 340 max. 240H 80 – – .10 from 0.2 to 5 – –F 34 – – .26 from 0.2 to 5 340 to 390 min. 240H 100 – – .26 from 0.2 to 5 – –F 39 – – .30 from 0.2 to 3 390 to 470 min. 360H 120 – – .30 from 0.2 to 3 – –F 42 – – .32 from 0.2 to 1 420 to 520 min. 390H 130 – – .32 from 0.2 to 1 – –F 49 – – .34 from 0.2 to 1 min. 490 min. 450H 145 – – .34 from 0.2 to 1 – –

CuNi9Sn2 F 34 – – 2.0875.10 from 0.2 to 5 340 to 410 max. 250H 75 – – .10 from 0.2 to 5 – –F 41 – – .26 from 0.2 to 5 410 to 500 min. 320H 110 – – .26 from 0.2 to 5 – –F 50 – – .30 from 0.2 to 2 500 to 750 min. 450H 160 – – .30 from 0.2 to 2 – –F 56 – – .32 from 0.2 to 2 min. 560 min. 500H 180 – – .32 from 0.2 to 2 – –

CuNi10Fe1Mn F 30 – – 2.0872.10 from 0.3 to 15 min. 300 min. 100H 70 – – .10 from 0.3 to 15 – –

CuNi12Zn24 F 36 – – 2.0730.10 from 0.1 to 5 360 to 430 max. 230H 80 – – .10 from 0.1 to 5 – –F 43 – – .26 from 0.1 to 5 430 to 510 min. 230H 110 – – .26 from 0.1 to 5 – –F 51 – – .30 from 0.1 to 5 510 to 590 min. 420H 150 – – .30 from 0.1 to 5 – –F 56 – – .32 from 0.1 to 2 560 to 650 min. 480H 170 – – .32 from 0.1 to 2 – –F 65 – – .34 from 0.1 to 2 min. 650 min. 600H 200 – – .34 from 0.1 to 2 – –

CuNi18Zn20 F 38 – – 2.0740.10 from 0.1 to 5 380 to 450 max. 250H 85 – – .10 from 0.1 to 5 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 216

Page 218: Niemet_Buch_En_72dpi

217

BRASS AS ROLLED SF PRODUCT

Breaking Elongation Vickers hardness HV Brinell hardness HB Grain sizeA5 % A10 % AL 50 %min. min. min. min. max. min. max. mm

– – – – – – – –– – – 145 185 – – –– – 5 – – – – –– – – 220 270 – – –– – – – – – – –– – – 160 200 – – –– – – – – – – –– – – 240 290 – – –12 – – – – – – –– – – 125 155 120 150 –

10 – – – – – – –– – – 95 120 90 115 –

10 – – – – – – –– – – 140 180 135 170 –8 – – – – – – –– – – 155 200 150 190 –

25 20 – – – – – –– – – 80 100 75 95 –

12 10 – – – – – –– – – 100 120 95 115 –6 – – – – – – –– – – 120 140 115 135 –– – – – – – – –– – – 130 150 125 145 –– – – – – – – –– – – 145 – 140 – –

40 35 – – – – – –– – – 75 110 75 105 –

14 10 – – – – – –– – – 110 160 105 150 –– – – – – – – –– – – 160 190 150 180 –– – – – – – – –– – – 180 – 170 – –

30 25 – – – – – –– – – 70 120 65 115 –

45 40 – – – – – –– – – 80 110 75 105 –

16 13 – – – – – –– – – 110 150 105 140 –8 5 – – – – – –– – – 150 180 140 170 –– – – – – – – –– – – 170 200 160 190 –– – – – – – – –– – – 200 – – 190 –

37 32 – – – – – –– – – 85 115 80 110 –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 217

Page 219: Niemet_Buch_En_72dpi

218

BRASS AS ROLLED SF PRODUCT

MaterialThickness Tensile strenght 0.2% Elongation limit

Not heat Heat- Rm Rp0.2

Designation treated treated No. mm N /mm2 N /mm2

CuNi18Zn20 F 45 – – .26 from 0.1 to 5 450 to 520 min. 250H 115 – – .26 from 0.1 to 5 – –F 52 – – .30 from 0.1 to 2 520 to 610 min. 430H 160 – – .30 from 0.1 to 2 – –F 58 – – .32 from 0.1 to 2 580 to 680 min. 490H 180 – – .32 from 0.1 to 2 – –F 68 – – .34 from 0.1 to 2 min. 680 min. 630H 210 – – .34 from 0.1 to 2 – –

CuNi18Zn27 F 39 – – 2.0742.10 from 0.1 to 5 390 to 470 max. 280H 90 – – .10 from 0.1 to 5 – –F 47 – – .26 from 0.1 to 5 470 to 540 min. 280H 120 – – .26 from 0.1 to 5 – –F 54 – – 2.0742.30 from 0.1 to 2 540 to 620 min. 440H 170 – – .30 from 0.1 to 2 – –F 60 – – .32 from 0.1 to 2 600 to 700 min. 500H 190 – – .32 from 0.1 to 2 – –F 70 – – .34 from 0.1 to 2 min. 700 min. 650H 220 – – .34 from 0.1 to 2 – –

CuNi25 F 29 – – 2.0830.10 from 0.3 to 15 min. 290 min. 100H 70 – – .10 from 0.3 to 15 – –

CuNi30Mn1Fe F 35 – – 2.0882.10 from 0.3 to 15 min. 350 min. 120H 80 – – .10 from 0.3 to 15 – –

CuNi44Mn1 F 42 – – 2.0842.10 from 0.3 to 15 min. 420 min. 150H 85 – – .10 from 0.3 to 15 – –

CuZn0.5 F 22 – – 2.0205.10 from 0.2 to 5 220 to 260 max. 140H 45 – – .10 from 0.2 to 5 – –F 24 – – .26 from 0.2 to 5 240 to 300 min. 180H 70 – – .26 from 0.2 to 5 – –F 29 – – 2.0205.30 from 0.2 to 5 290 to 360 min. 250H 90 – – .30 from 0.2 to 5 – –F 54 – – .32 from 0.2 to 1.5 min. 360 min. 320H 170 – – .32 from 0.2 to 1.5 – –

CuZn5 F 23 – – 2.0220.10 from 0.2 to 5 230 to 280 max. 130H 45 – – .10 from 0.2 to 5 – –F 28 – – .26 from 0.2 to 5 280 to 340 min. 200H 75 – – .26 from 0.2 to 5 – –F 34 – – .30 from 0.2 to 5 min. 340 min. 280H 110 – – .30 from 0.2 to 5 – –

CuZn10 F 24 – – 2.0230.10 from 0.2 to 5 240 to 290 max. 140H 50 – – .10 from 0.2 to 5 – –F 29 – – .26 from 0.2 to 5 290 to 350 min. 200H 80 – – .26 from 0.2 to 5 – –F 35 – – .30 from 0.2 to 5 min. 350 min. 290H 110 – – .30 from 0.2 to 5 – –

CuZn15 F 26 – – 2.0240.10 from 0.2 to 5 260 to 130 max. 140H 55 – – .10 from 0.2 to 5 – –F 31 – – .26 from 0.2 to 5 310 to 370 min. 200H 85 – – .26 from 0.2 to 5 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 218

Page 220: Niemet_Buch_En_72dpi

219

BRASS AS ROLLED SF PRODUCT

Breaking Elongation Vickers hardness HV Brinell hardness HB Grain sizeA5 % A10 % AL 50 %min. min. min. min. max. min. max. mm

18 15 – – – – – –– – – 115 160 110 150 –6 – – – – – – –– – – 160 190 150 180 –– – – – – – – –– – – 180 210 170 200 –– – – – – – – –– – – 180 210 170 200 –

40 45 – – – – – –– – – 90 120 85 115 –

20 15 – – – – – –– – – 120 170 115 160 –7 – – – – – – –– – – 170 200 160 190 –– – – – – – – –– – – 190 220 180 210 –– – – – – – – –– – – 220 – 210 – –– – – – – – – –– – – 70 100 70 100 –

35 30 – – – – – –– – – 80 120 80 120 –

35 30 – – – – – –– – – 85 115 85 115 –

42 36 – – – – – –– – – 45 70 40 65 –

15 12 – – – – – –– – – 70 95 65 90 –6 – – – – – – –– – – 90 110 85 105 –– – – – – – – –– – – 110 – 105 – –

45 40 – – – – – –– – – 45 75 45 70 –

19 16 – – – – – –– – – 75 110 75 105 –8 5 – – – – – –– – – 110 – 105 – –

45 40 – – – – – –– – – 50 80 50 75 –

20 17 – – – – – –– – – 80 110 75 105 –8 5 – – – – – –– – – 110 – 105 – –

45 40 – – – – – –– – – 55 85 55 80 –

25 22 – – – – – –– – – 85 115 80 110 –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 219

Page 221: Niemet_Buch_En_72dpi

220

BRASS AS ROLLED SF PRODUCT

MaterialThickness Tensile strenght 0.2% Elongation limit

Not heat Heat- Rm Rp0.2

Designation treated treated No. mm N /mm2 N /mm2

CuZn15 F 37 – – .30 from 0.2 to 5 370 to 460 min. 300H 115 – – .30 from 0.2 to 5 – –F 46 – – .32 from 0.2 to 5 min. 460 min. 410H 145 – – .32 from 0.2 to 5 – –

CuZn20 F 27 – – 2.0250.10 from 0.2 to 5 270 to 320 max. 150H 55 – – .10 from 0.2 to 5 – –F 32 – – .26 from 0.2 to 5 320 to 390 min. 200H 85 – – .26 from 0.2 to 5 – –F 39 – – .30 from 0.2 to 5 390 to 490 min. 320H 120 – – .30 from 0.2 to 5 – –F 49 – – .32 from 0.2 to 2 min. 490 min. 440H 155 – – .32 from 0.2 to 2 – –

CuZn20Al2 F 33 – – 2.0460.10 from 0.3 to 15 min. 330 min. 90H 70 – – .10 from 0.3 to 15 – –F 39 – – .10 from 0.3 to 15 min. 390 min. 240H 100 – – .10 from 0.3 to 15 – –

CuZn28 F 27 – – 2.0261.10 from 0.2 to 5 270 to 350 max. 160H 55 – – .10 from 0.2 to 5 – –F 35 – – .26 from 0.2 to 5 350 to 420 min. 200H 90 – – .26 from 0.2 to 5 – –F 42 – – .30 from 0.2 to 5 420 to 520 min. 340H 125 – – .30 from 0.2 to 5 – –F 52 – – .32 from 0.2 to 2 min. 520 min. 470H 160 – – .32 from 0.2 to 2 – –

CuZn28Sn1 F 32 – – 2.0470.10 from 3 to 15 min. 320 min. 100H 70 – – .10 from 3 to 15 – –

CuZn30 F 27 – – 2.0265.10 from 0.2 to 5 270 to 350 max. 160H 55 – – .10 from 0.2 to 5 – –K 10 – – .11 from 0.2 to 1 (≈ 400) (≈ 200)K 20 – – .12 from 0.2 to 2 (≈ 360) (≈ 150)K 30 – – .13 from 0.2 to 2 (≈ 340) (≈ 130)K 50 – – .14 from 0.2 to 2 (≈ 330) (≈ 110)F 35 – – .26 from 0.2 to 5 350 to 420 min. 200H 90 – – .26 from 0.2 to 5 – –F 42 – – .30 from 0.2 to 5 420 to 520 min. 340H 125 – – .30 from 0.2 to 5 – –F 52 – – .32 from 0.2 to 2 min. 52020 min. 470H 160 – – .32 from 0.2 to 2 – –

CuZn33 F 28 – – 2.0280.10 from 0.2 to 5 280 to 360 max. 170H 55 – – .10 from 0.2 to 5 – –F 36 – – .26 from 0.2 to 5 360 to 430 min. 200H 90 – – .26 from 0.2 to 5 – –F 43 – – .30 from 0.2 to 5 430 to 530 min. 360H 130 – – .30 from 0.2 to 5 – –F 53 – – .32 from 0.2 to 2 min. 530 min. 480H 165 – – .32 from 0.2 to 2 – –

CuZn36/37 F 28 – – 2.0335.10 from 0.2 to 5 300 to 370 max. 180H 55 – – 2.0321.10 from 0.2 to 5 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 220

Page 222: Niemet_Buch_En_72dpi

221

BRASS AS ROLLED SF PRODUCT

Breaking Elongation Vickers hardness HV Brinell hardness HB Grain sizeA5 % A10 % AL 50 %min. min. min. min. max. min. max. mm

12 8 – – – – – –– – – 115 145 110 140 –– – – – – – – –– – – 145 – 140 – –

48 42 – – – – – –– – – 55 85 55 80 –

28 25 – – – – – –– – – 85 120 80 115 –

12 9 – – – – – –– – – 120 155 115 145 –– – – – – – – –– – – 155 – 145 – –

30 – – – – – – –– – – 70 105 65 100 –

25 – – – – – – –– – – 100 – 90 – –

50 45 – – – – – –– – – 55 90 55 85 –

33 30 – – – – – –– – – 90 125 85 115 –

15 12 – – – – – –– – – 125 160 115 150 –8 5 – – – – – –– – – 160 – 150 – –

40 – – – – – – –– – – 70 110 65 100 –

50 45 – – – – – –– – – 55 90 55 85 –

45 40 – – 110 – 100 max. 0.01550 45 – – 90 – 85 0.015 to 0.03052 48 – – 85 – 80 0.020 to 0.04555 50 – – 75 – 75 0.035 to 0.07033 30 – – – – – –– – – 90 125 85 115 –

15 12 – – – – – –– – – 125 160 115 150 –8 5 – – – – – –– – – 160 – 150 – –

50 45 – – – – – –– – – 55 90 55 85 –

31 28 – – – – – –– – – 90 130 85 120 –

13 10 – – – – – –– – – 130 165 120 155 –– – – – – – – –– – – 165 – 150 – –

48 43 – – – – – –– – – 55 95 55 90 –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 221

Page 223: Niemet_Buch_En_72dpi

222

BRASS AS ROLLED SF PRODUCT

MaterialThickness Tensile strenght 0.2% Elongation limit

Not heat Heat- Rm Rp0.2

Designation treated treated No. mm N /mm2 N /mm2

CuZn36/37 K 10 – – .11 from 0.2 to 1 (≈ 400) (≈ 200)K 20 – – .12 from 0.2 to 2 (≈ 360) (≈ 150)K 30 – – .13 from 0.2 to 2 (≈ 340) (≈ 130)K 50 – – .14 from 0.2 to 2 (≈ 330) (≈ 110)F 37 – – .26 from 0.2 to 5 370 to 440 min. 200H 95 – – .26 from 0.2 to 5 – –F 44 – – .30 from 0.2 to 5 440 to 540 min. 370H 55 – – .30 from 0.2 to 5 – –F 54 – – .32 from 0.2 to 2 540 to 610 min. 490H 170 – – .32 from 0.2 to 2 – –F 61 – – .34 from 0.2 to 2 min. 610 min. 580H 200 – – .34 from 0.2 to 2 – –

CuZn36Pb0.5 F 29 – – 2.0331.10 from 0.3 to 5 290 to 370 max. 200CuZn37Pb1.5 H 60 – – 2.0332.10 from 0.3 to 5 – –

F 37 – – .26 from 0.3 to 5 370 to 440 min. 200H 110 – – .26 from 0.3 to 5 – –F 44 – – .30 from 0.3 to 5 440 to 540 min. 370H 140 – – .30 from 0.3 to 5 – –F 54 – – .32 from 0.3 to 2 min. 540 min. 490H 170 – – .32 from 0.3 to 2 – –

CuZn38Pb0.5 F 34 – – 2.0371.10 from 0.3 to 15 min. 340 max. 240CuZn38Pb1.5 H 75 – – 2.0372.10 from 0.3 to 15 – –

F 41 – – .26 from 0.3 to 15 min. 410 min. 240H 110 – – .26 from 0.3 to 15 – –F 47 – – .30 from 0.3 to 5 min. 470 min. 390H 140 – – .30 from 0.3 to 5 – –F 54 – – .32 from 0.3 to 2 min. 540 min. 490H 165 – – .32 from 0.3 to 2 – –

CuZn38SnAl F 39 – – 2.0525.10 from 3 to 15 min. 390 min. 140H 85 – – .10 from 3 to 15 – –F 45 – – .26 from 3 to 15 min. 450 min. 260H 120 – – .26 from 3 to 15 – –

CuZn38Sn1 F 34 – – 2.0530.10 from 3 to 15 min. 340 min. 140H 85 – – .10 from 3 to 15 – –

CuZn39Pb2 F 36 – – 2.0380.10 from 0,3 to 5 min. 360 max. 270H 85 – – .10 from 0.3 to 5 – –F 34 – – .26 from 0.3 to 5 min. 430 min. 270H 120 – – .26 from 0.3 to 5 – –F 49 – – .30 from 0.3 to 5 min. 490 min. 420H 150 – – .30 from 0.3 to 5 – –F 59 – – .32 from 0.3 to 2 min. 590 min. 540H 175 – – .32 from 0.3 to 2 – –

CuZn40 F 34 – – 2.0360.10 from 0.3 to 15 min. 340 max. 240H 80 – – .10 from 0.3 to 15 – –F 41 – – .26 from 0.3 to 5 min. 410 min. 240H 110 – – .26 from 0.3 to 5 – –F 47 – – .30 from 0.3 to 5 min. 470 min. 390H 140 – – .30 from 0.3 to 5 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 222

Page 224: Niemet_Buch_En_72dpi

223

BRASS AS ROLLED SF PRODUCT

Breaking Elongation Vickers hardness HV Brinell hardness HB Grain sizeA5 % A10 % AL 50 %min. min. min. min. max. min. max. mm

42 38 – – 110 – 100 max. 0.01548 43 – – 90 – 85 0.015 to 0.03050 45 – – 85 – 80 0.020 to 0.04552 48 – – 75 – 75 0.035 to 0.07028 24 – – – – – –– – – 95 140 90 130 –

12 8 – – – – – –– – – 140 170 130 160 –– – – – – – – –– – – 170 200 160 190 –– – – – – – – –– – – 200 – 190 – –

50 44 – – – – – –– – – 60 110 60 100 –

28 24 – – – – – –– – – 110 140 100 130 –

12 8 – – – – – –– – – 140 170 130 160 –– – – – – – – –– – – 170 – 160 – –

43 38 – – – – – –– – – 75 110 75 100 –

23 20 – – – – – –– – – 110 140 100 130 –

12 9 – – – – – –– – – 140 165 130 150 –– – – – – – – –– – – 165 – 150 – –

25 – – – – – – –– – – 85 125 80 120 –

18 – – – – – – –– – – 120 – 115 – –

30 – – – – – – –– – – 85 125 80 120 –

40 35 – – – – – –– – – 85 120 85 110 –

20 17 – – – – – –– – – 120 150 110 140 –9 6 – – – – – –– – – 150 175 140 160 –– – – – – – – –– – – 175 – 160 – –

43 38 – – – – – –– – – 80 100 75 100 –

23 20 – – – – – –– – – 110 140 100 130 –

12 9 – – – – – –– – – 140 – 130 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 223

Page 225: Niemet_Buch_En_72dpi

224

BRASS AS ROLLED SF PRODUCT

MaterialThickness Tensile strenght 0.2% Elongation limit

Not heat Heat- Rm Rp0.2

Designation treated treated No. mm N /mm2 N /mm2

CuZn40Pb2 F 38 – – 2.0402.10 from 0.3 to 5 min. 380 max. 300H 55 – – .10 from 0.3 to 5 – –F 44 – – .26 from 0.3 to 5 min. 440 min. 300H 125 – – .26 from 0.3 to 5 – –F 52 – – .10 from 0.3 to 5 min. 520 min. 460H 155 – – .10 from 0.3 to 5 – –F 61 – – .32 from 0.3 to 2 min. 610 min. 570H 180 – – .32 from 0.3 to 2 – –

CuZr F 35 – – 2.1293.70 from 0.3 to 5 min. 350 min. 300H 100 – – .70 from 0.3 to 5 – –

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Square /hexagonal

bar RectangularRound bar Edge length barDiameter Spanner Thickness

Not heat heat widthDesignation treated treated No. mm mm mm

CuAl8 p – – 2.0920.08 by arrangement not comm. avail.F 37 – – .10 6 to 50 5 to 100 not comm. avail.F 49 – – .30 6 to 50 5 to 46 not comm. avail.

CuAl8Fe3 p – – 2.0932.08 by arrangement not comm. avail.F 47 – – .97 10 to 80 8 to 70 not comm. avail.F 59 – – .30 8 to 50 8 to 46 not comm. avail.

CuAl9Mn2 p – – 2.0960.08 by arrangement not comm. avail.F 49 – – .97 10 to 80 8 to 70 not comm. avail.F 59 – – .98 10 to 50 8 to 46 not comm. avail.

CuAl10Fe3Mn2 p – – 2.0936.08 by arrangement not comm. avail.F 59 – – .97 12 to 80 10 to 60 not comm. avail.F 69 – – .98 12 to 50 10 to 46 not comm. avail.

CuAl10Ni5Fe4 p – – 2.0966.08 by arrangement not comm. avail.F 64 – – .97 12 to 80 10 to 60 not comm. avail.F 74 – – .98 18 to 50 10 to 46 not comm. avail.

CuAl11Ni6Fe5 p – – 2.0978.08 by arrangement not comm. avail.F 73 – – .97 12 to 80 10 to 60 not comm. avail.F 83 – – .98 12 to 50 10 to 46 not comm. avail.

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 224

Page 226: Niemet_Buch_En_72dpi

225

BRASS AS ROLLED SF PRODUCT

Breaking Elongation Vickers hardness HV Brinell hardness HB Grain sizeA5 % A10 % AL 50 %min. min. min. min. max. min. max. mm

35 30 – – – – – –– – – 90 125 90 115 –

18 15 – – – – – –– – – 125 155 115 145 –8 5 – – – – – –– – – 155 180 145 165 –– – – – – – – –– – – 180 – 165 – –

13 10 – – – – – –– – – 100 140 95 135 –

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Tensile strength 0.2% Breaking elongation Brinell hardness Vickers hardness ElectricalElongation limit conductivity

Rm Rp0.2 A5 AL=100 HB HV mÖ x mm2

N /mm2 N /mm2 % %min. min. min. min. ≈ min. max. min.

without defined strength values – –490 120 35 – 90 – –490 270 15 – 130 – –

without defined strength values – –470 200 25 – 110 – –590 270 10 – 150 – –

without defined strength values – –490 200 25 – 110 – –590 250 15 – 150 – –

without defined strength values – –590 250 12 – 150 – –690 340 7 – 180 – –

without defined strength values – –640 270 15 – 180 – –740 390 10 – 195 – –

without defined strength values – –730 440 5 – 210 – –830 590 – – 240 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 225

Page 227: Niemet_Buch_En_72dpi

226

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Square /hexagonal

bar RectangularRound bar Edge length barDiameter Spanner Thickness

Not heat heat widthDesignation treated treated No. mm mm mm

CuBe2 F 42 – – 2.1247.40 2 to 60 to 55 to 50CuBe2Pb F 115 – – 2.1248.60 2 to 60 to 55 to 50

F 65 – – .55 2 to 25 to 20 to 15F 65 – – .55 25 to 35 20 to 30 15 to 25F 130 – – .75 2 to 25 to 15 to 15F 130 – – .75 25 to 35 20 to 30 15 to 25

CuCo2Be F 25 – – 2.1285.40 2 to 60 to 55 to 50CuNi2Be F 65 – – 2.0850.60 2 to 60 to 55 to 50

F 50 – – .56 2 to 25 to 20 to 15F 50 – – .56 25 to 35 20 to 30 15 to 25F 80 – – .76 2 to 25 to 20 to 20F 80 – – .76 25 to 35 20 to 30 15 to 25

CuCrZr p – – 2.1293.08 by arrangementF 37 – – .60 to 120 to 100 to 100F 44 – – .73 to 50 to 45 to 10F 47 – – .77 to 25 to 20 to 6

CuNi1.5Si F 44 – – 2.0853.60 to 90 to 75 to 40F 41 – – .53 to 30 to 27 –F 59 – – .73 to 30 to 27 –

CuNi2Si p – – 2.0855.08 by arrangementF 26 – – .40 to 90 to 75 to 40F 49 – – .60 to 90 to 75 to 40F 41 – – .53 to 30 to 27 –F 64 – – .73 to 30 to 27 –

CuNi3Si p – – 2.0857.08 by arrangementF 69 – – .60 to 90 to 75 to 40F 61 – – .53 to 20 to 17 –F 83 – – .73 to 20 to 17 –

CuNi7Zn39Mn5Pb3 F 51 – – 2.0771.26 10 to 45 – by arragem.F 59 – – .30 8 to 12 – by arragem.

CuNi10Fe1Mn p – – 2.0872.08 by arrangement not comm. avail.F 28 – – .10 min. 10 min. 8 not comm. avail.F 35 – – .26 to 20 to 17 not comm. avail.

CuNi12Zn24 F 34 – – 2.0730.10 min. 10 min. 8 by arragem.F 44 – – .26 3 to 40 3 to 30 by arragem.F 54 – – .30 2 to 10 2 to 8 by arragem.F 64 – – .32 1 to 4 – by arragem.

CuNi12Zn30Pb1 F 41 – – 2.0780.26 2 to 12 2 to 10 by arragem.F 49 – – .30 2 to 10 2 to 8 by arragem.

CuNi18Zn19Pb1 F 43 – – 2.0790.26 2 to 12 2 to 10 by arragem.F 53 – – .30 2 to 10 2 to 8 by arragem.

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 226

Page 228: Niemet_Buch_En_72dpi

227

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Tensile strength 0.2% Breaking elongation Brinell hardness Vickers hardness ElectricalElongation limit conductivity

Rm Rp0.2 A5 AL=100 HB HV mÖ x mm2

N /mm2 N /mm2 % %min. min. min. min. ≈ min. max. min.

420 to 600 140 to 210 – 35 – 90 125 –1150 to 1350 1000 to 1250 – – – 360 390 –650 to 800 500 to 750 – – – 200 250 –600 to 800 500 to 750 – – – 180 240 –

1300 to 1500 1150 to 1400 – – – 390 430 –1200 to 1500 1050 to 1400 – – – 380 420 –250 to 370 140 to 210 – 20 – 70 100 25650 to 800 500 to 650 – 8 – 195 235 25500 to 600 430 to 530 – – – 140 180 25450 to 550 380 to 480 – – – 130 180 25800 to 950 730 to 880 – – – 220 260 25750 to 900 680 to 830 – – – 210 260 25

without defined strength valuesmin. 370 min. 270 18 – 125 – – 44min. 440 min. 350 10 – 145 – – 43min. 470 min. 440 8 – 155 – – 43min. 440 min. 290 17 – 140 – – 18min. 410 min. 290 9 – 125 – – 18min. 590 min. 540 12 – 180 – – 18

without defined strength valuesmin. 260 min. 60 35 – 70 – – 17min. 490 min. 340 15 – 160 – – 17min. 410 min. 340 8 – 140 – – 17min. 640 min. 590 10 – 190 – – 17

without defined strength valuesmin. 690 min. 540 8 – 200 – – 15min. 610 min. 550 8 – 180 – – 15min. 830 min. 780 10 – 220 – – 15min. 370 min. 370 12 – 150 – –min. 590 min. 440 5 – 170 – –

without defined strength values – –280 bis 360 100 30 – 80 – –min. 350 250 10 – 110 – –

340 to 440 max. 290 40 – 85 – –440 to 540 min. 290 18 – 135 – –540 to 640 min. 440 8 – 165 – –min. 640 min. 540 – – 195 – –

410 to 490 min. 240 25 – 120 – –min. 490 min. 370 8 – 150 – –

430 bis 530 min. 290 25 – 135 – –min. 530 min. 420 6 – 160 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 227

Page 229: Niemet_Buch_En_72dpi

228

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Square /hexagonal

bar RectangularRound bar Edge length barDiameter Spanner Thickness

Not heat heat widthDesignation treated treated No. mm mm mm

CuNi18Zn20 F 39 – – 2.0740.10 min. 10 min. 8 by arragem.F 47 – – .26 3 to 40 3 to 30 by arragem.F 54 – – .30 2 to 10 2 to 8 by arragem.F 64 – – .32 1 to 4 – by arragem.

CuNi30Mn1Fe F 34 – – 2.0882.10 min. 10 min. 8 not comm. avail.F 42 – – .26 to 20 to 17 not comm. avail.

CuPb1P F 22 – – .10 to 50 to 35 over 5F 26 – – .26 to 50 to 35 over 5

CuSp F 22 – – .10 to 50 to 35 over 5F 26 – – .26 to 50 to 35 over 5

CuTeP F 22 – – .10 to 50 to 35 over 5F 26 – – .26 to 50 to 35 over 5

CuZn15 F 26 – – 2.0240.10 min. 10 min. 8 min. 6F 31 – – .26 to 40 to 35 to 6

CuZn20Al2 p – – 2.0460.08 by arrangementCuZn23Al6Mn4Fe3 F 78 – – 2.0500.88 10 to 80 9 to 70 5 to 40CuZn30 F 28 – – 2.0265.10 min. 10 min. 8 min. 6

F 35 – – .26 to 40 to 35 to 6CuZn31Si1 p – – 2.0490.08 by arrangement

F 44 – – .27 6 to 50 5 to 46 5 to 20F 49 – – .31 6 to 25 5 to 22 5 to 12

CuZn35Ni2 p – – 2.0540.08 by arrangementF 44 – – .09 30 to 90 27 to 80 20 to 50F 49 – – .27 15 to 50 14 to 46 12 to 30F 54 – – .31 6 to 15 5 to 14 5 to 12

CuZn37 p – – 2.0321.08 by arrangementzh – – .20 by arrangement

F 29 – – .10 min. 10 min. 8 min. 6F 37 – – .26 to 40 to 35 to 6

CuZn37Al1 F 44 – – .27 10 to 80 9 to 70 –F 51 – – .31 6 to 50 5 to 46 –

CuZn36Pb1.5 p – – 2.0331.08 by arrangementzh – – .20 by arrangement

F 29 – – .10 min. 10 min. 8 min. 6F 37 – – .26 to 40 to 35 to 6F 44 – – .30 to 12 to 10 to 4

CuZn36Pb3 p – – 2.0375.08 by arrangementzh – – .20 by arrangement

F 34 – – .10 min. 10 min. 8 min. 6F 41 – – .26 to 40 to 35 to 6F 47 – – .30 to 12 to 10 to 4

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 228

Page 230: Niemet_Buch_En_72dpi

229

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Tensile strength 0.2% Breaking elongation Brinell hardness Vickers hardness ElectricalElongation limit conductivity

Rm Rp0.2 A5 AL=100 HB HV mÖ x mm2

N /mm2 N /mm2 % %min. min. min. min. ≈ min. max. min.

390 to 470 max. 290 40 – 95 – –470 to 540 min. 340 22 – 135 – –540 to 40 min. 440 5 – 165 – –min. 640 min. 570 – – 190 – –

340 to 420 200 35 – 90 – –min. 420 300 14 – 120 – –

220 to 260 min. 50 35 – 60 – 50min. 260 min. 200 7 – 85 – 50

220 to 260 min. 50 35 – 60 – 50min. 260 min. 200 7 – 85 – 50

220 to 260 min. 50 35 – 60 – 50min. 260 min. 200 7 – 85 – 50min. 260 max. 160 43 – 65 – –min. 310 min. 220 22 – 95 – –

without defined strength values – –780 540 8 – 190 – –280 max. 180 50 – 70 – –350 min. 230 30 – 110 – –

without defined strength values – –440 200 22 – 120 – –490 290 15 – 150 – –

without defined strength values – –440 190 20 – 120 – –490 290 18 – 130 – –540 390 12 – 150 – –

without defined strength values – –without defined strength values – –

290 max. 250 45 – 75 – –370 min. 250 27 – 110 – –440 200 20 – 125 – –540 280 15 – 145 – –

without defined strength values – –without defined strength values – –

290 max. 250 45 – 75 – –370 min. 250 27 – 110 – –440 min. 340 14 – 135 – –

without defined strength values – –without defined strength values – –

340 max. 250 35 – 85 – –400 min. 250 18 – 115 – –460 min. 350 12 – 140 – –

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 229

Page 231: Niemet_Buch_En_72dpi

230

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Square /hexagonal

bar RectangularRound bar Edge length barDiameter Spanner Thickness

Not heat heat widthDesignation treated treated No. mm mm mm

CuZn38Pb1.5 p – – 2.0321.08 by arrangementzh – – .20 by arrangement

F 34 – – .10 min. 10 min. 8 min. 6F 41 – – .26 to 40 to 35 to 6F 47 – – .30 to 12 to 10 to 4

CuZn39Pb2 p – – 2.0380.08 by arrangementzh – – .20 by arrangement

F 36 – – .10 min. 10 min. 8 min. 6F 43 – – .26 to 40 to 35 to 6F 49 – – .30 to 12 to 10 to 4

CuZn39Pb3 p – – 2.0401.08 by arrangementCuZn40Pb2 zh – – 2.0402.20 by arrangement

F 36 – – .10 min. 10 min. 8 min. 6F 43 – – .26 to 40 to 35 to 6F 50 – – .30 to 12 to 10 to 4

CuZn40 p – – 2.0360.08 by arrangementzh – – .20 by arrangement

F 34 – – .10 min. 10 min. 8 min. 6F 41 – – .26 to 40 to 35 to 6

CuZn40Al1 p – – 2.0561.08 by arrangementF 44 – – .27 10 to 80 9 to 70 –F 51 – – .31 6 to 50 5 to 46 –

CuZn40Al2 p – – 2.0550.08 by arrangementF 54 – – .27 10 to 80 9 to 70 –F 59 – – .31 8 to 50 7 to 46 –F 64 – – .33 6 to 15 – –

CuZn40Mn2 p – – 2.0572.08 by arrangementF 44 – – .27 10 to 80 9 to 70 5 to 30F 49 – – .31 6 to 30 5 to 27 5 to 12

CuZn40Mn1Pb p – – 2.0580.08 by arrangementF 39 – – .09 10 to 80 9 to 70 5 to 30F 44 – – .27 6 to 50 5 to 46 5 to 20F 49 – – .31 4 to 20 4 to 17 4 to 10

CuZr F 35 – – .70 6 to 25 6 to 25 to 10F 30 – – .70 over 25 over 25 over 10

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 230

Page 232: Niemet_Buch_En_72dpi

231

BRASS AS EXTRUDED / DRAWN SF PRODUCT

Tensile strength 0.2% Breaking elongation Brinell hardness Vickers hardness ElectricalElongation limit conductivity

Rm Rp0.2 A5 AL=100 HB HV mÖ x mm2

N /mm2 N /mm2 % %min. min. min. min. ≈ min. max. min.

without defined strength values – –without defined strength values – –

340 max. 250 35 – 90 – –410 min. 250 18 – 120 – –470 min. 350 12 – 140 – –

without defined strength values – –without defined strength values – –

360 max. 250 32 – 90 – –430 min. 250 18 – 120 – –490 min. 390 11 – 145 – –

without defined strength values – –without defined strength values – –

360 max. 250 32 – 90 – –430 min. 250 15 – 125 – –500 min. 390 11 – 145 – –

without defined strength values – –without defined strength values – –

340 max. 250 35 – 90 – –410 min. 250 20 – 120 – –

without defined strength values – –440 200 20 – 125 – –510 270 15 – 145 – –

without defined strength values – –540 240 18 – 150 – –590 270 14 – 160 – –640 310 10 – 170 – –

without defined strength values – –440 170 20 – 120 – –490 270 18 – 135 – –

without defined strength values – –390 150 22 – 110 – –440 180 18 – 120 – –490 290 15 – 140 – –350 310 13 – 115 – 50300 250 20 – 95 – 50

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 231

Page 233: Niemet_Buch_En_72dpi

232

ABOUT OUR INNER PRODUCTIVITY

We assume that the ‘factory of the future’ will view economy and extre-

me adaptability as having simultaneous functionality. Customers who

have come close to this ideal, that is, who can perhaps produce exclusively

along order-driven lines, have also contributed decisively to the system capa-

bility of our performance package. The strong will for personal productivity

and constant improvement in our work was the prerequisite for for this pro-

cess, because:

The new combination of the elements in this package (purchasing, stocking,

processing, transportation, etc.) from one order to the next to create the cor-

responding optimum depends on a workforce that effortlessly controls the

whole system and exploits it in an enterprising fashion.

They do not merely administer facilities but organise processes in the interests

of their customers. They are trained for this purpose to become skilled and

responsible entrepreneurs.

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 232

Page 234: Niemet_Buch_En_72dpi

RANGE OF STOCKBRASS

We expand our range almost daily,especially where customer needs are concerned.

We take care of your stocking.Just tell us what you need.

NiemannENG_197_250_MES 04.10.2007 16:58 Uhr Seite 233

Page 235: Niemet_Buch_En_72dpi

234

SHEET

DIN 1751, 17660, 17670EN 1652

Our processing centre suppliesevery kind of cut !

CuZn15 CuZn37 CuZn39Pb2Format F 31 F 30 F 37 F 44 F 54/WH F 49/WH

Thickness Width x length CW502L CW508L CW508L CW508L CW508L CW612NR 300 R 300 R 350 R 410 R 490

mm mm

0.10 300 x 2000 c

0.20 600 x 2000 c c

0.30 600 x 2000 c c c

0.40 600 x 2000 c c c c

0.50 600 x 2000 c c c c

1000 x 2000 c c

0.60 600 x 2000 c c c

1000 x 2000 c c

0.70 600 x 2000 c c c

1000 x 2000 c c

0.80 600 x 2000 c c c c

800 x 2000 c c

1000 x 2000 c c

1.00 600 x 2000 c c c c

800 x 2000 c c

1000 x 2000 c c

1250 x 2500 c

1.20 600 x 2000 c c c c c

800 x 2000 c c

1000 x 2000 c c

1.50 600 x 2000 c c c c c

800 x 2000 c c

1000 x 2000 c c

2.00 600 x 2000 c c c c c

800 x 2000 c c

1000 x 2000 c c

2.50 600 x 2000 c c c c c

1000 x 2000 c

3.00 600 x 2000 c c c c c

800 x 2000 c

1000 x 2000 c

4.00 600 x 2000 c c c c

1000 x 2000 c

5.00 600 x 2000 c c

1000 x 2000 c

6.00 600 x 2000 c c

1000 x 2000 c c

7.00 600 x 2000 c c

8.00 600 x 2000 c c c

800 x 3000 c

1000 x 2000 c

10.00 800 x 3000 c

1000 x 2000 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 234

Page 236: Niemet_Buch_En_72dpi

235

SHEET

DIN 1751, 17660, 17670EN 1652

Our processing centre suppliesevery kind of cut !

CuZn15 CuZn37 CuZn39Pb2Format F 31 F 30 F 37 F 44 F 54/WH F 49/WH

Thickness Width x length CW502L CW508L CW508L CW508L CW508L CW612NR 300 R 300 R 350 R 410 R 490

mm mm

10.00 1000 x 3000 c

12.00 800 x 2000 c

1000 x 2000 c

1000 x 3000 c

15.00 800 x 2000 c

1000 x 2000 c

1000 x 3000 c

16.00 1000 x 2000 c

20.00 1000 x 2000 c c

22.00 800 x 2000 c

25.00 1000 x 2000 c c

1000 x 3000 c

30.00 1000 x 2000 c

1000 x 3000 c

35.00 1000 x 2000 c c

40.00 800 x 3000 c

1000 x 2000 c

45.00 800 x 2000 c

1000 x 2000 c c

50.00 1000 x 2000 c c

55.00 1000 x 2000 c

60.00 1000 x 2000 c

70.00 1000 x 2000 c

80.00 600 x 2000 c

1000 x 2000 c

90.00 1000 x 2000 c

100.00 600 x 2000 c

1000 x 1000 c

120.00 1000 x 2000 c

150.00 1000 x 1000 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 235

Page 237: Niemet_Buch_En_72dpi

236

STRIP

DIN 1751, 17660, 17670EN 1652

We slit every width from 10mm to 550mm.Naturally, no minimum quantities.

CuZn30 CuZn37 CuZn15F 42 F 30 F 37 F 44 F 54 F 26-37

Thickness CW505L CW508L CW508L CW508L CW508L CW502LR 410 R 300 R 350 R 410 R 550 R 260-350

mm

0.20 c c c

0.25 c c c c c

0.30 c c c c c c

0.35 c c c c c

0.40 c c c c c

0.50 c c c c c

0.60 c c c c c c

0.70 c c c c

0.75 c c

0.80 c c c c c c

0.90 c c c

1.00 c c c c

1.25 c c c c

1.50 c c c c c

1.80 c c

2.00 c c c c

2.20 c c c

2.50 c c c

3.00 c c

Raw material cycle

Precision and strictest tolerances cut reject costs and simplify processing.

Take advantage of the NIEc MET raw material cycle.

NiemannENG_197_250_MES 04.10.2007 16:58 Uhr Seite 236

Page 238: Niemet_Buch_En_72dpi

237

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

3.0 0.5 c

4.0 0.5 c

1.0 c

5.0 0.5 c

1.0 c

2.0 c

6.0 0.3 c

0.5 c

0.7 c

1.0 c

1.5 c

2.0 c

7.0 0.5 c

1.0 c

1.5 c

8.0 0.5 c

0.75 c

1.0 c

1.5 c c

2.0 c c

2.5 c

9.0 0.5 c

1.0 c

1.5 c c

9.8 1.0 c

10.0 0.5 c

0.7 c

1.0 c

1.5 c

2.0 c c

2.5 c

3.0 c

11.0 0.5 c

1.0 c

2.0 c

3.5 c

12.0 0.5 c

0.7 c

1.0 c

1.5 c c

2.0 c c

2.5 c c

3.0 c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

12.0 3.5 c c

13.0 0.5 c

1.0 c

1.5 c

2.0 c

2.5 c c

3.0 c

14.0 0.5 c

1.0 c

1.5 c

2.0 c c

2.5 c

3.0 c

3.5 c

15.0 0.5 c

0.7 c

1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

16.0 0.5 c

0.7 c

1.0 c c

1.5 c

2.0 c c

2.5 c

3.0 c

3.5 c

4.0 c

17.0 0.3 c

0.51.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

18.0 0.5 c

1.0 c

1.5 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 237

Page 239: Niemet_Buch_En_72dpi

238

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

18.0 2.0 c c

2.5 c

3.0 c

4.0 c

5.0 c

19.0 0.7 c

1.0 c

1.5 c

2.5 c

3.0 c

20.0 0.5 c

1.0 c

1.5 c c

2.0 c c

2.5 c c

3.0 c

3.5 c

4.0 c

5.0 c

5.5 c

6.0 c

21.0 3.0 c

4.0 c

22.0 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

23.0 0.5 c

1.0 c

3.0 c

4.0 c

24.0 0.5 c

1.0 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

24.0 4.5 c

5.0 c

6.0 c

25.0 0.5 c

1.0 c

1.5 c c

2.0 c c

2.5 c c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

7.5 c

26.0 1.0 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

27.0 2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

28.0 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

5.5 c

6.0 c

8.0 c

29.0 2.5 c

4.0 c

5.0 c

30.0 0.5 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 238

Page 240: Niemet_Buch_En_72dpi

239

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

30.0 1.0 c

1.5 c c

2.0 c c

2.5 c c

3.0 c

3.5 c

4.0 c

4.5 c

5.0 c

5.5 c

6.0 c

6.5 c

7.0 c

7.5 c

8.0 c

9.0 c

10.0 c

11.0 c

31.0 3.0 c

32.0 0.5 c

1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

7.0 c

8.0 c

10.0 c

33.0 2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

9.5 c

34.0 1.0 c

2.0 c

3.0 c

3.5 c c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

34,0 4.0 c

5.0 c

35.0 0.5 c

1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

4.5 c

5.0 c

5.5 c

6.0 c

7.0 c

7.5 c

8.0 c

9.0 c

10.0 c

11.0 c

12.5 c

36.0 0.5 c

1.0 c

2.5 c

3.0 c

4.0 c

6.0 c

37.0 1.0 c

3.0 c

4.0 c

5.0 c

10.0 c

38.0 1.0 c

1.5 c c

2.0 c c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

6.5 c

7.0 c

10.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 239

Page 241: Niemet_Buch_En_72dpi

240

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

39.0 10.2 c

40.0 0.5 c

1.0 c

1.5 c

2.0 c c

2.5 c c

3.0 c

3.5 c

4.0 c

4.5 c

5.0 c

6.0 c

7.0 c

7.5 c

8.0 c

9.0 c

10.0 c

11.0 c

15.0 c

41.0 4.0 c

42.0 1.0 c

1.5 c

2.0 c c

2.5 c c

3.0 c

3.5 c

4.0 c

4.5 c

5.0 c

6.0 c

7.5 c

8.0 c

9.0 c

10.0 c

12.0 c

43.0 2.5 c

3.0 c

4.0 c

5.0 c

7.0 c

9.0 c

44.0 2.0* c

4.0 c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

44.0 6.0 c

45.0 1.0 c

1.5 c

2.0 c c

2.5 c c

3.0 c

4.0 c

5.0 c

6.0 c

8.0 c

10.0 c

12.0 c

15.0 c

16.5 c

17.5 c

46.0 3.0 c

4.0 c

5.0 c

9.0 c

47.0 2.0 c

5.5 c

48.0 1.0 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

4.5 c

7.5 c

8.0 c

9.0 c

50.0 0.5 c

1.0 c

1.5 c

2.0* c c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

7.0 c

8.0 c

10.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 240

Page 242: Niemet_Buch_En_72dpi

241

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

50.0 12.5 c

15.0 c

20.0 c

51.0 4.5 c

7.0 c

52.0 1.0 c

2.0 c

3.0 c

3.5 c

4.0 c

4.5 c

5.0 c

7.0 c

53.0 6.5* c

54.0 2.0 c

5.0 c

8.0 c

15.0 c

55.0 1.0 c

2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

8.0 c

8.5 c

10.0 c

15.0 c

56.0 2.5 c

3.0 c c

5.0 c

6.0 c

8.0 c

10.0 c

12.5 c

57.0 1.0 c

3.0 c

4.0 c

6.5 c

58.0 3.0 c

4.0 c

5.0 c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

58.0 12.0 c

59.0 2.0 c

60.0 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

3.5 c

4.0 c

5.0 c

6.0 c

7.0 c

7.5 c

8.0 c

10.0 c

12.5 c

15.0 c

20.0 c

62.0 1.0 c

6.0 c

15.0 c

63.0 5.0 c

18.0 c

64.0 2.0 c

5.0 c

65.0 1.0 c

1.5 c

2.5 c

3.0 c

4.0 c

5.0 c

8.0 c

10.0* c

15.0 c

66.0 3.0 c

5.0 c

8.5 c

68.0 5.0 c

7.0 c

70.0 1.0 c

1.5 c

2.0 c

3.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 241

Page 243: Niemet_Buch_En_72dpi

242

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

70.0 4.0 c

5.0 c

6.0 c

7.0* c

9.0 c

10.0 c

11.0 c

12.5 c

15.0 c

20.0 c

22.5 c

24.5 c

71.0 3.0 c

72.0 3.0 c

4.5 c

5.0 c

6.0 c

74.0 2.0 c

6.0 c

75.0 1.5 c

2.5 c

3.0 c

5.0 c

6.0 c

8.0 c

10.0 c

12.5 c

17.5 c

20.0 c

76.0 3.0 c

78.0 5.0 c

80.0 1.0 c

1.5 c

2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

7.0 c

8.0 c

10.0 c

12.5 c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

80.0 15.0* c

20.0 c

82.0 3.0 c

7.0 c

8.0 c

16.0 c

85.0 2.0 c

2.5 c

5.0 c

7.5 c

10.0 c

12.0 c

12.5 c

20.0 c

25.0 c

90.0 2.0 c

2.5 c

3.0 c

4.0 c

5.0 c

6.0 c

8.0 c

10.0* c

15.0 c

20.0 c

95.0 2.5 c

5.0 c

8.0 c

10.0 c

15.0 c

96.0 3.0 c

98.0 5.0 c

100 1.0 c

2.0 c

2.5 c

3.0 c

5.0 c

6.0 c

7.0 c

8.0 c

10.0 c

12.5 c

15.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 242

Page 244: Niemet_Buch_En_72dpi

243

PIPING

DIN 1755, 17660, 17671, 59750, 59752EN 12449, 12451

CuZn39Pb3 = approx. 3m longCuZn37 = approx. 5m long

* also termally relieved

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

100 17.5 c

20.0 c

30.0 c

105 2.5 c

5.0 c

108 4.0 c

110 4.0 c

5.0 c

6.0 c

10.0 c

25.0 c

111 18.0 c

115 2.5 c

5.0 c

10.0 c

15.0 c

120 2.0 c

5.0 c

10.0 c

15.0 c

20.0 c

10.0 c

125 5.0 c

Dia- Wall CuZn39Pb3 CuZn37meter thickness CW614N CW508L

mm mm

125 10.0 c

12.0 c

20.0 c

130 5.0 c

10.0 c

20.0 c

25.0 c

30.0 c

35.0 c

133 2.0 c

6.0 c

140 5.0 c

10.0 c

20.0 c

150 2.0 c

5.0 c

10.0 c

20.0 c

160 5.0 c

10.0 c

170 3.0 c

20.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 243

Page 245: Niemet_Buch_En_72dpi

244

T-PROFILE

Height CuZnx width x thickness 39Pb3

CW614Nmm

10 x 10 x 1.0 c

x 10 x 2.0 c

12 x 12 x 2.0 c

15 x 15 x 2.0 c

Height CuZnx width x thickness 39Pb3

CW614Nmm

20 x 20 x 2.0 c

25 x 25 x 2.0 c

x 25 x 3.0 c

30 x 30 x 2.0 c

Height CuZnx width x thickness 39Pb3

CW614Nmm

30 x 30 x 3.0 c

40 x 40 x 4.0 c

50 x 50 x 4.0 c

U-PROFILE

Height CuZnx width x thickness 39Pb3

CW614Nmm

6 x 6 x 1.0 c

8 x 8 x 1.0 c

10 x 10 x 1.0 c

x 10 x 2.0 c

12 x 12 x 1.0 c

Height CuZnx width x thickness 39Pb3

CW614Nmm

12 x 12 x 2.0 c

15 x 15 x 2.0 c

20 x 20 x 2.0 c

25 x 25 x 2.0 c

x 25 x 3.0 c

Height CuZnx width x thickness 39Pb3

CW614Nmm

30 x 30 x 2.0 c

x 30 x 3.0 c

35 x 35 x 3.0 c

40 x 40 x 4.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 244

Page 246: Niemet_Buch_En_72dpi

245

PROFILE

DIN 17660, 17672, 17674EN 12163, 12164, 12165, 12167 in lengths of approx. 5m

Dia CuZnmeter Radius 39Pb3

CW614Nmm mm

10 5.0 c

12 6.0 c

16 5.0 c

20 5.0 c

20 10.0 c

Dia- CuZnmeter Radius 39Pb3

CW614Nmm mm

25 5.0 c

25 10.0 c

30 5.0 c

30 8.0 c

30 15.0 c

Dia CuZnmeter Radius 39Pb3

CW614Nmm mm

35 5.0 c

40 6.0 c

40 12.0 c

40 15.0 c

ANGLE

DIN 17660, 17674

Height CuZnx width Thickness 39Pb3

CW614Nmm mm

8 x 8 1.0 c

10 x 10 1.0 c

x 10 2.0 c

x 10 3.0 c

12 x 12 1.0 c

x 12 2.0 c

x 12 3.0 c

15 x 10 2.0 c

x 15 1.0 c

x 15 2.0 c

x 15 3.0 c

20 x 10 2.0 c

x 15 2.0 c

x 15 3.0 c

x 20 2.0 c

x 20 3.0 c

x 20 4.0 c

25 x 10 2.0 c

x 15 2.0 c

Height CuZnx width Thickness 39Pb3

CW614Nmm mm

25 x 20 2.0 c

x 25 2.0 c

x 25 3.0 c

x 25 4.0 c

30 x 10 2.0 c

x 15 2.0 c

x 15 3.0 c

x 20 2.0 c

x 20 3.0 c

x 30 2.0 c

x 30 3.0 c

x 30 4.0 c

x 30 5.0 c

35 x 35 2.0 c

x 35 3.0 c

x 35 4.0 c

x 35 5.0 c

40 x 20 2.0 c

x 20 3.0 c

Height CuZnx width Thickness 39Pb3

CW614Nmm mm

40 x 20 4.0 c

x 30 3.0 c

x 40 2.0 c

x 40 3.0 c

x 40 4.0 c

x 40 5.0 c

50 x 25 3.0 c

x 25 4.0 c

x 50 3.0 c

x 50 4.0 c

x 50 5.0 c

60 x 40 4.0 c

x 60 5.0 c

x 60 6.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 245

Page 247: Niemet_Buch_En_72dpi

246

FLAT

DIN 1759, 17660, 17672, 17674EN 12163, 12164, 12165, 12167

Every flat dimension not listed is sup-plied, sawn with a width tolerance of0.1mm, by our processing centre.

CuZn39Pb3Width x thickness CW614N

mm

5 x 2.0 c

x 2.5 c

6 x 2.0 c

x 3.0 c

x 4.0 c

6.5 x 5.0 c

7.5 x 6.0 c

8 x 1.5 c

x 2.0 c

x 2.5 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

10 x 1.5 c

x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

12 x 1.5 c

x 2.0 c

x 2.5 c

x 3.0 c

x 3.5 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

14 x 2.0 c

x 3.0 c

x 4.0 c

x 8.0 c

x 10.0 c

15 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 7.0 c

x 8.0 c

CuZn39Pb3Width x thickness CW614N

mm

15 x 10.0 c

x 12.0 c

16 x 5.0 c

x 8.0 c

x 12.0 c

18 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 7.0 c

x 8.0 c

x 10.0 c

20 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

25 x 1.5 c

x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

26 x 3.0 c

30 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

CuZn39Pb3Width x thickness CW614N

mm

30 x 25.0 c

35 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

40 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

45 x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

50 x 2.0 c

x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 246

Page 248: Niemet_Buch_En_72dpi

247

FLAT

DIN 1759, 17660, 17672, 17674EN 12163, 12164, 12165, 12167

Every flat dimension not listed is sup-plied, sawn with a width tolerance of0.1mm, by our processing centre.

CuZn39Pb3Width x thickness CW614N

mm

50 x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

55 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

60 x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

65 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

70 x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

CuZn39Pb3Width x thickness CW614N

mm

70 x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

75 x 5.0 c

x 8.0 c

x 10.0 c

x 20.0 c

x 25.0 c

x 30.0 c

80 x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

x 50.0 c

x 60.0 c

90 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

x 60.0 c

100 x 5.0 c

x 6.0 c

x 8.0 c

CuZn39Pb3Width x thickness CW614N

mm

100 x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 35.0 c

x 40.0 c

x 50.0 c

x 60.0 c

110 x 8.0 c

x 10.0 c

x 20.0 c

x 30.0 c

x 35.0 c

120 x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

x 50.0 c

130 x 15.0 c

x 20.0 c

140 x 20.0 c

x 30.0 c

x 40.0 c

x 60.0 c

150 x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

x 40.0 c

x 50.0 c

200 x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 30.0 c

x 40.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 247

Page 249: Niemet_Buch_En_72dpi

248

FLAT

DIN 1759, 17660, 17672, 17674EN 12163, 12164, 12165, 12167

Every flat dimension not listed is sup-plied, sawn with a width tolerance of0.1mm, by our processing centre.

CuZn39Pb3Width x thickness CW614N

mm

200 x 50.0 c

CuZn39Pb3Width x thickness CW614N

mm

250 x 20,0 c

SQUARE

DIN 1761, 17672, 17660EN 12163, 12164, 12165, 12167

Edge length CuZn39Pb3CW614N

mm

3.0 c

4.0 c

4.5 c

5.0 c

5.5 c

6.0 c

7.0 c

8.0 c

9.0 c

10.0 c

11.0 c

12.0 c

13.0 c

14.0 c

15.0 c

16.0 c

17.0 c

Edge length CuZn39Pb3CW614N

mm

18.0 c

19.0 c

20.0 c

22.0 c

24.0 c

25.0 c

26.0 c

27.0 c

28.0 c

30.0 c

32.0 c

34.0 c

35.0 c

36.0 c

38.0 c

40.0 c

41.0 c

Edge length CuZn39Pb3CW614N

mm

42.0 c

45.0 c

46.0 c

50.0 c

55.0 c

60.0 c

65.0 c

70.0 c

80.0 c

90.0 c

100.0 c

110.0 c

120.0 c

130.0 c

150.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 248

Page 250: Niemet_Buch_En_72dpi

249

ROUND

DIN 1756, 1782, 17660, 17672EN 12163, 12164, 12165, 12167

Dia- CuZn CuZn CuZnmeter 39Pb3 35Ni2Mn 38Pb2

CW614N CW710R CW608Nmm

1.4 c

2.0 c

2.5 c

3.0 c

3.2 c c

3.5 c

4.0 c c c

4.5 c

4.8 c

5.0 c c

5.5 c

6.0 c c

6.2 c

6.5 c

7.0 c c

7.5 c

8.0 c c

8.5 c

9.0 c c

9.5 c

10.0 c c

10.5 c

11.0 c

11.5 c

12.0 c c c

12.5 c

13.0 c

13.5 c

14.0 c c

14.5 c c

15.0 c c

15.5 c

16.0 c c c

16.5 c

17.0 c c

17.5 c

18.0 c c c

18.5 c

19.0 c c

19.5 c

20.0 c c c

20.5 c

21.0 c

Dia- CuZn CuZn CuZnmeter 39Pb3 35Ni2Mn 38Pb2

CW614N CW710R CW608Nmm

21.5 c

22.0 c c

22.5 c

23.0 c

23.5 c

24.0 c c

25.0 c c c

25.5 c

26.0 c c

27.0 c

27.5 c

28.0 c c

29.0 c

30.0 c c c

31.0 c

32.0 c c

33.0 c

34.0 c c

35.0 c c

36.0 c c c

37.0 c

38.0 c

39.0 c

40.0 c c

41.0 c

42.0 c c

43.0 c

44.0 c

45.0 c c

46.0 c c

48.0 c c

50.0 c c

52.0 c

53.0 c

55.0 c c

56.0 c

58.0 c c

60.0 c c

63.0 c

65.0 c c

70.0 c c

75.0 c c

80.0 c c

Dia- CuZn CuZn CuZnmeter 39Pb3 35Ni2Mn 38Pb2

CW614N CW710R CW608Nmm

81.0 c

85.0 c

90.0 c c

95.0 c c

100.0 c

105.0 c

110.0 c c

115.0 c

120.0 c

125.0 c

130.0 c c

135.0 c

140.0 c c

145.0 c

150.0 c

160.0 c

170.0 c

180.0 c

185.0 c

190.0 c

200.0 c

210.0 c

220.0 c

230.0 c

250.0 c

280.0 c

300.0 c

350.0 c

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 249

Page 251: Niemet_Buch_En_72dpi

250

HEXAGONAL

DIN 17660, 1763, 17672

Spanner CuZn CuZnwidth 39Pb3 36Ni2

CW614N CW710Rmm

2.5 c

3.0 c

3.5 c

4.0 c

4.5 c

5.0 c

5.5 c

6.0 c

7.0 c

8.0 c

9.0 c

10.0 c

11.0 c

12.0 c

13.0 c

14.0 c c

15.0 c

16.0 c

17.0 c c

Spanner CuZn CuZnwidth 39Pb3 36Ni2

CW614N CW710Rmm

17.5 c

18.0 c

19.0 c c

20.0 c

21.0 c

22.0 c

23.0 c

24.0 c c

25.0 c

26.0 c

27.0 c c

28.0 c

29.0 c

30.0 c c

32.0 c c

33.0 c

34.0 c

35.0 c

36.0 c c

Spanner CuZn CuZnwidth 39Pb3 36Ni2

CW614N CW710Rmm

38.0 c

40.0 c

41.0 c c

42.0 c

43.0 c

46.0 c c

48.0 c

50.0 c

55.0 c c

60.0 c

65.0 c

70.0 c

75.0 c

80.0 c

85.0 c

90.0 c

100.0 c

110.0 c

What you once paid the full price for should also be completely worth it.

Take full advantage of the NIEc MET raw material cycle, e.g. of our rewor-

king. We collect your brass chips, take them away for smelting and deliver

the reworked material to you as required. You exploit this cycle until your

brass has been completely processed, and pay only the cost of NIEc MET

reworking.

NiemannENG_197_250_MES 27.09.2007 13:04 Uhr Seite 250

Page 252: Niemet_Buch_En_72dpi

BRONZE

NiemannENG_251_276_BRONZE 04.10.2007 16:58 Uhr Seite 251

Page 253: Niemet_Buch_En_72dpi

252

ADVANTAGES OF BRONZE

Bronze as SF product

The term ‘bronze’ comprises copper alloys with tin as the main alloy ele-ment. The common copper-tin wrought alloys contain up to 8.5% tin.

The welding fillers for copper and copper alloys, as well as hard soldersbased on copper from copper- tin alloys, can contain up to 13% tin.

For deoxidisation, 0.01 to 0.35% phosphorus is added to the wroughtalloys; in individual cases it is included in the material description.

Copper-tin alloys may belong to the oldest technically applied coper alloys,but the structure of the copper-rich binary alloys was only vaguely under-stood for a long time, as these alloys, due to their wide solidification inter-val, have a strong tendency towards segregation, and the onset of phaseequilibrium proceeds very slowly. Moreover, the crystallographic similari-ty of the developing phases makes their clear identification difficult.

During solidification, copper-rich mixed crystals are precipitated. Theremaining melt is however considerably richer in tin than the average alloy.The steady increase in tin content of the developing mixed crystals can onlybe compensated by diffusion. This process proceeds very slowly, so that fortechnical reasons, taking the slow diffusion into account, a technical binarydiagram is used.

However, the copper-tin alloys show not only a massive ‘grain segregation’,but also ‘reverse ingotism’. By homogenising anneal, the grain segregationcan be removed through transposition processes, but not the ingotism.

Zinc fillers are important, especially for copper-tin alloys, but copper-tinwrought alloys also sometimes contain zinc as a third alloy element. Zincfillers produce a deoxidisation of the melt, so that phosphorus fillers are notnecessary, and also increase the formability of the wrought alloys. Otherthan this, zinc fillers offer no further technological advantages.

NIE•MET and its hardware bronze

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 252

Page 254: Niemet_Buch_En_72dpi

253

CRITERIA FOR THE SELECTION OF BRONZE

Physical properties

The properties of copper-tin wrought alloys depend mainly on on theirtin content and only secondarily on other alloy elements. They are

adaptable to the most varied processing and application possibilities. Thecombination of good long-term oscillation endurance and high corrosionresistance are especially advantageous in copper-tin wrought alloys.

The salmon-red colour of copper changes with increasing tin content tobrownish-red and yellowish-red and then to reddish-yellow and yellowtones.

The density of binary alloys is little influenced by their tin content. Thesame applies to zinc fillers. The phosphorus content of at most 0.4% usualin copper-tin wrought alloys produces no change of density, either.

Phosphorus strongly reduces electrical conductivity. Zinc also reduces it,but not as strongly as phosphorus. The medium temperature coefficient ofelectrical resistance of copper-tin wrought alloys lies between 0.0007 and0.0008 m/Ω·mm2.

The thermal conductivity of pure copper is almost independent of tempera-ture, whereas in copper-tin wrought alloys – as in other alloys too – it riseswith temperature. The length expansion coefficient increases slightly withthe tin content.

Copper-tin wrought alloys are also used as wear-resistant, heavy-duty bear-ing material. CuSn8P has proved to be excellent for sliding bearings. Thisalloy has good sliding properties although it consists of uniform copper-tinmixed crystals. It is assumed that the slip line formation in the crystal grainscaused by forming plays a role, because this increases oil wettability. Thephosphorus content of the alloy (max. 0.4%) also seem to have a favourableinfluence on the slip characteristics. CuSn8P also has high resistance towear and heat.

The high strain-hardening capacity enables the broad application of copper-tin wrought alloys for spring elements. The hardening effect of phosphorusimproves spring characteristics. Besides CuSn4, CuSn6 and CuSn8 are

bronze NIE•MET and its hardware

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 253

Page 255: Niemet_Buch_En_72dpi

254

mainly used in Germany for spring coils. Both the latter are also used asspring wire (DIN 17682). The main features of these spring materials aretheir well defined bending yield limits, which guarantee minimal settingwork and great constancy in spring characteristics.

Whereas springs in the lower hardness range (HV 160 or HV 170) show ahigher number of alternate bends and are utilised mainly in weak currentengineering, springs in the upper range (HV 180 or HV 190) with the lownumber of bends are applied principally in heavy duty components.

Copper alloys with beryllium at present offer the best combination ofstrength and electrical conductivity. Many attempts have therefore beenmade to improve the qualities of spring materials based on copper-tinalloys. For example, magnesium, titanium and/or chrome fillers have beeninvestigated.

Mechanical properties

The commercially available copper-tin alloys are not heat treatable. Anincrease in tensile strength, 0.2% elongation limit and hardness is thereforeonly possible by cold working.

The elasticity modulus at first increases with rising tin content, reaches amaximum at about 1.5% Sn and falls on further-increasing tin content.

Knowledge of long-term oscillation endurance is vital, especially for thedesign of springs. The fatigue strength under reversed bending in depend-ence on tin content increases with tin content up to 5% Sn, and with thecold working level up to 40%. Cold working above 40% does not lead toany significant increase in fatigue strength under reversed bending.

The notch value of copper-tin alloys rises with tin content and stands at 5%Sn at about 97 J. A further increase in tin content over 5% has only a slighteffect.

Among the binary copper-tin wrought alloys, the strength values rise withthe tin content. Tensile strength, the 0.2% elongation limit and hardnessincrease with rising tin content. Breaking elongation first increases fromabout 3% Sn. Whereas tensile strength, 0.2% elongation limit and Brinell

NIE•MET and its hardware bronze

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 254

Page 256: Niemet_Buch_En_72dpi

255

hardness rise with an increasing cold working level, breaking elongationdecreases. Phosphorus improves the strain hardening capacity of copper-tinwrought alloys.

Mechanical properties at low temperature

Tensile strength and 0.2% elongation limit increase noticeably with fallingtemperatures. Breaking elongation rises slightly up to -150ºC, and thenfalls a little on further-decreasing temperatures; however, at -250º it stillstands significantly higher than the initial value at room temperature.

Consequently, copper-tin wrought alloys have excellent cold temperaturebehaviour. As materials from these alloys do not become brittle at low tem-peratures, they can be applied in cryogenic technology.

Mechanical properties at high temperature

The values for breaking and necking elongation show a brittleness range atmedium temperatures which must be taken into account, e.g. during hotworking.

The strength properties of copper-tin wrought alloys with a certain coldworking deteriorate considerably on increasing temperature.

Heat treatment

The strain hardening of copper-tin wrought alloys achieved by cold work-ing can be partially or completely lost by heat treatment. Depending oncold working level and composition, the soft anneal temperatures of cop-per-tin wrought alloys lie between 475º and 675º. After cold working, stressrelief annealing is occasionally necessary, performed best between 200ºand 300º. Copper-tin wrought alloys with segregation effects ( from 6% tin,rising with increasing tin content) can be put in a favourable initial condi-tion (homogenous structure) before cold working by a homogenisinganneal (at about 700º). The mixed crystals created in casting thereby disap-pear and only crystals of uniform composition remain.

bronze NIE•MET and its hardware

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 255

Page 257: Niemet_Buch_En_72dpi

256

BRONZE ALLOYS

Bronze materials

As already mentioned, some phosphorus is normally added to techni-cally applied copper-tin wrought alloys; this influences crystallisation

and forming processes. For this reason, copper-tin wrought alloys wereonce often called ‘phosphorus bronzes.’

This term is however misleading and should therefore no longer be used.Wrought alloys are also in use which contain zinc as well as tin.

The high strain-hardening capacity of copper-tin wrought alloys is of spe-cial technological significance, especially the binary alloys with a phos-phorus content of up to 0.4%. Connecting work such as soldering and weld-ing present no particular difficulties.

Wrought alloys are strain-hardened by cold working. Taking the unhard-ened condition into account, certain gradations of the hardening level arenoted in the SF product codes by appending to the alloy notation an F withthe number of the minimum tensile strength of the individual stages in twofigures as one tenth of the value of tensile strength in MPa, e.g. CuSn6F63with about 6% Sn and 94% Cu as well as a minimum tensile strength of 630MPa. No strength properties are prescribed for orders with an H number,but the hardness of the material is.

The descriptions formerly used, such as soft, semi-hard, hard, etc., are notsufficiently accurate and should therefore no longer be used for copper-tinwrought alloys.

Spring coils made of CuSn4, CuSn6 and CuSn8 are defined in DIN 1777.An HV with a figure for minimum Vickers hardness for strip in untemperedcondition, and the letters FB with the value of the minimum bending yieldlimit for tempered strip are assigned to the alloy notations, e.g.CuSn6HV180, with a Vickers hardness of at least 180HV in untemperedcondition, or CuSn6FB370, with a bending yield limit of at least 370MPain tempered condition.

NIE•MET and its hardware bronze

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 256

Page 258: Niemet_Buch_En_72dpi

257

PROCESSING BRONZE

Smelting and casting

As already mentioned, copper-zinc alloys have a tendency, due to theirwide solidification interval, towards segregation, hot shortness and

micro-shrinkage. The conduct of heat is mostly oxidising in fuel-heatedfurnaces. This occurs, e.g. in the oxidising furnace atmosphere with oxide-releasing slag. Smelting in electro-furnaces is becoming more and moreimportant. Smelting in these furnaces is conducted under neutral or slight-ly reducing conditions. By subsequent flushing with nitrogen or argon,melts containing gas can be degassed. The melt is almost always deoxidisedwith phosphorised copper in the pan. Moreover, degassing is necessary ifgas absorption cannot be avoided due to the smelting conditions.

Casting temperatures lie about 100ºC above the corresponding liquidustemperature. The phosphorus normally remaining in the standard alloysshould guarantee proper deoxidisation.

Non-cutting shaping

Copper-tin wrought alloys with up to 5% Sn can be hot worked at temper-atures between 700ºC and 800ºC. In alloys containing phosphorus, the low-fusing structural component Cu3P complicates hot working. The workingis therefore preferably performed in cold condition. In alloys containing alarge amount of tin, hot working by forging is only possible through exactobservation of very limited working conditions. Because of the frequentlyoccurring segregation effects, these materials are annealed at about 700ºCfor homogenisation purposes and in this way put in a favourable conditionfor working. A range of reduced forming capacity between 200º and 400ºCshould be noted (hot brittleness).

Copper-tin wrought alloys can be easily cold worked by the usual process-es, such as rolling, drawing, extruding, bordering, bending, edging, deepdrawing, etc. The high strain-hardening of these materials is the reason fortheir wide application in spring elements and wear-resistant sliding bases.

bronze NIE•MET and its hardware

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 257

Page 259: Niemet_Buch_En_72dpi

258

Metal-removing shaping

Copper-tin wrought alloys are not easily cut. When they are turned, longribbon chips and so-called built-up edge are formed at the bent tool, justlike copper, for example. This can be avoided by the appropriate selectionof feed or cutting speed. Cutting speed can be increased in many cases bythe use of cooling and lubrication agents, usually oil emulsions in water.The suspensions containing sulphur often used for steel cutting should notbe applied, as they produce a dark colouring of the surface.

Copper-tin wrought alloys show similar behaviour as they do with turning,when planing, drilling or broaching are performed. Separation work isoften carried out with cutting tools on sheet from copper-tin alloys. Byapplication of a thin coating of solid lubricants such as graphite or molyb-denum sulphide on the material, the durability of the tools can be consider-ably improved.

CONNECTING BRONZE

Welding

Welding copper-tin wrought alloys is normally a matter of no great diffi-culty. Soldering can also be performed without any problems. Bronzealloys are also joined by bonding and mechanical processes.

WIG and resistance welding are best suited for welding copper-tin wroughtalloys. As welding fillers, SG-CuSn6 or SG-CuSn12 (DIN 1733) are used.Thin sheets up to 2mm thick can be connected without welding fillers. Gaswelding is no longer performed because of pore formation due to gasabsorption in the seams. In alloys with low tin content (e.g. CuSn2) gaswelding is only occasionally performed for connecting work. The flame set-ting is usually neutral or weakly oxidising. Boric acid, sodium tetraborate,alkali chlorides, alkali fluorides or alkali phosphates – almost always in theform of mixtures of powder or paste – are used as fluxes. Metal arc weldingis rarely performed today for copper-tin wrought alloys. EL-CuSn7 or EL-CuSn13 (DIN 1733) serve as fillers. Welding is carried out with direct cur-

NIE•MET and its hardware bronze

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 258

Page 260: Niemet_Buch_En_72dpi

259

rent and with the electrode at the positive pole. To prevent pore formation inthe welding seams the material is preheated to about 200ºC.

WIG welding is now the standard technique for copper-tin wrought alloys.It is done with direct current and the electrode at the negative pole. Currentintensity should not be set too high and the arc kept short. SG-CuSn6 is nor-mally used as a filler. Preheating is not required due to the relatively lowthermal conductivity of copper-tin wrought alloys in work-pieces under10mm thickness.

MIG welding is also usually performed with SG-CuSn6 (DIN 1733) asfiller. To ensure welding seams with few pores, the phosphorus content ofwelding fillers should be under 0.02%, preferably 0.01%. MIG welding isnot suitable for CuSn6Zn6, due to zinc evaporation in consequence of thegreat heat produced by the arc.

Resistance, spot and seam welding of copper-tin wrought alloys is mainlyperformed on sheet. Resistance butt welding is very important for wire andthin bars. Among the newer welding techniques, cold pressure, ultrasonic,friction, electron beam , high frequency, diffusion and laser welding comeinto consideration.

Soldering

To hard-solder copper-tin wrought alloys, hard solders containing silver arepreferably used. When applying Ag-Cu-Cd-Zn hard solders, the UVV-VBG 15 must be taken into account. In the food industry, cadmium-free sil-ver or Ag-Cu-Zn-(Sn) special hard solders are utilised. For capillary sol-dering, L-CuP6, L-CuP7 or L-CuP8 are also suitable.

Open flame soldering (HL-FL), furnace soldering (HL-OF), furnace solder-ing with protective gas (HL-OF + HL-.OI), induction soldering (HL-IL) andresistance soldering (HL-WD) are implemented as soldering techniques.

The solders used must however always be applied with flux according toDIN 8511, Part 1. This also applies to solders containing phosphorus. Insoldering up to a working temperature of 800ºC, type F-SH1 is used, above800ºC, type F-SH2. After soldering the remaining flux must be carefully

bronze NIE•MET and its hardware

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 259

Page 261: Niemet_Buch_En_72dpi

260

removed from the soldered components. Moreover, L-CuSn6 solders areoften applied on a large scale as ‘soldering rings’ in the hard soldering ofsheet parts, especially in furnace soldering.

For soft soldering copper-tin wrought alloys, soft solders with 40% to 60%Sn as well as special soft solders according to DIN 1707 are utilised. Thefollowing fluxes are used: for general soldering, F-SW12, F-SW13, F-SW21 and F-SW22; for fine soldering, F-SW24 and F-SW25; and finally,for electrotechnical and electronic soldering, F-SW26, F-SW27, F-SW28,F-SW31, F-SW32, F-SW33 and F-SW34 (DIN 8511).

As soft soldered connections with tin-lead solders have very low thermalconductivity without detriment to strength, lead-free soft solders are beingincreasingly utilised, e.g. L-SnAg5 (221-240ºC) and L-SnCu3 (230-250ºC),which display a thermal conductivity of 1101ºC. At temperatures over110ºC, solders high in lead are preferably used, e.g. L-PbAg3 (304-305º);these do not however possess any great strength. As a rule, alloys containingcadmium can then be applied, such as L-CdZnAg2 (270-280º) or L-CdAg5(340-395º). When working with soft solders containing cadmium, the worksafety regulation UVV-VBG 15 must once again be observed!

As soldering techniques, piston, open flame, induction and furnace weldingare preferably applied. The prerequisite for a properly soldered connectionis a metallically pure and grease-free surface. To this end, an appropriatesoft solder flux is used.

The residue of the fluxes F-SW12, F-SW13, F-SW21, F-SW22 and F-SW24, onwards to F-SW28, should be removed immediately. For types F-SW31 to F-SW34, which are applied exclusively in the electrotechnical andelectronic fields, the residue presents no problem, but should be removedwhen fine soldering.

Mechanical connections

Copper-tin wrought alloys are often connected by rivetting or bolting. Ifcomponents are exposed to corrosive influences, it is advisable to use con-necting elements of similar material to avoid contact corrosion.

NIE•MET and its hardware bronze

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 260

Page 262: Niemet_Buch_En_72dpi

261

SURFACE TREATMENT OF BRONZE

Cleaning and coating

By means of abrasive blasting, functional and decorative surface effects,as well as a hardening of the surface, can be achieved. The quality is

determined by the form and grain size of the blasting material. Evening ofthe surface, depolishing, satin finishing and hardening are the principaleffects produced by blasting on copper-tin wrought alloys.

Grinding is performed manually with wheels rotating on stands. These areportable grinding wheels powered by hand-held motors. Sheet is usuallyground with abrasive belts by free hand or contact grinding. Larger areasare dealt with by belt or pendulum grinding process on table machines,which can be fully automated. Mechanical polishing is also performedmanually on cloth buffing wheels. The usual facilities are polishing standsand hand-held machines. Mass-produced parts are processed on automatedpolishing machines. To achieve better polishing effects and to avoid over-heating the surfaces exposed to polishing, polishing grease, wax and emul-sion are applied. Polishing aids containing inhibitors exist which preventoxidisation and tarnishing of the freshly polished surface for lengthy peri-ods.

Above all, pourable mass-produced parts from copper-tin wrought alloysare suitable for grinding, polishing and dressing in drums. The polishingmaterial is mixed with ceramic or mineral grinding or polishing chips. Anaqueous treatment solution is also added which contains cleaning, grinding,polishing, deoxidising and sometimes passivating agents.

Degreasing is effected with organic solutions, preferably with the chlori-nated hydrocarbons tri- and perchlorethylene, as well as 1,1,1-trichlorethane. Hot, aqueous solutions of alkalis are also applied if, in a pro-cessing sequence, work continues wet-in-wet, e.g. galvanizing is carriedout. Electrolytic degreasing is the last cleaning stage before galvanising.

Pickling is performed to remove scale when it arises, e.g. on annealing – aswell as oxide layers of different origin. In general, pickling solutions ofdilute sulphuric acid, as well as pickling mixtures with sulphuric and nitric

bronze NIE•MET and its hardware

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 261

Page 263: Niemet_Buch_En_72dpi

262

acid, are used. These solutions also contain additives to inhibit picklingdamage to the metallic surface as well as to gloss and passivate the materi-al. The light-coloured tin oxide is more difficult to remove than the copperoxide. Partial dissolution of the metallic fringe zone in dilute nitric acid isnecessary. Due to the environmental and hygienic problems associated withnitric acid use, pickling with hydrogen oxide/sulphuric acid solutions isnow preferred.

Surface finishing by coating plays a special role for copper-tin wroughtalloys. In hot tinning the parts are dipped in a tin melt. Individual pieces canalso be preheated to soldering temperature and subsequently coated withtin. The tin melting on contact with the hot metal surface is evenly appliedto the surface with, e.g. a glass wool bundle or a glass fibre brush.

Diffusion tinning is carried out by dipping the parts in molten salt contain-ing SnCl2 up to about 400ºC (reaction temperature).

Coatings of metals, alloys, including hard, super and special alloys, as wellas high-melting and ceramic materials, are produced by flame spraying.

Galvanic coatings of silver, gold, nickel, chrome, cadmium, tin or lead-tinalloys are easily applied. In general, a nickel coating as a so-called diffu-sion barrier is applied beforehand to underlie further coatings. Due to thehigh corrosion resistance of the underlying material, no problems will thenarise from layers which are not absolutely free of pores.

Tin bronzes belong to the copper materials which – mostly in artwork – aremost difficult to colour chemically. Artificial patination, however, presentsno problem; brown tones are often applied.

Parts from copper-tin wrought alloys are enamelled with attractive effect,again, mostly in the field of artwork.

Painting with clear lacquer to avoid tarnishing is usual practice. In the openair, lacquer coatings on an acrylic basis offer reliable protection over manyyears against atmospheric influences. The prerequisite for good bonding ofthe lacquer film is proper treatment of the metal surface beforehand.

NIE•MET and its hardware bronze

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 262

Page 264: Niemet_Buch_En_72dpi

263

CORROSION BEHAVIOUR OF BRONZE

Corrosion resistance

Copper-tin alloys belong, together with copper-aluminium and copper-nickel alloys, to the most corrosion-resistant copper alloys. Most

important is the excellent resistance in aqueous, mildly acid to mildly alka-line media. In applications in the food and drink industries, effects oncolour or taste can arise due to the presence of copper ions. This can be pre-vented by tinning.

Copper-tin alloys are especially resistant to stress corrosion.

bronze NIE•MET and its hardware

We are well acquainted with the latest technical and logistic possibilities ofmodern NF metal production and exploit the innovations of manufacturersin quality and processes to improve your NF product supply – all this con-tributes to the productivity of your processing and reduces your purchasing

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 263

Page 265: Niemet_Buch_En_72dpi

NIE•MET SERVICE FOR YOUR CENTRAL PURCHASING

•Available to you singly or as a complete package - identification of require-

ments, preparation, processing and supply of NFSF products.

•Supporting advice and documentation tailored to the needs of central pur-

chasing (development and production planning, target cost calculation,

outsourcing) and shippers (realisation, processing, coordination).

•Processing and shipment synchronous with your production – independent

of quantity, time and location (just-in-time).

•Networking with your procuring departments to reduce reaction time, fault

finding and standstills in your company operations.

264

NiemannENG_251_276_BRONZE 04.10.2007 16:59 Uhr Seite 264

Page 266: Niemet_Buch_En_72dpi

265

TIN BRONZE / ALUMINIUM BRONZE

EN EN DINNumber Designation Designation

CW303G CuAl8Fe3 CuAl8Fe3– – CuAl9Mn2CW304G CuAl10Ni3Fe2 CuAl9Ni3Fe2CW306G CuAl10Fe3Mn2 CuAl10Fe3Mn2CW307G CuAl10Ni5Fe4 CuAl10Ni5Fe4CW450K CuSn4 CuSn4CW452K CuSn6 CuSn6CW453K CuSn8 CuSn8– – CuSn6Zn6– – CuAl5As

DIN EN ENDesignation Number Designation

CuAl5As – –CuAl8Fe3 CW303G CuAl8Fe3CuAl9Mn2 – –CuAl9Ni3Fe2 CW304G CuAl10Ni3Fe2CuAl10Fe3Mn2 CW306G CuAl10Fe3Mn2CuAl10Ni5Fe4 CW307G CuAl10Ni5Fe4CuSn4 CW450K CuSn4CuSn6 CW452K CuSn6CuSn8 CW453K CuSn8CuSn6Zn6 – –

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 265

Page 267: Niemet_Buch_En_72dpi

266

BRONZE AS ROLLED SF PRODUCT

MaterialThickness Tensile strength 0.2% Elongation limit

Rm Rp0.2

Designation No. mm N /mm2 N /mm2

CuSn4 F 33 2.1016.10 from 0.1 to 5 330 to 380 max. 190H 70 .10 from 0.1 to 5 – –F 38 .26 from 0.1 to 5 380 to 470 min. 190

H 100 .26 from 0.1 to 5 – –F 47 .30 from 0.1 to 5 470 to 570 min. 440

H 150 .30 from 0.1 to 5 – –F 54 .32 from 0.1 to 2 540 to 630 min. 520

H 170 .32 from 0.1 to 2 – –F 59 .34 from 0.1 to 2 min. 590 min. 570

H 190 .34 from 0.1 to 2 – –CuSn6 F 35 2.1020.10 from 0.1 to 5 350 to 410 max. 300

H 80 .10 from 0.1 to 5 – –F 41 .26 from 0.1 to 5 410 to 500 min. 300

H 110 .26 from 0.1 to 5 – –F 48 .30 from 0.1 to 5 480 to 580 min. 450

H 160 .30 from 0.1 to 5 – –F 55 .32 from 0.1 to 2 550 to 650 min. 510

H 180 .32 from 0.1 to 2 – –F 63 .34 from 0.1 to 2 min. 630 min. 600

H 200 .34 from 0.1 to 2 – –CuSn8 F 37 2.1030.10 from 0.1 to 5 370 to 450 max. 300

H 90 .10 from 0.1 to 5 – –F 45 .26 from 0.1 to 5 450 to 540 min. 300

H 120 .10 from 0.1 to 5 – –F 54 .30 from 0.1 to 5 540 to 630 min. 470

H 170 .30 from 0.1 to 5 – –F 59 .32 from 0.1 to 5 590 to 690 min. 520

H 190 .32 from 0.1 to 5 – –F 66 .34 from 0.1 to 2 min. 660 min. 600

H 210 .34 from 0.1 to 2 – –CuSn6Zn6 F 61 2.1080.30 from 0.1 to 2 610 to 690 min. 570

H 190 .30 from 0.1 to 2 – –F 76 .34 from 0.1 to 2 min. 760 min. 690

H 230 .34 from 0.1 to 2 – –

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 266

Page 268: Niemet_Buch_En_72dpi

267

BRONZE AS ROLLED SF PRODUCT

Breaking elongation Vickers hardness HV Brinell hardness HBA5 % A10 %min. min. min. max. min. max.

50 45 – – – –– – 70 100 65 95

20 16 – – – –– – 100 150 95 140

12 9 – – – –– – 150 180 140 1707 5 – – – –– – 170 200 160 190– – – – – –– – 190 – 180 –

55 50 – – – –– – 80 110 75 105

30 25 – – – –– – 110 160 105 150

20 15 – – – –– – 160 190 150 180

10 8 – – – –– – 180 210 170 2006 – – – – –– – 200 – 190 –

60 55 – – – –– – 90 120 85 115

33 28 – – – –– – 120 170 115 160

25 20 – – – –– – 170 200 160 190

10 7 – – – –– – 190 220 180 2106 – – – – –– – 210 – 200 –

15 12 – – – –– – 190 220 175 200– – – – – –– – 230 – 210 –

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 267

Page 269: Niemet_Buch_En_72dpi

268

BRONZE AS EXTRUDED / DRAWN SF PRODUCT

Dimensions

Material Square, 0.2% Break- Brinellhexagonal Tensile elon- ing hard-

bar strength gation elong. nessRound bar Edge length Rm Rp 0,2 A5 HBDiameter Spanner

widthDesignation No. mm mm N /mm2 N /mm2 % min. ≈

CuSn6 F 34 2.1020.10 min. 10 min. 8 340 to 400 max. 250 55 85F 40 .26 to 40 to 40 400 to 470 min. 200 33 130F 47 .30 to 12 to 12 470 to 550 min. 340 22 155F 55 .32 to 6 to 6 550 to 640 min. 490 10 175F 64 .34 to 4 to 4 min. 640 min. 590 5 195

CuSn8 F 39 2.1030.10 min. 10 min. 8 390 to 450 min. 290 60 90F 45 .26 to 40 to 40 450 to 520 min. 250 35 135F 52 .30 to 12 to 12 520 to 590 min. 420 23 160F 59 .32 to 6 to 6 590 to 690 min. 540 10 190F 69 .34 to 4 to 4 min. 690 min. 640 – 220

NIE c MET Flexibility

Anyoneaimingtocopeeconomicallywithsmallbatchsizesandabewilde-

ringvarietyofNFSFproductsno longerorganiseshis activities alongoutda-

ted lines,butaccording to thenatureandstructureof theorder inhand.We

adapt. All the NIEc MET services are conceived as an adaptive modular

systemwhereyoucansingleoutparticular specialitiesorevencallupcom-

plete solutions to any problems.

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 268

Page 270: Niemet_Buch_En_72dpi

RANGE OF STOCKBRONZE

We expand our almost daily, especially where customer needs are concerned.

We take care of your stocking. Just let us know what you require.

NiemannENG_251_276_BRONZE 04.10.2007 16:59 Uhr Seite 269

Page 271: Niemet_Buch_En_72dpi

270

Cutting precision and accurate knowledge of material properties are important, butonly one feature of our quality in slit strip. Prper storage, transportation and thepackaging quality you want are also a part of the NIE-MET performance package.

NiemannENG_251_276_BRONZE 04.10.2007 16:59 Uhr Seite 270

Page 272: Niemet_Buch_En_72dpi

271

STRIP

DIN 17662, 17670, 1791EN 1652

We slit every width from 10mm to 330mm.Naturally, no minimum quantities !

CuSn6F 55/FB 370

Thickness HV 160-180CW452K

mm H 160-180

0.15 c

0.20 c

0.25 c

0.30 c

0.35 c

0.40 c

CuSn6F 55/FB 370

Thickness HV 160-180CW452K

mm H 160-180

0.50 c

0.60 c

0.63 c

0.70 c

0.79 c

0.80 c

CuSn6F 55/FB 370

Thickness HV 160-180CW452K

mm H 160-180

1.00 c

1.20 c

1.50 c

2.00 c

2.50 c

SHEET

DIN 17662, 17670, 1751EN 1652

Format CuSn6Width HV 160-180

Thickness x Length CW452KH 160-180

mm mm

0.15 280 x 2000 c

0.20 280 x 2000 c

300 x 2000 c

0.30 350 x 2000 c

0.40 350 x 2000 c

0.50 350 x 2000 c

0.70 300 x 2000 c

Format CuSn6Width HV 160-180

Thickness x Length CW452KH 160-180

mm mm

0.70 600 x 2000 c

0.80 300 x 2000 c

350 x 2000 c

1.00 300 x 2000 c

1.20 300 x 2000 c

1.50 300 x 2000 c

2.00 280 x 2000 c

Format CuSn6Width HV 160-180

Thickness x Length CW452KH 160-180

mm mm

2.00 600 x 2000 c

2.50 300 x 2000 c

3.00 300 x 2000 c

4.00 280 x 2000 c

5.00 280 x 2000 c

10.00 280 x 2000 c

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 271

Page 273: Niemet_Buch_En_72dpi

272

PIPES

DIN 1705Please ask – especially for dimensions over 200mmdiameter – about our express service in spin casting.

Finished Supply Walldimension dimension thickness RG7 SNBZ12

Ø mm Ø mm Ø mm

25 x 15 26 x 14 6.0 c

x 18 x 17 4.5 c

28 x 20 29 x 19 5.0 c

30 x 15 31 x 14 8.5 c

x 19 x 18 6.5 c

32 x 24 33 x 23 5.0 c

35 x 15 36 x 14 11.0 c

x 25 x 24 6.0 c

36 x 18 37 x 17 10.0 c

38 x 27 39 x 26 6.5 c

40 x 15 41 x 14 13.5 c

x 20 x 19 11.0 c

x 25 x 24 8.5 c

x 30 x 29 6.0 c

45 x 15 46 x 14 16.0 c

x 20 x 19 13.5 c

x 25 x 24 11.0 c

x 30 x 29 8.5 c

x 35 x 34 6.0 c

50 x 15 51 x 14 18.5 c

x 20 x 19 16.0 c c

x 25 x 24 13.5 c

x 30 x 29 11.0 c c

x 35 x 34 8.5 c

x 40 x 39 6.0 c

55 x 20 56 x 19 18.5 c

x 25 x 24 16.0 c

x 30 x 29 13.5 c

x 30 57 x 28 14.5 c

x 35 56 x 34 11.0 c

x 40 x 39 8.5 c

x 40 57 x 38 9.5 c

x 45 56 x 44 6.0 c

60 x 20 61 x 19 21.0 c c

x 25 x 24 18.5 c

x 30 x 29 16.0 c c

x 35 x 34 13.5 c

x 40 x 39 11.0 c c

x 45 x 44 8.5 c

x 50 x 49 6.0 c

65 x 30 66 x 29 18.5 c

x 35 x 34 16.0 c

x 40 x 39 13.5 c

Finished Supply Walldimension dimension thickness RG7 SNBZ12

Ø mm Ø mm Ø mm

65 x 45 x 44 11.0 c

x 50 x 49 8.5 c

x 55 x 54 6.0 c

70 x 20 71 x 18 26.5 c c

x 30 x 28 21.5 c c

x 35 x 33 19.0 c

x 40 x 38 16.5 c c

x 45 x 43 14.0 c

x 50 x 48 11.5 c

x 55 x 53 9.0 c

x 60 x 58 6.5 c

75 x 30 76 x 28 24.0 c

x 40 x 38 14.0 c

x 45 x 43 16.5 c

x 50 x 48 14.0 c

x 55 x 53 11.5 c

x 60 x 58 9.0 c

80 x 30 82 x 28 27.0 c c

x 40 x 38 26.0 c c

x 50 x 48 17.0 c c

x 60 x 58 12.0 c

x 65 x 63 9.5 c

82 x 48 83 x 48 17.5 c

x 70 x 68 7.5 c

85 x 40 86 x 38 24.0 c

x 60 x 58 14.0 c

x 65 x 63 11.5 c

x 70 x 68 9.0 c

90 x 30 92 x 28 32.0 c c

x 40 x 38 27.0 c

x 50 x 48 22.0 c c

x 60 x 58 17.0 c c

x 70 x 68 12.0 c

x 75 x 73 9.5 c

95 x 30 97 x 28 34.5 c

x 50 x 48 24.5 c

x 60 x 58 19.5 c

x 70 x 68 14.5 c

x 75 x 73 12.0 c

100 x 30 102 x 28 37.0 c

x 40 x 38 32.0 c c

x 50 x 48 27.0 c c

x 60 x 58 22.0 c c

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 272

Page 274: Niemet_Buch_En_72dpi

273

PIPES

DIN 1705Please ask – especially for dimensions over 200mmdiameter – about our express service in spin casting.

Finished Supply Walldimension dimension thickness RG7 SNBZ12

Ø mm Ø mm Ø mm

100 x 70 x 68 17.0 c c

x 80 x 78 12.0 c

105 x 40 107 x 38 34.5 c

x 50 x 43 32.0 c

x 70 x 68 19.5 c

110 x 30 112 x 28 42.0 c

x 40 x 38 37.0 c

x 50 x 48 32.0 c c

x 60 x 58 27.0 c c

x 70 x 68 22.0 c c

x 80 x 78 17.0 c

x 90 x 80 12.0 c

115 x 100 117 x 98 9.5 c

120 x 50 122 x 48 37.0 c

x 60 x 58 32.0 c

x 70 x 68 27.0 c

x 80 x 78 22.0 c

x 90 x 88 17.0 c

x 100 x 98 12.0 c

130 x 50 132 x 48 42.0 c

x 60 x 58 37.0 c

x 70 x 68 32.0 c

x 80 x 78 27.0 c

x 90 x 88 22.0 c

x 100 x 98 17.0 c

Finished Supply Walldimension dimension thickness RG7 SNBZ12

Ø mm Ø mm Ø mm

140 x 60 142 x 58 42.0 c

x 70 x 68 37.0 c

x 80 x 78 32.0 c

x 90 x 88 27.0 c

x 100 x 98 22.0 c

150 x 60 152 x 58 47.0 c

x 70 x 68 42.0 c

x 80 x 78 37.0 c

x 90 x 88 32.0 c

x 100 x 98 27.0 c

x 110 x 108 22.0 c

x 120 x 118 17.0 c

x 130 x 128 12.0 c

160 x 100 163 x 97 33.0 c

x 120 x 117 23.0 c

x 130 x 127 18.0 c

170 x 110 173 x 107 33.0 c

x 130 x 127 23.0 c

x 140 x 137 18.0 c

180 x 120 183 x 117 33.0 c

190 x 110 193 x 107 43.0 c

x 130 x 127 33.0 c

x 150 x 147 23.0 c

220 x 160 222 x 158 32.0 c

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 273

Page 275: Niemet_Buch_En_72dpi

274

PIPES CuAl10Ni

DIN 17671, 17665

Finished Supply CuAl10Nidimension dimension CW307G

Ø mm Ø mm

30 x 20 33 x 18 c

40 x 30 42 x 18 c

45 x 30 47 x 28 c

50 x 30 52 x 28 c

55 x 30 57 x 28 c

x 40 x 38 c

60 x 30 62 x 28 c

x 40 x 38 c

x 50 x 48 c

65 x 35 67 x 33 c

70 x 30 72 x 28 c

Finished Supply CuAl10Nidimension dimension CW307G

Ø mm Ø mm

70 x 40 72 x 38 c

x 50 x 48 c

75 x 55 77 x 53 c

x 60 x 58 c

80 x 40 82 x 38 c

x 50 x 48 c

x 60 x 58 c

85 x 60 87 x 58 c

x 70 x 68 c

90 x 40 92 x 38 c

x 50 x 48 c

Finished Supply CuAl10Nidimension dimension CW307G

Ø mm Ø mm

90 x 60 92 x 58 c

x 70 x 68 c

100 x 50 102 x 50 c

x 60 x 58 c

x 80 x 78 c

110 x 50 112 x 48 c

x 80 x 78 c

120 x 80 122 x 78 c

x 90 x 88 c

FLATContinuous casting

DIN 1705

Finished Supplydimension dimension RG7 SNBZ12

mm mm

50 x 10 52 x 12 c c

x 16 x 18 c c

x 20 x 22 c c

60 x 10 62 x 12 c c

x 16 x 18 c c

65 x 16 67 x 18 c c

x 30 x 32 c c

70 x 10 73 x 13 c c

x 16 x 19 c c

x 20 x 23 c c

80 x 10 83 x 13 c c

x 16 x 19 c c

x 20 x 23 c c

100 x 10 103 x 13 c c

x 12 100 x 15 c c

Finished Supplydimension dimension RG7 SNBZ12

mm mm

100 x 16 100 x 19 c c

x 20 x 23 c c

120 x 16 x 19 c c

x 20 x 23 c c

140 x 16 143 x 19 c c

x 20 x 23 c c

160 x 16 163 x 19 c c

x 20 x 23 c c

180 x 16 183 x 19 c c

x 20 x 23 c c

200 x 16 203 x 19 c c

x 20 x 23 c c

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 274

Page 276: Niemet_Buch_En_72dpi

275

SQUARE

DIN 1705

Finished Supplydimension dimension RG7 SNBZ12

mm mm

20 x 20 22 x 22 c

30 x 30 32 x 32 c c

40 x 40 42 x 42 c c

50 x 50 52 x 52 c c

Fertig- Liefer-maß maß RG7 SNBZ12

mm mm

60 x 60 62 x 632 c c

70 x 70 73 x 73 c c

80 x 80 83 x 83 c c

100 x 100 103 x 103 c c

ROUND

DIN 1705

Finished Supplydimension dimension RG7 SNBZ12

Ø mm Ø mm

12 13 c c

15 16 c c

18 19 c c

20 21 c c

22 23 c

25 26 c c

27 28 c

30 31 c c

32 33 c

35 36 c c

40 41 c c

45 46 c c

50 51 c c

55 56 c c

60 61 c c

65 66 c c

70 71 c c

75 76 c c

Finished Supplydimension dimension RG7 SNBZ12

Ø mm Ø mm

80 81 c c

85 86 c c

90 91 c c

95 96 c c

100 102 c c

105 107 c c

110 112 c c

115 117 c c

120 122 c c

125 127 c

130 132 c c

140 142 c c

150 153 c c

160 163 c c

170 173 c c

180 183 c c

190 193 c c

200 203 c c

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 275

Page 277: Niemet_Buch_En_72dpi

276

NIE•MET-‘JUST IN TIME’ …

is the intelligent extension of your NFSF product processing chain right

through to us.

As pioneers in just-in-time partnership in the processing and supply of NFSF

products, we enable our customers to operate practically without stocks and

still react flexibly to any changes in demand. We deliver exactly what you

need – in the required quantity, time and sequence, directly to your proces-

sing location!

Quick, correct shipment synchronous with requirements on the one hand, and productivity on the other, e.g. in vehicle utilisation, are challenges for just-in-time delivery and our transport management.

NiemannENG_251_276_BRONZE 19.09.2007 9:13 Uhr Seite 276

Page 278: Niemet_Buch_En_72dpi

STAINLESS STEEL

NiemannENG_277_282_Edelstahl 04.10.2007 16:59 Uhr Seite 277

Page 279: Niemet_Buch_En_72dpi

278

SHEET

DIN 17441 Our processing centre supplies every kind of cut !

Format X5CrNi189Thickness Width x length 1.4301

mm mm

0.40 1000 x 2000 c

0.50 1000 x 2000 c

1250 x 2500 c

0.60 1000 x 2000 c

1250 x 2500 c

0.70 1000 x 2000 c

0.80 1000 x 2000 c

1250 x 2500 c

1.00 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

1.25 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

1.50 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

2.00 1000 x 2000 c

Format X5CrNi189Thickness Width x length 1.4301

mm mm

2.00 1250 x 2500 c

1500 x 3000 c

2.50 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

3.00 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

4.00 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

5.00 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

6.00 1000 x 2000 c

1250 x 2500 c

1500 x 3000 c

ANGLES

DIN 1028, rolledDIN 1028, drawn Length: 4 -6m

FormatWidth x Length Thickness 1.4301

mm mm

15 x 15 2.0 c

25 x 25 3.0 c

30 x 30 3.0 c

35 x 35 4.0 c

40 x 40 4.0 c

40 x 40 5.0 c

FormatWidth x Length Thickness 1.4301

mm mm

40 x 40 5.0 c

50 x 50 5.0 c

60 x 60 6.0 c

80 x 60 6.0 c

80 x 80 8.0 c

100 x 100 10.0 c

NiemannENG_277_282_Edelstahl 19.09.2007 9:14 Uhr Seite 278

Page 280: Niemet_Buch_En_72dpi

279

SQUARE

DIN 1014, rolledDIN 178, drawn Length: 3 -4m

Edgelength 1.4301 1.4571

mm

6 c c

8 c c

10 c c

12 c c

14 c

15 c c

Edgelength 1.4301 1.4571

mm

16 c c

18 c

20 c c

25 c c

30 c

35 c c

Edgelength 1.4301 1.4571

mm

40 c

50 c c

60 c

80 c c

100 c

FLAT

DIN 1017, rolled or slit from stripLength: 3 -6m

* also in 1.4571

FormatWidth x height 1.4301

mm

12 x 3.0 c

x 6.0 c

15 x 4.0 c

x 5.0 c

x 6.0 c

20 x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 15.0 c

25 x 3.0 c

x 4.0 c

x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

30 x 3.0 c

x 4.0 c

FormatWidth x height 1.4301

mm

30 x 5.0 c

x 6.0 c

x 8.0 c

x 10.0 c

x 15.0 c

35 x 5.0 c

x 10.0 c

40 x 4.0 c

x 5.0 c

x 6.0 c

x 10.0 c

x 15.0 c

x 20.0 c

x 25.0 c

x 30.0 c

45 x 6.0 c

50 x 4.0 c

x 5.0 c

x 10.0 c

x 20.0 c

x 25.0 c

x 30.0 c

FormatWidth x height 1.4301

mm

60 x 5.0 c

x 8.0 c

x 10.0 c

x 12.0 c

x 15.0 c

x 20.0 c

x 40.0 c

70 x 10.0 c

80 x 6.0 c

x 8.0 c

100 x 5.0 c

x 8.0 c

x 10.0 c

x 15.0 c

x 20.0 c

x 30.0 c

120 x 8.0 c

x 10.0 c

130 x 20.0 c

140 x 25.0 c

150 x 8.0 c

NiemannENG_277_282_Edelstahl 19.09.2007 9:14 Uhr Seite 279

Page 281: Niemet_Buch_En_72dpi

280

ROUND

DIN 1013, rolledDIN 668,671, drawn Length: 3 -4m

Dia-meter 1.4301 1.4305 1.4541 1.4571

mm rolled drawn rolled drawn rolled drawn rolled drawn

2.0 c c c

3.0 c c

4.0 c

5.0 c c c

6.0 c c

8.0 c c

9.0 c

10.0 c c

11.0 c

12.0 c c

14.0 c c

15.0 c c

16.0 c c c

18.0 c c

20.0 c c

22.0 c

25.0 c c

26.0 c

30.0 c c

35.0 c

40.0 c c

45.0 c

50.0 c

60.0 c

70.0 c

80.0 c

90.0 c

100.0 c

130.0 c

160.0 c

170.0 c

180.0 c

200.0 c c

NiemannENG_277_282_Edelstahl 19.09.2007 9:14 Uhr Seite 280

Page 282: Niemet_Buch_En_72dpi

281

HEXAGONAL

DIN 1028, rolledDIN 178, drawn Length: 4 -6m

Spannerwidth 1.4301

mm

8 c

Spannerwidth 1.4301

mm

17 c

Spannerwidth 1.4301

mm

22 c

PIPES

DIN 17440 /17458DIN 2462 /2464 D2/T2

N = seamlessLength: approx. 6 m

DIN 17457DIN 2463 D3/T3

G = weldet, V = 1,0,Length: approx. 6 m

Dia- Wallmeter thickness 1.4301 1.4541 1.4571

mm mm N G

6.0 1.0 c c

1.5 c

8.0 1.0 c

1.5 c

2.0 c

10.0 1.0 c c

12.0 1.0 c c

1.5 c c

2.0 c

15.0 1.5 c

16.0 1.0 c c

20.0 2.0 c c

21.3 2.6 c

25.0 2.0 c

25.0 2.5 c

26.9 2.0 c

30.0 1.5 c

2.0 c

5.0 c

Dia- Wallmeter thickness 1.4301 1.4541 1.4571

mm mm N G

33.7 3.2 c

35.0 2.0 c

38.0 3.0 c

40.0 2.0 c

5.0 c

42.4 3.2 c

48.3 2.0 c

3.6 c

50.0 1.5 c

54.0 2.0 c c

55.0 5.0 c

57.0 2.0 c

60.3 2.6 c

2.9 c

76.1 2.0 c

168.3 4.0 c

NiemannENG_277_282_Edelstahl 19.09.2007 9:14 Uhr Seite 281

Page 283: Niemet_Buch_En_72dpi

282

RECTANGULAR / SQUARE-PIPES

welded Length: approx. 6m

Edge Walllength thickness 1.4301

mm mm

10.0 x 10.0 1.0 c

15.0 x 15.0 1.5 c

20.0 x 20.0 1.5 c

x 20.0 2.0 c

25.0 x 25.0 2.0 c

Edge Walllength thickness 1.4301

mm mm

35.0 x 35.0 1.5 c

40.0 x 40.0 2.0 c

45.0 x 45.0 2.0 c

50.0 x 50.0 2.0 c

60.0 x 30.0 2.0 c

Edge Walllength thickness 1.4301

mm mm

60.0 x 40.0 2.0 c

80.0 x 40.0 2.0 c

x 80.0 2.0 c

100.0 x 50.0 2.0 c

x 100.0 2.0 c

NiemannENG_277_282_Edelstahl 19.09.2007 9:14 Uhr Seite 282

Page 284: Niemet_Buch_En_72dpi

PLASTICS

NiemannENG_283_Kunststoffe-REST 04.10.2007 17:00 Uhr Seite 283

Page 285: Niemet_Buch_En_72dpi

284

EVERYTHING’S AT STAKE!

For shipbuilding in South-East Asia, the turnery workshop in the Black

Forest, the aerospace industry in Europe or the metal worker in South

Africa – the most intelligent coordination, in each case, of transport and travel

routes is the blotting paper that soaks up your worries concerning purchasing

and NFSF product processing!

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 284

Page 286: Niemet_Buch_En_72dpi

285

MATERIALDESCRIPTION

Trademark DIN

Aeternamid PA PolyamideBirax HP Hart paperCarta HP/HgW Hart paper/Laminated plasticDelrin POM PolyacetalDehoplast PE PolyethyleneDekadur PVC PolyvinylchlorideDekaprop PP PolypropyleneDekalen PE PolyethyleneEdimet PMMA Acrylic glassFerrozell HP/HgW Hart paper/Laminated plasticHostaform/Hostadur POM PolyacetalHostaflon PTFE Polytetrafluor ethyleneHostalit PVC PolyvinychlorideHostalen PE PolyethyleneHostalen PP PP PolypropyleneHostyren PS PolystyrolKömmadur PVC PolyvinylchlorideLupolen PE PolyethyleneLuran PS PolystrolLexan PC PolycarbonateMakrolon PC PolycarbonateLubrifon PTFE Polytetrafluor ethyleneNylon PA PolyamideNovotex HgW Laminated plasticNovolen PP PolypropyleneNovodur ABS Acrylnitrile -butadiene -styreneOilex PA PolyamideOilex POM PolyacetalPerlon PA PolyamidePertinax HP Hart paperPlexiglas PMMA Acrylic glassPerspex PMMA Acrylic glassRipolor PVC PolyvinylchlorideRCH 1000 PE PolyethyleneResartglas PMMA Acrylic glassSupralen PE PolyethyleneSustamid PA PolyamideSustylen PP PolypropyleneSustodur PETP linear polyesterSustonat PC PolycarbonateSustarin POM PolyacetalTrolitax HP Hart paperTrogamid PA PolyamideTeflon PTFE Polytetrafluor ethyleneTrovidur PVC PolyvinychlorideTrolen PE PolyethyleneTerluran ABS Acrylnitrile -butadiene -styreneUltramid PA PolyamideVinoflex PVC PoliyvinylchlorideVestolen PE PolyethyleneVestyrol PS PolystyrolVulkollan PUR Polyurethane

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 285

Page 287: Niemet_Buch_En_72dpi

286

STANDARD VALUES TABLE OF THERMOPLASTIC MATERIALS

Polyamide 6 Polypropylene Lin. Polyester Polycarbonate

PA 6 PP PETP PC

DensityDIN 53479 g/cm3 1,14 0,91 1,37 1,20Yield stressss 80DIN 53455 N/mm2 40 31 74 > 60Elongation at teareR > 50DIN 53455 % > 160 > 650 > 50 > 60Elastic modulus DIN 53457 3000(bending test) N/mm2 1400 1300 3500 2200Elastic modulus DIN 53457(tensile test) N/mm2 2800 1400MAx. bending stresssbG 130DIN 53452 N/mm2 40 43 125 90Impact resistance an

DIN 53453 kJ/m2 KB KB KB KBImpact value ak > 3DIN 53453 kJ/m2 KB 8,50 > 4 > 20Batt hardness H 160 (14)DIN 53456 N/mm2 70 ( 1) 63 (15) 130 (17) 110 (1)Creep stressat s1/1000 DIN 53444 N/mm2 > 5 18Sliding friction against 0,38 0,13 0,52steel running dry 0.42 0,35 0,18 0,58Humanity absorption instandard ref. atmos. % 2,5–3 Ù 0,1 0,40 0,20Dielectric constant 3,70DIN 53483 105 Hz er 7,00 2,40 4,00 3,00Loss index dissipation factor 0,027DIN 53483 105 Hz tans 0,30 3,3 · 10–4 0,019–14 1 · 10–4

Spec. forward resistance 1014

DIN 53482 Ö · cm 1012 1018 4 · 1016 1017

Surface resistance 5 · 1012

DIN 53482 Ö 1010 5 · 1013 5 · 1012 1015

Tracking resistance KA3cDIN 53480 KA3b KA3c KA2 KA1Dielectric strength 50DIN 53481 KV/mm 20 77 > 70 35Crystallitemelting temp. hC 220 163 255 230Thermal conductivity WDIN 52612 K · m 0,23 0,19 0,21 0.19Specific kJthermal capacity kg · hC 1,67 1,67 1,05 1,17Coefficientof elongation 10–6 ·K–1 70-80 180 70-80 60-70Application temp.short durant hC 160 140 180 175Application temp. –40 –10 –40 – 4long duration hC 100 100 100 135Thermoforming resistance 951,8 N/mm2 DIN 53461 hC 74

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 286

Page 288: Niemet_Buch_En_72dpi

287

STANDARD VALUES TABLE OF THERMOPLASTIC MATERIALS

Polyoxy- Polyethylene, Polyethylene, Polytetra- Aerylnitrile- Polyvinyl Polymethyl-methylene high- high- fluorethylene butadiene- chloride methacrylate(Homop.) molecular molecular styrol

POM HDPE 100 HDPE 500 PTFE ABS PVC PMMA

2.101.20 1.43 0.94 2.30 1.07 1.38 1.18

70 23 39 25 39 48 70 (12)

> 40 450 (22) 1000 > 300 Ù 30 30 4.5

3000 350 2300 2500

500 400 3300

108 27 19 > 67 82 120 (13)

> 90 KB KB KB KB 11> 10

> 7 (23) 4 (23) 13 14 30 2

145 (15) 40 (15) 50 (1) 32 (15) 82 (16) 98 (15) 190 (18)

> 5 18

0.34 0.20 0.25 0.07 0.11 0.60

0.25 0.00 0.00 X X X Ù 0.3

3.6 2.3 2.00 2.40 3.30

68 · 10–4 2 · 10–4 5 · 10–14 0.008 0.022 0.03

3 · 1015 1018 1018 1.23 · 1016 1016 > 1015

1016 1013 1013 5 · 1013 > 1013

KA3c KA3c KA3c KA2 KA3b KA3c

49 > 50 50 > 20 50 30

175 130 130 > 300 > 130 170

0.20 0.35 – 0.21 0.15 0.14 0.19

1.46 2.30 2.30 1.04 1.08 1.04 1.50

80-90 200 200 60-70 95 80 70

140 100 120 270 80 80 100–40 –270 –200 –35 –40100 80 80 250 58 60 70

100 60 50 90

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 287

Page 289: Niemet_Buch_En_72dpi

288

CHEMICAL RESISTANCE OF THERMOPLASTIC MATERIALS

+ = resistant Concen- Polyamide 6 Poly- Linear Poly- Polyoxi-C = cond. resistant tration propylene Polyester carbonate methylene— = unresistant (Homop.)II = solube % PA 6 PP PETP PC POM

Acetoldehyde 40 C + – CAcetamide 50 + +Acetone 100 + + + – +Acrylnitrile 100 + + – CAluminium sulphate 10 + + + +Aluminium chloride 10 + + + +Formic acid 85 C + – –Ammonium chloride 10 + + + +Ammonia 10 + + + – –Aniline 100 C + - CEthanol 96 + + + + +Ethylacetate 100 + + + – +Ethylether 100 + + + – +Ethylen chloride 100 + + + – +Ethylen diamine 100 + + +Benzaldehyde 100 C + CBenzene 100 + – + – +Benzole 100 + – + – CBenzylalcohol 100 C C + – CBleaching lye 0.1% akt. Chlor – – + + –Bor ic acid 10 C + -Butanol 100 + C C + +Butylacetate 100 + – + CCalcium chloride, aqueous 10 + + + + CCalcium chloride, alcoholic 20 II + + +Chlorbenzene 100 + + – – CChlorine 100 – – – C –Chloroform 100 C – – – –Chlorine water – – C CChrome-alum 10 C + + +Chrome acid 10Citric acid 10 C + + +Cyclohexanol 100 + C + –Decalin 100 + C +Diesel oil 100 + C + + +Dibutylphthalate 100 + C C +Dioctylphthalate 100 + C + +Dioxan 100 + C – CFerric chloride 10 + + +Ethanoic acid 80 – + – – –Ethanoic acid 10 – + C C CHydrofluoric acid 40 II + – –Formaldehyde, aqueous 20 + + + +Freon 12 liquid 100 + CFurfural 100 C CGlycerine 90 + + + +Urea, aqueous 10 + + + + +Hexane 100 + + +Heptane 100 + + +

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 288

Page 290: Niemet_Buch_En_72dpi

289

CHEMICAL RESISTANCE OF THERMOPLASTIC MATERIALS

Concen- Polyethylene, Polyethylene, Polytetra- Aerylnitrile Polyvinyl Polymethyl-tration high molec. high molec. fluorethylene butadiene chloride methacrylate

styrol% HDPE 100 HDPE 500 PTFE ABS PVC PMMA

40 + + +50 + + +

100 + + + – – –100 + + +10 + + – –10 + + + + +85 + + + + – –10 + + + +10 + + + + + +

100 + + + – – –96 + + + + + –

100 + + C – – –100 C C C – –100 – – C –100 C100 + + + –100 + + + + + +100 + + + – – –100 C C +

– C C +10 + + + +

100 + + + + C100 + + C – –10 + + + + + +20 + + + + +

100 C C +100 C C + C100 + + C – –

– C C + C +10 + + + +1010 + + + +

100 + + + + +100 + + + + C100 + + + +100 + + + –100 + + + C100 + + + –10 + + + + +80 + + + C –10 + + + + C40 + + + + –20 + + + + +

100 C C –100 + + +90 + + + + + +10 + + + +

100 + + + +100 + + + + +

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 289

Page 291: Niemet_Buch_En_72dpi

290

CHEMICAL RESISTANCE OF THERMOPLASTIC MATERIALS

+ = resistant Concen- Polyamide 6 Poly- Linear Poly- Polyoxi-C = cond. resistant tration propylene Polyester carbonate methylene— = unresistant (Homop.)II = solube % PA 6 PP PETP PC POM

IsopropylalCohol 90 + + CIodine tincture – – + +Iodine-pot. iodide sol. 3 – + + +Caustic pot. sol., aqueous 50 C + – –Caustic pot. sol., aqueous 10 C + – CPotassium nitrate 10 + + + CPotassium permanganate 1 – + + +Copper sulphate 10 + + + +Magnesium chloride, aqu. 10 + + + +Manganese sulphate 10 + + + + +Methanol 98 + + C – +Methylacetate 100 + + + CMethyl ethyl ketone 100 + + CMethylene chloride 100 C C – – –Lactic acid 10 C + + CMineral oil 100 + + + + +Sodium bisulphite 10 + + + +Sodium carbonate 10 + + + + +Sodium chloride 10 + + + +Sodium sulphate 10 + + +Caustic soda, hydrated 50 C + – –Caustic soda, hydrated 10 C + – CNitrobenzene 100 C + + – COleic acid, conc. 40 + C C + –Oxalic acid 10 – C + –Ozone – – – – –Petroleum 100 + + + CPhenol (mnolten) 100 II + – – –Phenol (aqueous) 10 – + – – –Phosphoric acid, conc. 80 – + – –Phosphoric acid 10 – + + – –Pyridine 100 + C + –Mercury 100 + + +Mercurous chloride, aqu. 5 – + +Resorcin 100 II CNitric acid, conc. 65 – – – – –Nitric acid 10 – + C C –Hydrocloric acid 10 – + C – –Hydrocloric acid 2 C + C C –Carbon bisulphide 100 + + + –Sulphuric acid 98 II C – – –Sulphuric acid 10 – + C C –Hydrogen sulphide, aqu. 2 + +Sea water 100 + + + + +Soap solution 1 + + + + +Styrol 100 +Tallow 100 + + +CArbon tetrachloride 100 + – + – CTetrahydrofurane 100 + C + – C

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 290

Page 292: Niemet_Buch_En_72dpi

291

CHEMICAL RESISTANCE OF THERMOPLASTIC MATERIALS

Concen- Polyethylene, Polyethylene, Polytetra- Aerylnitrile Polyvinyl Polymethyl-tration high molec. high molec. fluorethylene butadiene chloride methacrylate

styrol% HDPE 100 HDPE 500 PTFE ABS PVC PMMA

90 + + + + C– C C + – –3 C C +

50 + + + + +10 + + + + +10 + + + + +1 + + + + + +

10 + + + + +10 + + + + +10 + + + + +98 + + C – + –

100 + + +100 + + + – – –100 C C – –10 + + + C

100 + + + + +10 + + + + +10 + + + + + +10 + + + + +10 + + + + +50 + + + + + +10 + + + + + +

100 + + +40 + + + +10 + + + + + +– C C + +

100 + + + C100 + + + – –10 + + + – –80 + + + –10 + + + + + +

100 + + + – – –100 + + + +

5 + + +100 + + +65 C C + C –10 + + + + + +10 + + + + + +2 + + + + + +

100 C C + – – –98 + + + C – –10 + + + + + +2 + + + + +

100 + + + +1 + + + + +

100 + + +100 + + +100 C C C – – C100 C C – –

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 291

Page 293: Niemet_Buch_En_72dpi

292

CHEMICAL RESISTANCE OF THERMOPLASTIC MATERIALS

+ = resistant Concen- Polyamide 6 Poly- Linear Poly- Polyoxi-C = cond. resistant tration propylene Polyester carbonate methylene— = unresistant (Homop.)II = solube % PA 6 PP PETP PC POM

Tetraline 100 + C + – CThionyl chloride 100 II C + – CToluol 100 + C + – CTransformer oil 100 + – + + +Trichlorethylene 100 C C + – CPerchloric acid 10 – + – –Water, cold 100 + + + + +Hydrogen peroxide 0,5 C + + CHydrogen peroxide 1 – + + CHydrogen peroxide 3 – + + C –Hydrogen peroxide 10 – + + – –Hydrogen peroxide 30 – + + – –Wax, molten 100 + +Wine – C + +Brandy – C + +Xylol 100 + – + –Zinc chloride 10 C + +

Raw material cycle

Precision and strictest tolerances cut reject and processing costs. Take

advantage of the NIEc MET raw material cycle.

NiemannENG_283_Kunststoffe-REST 04.10.2007 17:00 Uhr Seite 292

Page 294: Niemet_Buch_En_72dpi

293

CHEMICAL RESISTANCE OF THERMOPLASTIC MATERIALS

Concen- Polyethylene, Polyethylene, Polytetra- Aerylnitrile Polyvinyl Polymethyl-tration high molec. high molec. fluorethylene butadiene chloride methacrylate

styrol% HDPE 100 HDPE 500 PTFE ABS PVC PMMA

100 + + + +100 – – C –100 C C + – – –100 + + + + +100 C C + –10 C C +

100 + + + + + +0,5 + + + + +

1 + + + + +3 + + + +

10 + + + +30 + + + +

100 + + + +– + + + + +– + + + +

100 C C C – –10 + + + +

Those who want to stay in front in the battle ofl eadership in time, cost andquality can slim down and get fit – with or just-in-time terms !

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 293

Page 295: Niemet_Buch_En_72dpi

294

‘WIN WIN’ IS IN!

Not clinching a deal at any price, but finding a global solution to benefit both

you and us, that is our aim. So naturally it’s not just the individual order that

counts, but positive, long-term business development. Therefore we do not offer

you just ‘a few more semi-finished products’ for your money, but a genuine compe-

titive advantage through partnership: productivity and innovative power in every

sphere of NFSF processing!

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 294

Page 296: Niemet_Buch_En_72dpi

RANGE OF STOCKPLASTICS

We expand our almost daily, especially where customer needs are concerned.

We take care of your stocking. Just let us know what you require.

NiemannENG_283_Kunststoffe-REST 04.10.2007 17:00 Uhr Seite 295

Page 297: Niemet_Buch_En_72dpi

296

PLATES

In standard stock formats.We supply every kind of cut.

POLYMETHYL- POLYOXI- POLY- POLY- POLY-Thickness ACRYLATE METHYLENE ETHYLENE POLYAMIDE CARBONATE PROPYLENE

mm PMMA POM PE PA PC PP

1.0 c E c c E c c c E1.2 c E c c E c c c E1.5 c c c E c c c E2.0 c E c c E c c c E2.5 c c c E c c c E3.0 c E c c E c c c E4.0 c E+G c c E c c c E5.0 c E+G c c E c c c E6.0 c E+G c c E c c c E8.0 c E+G c c E c c c E

10.0 c G c c E c c c E12.0 c G c c E c c E15.0 c G c c E c c E20.0 c G c c E c c E25.0 c G c c E c c E30.0 c G c c E c c E35.0 c G c c G c c G40.0 c G c c G c c G45.0 c G c c G c c G50.0 c G c c G c c G55.0 c G c c G c c G60.0 c G c c G c c G65.0 c G c c G c c G70.0 c G c c G c c G80.0 c G c c G c c G90.0 c G c G c c G

100.0 c G c G c c G110.0 c G c G c c G120.0 c G c G c c G

PMMA = acrylic glass, cast, colourless DIN 16957, bonded on both sides with protective paper,G = cast, E = extruded

POM = highly impact resistant, natural colour (milky)PE = black/natural/white, surface satin finish, G = pressed, E = extrudedPA = extruded, natural colour, surface extruder-smoothPC = flat and structured, coloured and colourless, thermally from resis. to 135h, cold resistant to – 100h,

high impact resistance, weather-proof, good electrical values.

PP = high termal resistance, grey or natural colour, surface satin finish, G = pressed, E = extrudedPTFE = (e.g. Teflon) natural colour

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 296

Page 298: Niemet_Buch_En_72dpi

297

PLATES

In standard stock formats.We supply every kind of cut.

POLYTETRA- POLYVINYL- POLYVINYL- LOW PRESS- POLY- HARD HARDThickness FLUOR CHLORIDE IDENE URE POLY- STYROL PAPER PLASTIC

ETHYLENE FLUORIDE ETHYLENEmm PTFE PVC PVDF RCH PS HP Hgw

1.0 c c E c c c c c

1.2 c c E c c c c c

1.5 c c E c c c c c

2.0 c c E c c c c c

2.5 c c E c c c c c

3.0 c c E c c c c c

4.0 c c E c c c c c

5.0 c c E c c c c

6.0 c c E c c c c

8.0 c c E c c c c

10.0 c c E c c c c

12.0 c c E c c c

15.0 c c E c c c

20.0 c c E c c c

25.0 c c E c c c

30.0 c c E c c

35.0 c c G c c

40.0 c c G c c

45.0 c c G c c

50.0 c c G c c

55.0 c c G c c

60.0 c c G c c

65.0 c c G c c

70.0 c c G c c

80.0 c c G c c

90.0 c c G c c

100.0 c c G c c

110.0 c c G c c

120.0 c c G c c

PVC = normal or higher impact resistance, light grey/grey, special colours in white/black/red/transparent,extruded matt surface, also available in HT, G = pressed, E = extruded

PVDF = available lined on one side with glass fibre mat, natural colourRCH = black /milky, matt /glossyHP = phenol paperHgw = phenol or melamine laminated plastic

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 297

Page 299: Niemet_Buch_En_72dpi

298

ROUND BARS

Available in lengths of 1 - 2m.* also extruded

POLYMETHYL- POLYOXI-Diameter METHACRYLATE METHYLENE POLYETHYLENE POLYAMIDE POLYCARBONATE

mm PMMA POM PE PA PC

2 c *3 c *4 c * c c c

5 c * c c c

6 c * c c c

7 c * c c c

8 c * c c c

9 c * c c c

10 c * c c c c

11 c * c c c

12 c * c c c

13 c * c c c

14 c c c c

15 c c c c

16 c c c c c

17 c

18 c c c c

19 c

20 c c c c c

22 c c c c

2425 c c c c

2628 c c c c

30 c c c c c

32 c c c c

35 c c c c c

3740 c c c c c

45 c c c c

50 c c c c c

5155 c c c c

5660 c c c c c

6265 c c c

6670 c c c c c

75 c c c

80 c c c c c

8390 c c c c c

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 298

Page 300: Niemet_Buch_En_72dpi

299

ROUND BARS

Available in lengths of 1 - 2m.* also extruded

POLY- POLYTETRA- POLYVINYL- POLYVINYL-Diameter PROPYLENE FLUORETHYLENE CHLORIDE IDENFLUORIDE RCH 1000

mm PP PTFE PVC PVDF

234 c c

5 c c c

6 c c c

7 c c

8 c c c

9 c c

10 c c c * c

11 c c

12 c c c

13 c c

14 c c

15 c c c *16 c c

17 c

18 c c c

192022 c c

24 c

25 c c c * c c

26 c

28 c c c

30 c c c * c c

32 c c c

35 c c c

37 c

40 c c c * c c

45 c c c c

50 c c * c

51 c

55 c

56 c

60 c c * c c

62 c

65 c c

66 c

70 c c c * c

75 c c c

80 c c c

83 c

90 c c c c

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 299

Page 301: Niemet_Buch_En_72dpi

300

ROUND BARS

Available in lengths of 1 - 2m.* also extruded

POLYMETHYL- POLYOXI-Diameter METHACRYLATE METHYLENE POLYETHYLENE POLYAMIDE POLYCARBONATE

mm PMMA POM PE PA PC

92100 c c c c

102110 c c c c

120125 c c c c

130135 c c c

150 c c c

165 c c c

180 c c c

200 c c c

225 c

250 c c

280 c

300 c c

350 c

PMMA = cast, clear, transparent, high gloss, polishedPOM = natural colourPE = low pressure PE, black and natural colourPA = natural colourPC = transparent, extruder-smooth

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 300

Page 302: Niemet_Buch_En_72dpi

301

ROUND BARS

Available in lengths of 1 - 2m.* also extruded

POLY- POLYTETRA- POLYVINYL- POLYVINYL-Diameter PROPYLENE FLUORETHYLENE CHLORIDE IDENFLUORIDE RCH 1000

mm PP PTFE PVC PVDF

92 c

100 c c c c

102 c

110 c c c

120 c c

125 c c c

130 c

135 c

150 c c c

165 c

180 c c

200 c c

225250 c c

280300 c c

350 c

PP = high termal resistance, grey and natural colourPTFE = (e.g. Teflon) natural whitePVC = grey, red, blackPVDF = natural colourRCH 1000 = high-molecular, low-pressure polyethylene, natural colour

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 301

Page 303: Niemet_Buch_En_72dpi

302

PVC AS PRESSED / DRAWN SF PRODUCT

Dimensions

Edge length Rectangular Square HexagonalSpanner width bar bar bar

Width x thickness

mm

20.0 x 6.0 c

22.0 x 8.0 c

23.0 x 12.0 c

28.0 x 9.0 c

30.0 x 10.0 c

35.0 x 11.0 c

40.0 x 3.0 c

40.0 x 15.0 c

45.0 x 15.0 c

60.0 x 10.0 c

10.0 x 10.0 c

15.0 x 15.0 c

20.0 x 20.0 c

25.0 x 25.0 c

30.0 x 30.0 c

40.0 x 40.0 c

7.0 c

8.0 c

10.0 c

12.0 c

14.0 c

17.0 c

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 302

Page 304: Niemet_Buch_En_72dpi

Weight calculations of SF products

The weight per unit given is calculated as follows:Multiply the volume value already calculated in the tables by the specific weight of the alloyyou require (given at the head of the table beside the alloy description).

Example:Square pipe (P.314), alloy AlMgSi 1, Specific weight; 2.70

Edge length: 25 x 20Wall thickness: 3.0From this follows theVolume value/m: 0.234

Calculation of the metre weight: Volume value/m x spec. weight = 0.234 x 2.70 0 0.6318 kg/m

The metre weight amounts to 0.6318 kg.

To simplify the calculation of the metre weight, NIE•MET has taken the following units ofmeasure as a basis:

- The dimensions of the SF products (e.g. wall thickness, edge length, diameter, etc.) are givenin millimetres. From these NIE•MET has calculated the volume values set out in the table.

- The specific weights (at the head of the table beside the alloy description) are given in kg /dm3.

NiemannENG_283_Kunststoffe-REST 04.10.2007 17:00 Uhr Seite 303

Page 305: Niemet_Buch_En_72dpi

304

WEIGHT CALCULATION: SHEET / PLATES

Weight per plate to be calculated:Multiply volume value/m2 of the table with the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

VolumeKF MF GF

Thickness 1000/2000 1250/2500 1500/3000

0.30 0.600 0.938 1.3500.40 0.800 1.250 1.8000.50 1.000 1.563 2.2500.60 1.200 1.875 2.7000.70 1.400 2.188 3.1500.80 1.600 2.500 3.6000.90 1.800 2.813 4.0501.00 2.000 3.125 4.5001.25 2.500 3.906 5.6251.50 3.000 4.688 6.7501.75 3.500 5.469 7.8752.00 4.000 6.250 9.0002.25 4.500 7.031 10.1252.50 5.000 7.813 11.2502.75 5.500 8.594 12.3753.00 6.000 9.375 13.5003.25 6.500 10.156 14.6253.50 7.000 10.938 15.7503.75 7.500 11.719 16.8754.00 8.000 12.500 18.0004.25 8.500 13.281 19.1254.50 9.000 14.063 20.2504.75 9.500 14.844 21.3755.00 10.000 15.625 22.5005.50 11.000 17.188 24.7506.00 12.000 18.750 27.0006.50 13.000 20.313 29.2507.00 14.000 21.875 31.5007.50 15.000 23.438 33.7508.00 16.000 25.000 36.0009.00 18.000 28.125 40.500

10.00 20.000 31.250 45.00011.00 22.000 34.375 49.50012.00 24.000 37.500 54.00013.00 26.000 40.625 58.50014.00 14.000 43.750 63.00015.00 30.000 46.875 67.50016.00 32.000 50.000 72.00017.00 34.000 53.125 76.50018.00 36.000 56.250 81.00019.00 38.000 59.375 85.500

VolumeKF MF GF

Thickness 1000/2000 1250/2500 1500/3000

20.00 40.000 62.500 90.00025.00 50.000 78.125 112.50030.00 60.000 93.750 135.00035.00 70.000 109.375 157.50040.00 80.000 125.000 180.00045.00 90.000 140.625 202.50050.00 100.000 156.250 225.00055.00 110.000 171.875 247.50060.00 120.000 187.500 270.00065.00 130.000 203.125 292.50070.00 140.000 218.750 315.00075.00 150.000 234.375 337.50080.00 160.000 250.000 360.00085.00 170.000 265.625 382.50090.00 180.000 281.250 405.00095.00 190.000 296.875 427.500

100.00 200.000 312.500 450.000105.00 210.000 328.125 472.500110.00 220.000 343.750 495.000115.00 230.000 359.375 517.500120.00 240.000 375.000 540.000125.00 250.000 390.625 562.500130.00 260.000 406.250 585.000135.00 270.000 421.875 607.500140.00 280.000 437.500 630.000150.00 300.000 468.750 675.000155.00 310.000 484.375 697.500160.00 320.000 500.000 720.000165.00 330.000 515.625 742.500170.00 170.000 531.250 765.000175.00 350.000 546.875 787.500180.00 360.000 562.500 810.000185.00 370.000 578.125 832.500190.00 380.000 593.750 855.000195.00 390.000 609.375 877.500200.00 400.000 625.000 900.000205.00 410.000 640.625 922.500210.00 420.000 656.250 945.000220.00 440.000 687.500 990.000225.00 450.000 703.125 1.012.500230.00 460.000 718.750 1.035.000

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:42 Uhr Seite 304

Page 306: Niemet_Buch_En_72dpi

305

WEIGHT CALCULATION: SHEET / PLATES

Weight per plate to be calculated:Multiply volume value/m2 of the table with the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

VolumeKF MF GF

Thickness 1000/2000 1250/2500 1500/3000

235.00 470.000 734.375 1.057.500240.00 480.000 750.000 1.080.000245.00 490.000 765.625 1.102.500250.00 500.000 781.250 1.125.000235.00 470.000 734.375 1.057.500240.00 480.000 750.000 1.080.000245.00 490.000 765.625 1.102.500250.00 500.000 781.250 1.125.000255.00 510.000 796.875 1.147.500260.00 520.000 812.500 1.170.000265.00 530.000 828.125 1.192.500270.00 540.000 843.750 1.215.000275.00 550.000 859.375 1.237.500280.00 560.000 875.000 1.260.000285.00 570.000 890.625 1.282.500290.00 580.000 906.250 1.305.000295.00 590.000 921.875 1.327.500300.00 600.000 937.500 1.350.000305.00 610.000 953.125 1.372.500310.00 620.000 968.750 1.395.000315.00 630.000 984.375 1.417.500320.00 640.000 1.000.000 1.440.000325.00 650.000 1.015.625 1.462.500330.00 660.000 1.031.250 1.485.000335.00 670.000 1.046.875 1.507.500340.00 680.000 1.062.500 1.530.000345.00 690.000 1.078.125 1.552.500350.00 350.000 1.093.750 1.575.000355.00 710.000 1.109.375 1.597.500

VolumeKF MF GF

Thickness 1000/2000 1250/2500 1500/3000

360.00 720.000 1.125.000 1.620.000365.00 730.000 1.140.625 1.642.500370.00 740.000 1.156.250 1.665.000375.00 750.000 1.171.875 1.687.500380.00 760.000 1.187.500 1.710.000385.00 770.000 1.203.125 1.732.500390.00 780.000 1.218.750 1.755.000395.00 790.000 1.234.375 1.777.500400.00 800.000 1.250.000 1.800.000405.00 810.000 1.265.625 1.822.500410.00 820.000 1.281.250 1.845.000415.00 830.000 1.296.875 1.867.500420.00 840.000 1.312.500 1.890.000425.00 850.000 1.328.125 1.912.500430.00 860.000 1.343.750 1.935.000435.00 870.000 1.359.375 1.957.500440.00 880.000 1.375.000 1.980.000445.00 890.000 1.390.625 2.002.500450.00 900.000 1.406.250 2.025.000455.00 910.000 1.421.875 2.047.500460.00 920.000 1.437.500 2.070.000465.00 930.000 1.453.125 2.092.500470.00 940.000 1.468.750 2.115.000475.00 950.000 1.484.375 2.137.500480.00 960.000 1.500.000 2.160.000490.00 980.000 1.531.250 2.205.000495.00 990.000 1.546.875 2.227.500500.00 1.000.000 1.562.500 2.250.000

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 305

Page 307: Niemet_Buch_En_72dpi

306

WEIGHT CALCULATION: FLAT

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 2.0 3.0 3.5 4.0 4.5 5.0 6.0 8.0 10.0 12.0 15.0 20.0 25.0

Width

6.00 0.012 0.018 0.021 0.024 0.027 0.030 – – – – – – –8.00 0.016 0.024 0.028 0.032 0.036 0.040 0.048 – – – – – –

10.00 0.020 0.030 0.035 0.040 0.045 0.050 0.060 0.080 – – – – –12.00 0.024 0.036 0.042 0.048 0.054 0.060 0.072 0.096 0.120 – – – –15.00 0.030 0.045 0.053 0.060 0.068 0.075 0.090 0.120 0.150 0.180 – – –16.00 0.032 0.048 0.056 0.064 0.072 0.080 0.096 0.128 0.160 0.192 – – –18.00 0.036 0.054 0.063 0.072 0.081 0.090 0.108 0.144 0.180 0.216 – – –20.00 0.040 0.060 0.070 0.080 0.090 0.100 0.120 0.160 0.200 0.240 0.300 – –25.00 0.050 0.075 0.088 0.100 0.113 0.125 0.150 0.200 0.250 0.300 0.375 0.500 –30.00 0.060 0.090 0.105 0.120 0.135 0.150 0.180 0.240 0.300 0.360 0.450 0.600 0.75035.00 0.070 0.105 0.123 0.140 0.158 0.175 0.210 0.280 0.350 0.420 0.525 0.700 0.87540.00 0.080 0.120 0.140 0.160 0.180 0.200 0.240 0.320 0.400 0.480 0.600 0.800 1.00045.00 0.090 0.135 0.158 0.180 0.203 0.225 0.270 0.360 0.450 0.540 0.675 0.900 1.12550.00 0.100 0.150 0.175 0.200 0.225 0.250 0.300 0.400 0.500 0.600 0.750 1.000 1.25055.00 0.110 0.165 0.193 0.220 0.248 0.275 0.330 0.440 0.550 0.660 0.825 1.100 1.37560.00 0.120 0.180 0.210 0.240 0.270 0.300 0.360 0.480 0.600 0.720 0.900 1.200 1.50065.00 0.130 0.195 0.228 0.260 0.293 0.325 0.390 0.520 0.650 0.780 0.975 1.300 1.62570.00 0.140 0.210 0.245 0.280 0.315 0.350 0.420 0.560 0.700 0.840 1.050 1.400 1.75075.00 0.150 0.225 0.263 0.300 0.338 0.375 0.450 0.600 0.750 0.900 1.125 1.500 1.87580.00 0.160 0.240 0.280 0.320 0.360 0.400 0.480 0.640 0.800 0.960 1.200 1.600 2.00085.00 0.170 0.255 0.298 0.340 0.383 0.425 0.510 0.680 0.850 1.020 1.275 1.700 2.12590.00 0.180 0.270 0.315 0.360 0.405 0.450 0.540 0.720 0.900 1.080 1.350 1.800 2.25095.00 0.190 0.285 0.333 0.380 0.428 0.475 0.570 0.760 0.950 1.140 1.425 1.900 2.375

100.00 0.200 0.300 0.350 0.400 0.450 0.500 0.600 0.800 1.000 1.200 1.500 2.000 2.500105.00 0.210 0.315 0.368 0.420 0.473 0.525 0.630 0.840 1.050 1.260 1.575 2.100 2.625110.00 0.220 0.330 0.385 0.440 0.495 0.550 0.660 0.880 1.100 1.320 1.650 2.200 2.750115.00 0.230 0.345 0.403 0.460 0.518 0.575 0.690 0.920 1.150 1.380 1.725 2.300 2.875120.00 0.240 0.360 0.420 0.480 0.540 0.600 0.720 0.960 1.200 1.440 1.800 2.400 3.000125.00 0.250 0.375 0.438 0.500 0.563 0.625 0.750 1.000 1.250 1.500 1.875 2.500 3.125130.00 0.260 0.390 0.455 0.520 0.585 0.650 0.780 1.040 1.300 1.560 1.950 2.600 3.250140.00 0.280 0.420 0.490 0.560 0.630 0.700 0.840 1.120 1.400 1.680 2.100 2.800 3.500150.00 0.300 0.450 0.525 0.600 0.675 0.750 0.900 1.200 1.500 1.800 2.250 3.000 3.750160.00 0.320 0.480 0.560 0.640 0.720 0.800 0.960 1.280 1.600 1.920 2.400 3.200 4.000170.00 0.340 0.510 0.595 0.680 0.765 0.850 1.020 1.360 1.700 2.040 2.550 3.400 4.250180.00 0.360 0.540 0.630 0.720 0.810 0.900 1.080 1.440 1.800 2.160 2.700 3.600 4.500190.00 0.380 0.570 0.665 0.760 0.855 0.950 1.140 1.520 1.900 2.280 2.850 3.800 4.750200.00 0.400 0.600 0.700 0.800 0.900 1.000 1.200 1.600 2.000 2.400 3.000 4.000 5.000210.00 0.420 0.630 0.735 0.840 0.945 1.050 1.260 1.680 2.100 2.520 3.150 4.200 5.250220.00 0.440 0.660 0.770 0.880 0.990 1.100 1.320 1.760 2.200 2.640 3.300 4.400 5.500230.00 0.460 0.690 0.805 0.920 1.035 1.150 1.380 1.840 2.300 2.760 3.450 4.600 5.750240.00 0.480 0.720 0.840 0.960 1.080 1.200 1.440 1.920 2.400 2.880 3.600 4.800 6.000250.00 0.500 0.750 0.875 1.000 1.125 1.250 1.500 2.000 2.500 3.000 3.750 5.000 6.250

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 306

Page 308: Niemet_Buch_En_72dpi

307

WEIGHT CALCULATION: FLAT

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 80.0 90.0 100.0 110.0 120.0

– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –– – – – – – – – – – – – – –

1.050 – – – – – – – – – – – – –1.200 1.400 – – – – – – – – – – – –1.350 1.575 1.800 – – – – – – – – – – –1.500 1.750 2.000 2.250 – – – – – – – – – –1.650 1.925 2.200 2.475 2.750 – – – – – – – – –1.800 2.100 2.400 2.700 3.000 3.300 – – – – – – – –1.950 2.275 2.600 2.925 3.250 3.575 3.900 – – – – – – –2.100 2.450 2.800 3.150 3.500 3.850 4.200 4.550 – – – – – –2.250 2.625 3.000 3.375 3.750 4.125 4.500 4.875 5.250 – – – – –2.400 2.800 3.200 3.600 4.000 4.400 4.800 5.200 5.600 – – – – –2.550 2.975 3.400 3.825 4.250 4.675 5.100 5.525 5.950 6.800 – – – –2.700 3.150 3.600 4.050 4.500 4.950 5.400 5.850 6.300 7.200 – – – –2.850 3.325 3.800 4.275 4.750 5.225 5.700 6.175 6.650 7.600 8.550 – – –3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500 7.000 8.000 9.000 – – –3.150 3.675 4.200 4.725 5.250 5.775 6.300 6.825 7.350 8.400 9.450 10.500 – –3.300 3.850 4.400 4.950 5.500 6.050 6.600 7.150 7.700 8.800 9.900 11.000 – –3.450 4.025 4.600 5.175 5.750 6.325 6.900 7.475 8.050 9.200 10.350 11.500 12.650 –3.600 4.200 4.800 5.400 6.000 6.600 7.200 7.800 8.400 9.600 10.800 12.000 13.200 –3.750 4.375 5.000 5.625 6.250 6.875 7.500 8.125 8.750 10.000 11.250 12.500 13.750 15.0003.900 4.550 5.200 5.850 6.500 7.150 7.800 8.450 9.100 10.400 11.700 13.000 14.300 15.6004.200 4.900 5.600 6.300 7.000 7.700 8.400 9.100 9.800 11.200 12.600 14.000 15.400 16.8004.500 5.250 6.000 6.750 7.500 8.250 9.000 9.750 10.500 12.000 13.500 15.000 16.500 18.0004.800 5.600 6.400 7.200 8.000 8.800 9.600 10.400 11.200 12.800 14.400 16.000 17.600 19.2005.100 5.950 6.800 7.650 8.500 9.350 10.200 11.050 11.900 13.600 15.300 17.000 18.700 20.4005.400 6.300 7.200 8.100 9.000 9.900 10.800 11.700 12.600 14.400 16.200 18.000 19.800 21.6005.700 6.650 7.600 8.550 9.500 10.450 11.400 12.350 13.300 15.200 17.100 19.000 20.900 22.8006.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 16.000 18.000 20.000 22.000 24.0006.300 7.350 8.400 9.450 10.500 11.550 12.600 13.650 14.700 16.800 18.900 21.000 23.100 25.2006.600 7.700 8.800 9.900 11.000 12.100 13.200 14.300 15.400 17.600 19.800 22.000 24.200 26.4006.900 8.050 9.200 10.350 11.500 12.650 13.800 14.950 16.100 18.400 20.700 23.000 25.300 27.6007.200 8.400 9.600 10.800 12.000 13.200 14.400 15.600 16.800 19.200 21.600 24.000 26.400 28.8007.500 8.750 10.000 11.250 12.500 13.750 15.000 16.250 17.500 20.000 22.500 25.000 27.500 30.000

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 307

Page 309: Niemet_Buch_En_72dpi

308

WEIGHT CALCULATION: FLAT

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 2.0 3.0 3.5 4.0 4.5 5.0 6.0 8.0 10.0 12.0 15.0 20.0 25.0 30.0

Width

260.00 0.520 0.780 0.910 1.040 1.170 1.300 1.560 2.080 2.600 3.120 3.900 5.200 6.500 7.800270.00 0.540 0.810 0.945 1.080 1.215 1.350 1.620 2.160 2.700 3.240 4.050 5.400 6.750 8.100280.00 0.560 0.840 0.980 1.120 1.260 1.400 1.680 2.240 2.800 3.360 4.200 5.600 7.000 8.400300.00 0.600 0.900 1.050 1.200 1.350 1.500 1.800 2.400 3.000 3.600 4.500 6.000 7.500 9.000

NIE c MET ressources in stocking and transportation ensure flexibility and a leanprofile for medium-sized NFSF product processors.

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 308

Page 310: Niemet_Buch_En_72dpi

309

WEIGHT CALCULATION: FLAT

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 80.0 90.0 100.0 110.0 120.0

Width

260.00 9.100 10.400 11.700 13.000 14.300 15.600 16.900 18.200 20.800 23.400 26.000 28.600 31.200270.00 9.450 10.800 12.150 13.500 14.850 16.200 17.550 18.900 21.600 24.300 27.000 29.700 32.400280.00 9.800 11.200 12.600 14.000 15.400 16.800 18.200 19.600 22.400 25.200 28.000 30.800 33.600300.00 10.500 12.000 13.500 15.000 16.500 18.000 19.500 21.000 24.000 27.000 30.000 33.000 36.000

NIE c MET SERVICESFOR MEDIUM-SIZED COMPANIES

x Stocking, processing and logistics are tailored to help solve the pro-

blems facedbymedium-sizedcompanies (e.g. short innovationcycles,

frequentlychangingbatchsizes, limitedtransportandstorage facilities).

x Favourable terms and material prices through first-class connections to

your acquisition markets and our position as an important, indepen-

dent purchaser.

NiemannENG_283_Kunststoffe-REST 04.10.2007 17:00 Uhr Seite 309

Page 311: Niemet_Buch_En_72dpi

310

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall th. 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0

Diam.

3.00 0.004 0.005 0.006 0.007 – – – – – – – – –4.00 0.005 0.008 0.009 0.011 0.012 – – – – – – – –5.00 0.007 0.010 0.013 0.015 0.016 0.019 – – – – – – –6.00 0.009 0.012 0.016 0.019 0.021 0.025 0.027 – – – – – –7.00 0.010 0.015 0.019 0.023 0.026 0.031 0.035 0.038 – – – – –8.00 0.012 0.017 0.022 0.026 0.031 0.038 0.043 0.047 – – – – –9.00 0.013 0.019 0.025 0.030 0.035 0.044 0.051 0.057 0.063 – – – –

10.00 0.015 0.022 0.028 0.034 0.040 0.050 0.059 0.066 0.075 0.078 – – –11.00 0.016 0.024 0.031 0.038 0.045 0.057 0.067 0.075 0.088 0.092 0.094 – –12.00 0.018 0.026 0.035 0.042 0.049 0.063 0.075 0.085 0.100 0.106 0.110 0.112 –13.00 0.020 0.029 0.038 0.046 0.054 0.069 0.082 0.094 0.113 0.120 0.126 0.130 0.13214.00 0.021 0.031 0.041 0.050 0.059 0.075 0.090 0.104 0.126 0.134 0.141 0.147 0.15115.00 0.023 0.034 0.044 0.054 0.064 0.082 0.098 0.113 0.138 0.148 0.157 0.164 0.17016.00 0.024 0.036 0.047 0.058 0.068 0.088 0.106 0.122 0.151 0.162 0.173 0.181 0.18817.00 0.026 0.038 0.050 0.062 0.073 0.094 0.114 0.132 0.163 0.177 0.188 0.199 0.20718.00 0.027 0.041 0.053 0.066 0.078 0.100 0.122 0.141 0.176 0.191 0.204 0.216 0.22619.00 0.029 0.043 0.057 0.070 0.082 0.107 0.130 0.151 0.188 0.205 0.220 0.233 0.24520.00 0.031 0.045 0.060 0.074 0.087 0.113 0.137 0.160 0.201 0.219 0.236 0.250 0.26421.00 0.032 0.048 0.063 0.078 0.092 0.119 0.145 0.170 0.214 0.233 0.251 0.268 0.28322.00 0.034 0.050 0.066 0.081 0.097 0.126 0.153 0.179 0.226 0.247 0.267 0.285 0.30123.00 0.035 0.052 0.069 0.085 0.101 0.132 0.161 0.188 0.239 0.261 0.283 0.302 0.32024.00 0.037 0.055 0.072 0.089 0.106 0.138 0.169 0.198 0.251 0.276 0.298 0.319 0.33925.00 0.038 0.057 0.075 0.093 0.111 0.144 0.177 0.207 0.264 0.290 0.314 0.337 0.35826.00 0.040 0.059 0.079 0.097 0.115 0.151 0.184 0.217 0.276 0.304 0.330 0.354 0.37727.00 0.042 0.062 0.082 0.101 0.120 0.157 0.192 0.226 0.289 0.318 0.345 0.371 0.39628.00 0.043 0.064 0.085 0.105 0.125 0.163 0.200 0.236 0.301 0.332 0.361 0.389 0.41429.00 0.045 0.067 0.088 0.109 0.130 0.170 0.208 0.245 0.314 0.346 0.377 0.406 0.43330.00 0.046 0.069 0.091 0.113 0.134 0.176 0.216 0.254 0.327 0.360 0.393 0.423 0.45231.00 0.048 0.071 0.094 0.117 0.139 0.182 0.224 0.264 0.339 0.374 0.408 0.440 0.47132.00 0.049 0.074 0.097 0.121 0.144 0.188 0.232 0.273 0.352 0.389 0.424 0.458 0.49033.00 0.051 0.076 0.100 0.125 0.148 0.195 0.239 0.283 0.364 0.403 0.440 0.475 0.50934.00 0.053 0.078 0.104 0.129 0.153 0.201 0.247 0.292 0.377 0.417 0.455 0.492 0.52835.00 0.054 0.081 0.107 0.132 0.158 0.207 0.255 0.301 0.389 0.431 0.471 0.509 0.54636.00 0.056 0.083 0.110 0.136 0.162 0.214 0.263 0.311 0.402 0.445 0.487 0.527 0.56537.00 0.057 0.085 0.113 0.140 0.167 0.220 0.271 0.320 0.414 0.459 0.502 0.544 0.58438.00 0.059 0.088 0.116 0.144 0.172 0.226 0.279 0.330 0.427 0.473 0.518 0.561 0.60339.00 0.060 0.090 0.119 0.148 0.177 0.232 0.287 0.339 0.440 0.487 0.534 0.579 0.62240.00 0.062 0.092 0.122 0.152 0.181 0.239 0.294 0.349 0.452 0.502 0.550 0.596 0.64141.00 0.064 0.095 0.126 0.156 0.186 0.245 0.302 0.358 0.465 0.516 0.565 0.613 0.65942.00 0.065 0.097 0.129 0.160 0.191 0.251 0.310 0.367 0.477 0.530 0.581 0.630 0.67843.00 0.067 0.099 0.132 0.164 0.195 0.257 0.318 0.377 0.490 0.544 0.597 0.648 0.69744.00 0.068 0.102 0.135 0.168 0.200 0.264 0.326 0.386 0.502 0.558 0.612 0.665 0.716

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 310

Page 312: Niemet_Buch_En_72dpi

311

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

7.0 8.0 10.0 11.0 12.0 12.5 15.0 16.0 17.5 20.0 25.0 30.0 40.0 45.0 50.0

– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –– – – – – – – – – – – – – – –

0.176 – – – – – – – – – – – – – –0.198 – – – – – – – – – – – – – –0.220 0.226 – – – – – – – – – – – – –0.242 0.251 – – – – – – – – – – – – –0.264 0.276 – – – – – – – – – – – – –0.286 0.301 – – – – – – – – – – – – –0.308 0.327 0.345 – – – – – – – – – – – –0.330 0.352 0.377 – – – – – – – – – – – –0.352 0.377 0.408 0.414 – – – – – – – – – – –0.374 0.402 0.440 0.449 – – – – – – – – – – –0.396 0.427 0.471 0.484 0.490 – – – – – – – – – –0.418 0.452 0.502 0.518 0.528 0.530 – – – – – – – – –0.440 0.477 0.534 0.553 0.565 0.569 – – – – – – – – –0.462 0.502 0.565 0.587 0.603 0.608 – – – – – – – – –0.484 0.528 0.597 0.622 0.641 0.648 – – – – – – – – –0.506 0.553 0.628 0.656 0.678 0.687 – – – – – – – – –0.528 0.578 0.659 0.691 0.716 0.726 0.754 – – – – – – – –0.550 0.603 0.691 0.725 0.754 0.765 0.801 – – – – – – – –0.571 0.628 0.722 0.760 0.791 0.805 0.848 0.854 – – – – – – –0.593 0.653 0.754 0.794 0.829 0.844 0.895 0.904 – – – – – – –0.615 0.678 0.785 0.829 0.867 0.883 0.942 0.955 – – – – – – –0.637 0.703 0.816 0.864 0.904 0.922 0.989 1.005 1.017 – – – – – –0.659 0.728 0.848 0.898 0.942 0.962 1.036 1.055 1.072 – – – – – –0.681 0.754 0.879 0.933 0.980 1.001 1.083 1.105 1.126 – – – – – –0.703 0.779 0.911 0.967 1.017 1.040 1.130 1.156 1.181 – – – – – –0.725 0.804 0.942 1.002 1.055 1.079 1.178 1.206 1.236 – – – – – –0.747 0.829 0.973 1.036 1.093 1.119 1.225 1.256 1.291 1.319 – – – – –0.769 0.854 1.005 1.071 1.130 1.158 1.272 1.306 1.346 1.382 – – – – –0.791 0.879 1.036 1.105 1.168 1.197 1.319 1.356 1.401 1.444 – – – – –0.813 0.904 1.068 1.140 1.206 1.236 1.366 1.407 1.456 1.507 – – – – -

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 311

Page 313: Niemet_Buch_En_72dpi

312

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall th. 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0

Diam.

45.00 0.070 0.104 0.138 0.172 0.205 0.270 0.334 0.396 0.515 0.572 0.628 0.682 0.73546.00 0.071 0.107 0.141 0.176 0.210 0.276 0.341 0.405 0.528 0.586 0.644 0.699 0.75447.00 0.073 0.109 0.144 0.180 0.214 0.283 0.349 0.414 0.540 0.601 0.659 0.717 0.77248.00 0.075 0.111 0.148 0.183 0.219 0.289 0.357 0.424 0.553 0.615 0.675 0.734 0.79149.00 0.076 0.114 0.151 0.187 0.224 0.295 0.365 0.433 0.565 0.629 0.691 0.751 0.81050.00 0.078 0.116 0.154 0.191 0.228 0.301 0.373 0.443 0.578 0.643 0.707 0.769 0.82951.00 0.079 0.118 0.157 0.195 0.233 0.308 0.381 0.452 0.590 0.657 0.722 0.786 0.84852.00 0.081 0.121 0.160 0.199 0.238 0.314 0.389 0.462 0.603 0.671 0.738 0.803 0.86753.00 0.082 0.123 0.163 0.203 0.243 0.320 0.396 0.471 0.615 0.685 0.754 0.820 0.88554.00 0.084 0.125 0.166 0.207 0.247 0.327 0.404 0.480 0.628 0.699 0.769 0.838 0.90455.00 0.086 0.128 0.170 0.211 0.252 0.333 0.412 0.490 0.641 0.714 0.785 0.855 0.92356.00 0.087 0.130 0.173 0.215 0.257 0.339 0.420 0.499 0.653 0.728 0.801 0.872 0.94257.00 0.089 0.132 0.176 0.219 0.261 0.345 0.428 0.509 0.666 0.742 0.816 0.889 0.96158.00 0.090 0.135 0.179 0.223 0.266 0.352 0.436 0.518 0.678 0.756 0.832 0.907 0.98059.00 0.092 0.137 0.182 0.227 0.271 0.358 0.444 0.528 0.691 0.770 0.848 0.924 0.99960.00 0.093 0.140 0.185 0.231 0.276 0.364 0.451 0.537 0.703 0.784 0.864 0.941 1.01761.00 0.095 0.142 0.188 0.235 0.280 0.371 0.459 0.546 0.716 0.798 0.879 0.958 1.03662.00 0.097 0.144 0.192 0.238 0.285 0.377 0.467 0.556 0.728 0.812 0.895 0.976 1.05563.00 0.098 0.147 0.195 0.242 0.290 0.383 0.475 0.565 0.741 0.827 0.911 0.993 1.07464.00 0.100 0.149 0.198 0.246 0.294 0.389 0.483 0.575 0.754 0.841 0.926 1.010 1.09365.00 0.101 0.151 0.201 0.250 0.299 0.396 0.491 0.584 0.766 0.855 0.942 1.028 1.11266.00 0.103 0.154 0.204 0.254 0.304 0.402 0.498 0.593 0.779 0.869 0.958 1.045 1.13067.00 0.104 0.156 0.207 0.258 0.309 0.408 0.506 0.603 0.791 0.883 0.973 1.062 1.14968.00 0.106 0.158 0.210 0.262 0.313 0.414 0.514 0.612 0.804 0.897 0.989 1.079 1.16869.00 0.108 0.161 0.214 0.266 0.318 0.421 0.522 0.622 0.816 0.911 1.005 1.097 1.18770.00 0.109 0.163 0.217 0.270 0.323 0.427 0.530 0.631 0.829 0.926 1.021 1.114 1.20671.00 0.111 0.165 0.220 0.274 0.327 0.433 0.538 0.641 0.842 0.940 1.036 1.131 1.22572.00 0.112 0.168 0.223 0.278 0.332 0.440 0.546 0.650 0.854 0.954 1.052 1.148 1.24373.00 0.114 0.170 0.226 0.282 0.337 0.446 0.553 0.659 0.867 0.968 1.068 1.166 1.26274.00 0.115 0.173 0.229 0.286 0.341 0.452 0.561 0.669 0.879 0.982 1.083 1.183 1.28175.00 0.117 0.175 0.232 0.289 0.346 0.458 0.569 0..78 0.892 0.996 1.099 1.200 1.30076.00 0.119 0.177 0.236 0.293 0.351 0.465 0.577 0.688 0.904 1.010 1.115 1.218 1.31977.00 0.120 0.180 0.239 0.297 0.356 0.471 0.585 0.697 0.917 1.024 1.130 1.235 1.33878.00 0.122 0.182 0.242 0.301 0.360 0.477 0.593 0.707 0.929 1.039 1.146 1.252 1.35679.00 0.123 0.184 0.245 0.305 0.365 0.484 0.601 0.716 0.942 1.053 1.162 1.269 1.37580.00 0.125 0.187 0.248 0.309 0.370 0.490 0.608 0.725 0.955 1.067 1.178 1.287 1.39481.00 0.126 0.189 0.251 0.313 0.374 0.496 0.616 0.735 0.967 1.081 1.193 1.304 1.41382.00 0.128 0.191 0.254 0.317 0.379 0.502 0.624 0.744 0.980 1.095 1.209 1.321 1.43283.00 0.130 0.194 0.257 0.321 0.384 0.509 0.632 0.754 0.992 1.109 1.225 1.338 1.45184.00 0.131 0.196 0.261 0.325 0.389 0.515 0.640 0.763 1.005 1.123 1.240 1.356 1.47085.00 0.133 0.198 0.264 0.329 0.393 0.521 0.648 0.772 1.017 1.137 1.256 1.373 1.48886.00 0.134 0.201 0.267 0.333 0.398 0.528 0.655 0.782 1.030 1.152 1.272 1.390 1.507

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 312

Page 314: Niemet_Buch_En_72dpi

313

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

7.0 8.0 10.0 11.0 12.0 12.5 15.0 16.0 17.5 20.0 25.0 30.0 40.0 45.0 50.0

0.835 0.929 1.099 1.174 1.243 1.276 1.413 1.457 1.511 1.570 – – – – –0.857 0.955 1.130 1.209 1.281 1.315 1.460 1.507 1.566 1.633 – – – – –0.879 0.980 1.162 1.243 1.319 1.354 1.507 1.557 1.621 1.696 – – – – –0.901 1.005 1.193 1.278 1.356 1.393 1.554 1.608 1.676 1.758 – – – – –0.923 1.030 1.225 1.313 1.394 1.433 1.601 1.658 1.731 1.821 – – – – –0.945 1.055 1.256 1.347 1.432 1.472 1.649 1.708 1.786 1.884 – – – – –0.967 1.080 1.287 1.382 1.470 1.511 1.696 1.758 1.841 1.947 2.041 – – – –0.989 1.105 1.319 1.416 1.507 1.550 1.743 1.809 1.896 2.010 2.120 – – – –1.011 1.130 1.350 1.451 1.545 1.590 1.790 1.859 1.951 2.072 2.198 – – – –1.033 1.156 1.382 1.485 1.583 1.629 1.837 1.909 2.006 2.135 2.277 – – – –1.055 1.181 1.413 1.520 1.620 1.668 1.884 1.959 2.061 2.198 2.355 – – – –1.077 1.206 1.444 1.554 1.658 1.707 1.931 2.010 2.116 2.261 2.434 – – – –1.099 1.231 1.476 1.589 1.696 1.747 1.978 2.060 2.171 2.324 2.512 – – – –1.121 1.256 1.507 1.623 1.733 1.786 2.025 2.110 2.225 2.386 2.591 – – – –1.143 1.281 1.539 1.658 1.771 1.825 2.072 2.160 2.280 2.449 2.669 – – – –1.165 1.306 1.570 1.692 1.809 1.864 2.120 2.211 2.335 2.512 2.748 – – – –1.187 1.331 1.601 1.727 1.846 1.904 2.167 2.261 2.390 2.575 2.826 2.920 – – –1.209 1.356 1.633 1.762 1.884 1.943 2.214 2.311 2.445 2.638 2.905 3.014 – – –1.231 1.382 1.664 1.796 1.922 1.982 2.261 2.361 2.500 2.700 2.983 3.109 – – –1.253 1.407 1.696 1.831 1.959 2.021 2.308 2.412 2.555 2.763 3.062 3.203 – – –1.275 1.432 1.727 1.865 1.997 2.061 2.355 2.462 2.610 2.826 3.140 3.297 – – –1.297 1.457 1.758 1.900 2.035 2.100 2.402 2.512 2.665 2.889 3.219 3.391 – – –1.319 1.482 1.790 1.934 2.072 2.139 2.449 2.562 2.720 2.952 3.297 3.485 – – –1.341 1.507 1.821 1.969 2.110 2.178 2.496 2.612 2.775 3.014 3.376 3.580 – – –1.363 1.532 1.853 2.003 2.148 2.218 2.543 2.663 2.830 3.077 3.454 3.674 – – –1.385 1.557 1.884 2.038 2.185 2.257 2.591 2.713 2.885 3.140 3.533 3.768 – – –1.407 1.583 1.915 2.072 2.223 2.296 2.638 2.763 2.940 3.203 3.611 3.862 – – –1.429 1.608 1.947 2.107 2.261 2.335 2.685 2.813 2.995 3.266 3.690 3.956 – – –1.451 1.633 1.978 2.141 2.298 2.375 2.732 2.864 3.050 3.328 3.768 4.051 – – –1.473 1.658 2.010 2.176 2.336 2.414 2.779 2.914 3.105 3.391 3.847 4.145 – – –1.495 1.683 2.041 2.211 2.374 2.453 2.826 2.964 3.160 3.454 3.925 4.239 – – –1.517 1.708 2.072 2.245 2.412 2.492 2.873 3.014 3.215 3.517 4.004 4.333 – – –1.539 1.733 2.104 2.280 2.449 2.532 2.920 3.065 3.270 3.580 4.082 4.427 – – –1.561 1.758 2.135 2.314 2.487 2.571 2.967 3.115 3.324 3.642 4.161 4.522 – – –1.583 1.784 2.167 2.349 2.525 2.610 3.014 3.165 3.379 3.705 4.239 4.616 – – –1.605 1.809 2.198 2.383 2.562 2.649 3.062 3.215 3.434 3.768 4.318 4.710 – – –1.627 1.834 2.229 2.418 2.600 2.689 3.109 3.266 3.489 3.831 4.396 4.804 5.150 – –1.649 1.859 2.261 2.452 2.638 2.728 3.156 3.316 3.544 3.894 4.475 4.898 5.275 – –1.670 1.884 2.292 2.487 2.675 2.767 3.203 3.366 3.599 3.956 4.553 4.993 5.401 – –1.692 1.909 2.324 2.521 2.713 2.806 3.250 3.416 3.654 4.019 4.632 5.087 5.526 – –1.714 1.934 2.355 2.556 2.751 2.846 3.297 3.467 3.709 4.082 4.710 5.181 5.652 – –1.736 1.959 2.386 2.591 2.788 2.885 3.344 3.517 3.764 4.145 4.789 5.275 5.778 – –

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 313

Page 315: Niemet_Buch_En_72dpi

314

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall th. 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0

Diam.

87.00 0.136 0.203 0.270 0.337 0.403 0.534 0.663 0.791 1.042 1.166 1.287 1.408 1.52688.00 0.137 0.205 0.273 0.340 0.407 0.540 0.671 0.801 1.055 1.180 1.303 1.425 1.54589.00 0.139 0.208 0.276 0.344 0.412 0.546 0.679 0.810 1.068 1.194 1.319 1.442 1.56490.00 0.141 0.210 0.279 0.348 0.417 0.553 0.687 0.820 1.080 1.208 1.335 1.459 1.58391.00 0.142 0.213 0.283 0.352 0.422 0.559 0.695 0.829 1.093 1.222 1.350 1.477 1.60192.00 0.144 0.215 0.286 0.356 0.426 0.565 0.703 0.838 1.105 1.236 1.366 1.494 1.62093.00 0.145 0.217 0.289 0.360 0.431 0.571 0.710 0.848 1.118 1.251 1.382 1.511 1.63994.00 0.147 0.220 0.292 0.364 0.436 0.578 0.718 0.857 1.130 1.265 1.397 1.528 1.65895.00 0.148 0.222 0.295 0.368 0.440 0.584 0.726 0.867 1.143 1.279 1.413 1.546 1.67796.00 0.150 0.224 0.298 0.372 0.445 0.590 0.734 0.876 1.156 1.293 1.429 1.563 1.69697.00 0.152 0.227 0.301 0.376 0.450 0.597 0.742 0.885 1.168 1.307 1.444 1.580 1.71498.00 0.153 0.229 0.305 0.380 0.455 0.603 0.750 0.895 1.181 1.321 1.460 1.597 1.73399.00 0.155 0.231 0.308 0.384 0.459 0.609 0.758 0.904 1.193 1.335 1.476 1.615 1.752

100.00 0.156 0.234 0.311 0.388 0.464 0.615 0.765 0.914 1.206 1.349 1.492 1.632 1.771101.00 0.158 0.236 0.314 0.392 0.469 0.622 0.773 0.923 1.218 1.364 1.507 1.649 1.790102.00 0.159 0.238 0.317 0.395 0.473 0.628 0.781 0.933 1.231 1.378 1.523 1.667 1.809104.00 0.162 0.243 0.323 0.403 0.483 0.641 0.797 0.951 1.256 1.406 1.554 1.701 1.846105.00 0.164 0.246 0.327 0.407 0.487 0.647 0.805 0.961 1.269 1.420 1.570 1.718 1.865106.00 0.166 0.248 0.330 0.411 0.492 0.653 0.812 0.970 1.281 1.434 1.586 1.736 1.884107.00 0.167 0.250 0.333 0.415 0.497 0.659 0.820 0.980 1.294 1.448 1.601 1.753 1.903108.00 0.169 0.253 0.336 0.419 0.502 0.666 0.828 0.989 1.306 1.462 1.617 1.770 1.922110.00 0.172 0.257 0.342 0.427 0.511 0.678 0.844 1.008 1.331 1.491 1.649 1.805 1.959112.00 0.175 0.262 0.349 0.435 0.520 0.691 0.860 1.027 1.356 1.519 1.680 1.839 1.997114.00 0.178 0.267 0.355 0.443 0.530 0.703 0.875 1.046 1.382 1.547 1.711 1.874 2.035115.00 0.180 0.269 0.358 0.446 0.535 0.710 0.883 1.055 1.394 1.561 1.727 1.891 2.054117.00 0.183 0.274 0.364 0.454 0.544 0.722 0.899 1.074 1.419 1.590 1.758 1.926 2.091120.00 0.188 0.281 0.374 0.466 0.558 0.741 0.922 1.102 1.457 1.632 1.806 1.977 2.148122.00 0.191 0.286 0.380 0.474 0.568 0.754 0.938 1.121 1.482 1.660 1.837 2.012 2.185124.00 0.194 0.290 0.386 0.482 0.577 0.766 0.954 1.140 1.507 1.689 1.868 2.046 2.223125.00 0.195 0.293 0.389 0.486 0.582 0.772 0.962 1.149 1.520 1.703 1.884 2.064 2.242127.00 0.199 0.297 0.396 0.494 0.591 0.785 0.977 1.168 1.545 1.731 1.915 2.098 2.280128.00 0.200 0.300 0.399 0.497 0.596 0.791 0.985 1.178 1.557 1.745 1.931 2.116 2.298130.00 0.203 0.304 0.405 0.505 0.605 0.804 1.001 1.196 1.583 1.773 1.963 2.150 2.336131.00 0.205 0.307 0.408 0.509 0.610 0.810 1.009 1.206 1.595 1.787 1.978 2.167 2.355133.00 0.208 0.311 0.414 0.517 0.619 0.823 1.024 1.225 1.620 1.816 2.010 2.202 2.393135.00 0.211 0.316 0.421 0.525 0.629 0.835 1.040 1.243 1.645 1.844 2.041 2.236 2.430137.00 0.214 0.321 0.427 0.533 0.638 0.848 1.056 1.262 1.670 1.872 2.072 2.271 2.468138.00 0.216 0.323 0.430 0.537 0.643 0.854 1.064 1.272 1.683 1.886 2.088 2.288 2.487140.00 0.219 0.328 0.436 0.545 0.652 0.867 1.079 1.291 1.708 1.915 2.120 2.323 2.525142.00 0.222 0.333 0.443 0.552 0.662 0.879 1.095 1.309 1.733 1.943 2.151 2.357 2.562143.00 0.224 0.335 0.446 0.556 0.666 0.885 1.103 1.319 1.746 1.957 2.167 2.375 2.581144.00 0.225 0.337 0.449 0.560 0.671 0.892 1.111 1.328 1.758 1.971 2.182 2.392 2.600

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 314

Page 316: Niemet_Buch_En_72dpi

315

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

7.0 8.0 10.0 11.0 12.0 12.5 15.0 16.0 17.5 20.0 25.0 30.0 40.0 45.0 50.0

1.758 1.984 2.418 2.625 2.826 2.924 3.391 3.567 3.819 4.208 4.867 5.369 5.903 – –1.780 2.010 2.449 2.660 2.864 2.963 3.438 3.617 3.874 4.270 4.946 5.464 6.029 – –1.802 2.035 2.481 2.694 2.901 3.003 3.485 3.668 3.929 4.333 5.024 5.558 6.154 – –1.824 2.060 2.512 2.729 2.939 3.042 3.533 3.718 3.984 4.396 5.103 5.652 6.280 – –1.846 2.085 2.543 2.763 2.977 3.081 3.580 3.768 4.039 4.459 5.181 5.746 6.406 6.500 –1.868 2.110 2.575 2.798 3.014 3.120 3.627 3.818 4.094 4.522 5.260 5.840 6.531 6.641 –1.890 2.135 2.606 2.832 3.052 3.160 3.674 3.868 4.149 4.584 5.338 5.935 6.657 6.782 –1.912 2.160 2.638 2.867 3.090 3.199 3.721 3.919 4.204 4.647 5.417 6.029 6.782 6.924 –1.934 2.185 2.669 2.901 3.127 3.238 3.768 3.969 4.259 4.710 5.495 6.123 6.908 7.065 –1.956 2.211 2.700 2.936 3.165 3.277 3.815 4.019 4.314 4.773 5.574 6.217 7.034 7.206 –1.978 2.236 2.732 2.970 3.203 3.317 3.862 4.069 4.369 4.836 5.652 6.311 7.159 7.348 –2.000 2.261 2.763 3.005 3.240 3.356 3.909 4.120 4.423 4.898 5.731 6.406 7.285 7.489 –2.022 2.286 2.795 3.040 3.278 3.395 3.956 4.170 4.478 4.961 5.809 6.500 7.410 7.630 –2.044 2.311 2.826 3.074 3.316 3.434 4.004 4.220 4.533 5.024 5.888 6.594 7.536 7.772 –2.066 2.336 2.857 3.109 3.354 3.474 4.051 4.270 4.588 5.087 5.966 6.688 7.662 7.913 8.0072.088 2.361 2.889 3.143 3.391 3.513 4.098 4.321 4.643 5.150 6.045 6.782 7.787 8.054 8.1642.132 2.412 2.952 3.212 3.467 3.591 4.192 4.421 4.753 5.275 6.202 6.971 8.038 8.337 8.4782.154 2.437 2.983 3.247 3.504 3.631 4.239 4.471 4.808 5.338 6.280 7.065 8.164 8.478 8.6352.176 2.462 3.014 3.281 3.542 3.670 4.286 4.522 4.863 5.401 6.359 7.159 8.290 8.619 8.7922.198 2.487 3.046 3.316 3.580 3.709 4.333 4.572 4.918 5.464 6.437 7.253 8.415 8.761 8.9492.220 2.512 3.077 3.350 3.617 3.748 4.380 4.622 4.973 5.526 6.516 7.348 8.541 8.902 9.1062.264 2.562 3.140 3.419 3.693 3.827 4.475 4.723 5.083 5.652 6.673 7.536 8.792 9.185 9.4202.308 2.612 3.203 3.489 3.768 3.905 4.569 4.823 5.193 5.778 6.830 7.724 9.043 9.467 9.7342.352 2.663 3.266 3.558 3.843 3.984 4.663 4.924 5.303 5.903 6.987 7.913 9.294 9.750 10.0482.374 2.688 3.297 3.592 3.881 4.023 4.710 4.974 5.358 5.966 7.065 8.007 9.420 9.891 10.2052.418 2.738 3.360 3.661 3.956 4.102 4.804 5.074 5.468 6.092 7.222 8.195 9.671 10.174 10.5192.484 2.813 3.454 3.765 4.069 4.219 4.946 5.225 5.632 6.280 7.458 8.478 10.048 10.598 10.9902.528 2.864 3.517 3.834 4.145 4.298 5.040 5.325 5.742 6.406 7.615 8.666 10.299 10.880 11.3042.572 2.914 3.580 3.903 4.220 4.376 5.134 5.426 5.852 6.531 7.772 8.855 10.550 11.163 11.6182.594 2.939 3.611 3.938 4.258 4.416 5.181 5.476 5.907 6.594 7.850 8.949 10.676 11.304 11.7752.638 2.989 3.674 4.007 4.333 4.494 5.275 5.577 6.017 6.720 8.007 9.137 10.927 11.587 12.0892.660 3.014 3.705 4.041 4.371 4.533 5.322 5.627 6.072 6.782 8.086 9.232 11.053 11.728 12.2462.704 3.065 3.768 4.110 4.446 4.612 5.417 5.727 6.182 6.908 8.243 9.420 11.304 12.011 12.5602.726 3.090 3.799 4.145 4.484 4.651 5.464 5.778 6.237 6.971 8.321 9.514 11.430 12.152 12.7172.769 3.140 3.862 4.214 4.559 4.730 5.558 5.878 6.347 7.096 8.478 9.703 11.681 12.434 13.0312.813 3.190 3.925 4.283 4.635 4.808 5.652 5.979 6.457 7.222 8.635 9.891 11.932 12.717 13.3452.857 3.240 3.988 4.352 4.710 4.887 5.746 6.079 6.567 7.348 8.792 10.079 12.183 13.000 13.6592.879 3.266 4.019 4.387 4.748 4.926 5.793 6.129 6.621 7.410 8.871 10.174 12.309 13.141 13.8162.923 3.316 4.082 4.456 4.823 5.004 5.888 6.230 6.731 7.536 9.028 10.362 12.560 13.424 14.1302.967 3.366 4.145 4.525 4.898 5.083 5.982 6.330 6.841 7.662 9.185 10.550 12.811 13.706 14.4442.989 3.391 4.176 4.559 4.936 5.122 6.029 6.380 6.896 7.724 9.263 10.645 12.937 13.847 14.6013.011 3.416 4.208 4.594 4.974 5.161 6.076 6.431 6.951 7.787 9.342 10.739 13.062 13.989 14.758

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 315

Page 317: Niemet_Buch_En_72dpi

316

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall th. 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0

Diam.

145.00 0.227 0.340 0.452 0.564 0.676 0.898 1.119 1.338 1.771 1.985 2.198 2.409 2.619147.00 0.230 0.344 0.458 0.572 0.685 0.911 1.134 1.356 1.796 2.014 2.229 2.444 2.656150.00 0.235 0.351 0.468 0.584 0.699 0.929 1.158 1.385 1.834 2.056 2.277 2.496 2.713152.00 0.238 0.356 0.474 0.592 0.709 0.942 1.174 1.404 1.859 2.084 2.308 2.530 2.751155.00 0.243 0.363 0.484 0.603 0.723 0.961 1.197 1.432 1.897 2.127 2.355 2.582 2.807156.00 0.244 0.366 0.487 0.607 0.728 0.967 1.205 1.441 1.909 2.141 2.371 2.599 2.826157.00 0.246 0.368 0.490 0.611 0.732 0.973 1.213 1.451 1.922 2.155 2.386 2.616 2.845159.00 0.249 0.373 0.496 0.619 0.742 0.986 1.229 1.470 1.947 2.183 2.418 2.651 2.883160.00 0.250 0.375 0.499 0.623 0.747 0.992 1.236 1.479 1.959 2.197 2.434 2.668 2.901165.00 0.258 0.387 0.515 0.643 0.770 1.024 1.276 1.526 2.022 2.268 2.512 2.755 2.996166.00 0.260 0.389 0.518 0.647 0.775 1.030 1.283 1.535 2.035 2.282 2.528 2.772 3.014168.00 0.263 0.394 0.524 0.654 0.784 1.042 1.299 1.554 2.060 2.310 2.559 2.806 3.052170.00 0.266 0.399 0.531 0.662 0.794 1.055 1.315 1.573 2.085 2.339 2.591 2.841 3.090175.00 0.274 0.410 0.546 0.682 0.817 1.086 1.354 1.620 2.148 2.409 2.669 2.927 3.184180.00 0.282 0.422 0.562 0.702 0.841 1.118 1.393 1.667 2.211 2.480 2.748 3.014 3.278185.00 0.290 0.434 0.578 0.721 0.864 1.149 1.433 1.714 2.273 2.550 2.826 3.100 3.372190.00 0.298 0.446 0.593 0.741 0.888 1.181 1.472 1.762 2.336 2.621 2.905 3.186 3.467193.00 0.302 0.453 0.603 0.753 0.902 1.199 1.495 1.790 2.374 2.664 2.952 3.238 3.523194.00 0.304 0.455 0.606 0.757 0.907 1.206 1.503 1.799 2.386 2.678 2.967 3.255 3.542195.00 0.305 0.457 0.609 0.760 0.911 1.212 1.511 1.809 2.399 2.692 2.983 3.273 3.561200.00 0.313 0.469 0.625 0.780 0.935 1.243 1.550 1.856 2.462 2.762 3.062 3.359 3.655205.00 0.321 0.481 0.641 0.800 0.958 1.275 1.590 1.903 2.525 2.833 3.140 3.445 3.749206.00 0.323 0.483 0.644 0.804 0.963 1.281 1.597 1.912 2.537 2.847 3.156 3.463 3.768208.00 0.326 0.488 0.650 0.811 0.973 1.294 1.613 1.931 2.562 2.875 3.187 3.497 3.806210.00 0.329 0.493 0.656 0.819 0.982 1.306 1.629 1.950 2.587 2.904 3.219 3.532 3.843215.00 0.337 0.505 0.672 0.839 1.006 1.338 1.668 1.997 2.650 2.974 3.297 3.618 3.938219.00 0.343 0.514 0.685 0.855 1.024 1.363 1.700 2.035 2.700 3.031 3.360 3.687 4.013220.00 0.345 0.516 0.688 0.859 1.029 1.369 1.707 2.044 2.713 3.045 3.376 3.704 4.032225.00 0.352 0.528 0.703 0.878 1.053 1.400 1.747 2.091 2.776 3.116 3.454 3.791 4.126230.00 0.360 0.540 0.719 0.898 1.076 1.432 1.786 2.138 2.839 3.186 3.533 3.877 4.220235.00 0.368 0.552 0.735 0.917 1.100 1.463 1.825 2.185 2.901 3.257 3.611 3.963 4.314238.00 0.373 0.559 0.744 0.929 1.114 1.482 1.849 2.214 2.939 3.299 3.658 4.015 4.371240.00 0.376 0.563 0.750 0.937 1.123 1.495 1.864 2.233 2.964 3.328 3.690 4.050 4.409245.00 0.384 0.575 0.766 0.957 1.147 1.526 1.904 2.280 3.027 3.398 3.768 4.136 4.503250.00 0.392 0.587 0.782 0.976 1.170 1.557 1.943 2.327 3.090 3.469 3.847 4.223 4.597255.00 0.400 0.599 0.798 0.996 1.194 1.589 1.982 2.374 3.153 3.540 3.925 4.309 4.691258.00 0.404 0.606 0.807 1.008 1.208 1.608 2.006 2.402 3.190 3.582 3.972 4.361 4.748260.00 0.407 0.611 0.813 1.016 1.218 1.620 2.021 2.421 3.215 3.610 4.004 4.395 4.785265.00 0.415 0.622 0.829 1.035 1.241 1.652 2.061 2.468 3.278 3.681 4.082 4.482 4.880267.00 0.418 0.627 0.835 1.043 1.251 1.664 2.076 2.487 3.303 3.709 4.113 4.516 4.917270.00 0.423 0.634 0.845 1.055 1.265 1.683 2.100 2.515 3.341 3.752 4.161 4.568 4.974275.00 0.431 0.646 0.860 1.074 1.288 1.714 2.139 2.562 3.404 3.822 4.239 4.654 5.068

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 316

Page 318: Niemet_Buch_En_72dpi

317

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

7.0 8.0 10.0 11.0 12.0 12.5 15.0 16.0 17.5 20.0 25.0 30.0 40.0 45.0 50.0

3.033 3.441 4.239 4.628 5.011 5.201 6.123 6.481 7.006 7.850 9.420 10.833 13.188 14.130 14.9153.077 3.492 4.302 4.697 5.087 5.279 6.217 6.581 7.116 7.976 9.577 11.021 13.439 14.413 15.2293.143 3.567 4.396 4.801 5.200 5.397 6.359 6.732 7.281 8.164 9.813 11.304 13.816 14.837 15.7003.187 3.617 4.459 4.870 5.275 5.475 6.453 6.833 7.391 8.290 9.970 11.492 14.067 15.119 16.0143.253 3.693 4.553 4.974 5.388 5.593 6.594 6.983 7.556 8.478 10.205 11.775 14.444 15.543 16.4853.275 3.718 4.584 5.008 5.426 5.632 6.641 7.034 7.611 8.541 10.284 11.869 14.570 15.684 16.6423.297 3.743 4.616 5.043 5.464 5.672 6.688 7.084 7.666 8.604 10.362 11.963 14.695 15.826 16.7993.341 3.793 4.679 5.112 5.539 5.750 6.782 7.184 7.775 8.729 10.519 12.152 14.946 16.108 17.1133.363 3.818 4.710 5.146 5.577 5.789 6.830 7.235 7.830 8.792 10.598 12.246 15.072 16.250 17.2703.473 3.944 4.867 5.319 5.765 5.986 7.065 7.486 8.105 9.106 10.990 12.717 15.700 16.956 18.0553.495 3.969 4.898 5.354 5.803 6.025 7.112 7.536 8.160 9.169 11.069 12.811 15.826 17.097 18.2123.539 4.019 4.961 5.423 5.878 6.103 7.206 7.636 8.270 9.294 11.226 13.000 16.077 17.380 18.5263.583 4.069 5.024 5.492 5.953 6.182 7.301 7.737 8.380 9.420 11.383 13.188 16.328 17.663 18.8403.693 4.195 5.181 5.665 6.142 6.378 7.536 7.988 8.655 9.734 11.775 13.659 16.956 18.369 19.6253.803 4.321 5.338 5.837 6.330 6.574 7.772 8.239 8.929 10.048 12.168 14.130 17.584 19.076 20.4103.912 4.446 5.495 6.010 6.519 6.771 8.007 8.491 9.204 10.362 12.560 14.601 18.212 19.782 21.1954.022 4.572 5.652 6.183 6.707 6.967 8.243 8.742 9.479 10.676 12.953 15.072 18.840 20.489 21.9804.088 4.647 5.746 6.286 6.820 7.085 8.384 8.892 9.644 10.864 13.188 15.355 19.217 20.912 22.4514.110 4.672 5.778 6.321 6.858 7.124 8.431 8.943 9.699 10.927 13.267 15.449 19.342 21.054 22.6084.132 4.697 5.809 6.355 6.895 7.163 8.478 8.993 9.754 10.990 13.345 15.543 19.468 21.195 22.7654.242 4.823 5.966 6.528 7.084 7.359 8.714 9.244 10.028 11.304 13.738 16.014 20.096 21.902 23.5504.352 4.949 6.123 6.701 7.272 7.556 8.949 9.495 10.303 11.618 14.130 16.485 20.724 22.608 24.3354.374 4.974 6.154 6.735 7.310 7.595 8.996 9.546 10.358 11.681 14.209 16.579 20.850 22.749 24.4924.418 5.024 6.217 6.804 7.385 7.673 9.090 9.646 10.468 11.806 14.366 16.768 21.101 23.032 24.8064.462 5.074 6.280 6.873 7.461 7.752 9.185 9.747 10.578 11.932 14.523 16.956 21.352 23.315 25.1204.572 5.200 6.437 7.046 7.649 7.948 9.420 9.998 10.853 12.246 14.915 17.427 21.980 24.021 25.9054.660 5.300 6.563 7.184 7.800 8.105 9.608 10.199 11.072 12.497 15.229 17.804 22.482 24.586 26.5334.682 5.325 6.594 7.219 7.837 8.144 9.656 10.249 11.127 12.560 15.308 17.898 22.608 24.728 26.6904.792 5.451 6.751 7.392 8.026 8.341 9.891 10.500 11.402 12.874 15.700 18.369 23.236 25.434 27.4754.902 5.577 6.908 7.564 8.214 8.537 10.127 10.751 11.677 13.188 16.093 18.840 23.864 26.141 28.2605.011 5.702 7.065 7.737 8.403 8.733 10.362 11.003 11.952 13.502 16.485 19.311 24.492 26.847 29.0455.077 5.778 7.159 7.841 8.516 8.851 10.503 11.153 12.116 13.690 16.721 19.594 24.869 27.271 29.5165.121 5.828 7.222 7.910 8.591 8.929 10.598 11.254 12.226 13.816 16.878 19.782 25.120 27.554 29.8305.231 5.953 7.379 8.082 8.779 9.126 10.833 11.505 12.501 14.130 17.270 20.253 25.748 28.260 30.6155.341 6.079 7.536 8.255 8.968 9.322 11.069 11.756 12.776 14.444 17.663 20.724 26.376 28.967 31.4005.451 6.205 7.693 8.428 9.156 9.518 11.304 12.007 13.051 14.758 18.055 21.195 27.004 29.673 32.1855.517 6.280 7.787 8.531 9.269 9.636 11.445 12.158 13.215 14.946 18.291 21.478 27.381 30.097 32.6565.561 6.330 7.850 8.600 9.345 9.714 11.540 12.259 13.325 15.072 18.448 21.666 27.632 30.380 32.9705.671 6.456 8.007 8.773 9.533 9.911 11.775 12.510 13.600 15.386 18.840 22.137 28.260 31.086 33.7555.715 6.506 8.070 8.842 9.608 9.989 11.869 12.610 13.710 15.512 18.997 22.325 28.511 31.369 34.0695.781 6.581 8.164 8.946 9.721 10.107 12.011 12.761 13.875 15.700 19.233 22.608 28.888 31.793 34.5405.891 6.707 8.321 9.119 9.910 10.303 12.246 13.012 14.150 16.014 19.625 23.079 29.516 32.499 35.325

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 317

Page 319: Niemet_Buch_En_72dpi

318

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall th. 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 4.0 4.5 5.0 5.5 6.0

Diam.

280.00 0.439 0.658 0.876 1.094 1.312 1.746 2.178 2.609 3.467 3.893 4.318 4.741 5.162285.00 0.447 0.669 0.892 1.114 1.335 1.777 2.218 2.656 3.529 3.963 4.396 4.827 5.256290.00 0.455 0.681 0.907 1.133 1.359 1.809 2.257 2.704 3.592 4.034 4.475 4.913 5.351295.00 0.462 0.693 0.923 1.153 1.382 1.840 2.296 2.751 3.655 4.105 4.553 5.000 5.445300..0 0.470 0.705 0.939 1.173 1.406 1.871 2.335 2.798 3.718 4.175 4.632 5.086 5.539308.00 0.483 0.724 0.964 1.204 1.444 1.922 2.398 2.873 3.818 4.288 4.757 5.224 5.690310.00 0.486 0.728 0.970 1.212 1.453 1.934 2.414 2.892 3.843 4.317 4.789 5.259 5.727320.00 0.502 0.752 1.002 1.251 1.500 1.997 2.492 2.986 3.969 4.458 4.946 5.431 5.916323.40 0.507 0.760 1.012 1.264 1.516 2.018 2.519 3.018 4.012 4.506 4.999 5.490 5.980330.00 0.517 0.775 1.033 1.290 1.547 2.060 2.571 3.080 4.095 4.599 5.103 5.604 6.104340.00 0.533 0.799 1.064 1.330 1.594 2.123 2.649 3.175 4.220 4.741 5.260 5.777 6.293340.00 0.533 0.799 1.064 1.330 1.594 2.123 2.649 3.175 4.220 4.741 5.260 5.777 6.293350.00 0.549 0.822 1.096 1.369 1.641 2.185 2.728 3.269 4.346 4.882 5.417 5.950 6.481360.00 0.564 0.846 1.127 1.408 1.689 2.248 2.806 3.363 4.471 5.023 5.574 6.122 6.669365.00 0.572 0.858 1.143 1.428 1.712 2.280 2.846 3.410 4.534 5.094 5.652 6.209 6.764368.00 0.577 0.865 1.152 1.439 1.726 2.298 2.869 3.438 4.572 5.136 5.699 6.260 6.820370.00 0.580 0.870 1.159 1.447 1.736 2.311 2.885 3.457 4.597 5.165 5.731 6.295 6.858380.00 0.596 0.893 1.190 1.487 1.783 2.374 2.963 3.551 4.723 5.306 5.888 6.468 7.046390.00 0.612 0.917 1.221 1.526 1.830 2.437 3.042 3.646 4.848 5.447 6.045 6.640 7.235400.00 0.627 0.940 1.253 1.565 1.877 2.499 3.120 3.740 4.974 5.588 6.202 6.813 7.423

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 318

Page 320: Niemet_Buch_En_72dpi

319

WEIGHT CALCULATION: ROUND PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

7.0 8.0 10.0 11.0 12.0 12.5 15.0 16.0 17.5 20.0 25.0 30.0 40.0 45.0 50.0

6.001 6.833 8.478 9.291 10.098 10.499 12.482 13.263 14.424 16.328 20.018 23.550 30.144 33.206 36.1106.110 6.958 8.635 9.464 10.287 10.696 12.717 13.515 14.699 16.642 20.410 24.021 30.772 33.912 36.8956.220 7.084 8.792 9.637 10.475 10.892 12.953 13.766 14.974 16.956 20.803 24.492 31.400 34.619 37.6806.330 7.209 8.949 9.809 10.663 11.088 13.188 14.017 15.249 17.270 21.195 24.963 32.028 35.325 38.4656.440 7.335 9.106 9.982 10.852 11.284 13.424 14.268 15.523 17.584 21.588 25.434 32.656 36.032 39.2506.616 7.536 9.357 10.250 11.153 11.598 13.800 14.670 15.963 18.086 22.216 26.188 33.661 37.162 40.5066.660 7.586 9.420 10.327 11.229 11.677 13.895 14.771 16.073 18.212 22.373 26.376 33.912 37.445 40.8206.880 7.837 9.734 10.673 11.605 12.069 14.366 15.273 16.622 18.840 23.158 27.318 35.168 38.858 42.3906.954 7.923 9.841 10.790 11.734 12.203 14.526 15.444 16.809 19.054 23.424 27.638 35.595 39.338 42.9247.100 8.089 10.048 11.018 11.982 12.462 14.837 15.775 17.172 19.468 23.943 28.260 36.424 40.271 43.9607.319 8.340 10.362 11.364 12.359 12.854 15.308 16.278 17.721 20.096 24.728 29.202 37.680 41.684 45.5307.319 8.340 10.362 11.364 12.359 12.854 15.308 16.278 17.721 20.096 24.728 29.202 37.680 41.684 45.5307.539 8.591 10.676 11.709 12.736 13.247 15.779 16.780 18.271 20.724 25.513 30.144 38.936 43.097 47.1007.759 8.842 10.990 12.054 13.113 13.639 16.250 17.283 18.820 21.352 26.298 31.086 40.192 44.510 48.6707.869 8.968 11.147 12.227 13.301 13.836 16.485 17.534 19.095 21.666 26.690 31.557 40.820 45.216 49.4557.935 9.043 11.241 12.331 13.414 13.953 16.626 17.684 19.260 21.854 26.926 31.840 41.197 45.640 49.9267.979 9.093 11.304 12.400 13.489 14.032 16.721 17.785 19.370 21.980 27.083 32.028 41.448 45.923 50.2408.199 9.345 11.618 12.745 13.866 14.424 17.192 18.287 19.919 22.608 27.868 32.970 42.704 47.336 51.8108.418 9.596 11.932 13.091 14.243 14.817 17.663 18.790 20.469 23.236 28.653 33.912 43.960 48.749 53.3808.638 9.847 12.246 13.436 14.620 15.209 18.134 19.292 21.018 23.864 29.438 34.854 45.216 50.162 54.950

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 319

Page 321: Niemet_Buch_En_72dpi

320

WEIGHT CALCULATION: SQUARE PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall thickn. 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0

Edge leng.4 x 4 0.012 0.015 – – – – – – – – –5 x 3 0.012 0.015 0.016 – – – – – – – –5 x 5 0.016 0.021 0.024 – – – – – – – –6 x 6 0.020 0.027 0.032 0.035 – – – – – – –7 x 5 0.020 0.027 0.032 0.035 0.036 – – – – – –8 x 5 0.022 0.030 0.036 0.040 0.042 0.042 – – – – –8 x 6 0.024 0.033 0.040 0.045 0.048 0.049 – – – – –8 x 8 0.028 0.039 0.048 0.055 0.060 0.063 – – – – –

10 x 5 0.026 0.036 0.044 0.050 0.054 0.056 0.056 – – – –10 x 7 0.030 0.042 0.052 0.060 0.066 0.070 0.072 – – – –10 x 8 0.032 0.045 0.056 0.065 0.072 0.077 0.080 – – – –10 x 10 0.036 0.051 0.064 0.075 0.084 0.091 0.096 – – – –12 x 10 0.040 0.057 0.072 0.085 0.096 0.105 0.112 0.120 – – –12 x 12 0.044 0.063 0.080 0.095 0.108 0.119 0.128 0.140 – – –15 x 10 0.046 0.066 0.084 0.100 0.114 0.126 0.136 0.150 0.156 – –15 x 15 0.056 0.081 0.104 0.125 0.144 0.161 0.176 0.200 0.216 – –16 x 12 0.052 0.075 0.096 0.115 0.132 0.147 0.160 0.180 0.192 – –16 x 14 0.056 0.081 0.104 0.125 0.144 0.161 0.176 0.200 0.216 – –18 x 18 0.068 0.099 0.128 0.155 0.180 0.203 0.224 0.260 0.288 0.320 –20 x 10 0.056 0.081 0.104 0.125 0.144 0.161 0.176 0.200 0.216 0.224 –20 x 12 0.060 0.087 0.112 0.135 0.156 0.175 0.192 0.220 0.240 0.256 –20 x 15 0.066 0.096 0.124 0.150 0.174 0.196 0.216 0.250 0.276 0.304 –20 x 20 0.076 0.111 0.144 0.175 0.204 0.231 0.256 0.300 0.336 0.384 –22 x 16 0.072 0.105 0.136 0.165 0.192 0.217 0.240 0.280 0.312 0.352 0.36025 x 10 0.066 0.096 0.124 0.150 0.174 0.196 0.216 0.250 0.276 0.304 0.30025 x 15 0.076 0.111 0.144 0.175 0.204 0.231 0.256 0.300 0.336 0.384 0.40025 x 20 0.086 0.126 0.164 0.200 0.234 0.266 0.296 0.350 0.396 0.464 0.50025 x 25 0.096 0.141 0.184 0.225 0.264 0.301 0.336 0.400 0.456 0.544 0.60030 x 10 0.076 0.111 0.144 0.175 0.204 0.231 0.256 0.300 0.336 0.384 0.40030 x 15 0.086 0.126 0.164 0.200 0.234 0.266 0.296 0.350 0.396 0.464 0.50030 x 20 0.096 0.141 0.184 0.225 0.264 0.301 0.336 0.400 0.456 0.544 0.60030 x 30 0.116 0.171 0.224 0.275 0.324 0.371 0.416 0.500 0.576 0.704 0.80034 x 20 0.104 0.153 0.200 0.245 0.288 0.329 0.368 0.440 0.504 0.608 0.68034 x 34 0.132 0.195 0.256 0.315 0.372 0.427 0.480 0.580 0.672 0.832 0.96035 x 15 0.096 0.141 0.184 0.225 0.264 0.301 0.336 0.400 0.456 0.544 0.60035 x 20 0.106 0.156 0.204 0.250 0.294 0.336 0.376 0.450 0.516 0.624 0.70035 x 25 0.116 0.171 0.224 0.275 0.324 0.371 0.416 0.500 0.576 0.704 0.80035 x 35 0.136 0.201 0.264 0.325 0.384 0.441 0.496 0.600 0.696 0.864 1.00040 x 10 0.096 0.141 0.184 0.225 0.264 0.301 0.336 0.400 0.456 0.544 0.60040 x 15 0.106 0.156 0.204 0.250 0.294 0.336 0.376 0.450 0.516 0.624 0.70040 x 20 0.116 0.171 0.224 0.275 0.324 0.371 0.416 0.500 0.576 0.704 0.80040 x 25 0.126 0.186 0.244 0.300 0.354 0.406 0.456 0.550 0.636 0.784 0.90040 x 30 0.136 0.201 0.264 0.325 0.384 0.441 0.496 0.600 0.696 0.864 1.000

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 320

Page 322: Niemet_Buch_En_72dpi

321

WEIGHT CALCULATION: SQUARE PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall thickn. 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0

Edge leng.40 x 40 0.156 0.231 0.304 0.375 0.444 0.511 0.576 0.700 0.816 1.024 1.20045 x 20 0.126 0.186 0.244 0.300 0.354 0.406 0.456 0.550 0.636 0.784 0.90045 x 25 0.136 0.201 0.264 0.325 0.384 0.441 0.496 0.600 0.696 0.864 1.00045 x 34 0.154 0.228 0.300 0.370 0.438 0.504 0.568 0.690 0.804 1.008 1.18045 x 45 0.176 0.261 0.344 0.425 0.504 0.581 0.656 0.800 0.936 1.184 1.40050 x 15 0.126 0.186 0.244 0.300 0.354 0.406 0.456 0.550 0.636 0.784 0.90050 x 20 0.136 0.201 0.264 0.325 0.384 0.441 0.496 0.600 0.696 0.864 1.00050 x 25 0.146 0.216 0.284 0.350 0.414 0.476 0.536 0.650 0.756 0.944 1.10050 x 30 0.156 0.231 0.304 0.375 0.444 0.511 0.576 0.700 0.816 1.024 1.20050 x 34 0.164 0.243 0.320 0.395 0.468 0.539 0.608 0.740 0.864 1.088 1.28050 x 40 0.176 0.261 0.344 0.425 0.504 0.581 0.656 0.800 0.936 1.184 1.40050 x 45 0.186 0.276 0.364 0.450 0.534 0.616 0.696 0.850 0.996 1.264 1.50050 x 50 0.196 0.291 0.384 0.475 0.564 0.651 0.736 0.900 1.056 1.344 1.60055 x 25 0.156 0.231 0.304 0.375 0.444 0.511 0.576 0.700 0.816 1.024 1.20055 x 50 0.206 0.306 0.404 0.500 0.594 0.686 0.776 0.950 1.116 1.424 1.70055 x 55 0.216 0.321 0.424 0.525 0.624 0.721 0.816 1.000 1.176 1.504 1.80060 x 20 0.156 0.231 0.304 0.375 0.444 0.511 0.576 0.700 0.816 1.024 1.20060 x 25 0.166 0.246 0.324 0.400 0.474 0.546 0.616 0.750 0.876 1.104 1.30060 x 30 0.176 0.261 0.344 0.425 0.504 0.581 0.656 0.800 0.936 1.184 1.40060 x 34 0.184 0.273 0.360 0.445 0.528 0.609 0.688 0.840 0.984 1.248 1.48060 x 40 0.196 0.291 0.384 0.475 0.564 0.651 0.736 0.900 1.056 1.344 1.60060 x 50 0.216 0.321 0.424 0.525 0.624 0.721 0.816 1.000 1.176 1.504 1.80060 x 60 0.236 0.351 0.464 0.575 0.684 0.791 0.896 1.100 1.296 1.664 2.00065 x 65 0.256 0.381 0.504 0.625 0.744 0.861 0.976 1.200 1.416 1.824 2.20070 x 20 0.176 0.261 0.344 0.425 0.504 0.581 0.656 0.800 0.936 1.184 1.40070 x 25 0.186 0.276 0.364 0.450 0.534 0.616 0.696 0.850 0.996 1.264 1.50070 x 30 0.196 0.291 0.384 0.475 0.564 0.651 0.736 0.900 1.056 1.344 1.60070 x 40 0.216 0.321 0.424 0.525 0.624 0.721 0.816 1.000 1.176 1.504 1.80070 x 50 0.236 0.351 0.464 0.575 0.684 0.791 0.896 1.100 1.296 1.664 2.00070 x 70 0.276 0.411 0.544 0.675 0.804 0.931 1.056 1.300 1.536 1.984 2.40075 x 50 0.246 0.366 0.484 0.600 0.714 0.826 0.936 1.150 1.356 1.744 2.10076 x 26 0.200 0.297 0.392 0.485 0.576 0.665 0.752 0.920 1.080 1.376 1.64080 x 18 0.192 0.285 0.376 0.465 0.552 0.637 0.720 0.880 1.032 1.312 1.56080 x 20 0.196 0.291 0.384 0.475 0.564 0.651 0.736 0.900 1.056 1.344 1.60080 x 25 0.206 0.306 0.404 0.500 0.594 0.686 0.776 0.950 1.116 1.424 1.70080 x 30 0.216 0.321 0.424 0.525 0.624 0.721 0.816 1.000 1.176 1.504 1.80080 x 40 0.236 0.351 0.464 0.575 0.684 0.791 0.896 1.100 1.296 1.664 2.00080 x 50 0.256 0.381 0.504 0.625 0.744 0.861 0.976 1.200 1.416 1.824 2.20080 x 60 0.276 0.411 0.544 0.675 0.804 0.931 1.056 1.300 1.536 1.984 2.40080 x 80 0.316 0.471 0.624 0.775 0.924 1.071 1.216 1.500 1.776 2.304 2.80085 x 85 0.336 0.501 0.664 0.825 0.984 1.141 1.296 1.600 1.896 2.464 3.00090 x 40 0.256 0.381 0.504 0.625 0.744 0.861 0.976 1.200 1.416 1.824 2.20090 x 90 0.356 0.531 0.704 0.875 1.044 1.211 1.376 1.700 2.016 2.624 3.200

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 321

Page 323: Niemet_Buch_En_72dpi

322

WEIGHT CALCULATION: SQUARE PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall thickn. 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0

Edge leng.

100 x 18 0.232 0.345 0.456 0.565 0.672 0.777 0.880 1.080 1.272 1.632 1.960100 x 20 0.236 0.351 0.464 0.575 0.684 0.791 0.896 1.100 1.296 1.664 2.000100 x 25 0.246 0.366 0.484 0.600 0.714 0.826 0.936 1.150 1.356 1.744 2.100100 x 30 0.256 0.381 0.504 0.625 0.744 0.861 0.976 1.200 1.416 1.824 2.200100 x 40 0.276 0.411 0.544 0.675 0.804 0.931 1.056 1.300 1.536 1.984 2.400100 x 50 0.296 0.441 0.584 0.725 0.864 1.001 1.136 1.400 1.656 2.144 2.600100 x 60 0.316 0.471 0.624 0.775 0.924 1.071 1.216 1.500 1.776 2.304 2.800100 x 80 0.356 0.531 0.704 0.875 1.044 1.211 1.376 1.700 2.016 2.624 3.200100 x 100 0.396 0.591 0.784 0.975 1.164 1.351 1.536 1.900 2.256 2.944 3.600110 x 60 0.336 0.501 0.664 0.825 0.984 1.141 1.296 1.600 1.896 2.464 3.000110 x 110 0.436 0.651 0.864 1.075 1.284 1.491 1.696 2.100 2.496 3.264 4.000120 x 18 0.272 0.405 0.536 0.665 0.792 0.917 1.040 1.280 1.512 1.952 2.360120 x 20 0.276 0.411 0.544 0.675 0.804 0.931 1.056 1.300 1.536 1.984 2.400120 x 30 0.296 0.441 0.584 0.725 0.864 1.001 1.136 1.400 1.656 2.144 2.600120 x 40 0.316 0.471 0.624 0.775 0.924 1.071 1.216 1.500 1.776 2.304 2.800120 x 50 0.336 0.501 0.664 0.825 0.984 1.141 1.296 1.600 1.896 2.464 3.000120 x 60 0.356 0.531 0.704 0.875 1.044 1.211 1.376 1.700 2.016 2.624 3.200120 x 80 0.396 0.591 0.784 0.975 1.164 1.351 1.536 1.900 2.256 2.944 3.600120 x 120 0.476 0.711 0.944 1.175 1.404 1.631 1.856 2.300 2.736 3.584 4.400125 x 125 0.496 0.741 0.984 1.225 1.464 1.701 1.936 2.400 2.856 3.744 4.600130 x 130 0.516 0.771 1.024 1.275 1.524 1.771 2.016 2.500 2.976 3.904 4.800130 x 50 0.356 0.531 0.704 0.875 1.044 1.211 1.376 1.700 2.016 2.624 3.200140 x 18 0.312 0.465 0.616 0.765 0.912 1.057 1.200 1.480 1.752 2.272 2.760140 x 20 0.316 0.471 0.624 0.775 0.924 1.071 1.216 1.500 1.776 2.304 2.800140 x 25 0.326 0.486 0.644 0.800 0.954 1.106 1.256 1.550 1.836 2.384 2.900140 x 40 0.356 0.531 0.704 0.875 1.044 1.211 1.376 1.700 2.016 2.624 3.200140 x 60 0.396 0.591 0.784 0.975 1.164 1.351 1.536 1.900 2.256 2.944 3.600140 x 80 0.436 0.651 0.864 1.075 1.284 1.491 1.696 2.100 2.496 3.264 4.000145 x 145 0.576 0.861 1.144 1.425 1.704 1.981 2.256 2.800 3.336 4.384 5.400150 x 18 0.332 0.495 0.656 0.815 0.972 1.127 1.280 1.580 1.872 2.432 2.960150 x 25 0.346 0.516 0.684 0.850 1.014 1.176 1.336 1.650 1.956 2.544 3.100150 x 30 0.356 0.531 0.704 0.875 1.044 1.211 1.376 1.700 2.016 2.624 3.200150 x 40 0.376 0.561 0.744 0.925 1.104 1.281 1.456 1.800 2.136 2.784 3.400150 x 50 0.396 0.591 0.784 0.975 1.164 1.351 1.536 1.900 2.256 2.944 3.600150 x 60 0.416 0.621 0.824 1.025 1.224 1.421 1.616 2.000 2.376 3.104 3.800150 x 70 0.436 0.651 0.864 1.075 1.284 1.491 1.696 2.100 2.496 3.264 4.000150 x 100 0.496 0.741 0.984 1.225 1.464 1.701 1.936 2.400 2.856 3.744 4.600150 x 120 0.536 0.801 1.064 1.325 1.584 1.841 2.096 2.600 3.096 4.064 5.000150 x 150 0.596 0.891 1.184 1.475 1.764 2.051 2.336 2.900 3.456 4.544 5.600160 x 40 0.396 0.591 0.784 0.975 1.164 1.351 1.536 1.900 2.256 2.944 3.600160 x 60 0.436 0.651 0.864 1.075 1.284 1.491 1.696 2.100 2.496 3.264 4.000170 x 70 0.476 0.711 0.944 1.175 1.404 1.631 1.856 2.300 2.736 3.584 4.400

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 322

Page 324: Niemet_Buch_En_72dpi

323

WEIGHT CALCULATION: SQUARE PIPE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Wall thickn. 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0

Edge leng.

180 x 18 0.392 0.585 0.776 0.965 1.152 1.337 1.520 1.880 2.232 2.912 3.560180 x 40 0.436 0.651 0.864 1.075 1.284 1.491 1.696 2.100 2.496 3.264 4.000180 x 50 0.456 0.681 0.904 1.125 1.344 1.561 1.776 2.200 2.616 3.424 4.200180 x 60 0.476 0.711 0.944 1.175 1.404 1.631 1.856 2.300 2.736 3.584 4.400200 x 18 0.432 0.645 0.856 1.065 1.272 1.477 1.680 2.080 2.472 3.232 3.960200 x 50 0.496 0.741 0.984 1.225 1.464 1.701 1.936 2.400 2.856 3.744 4.600200 x 80 0.556 0.831 1.104 1.375 1.644 1.911 2.176 2.700 3.216 4.224 5.200200 x 100 0.596 0.891 1.184 1.475 1.764 2.051 2.336 2.900 3.456 4.544 5.600240 x 100 0.676 1.011 1.344 1.675 2.004 2.331 2.656 3.300 3.936 5.184 6.400300 x 50 0.696 1.041 1.384 1.725 2.064 2.401 2.736 3.400 4.056 5.344 6.600300 x 120 0.836 1.251 1.664 2.075 2.484 2.891 3.296 4.100 4.896 6.464 8.000650 x 65 1.426 2.136 2.844 3.550 4.254 4.956 5.656 7.050 8.436 – –

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 323

Page 325: Niemet_Buch_En_72dpi

324

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 0.5 0.6 0.7 0.8 0.9 1.0 1.25 1.50 2.0 2.5 3.0

Diam.

50.00 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.004 0.005 0.00655.00 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.004 0.005 0.006 0.00760.00 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.006 0.007 0.00865.00 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.005 0.007 0.008 0.01070.00 0.002 0.002 0.003 0.003 0.003 0.004 0.005 0.006 0.008 0.010 0.01275.00 0.002 0.003 0.003 0.004 0.004 0.004 0.006 0.007 0.009 0.011 0.01380.00 0.003 0.003 0.004 0.004 0.005 0.005 0.006 0.008 0.010 0.013 0.01585.00 0.003 0.003 0.004 0.005 0.005 0.006 0.007 0.009 0.011 0.014 0.01790.00 0.003 0.004 0.004 0.005 0.006 0.006 0.008 0.010 0.013 0.016 0.01995.00 0.004 0.004 0.005 0.006 0.006 0.007 0.009 0.011 0.014 0.018 0.021

100.00 0.004 0.005 0.005 0.006 0.007 0.008 0.010 0.012 0.016 0.020 0.024105.00 0.004 0.005 0.006 0.007 0.008 0.009 0.011 0.013 0.017 0.022 0.026110.00 0.005 0.006 0.007 0.008 0.009 0.009 0.012 0.014 0.019 0.024 0.028115.00 0.005 0.006 0.007 0.008 0.009 0.010 0.013 0.016 0.021 0.026 0.031120.00 0.006 0.007 0.008 0.009 0.010 0.011 0.014 0.017 0.023 0.028 0.034125.00 0.006 0.007 0.009 0.010 0.011 0.012 0.015 0.018 0.025 0.031 0.037130.00 0.007 0.008 0.009 0.011 0.012 0.013 0.017 0.020 0.027 0.033 0.040135.00 0.007 0.009 0.010 0.011 0.013 0.014 0.018 0.021 0.029 0.036 0.043140.00 0.008 0.009 0.011 0.012 0.014 0.015 0.019 0.023 0.031 0.038 0.046145.00 0.008 0.010 0.012 0.013 0.015 0.017 0.021 0.025 0.033 0.041 0.050150.00 0.009 0.011 0.012 0.014 0.016 0.018 0.022 0.026 0.035 0.044 0.053155.00 0.009 0.011 0.013 0.015 0.017 0.019 0.024 0.028 0.038 0.047 0.057160.00 0.010 0.012 0.014 0.016 0.018 0.020 0.025 0.030 0.040 0.050 0.060165.00 0.011 0.013 0.015 0.017 0.019 0.021 0.027 0.032 0.043 0.053 0.064170.00 0.011 0.014 0.016 0.018 0.020 0.023 0.028 0.034 0.045 0.057 0.068175.00 0.012 0.014 0.017 0.019 0.022 0.024 0.030 0.036 0.048 0.060 0.072180.00 0.013 0.015 0.018 0.020 0.023 0.025 0.032 0.038 0.051 0.064 0.076185.00 0.013 0.016 0.019 0.021 0.024 0.027 0.034 0.040 0.054 0.067 0.081190.00 0.014 0.017 0.020 0.023 0.026 0.028 0.035 0.043 0.057 0.071 0.085195.00 0.015 0.018 0.021 0.024 0.027 0.030 0.037 0.045 0.060 0.075 0.090200.00 0.016 0.019 0.022 0.025 0.028 0.031 0.039 0.047 0.063 0.079 0.094210.00 0.017 0.021 0.024 0.028 0.031 0.035 0.043 0.052 0.069 0.087 0.104220.00 0.019 0.023 0.027 0.030 0.034 0.038 0.047 0.057 0.076 0.095 0.114230.00 0.021 0.025 0.029 0.033 0.037 0.042 0.052 0.062 0.083 0.104 0.125240.00 0.023 0.027 0.032 0.036 0.041 0.045 0.057 0.068 0.090 0.113 0.136250.00 0.025 0.029 0.034 0.039 0.044 0.049 0.061 0.074 0.098 0.123 0.147260.00 0.027 0.032 0.037 0.042 0.048 0.053 0.066 0.080 0.106 0.133 0.159270.00 0.029 0.034 0.040 0.046 0.052 0.057 0.072 0.086 0.114 0.143 0.172280.00 0.031 0.037 0.043 0.049 0.055 0.062 0.077 0.092 0.123 0.154 0.185290.00 0.033 0.040 0.046 0.053 0.059 0.066 0.083 0.099 0.132 0.165 0.198300.00 0.035 0.042 0.049 0.057 0.064 0.071 0.088 0.106 0.141 0.177 0.212310.00 0.038 0.045 0.053 0.060 0.068 0.075 0.094 0.113 0.151 0.189 0.226

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 324

Page 326: Niemet_Buch_En_72dpi

325

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 20.0 25.0 30.0

Diam.

50.00 0.008 0.010 0.012 0.014 0.016 0.018 0.020 0.024 0.029 0.039 0.049 0.05955.00 0.009 0.012 0.014 0.017 0.019 0.021 0.024 0.028 0.036 0.047 0.059 0.07160.00 0.011 0.014 0.017 0.020 0.023 0.025 0.028 0.034 0.042 0.057 0.071 0.08565.00 0.013 0.017 0.020 0.023 0.027 0.030 0.033 0.040 0.050 0.066 0.083 0.09970.00 0.015 0.019 0.023 0.027 0.031 0.035 0.038 0.046 0.058 0.077 0.096 0.11575.00 0.018 0.022 0.026 0.031 0.035 0.040 0.044 0.053 0.066 0.088 0.110 0.13280.00 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.060 0.075 0.100 0.126 0.15185.00 0.023 0.028 0.034 0.040 0.045 0.051 0.057 0.068 0.085 0.113 0.142 0.17090.00 0.025 0.032 0.038 0.045 0.051 0.057 0.064 0.076 0.095 0.127 0.159 0.19195.00 0.028 0.035 0.043 0.050 0.057 0.064 0.071 0.085 0.106 0.142 0.177 0.213100.00 0.031 0.039 0.047 0.055 0.063 0.071 0.079 0.094 0.118 0.157 0.196 0.236105.00 0.035 0.043 0.052 0.061 0.069 0.078 0.087 0.104 0.130 0.173 0.216 0.260110.00 0.038 0.047 0.057 0.066 0.076 0.085 0.095 0.114 0.142 0.190 0.237 0.285115.00 0.042 0.052 0.062 0.073 0.083 0.093 0.104 0.125 0.156 0.208 0.260 0.311120.00 0.045 0.057 0.068 0.079 0.090 0.102 0.113 0.136 0.170 0.226 0.283 0.339125.00 0.049 0.061 0.074 0.086 0.098 0.110 0.123 0.147 0.184 0.245 0.307 0.368130.00 0.053 0.066 0.080 0.093 0.106 0.119 0.133 0.159 0.199 0.265 0.332 0.398135.00 0.057 0.072 0.086 0.100 0.114 0.129 0.143 0.172 0.215 0.286 0.358 0.429140.00 0.062 0.077 0.092 0.108 0.123 0.138 0.154 0.185 0.231 0.308 0.385 0.462145.00 0.066 0.083 0.099 0.116 0.132 0.149 0.165 0.198 0.248 0.330 0.413 0.495150.00 0.071 0.088 0.106 0.124 0.141 0.159 0.177 0.212 0.265 0.353 0.442 0.530155.00 0.075 0.094 0.113 0.132 0.151 0.170 0.189 0.226 0.283 0.377 0.471 0.566160.00 0.080 0.100 0.121 0.141 0.161 0.181 0.201 0.241 0.301 0.402 0.502 0.603165.00 0.085 0.107 0.128 0.150 0.171 0.192 0.214 0.256 0.321 0.427 0.534 0.641170.00 0.091 0.113 0.136 0.159 0.181 0.204 0.227 0.272 0.340 0.454 0.567 0.681175.00 0.096 0.120 0.144 0.168 0.192 0.216 0.240 0.288 0.361 0.481 0.601 0.721180.00 0.102 0.127 0.153 0.178 0.203 0.229 0.254 0.305 0.382 0.509 0.636 0.763185.00 0.107 0.134 0.161 0.188 0.215 0.242 0.269 0.322 0.403 0.537 0.672 0.806190.00 0.113 0.142 0.170 0.198 0.227 0.255 0.283 0.340 0.425 0.567 0.708 0.850195.00 0.119 0.149 0.179 0.209 0.239 0.269 0.298 0.358 0.448 0.597 0.746 0.895200.00 0.126 0.157 0.188 0.220 0.251 0.283 0.314 0.377 0.471 0.628 0.785 0.942210.00 0.138 0.173 0.208 0.242 0.277 0.312 0.346 0.415 0.519 0.692 0.865 1.039220.00 0.152 0.190 0.228 0.266 0.304 0.342 0.380 0.456 0.570 0.760 0.950 1.140230.00 0.166 0.208 0.249 0.291 0.332 0.374 0.415 0.498 0.623 0.831 1.038 1.246240.00 0.181 0.226 0.271 0.317 0.362 0.407 0.452 0.543 0.678 0.904 1.130 1.356250.00 0.196 0.245 0.294 0.343 0.393 0.442 0.491 0.589 0.736 0.981 1.227 1.472260.00 0.212 0.265 0.318 0.371 0.425 0.478 0.531 0.637 0.796 1.061 1.327 1.592270.00 0.229 0.286 0.343 0.401 0.458 0.515 0.572 0.687 0.858 1.145 1.431 1.717280.00 0.246 0.308 0.369 0.431 0.492 0.554 0.615 0.739 0.923 1.231 1.539 1.846290.00 0.264 0.330 0.396 0.462 0.528 0.594 0.660 0.792 0.990 1.320 1.650 1.981300.00 0.283 0.353 0.424 0.495 0.565 0.636 0.707 0.848 1.060 1.413 1.766 2.120310.00 0.302 0.377 0.453 0.528 0.604 0.679 0.754 0.905 1.132 1.509 1.886 2.263

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 325

Page 327: Niemet_Buch_En_72dpi

326

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0

Diam.

50.00 0.069 0.079 0.088 0.098 0.108 0.118 0.128 0.137 0.147 0.157 0.167 0.17755.00 0.083 0.095 0.107 0.119 0.131 0.142 0.154 0.166 0.178 0.190 0.202 0.21460.00 0.099 0.113 0.127 0.141 0.155 0.170 0.184 0.198 0.212 0.226 0.240 0.25465.00 0.116 0.133 0.149 0.166 0.182 0.199 0.216 0.232 0.249 0.265 0.282 0.29870.00 0.135 0.154 0.173 0.192 0.212 0.231 0.250 0.269 0.288 0.308 0.327 0.34675.00 0.155 0.177 0.199 0.221 0.243 0.265 0.287 0.309 0.331 0.353 0.375 0.39780.00 0.176 0.201 0.226 0.251 0.276 0.301 0.327 0.352 0.377 0.402 0.427 0.45285.00 0.199 0.227 0.255 0.284 0.312 0.340 0.369 0.397 0.425 0.454 0.482 0.51090.00 0.223 0.254 0.286 0.318 0.350 0.382 0.413 0.445 0.477 0.509 0.540 0.57295.00 0.248 0.283 0.319 0.354 0.390 0.425 0.461 0.496 0.531 0.567 0.602 0.638100.00 0.275 0.314 0.353 0.393 0.432 0.471 0.510 0.550 0.589 0.628 0.667 0.707105.00 0.303 0.346 0.389 0.433 0.476 0.519 0.563 0.606 0.649 0.692 0.736 0.779110.00 0.332 0.380 0.427 0.475 0.522 0.570 0.617 0.665 0.712 0.760 0.807 0.855115.00 0.363 0.415 0.467 0.519 0.571 0.623 0.675 0.727 0.779 0.831 0.882 0.934120.00 0.396 0.452 0.509 0.565 0.622 0.678 0.735 0.791 0.848 0.904 0.961 1.017125.00 0.429 0.491 0.552 0.613 0.675 0.736 0.797 0.859 0.920 0.981 1.043 1.104130.00 0.464 0.531 0.597 0.663 0.730 0.796 0.862 0.929 0.995 1.061 1.128 1.194135.00 0.501 0.572 0.644 0.715 0.787 0.858 0.930 1.001 1.073 1.145 1.216 1.288140.00 0.539 0.615 0.692 0.769 0.846 0.923 1.000 1.077 1.154 1.231 1.308 1.385145.00 0.578 0.660 0.743 0.825 0.908 0.990 1.073 1.155 1.238 1.320 1.403 1.485150.00 0.618 0.707 0.795 0.883 0.971 1.060 1.148 1.236 1.325 1.413 1.501 1.590155.00 0.660 0.754 0.849 0.943 1.037 1.132 1.226 1.320 1.414 1.509 1.603 1.697160.00 0.703 0.804 0.904 1.005 1.105 1.206 1.306 1.407 1.507 1.608 1.708 1.809165.00 0.748 0.855 0.962 1.069 1.175 1.282 1.389 1.496 1.603 1.710 1.817 1.923170.00 0.794 0.907 1.021 1.134 1.248 1.361 1.475 1.588 1.701 1.815 1.928 2.042175.00 0.841 0.962 1.082 1.202 1.322 1.442 1.563 1.683 1.803 1.923 2.043 2.164180.00 0.890 1.017 1.145 1.272 1.399 1.526 1.653 1.780 1.908 2.035 2.162 2.289185.00 0.940 1.075 1.209 1.343 1.478 1.612 1.746 1.881 2.015 2.149 2.284 2.418190.00 0.992 1.134 1.275 1.417 1.559 1.700 1.842 1.984 2.125 2.267 2.409 2.550195.00 1.045 1.194 1.343 1.492 1.642 1.791 1.940 2.089 2.239 2.388 2.537 2.686200.00 1.099 1.256 1.413 1.570 1.727 1.884 2.041 2.198 2.355 2.512 2.669 2.826210.00 1.212 1.385 1.558 1.731 1.904 2.077 2.250 2.423 2.596 2.769 2.943 3.116220.00 1.330 1.520 1.710 1.900 2.090 2.280 2.470 2.660 2.850 3.040 3.229 3.419230.00 1.453 1.661 1.869 2.076 2.284 2.492 2.699 2.907 3.114 3.322 3.530 3.737240.00 1.583 1.809 2.035 2.261 2.487 2.713 2.939 3.165 3.391 3.617 3.843 4.069250.00 1.717 1.963 2.208 2.453 2.698 2.944 3.189 3.434 3.680 3.925 4.170 4.416260.00 1.857 2.123 2.388 2.653 2.919 3.184 3.449 3.715 3.980 4.245 4.511 4.776270.00 2.003 2.289 2.575 2.861 3.147 3.434 3.720 4.006 4.292 4.578 4.864 5.150280.00 2.154 2.462 2.769 3.077 3.385 3.693 4.000 4.308 4.616 4.924 5.231 5.539290.00 2.311 2.641 2.971 3.301 3.631 3.961 4.291 4.621 4.951 5.281 5.612 5.942300.00 2.473 2.826 3.179 3.533 3.886 4.239 4.592 4.946 5.299 5.652 6.005 6.359310.00 2.640 3.018 3.395 3.772 4.149 4.526 4.904 5.281 5.658 6.035 6.412 6.789

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 326

Page 328: Niemet_Buch_En_72dpi

327

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 95.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 200.0

Diam.

50.00 0.186 0.196 0.216 0.236 0.255 0.275 0.294 0.314 0.334 0.353 0.39355.00 0.226 0.237 0.261 0.285 0.309 0.332 0.356 0.380 0.404 0.427 0.47560.00 0.268 0.283 0.311 0.339 0.367 0.396 0.424 0.452 0.480 0.509 0.56565.00 0.315 0.332 0.365 0.398 0.431 0.464 0.497 0.531 0.564 0.597 0.66370.00 0.365 0.385 0.423 0.462 0.500 0.539 0.577 0.615 0.654 0.692 0.76975.00 0.419 0.442 0.486 0.530 0.574 0.618 0.662 0.707 0.751 0.795 0.88380.00 0.477 0.502 0.553 0.603 0.653 0.703 0.754 0.804 0.854 0.904 1.00585.00 0.539 0.567 0.624 0.681 0.737 0.794 0.851 0.907 0.964 1.021 1.13490.00 0.604 0.636 0.699 0.763 0.827 0.890 0.954 1.017 1.081 1.145 1.27295.00 0.673 0.708 0.779 0.850 0.921 0.992 1.063 1.134 1.204 1.275 1.417100.00 0.746 0.785 0.864 0.942 1.021 1.099 1.178 1.256 1.335 1.413 1.570105.00 0.822 0.865 0.952 1.039 1.125 1.212 1.298 1.385 1.471 1.558 1.731110.00 0.902 0.950 1.045 1.140 1.235 1.330 1.425 1.520 1.615 1.710 1.900115.00 0.986 1.038 1.142 1.246 1.350 1.453 1.557 1.661 1.765 1.869 2.076120.00 1.074 1.130 1.243 1.356 1.470 1.583 1.696 1.809 1.922 2.035 2.261125.00 1.165 1.227 1.349 1.472 1.595 1.717 1.840 1.963 2.085 2.208 2.453130.00 1.260 1.327 1.459 1.592 1.725 1.857 1.990 2.123 2.255 2.388 2.653135.00 1.359 1.431 1.574 1.717 1.860 2.003 2.146 2.289 2.432 2.575 2.861140.00 1.462 1.539 1.692 1.846 2.000 2.154 2.308 2.462 2.616 2.769 3.077145.00 1.568 1.650 1.816 1.981 2.146 2.311 2.476 2.641 2.806 2.971 3.301150.00 1.678 1.766 1.943 2.120 2.296 2.473 2.649 2.826 3.003 3.179 3.533155.00 1.792 1.886 2.075 2.263 2.452 2.640 2.829 3.018 3.206 3.395 3.772160.00 1.909 2.010 2.211 2.412 2.612 2.813 3.014 3.215 3.416 3.617 4.019165.00 2.030 2.137 2.351 2.565 2.778 2.992 3.206 3.419 3.633 3.847 4.274170.00 2.155 2.269 2.496 2.722 2.949 3.176 3.403 3.630 3.857 4.084 4.537175.00 2.284 2.404 2.644 2.885 3.125 3.366 3.606 3.847 4.087 4.327 4.808180.00 2.416 2.543 2.798 3.052 3.306 3.561 3.815 4.069 4.324 4.578 5.087185.00 2.552 2.687 2.955 3.224 3.493 3.761 4.030 4.299 4.567 4.836 5.373190.00 2.692 2.834 3.117 3.401 3.684 3.967 4.251 4.534 4.818 5.101 5.668195.00 2.836 2.985 3.283 3.582 3.880 4.179 4.477 4.776 5.074 5.373 5.970200.00 2.983 3.140 3.454 3.768 4.082 4.396 4.710 5.024 5.338 5.652 6.280210.00 3.289 3.462 3.808 4.154 4.500 4.847 5.193 5.539 5.885 6.231 6.924220.00 3.609 3.799 4.179 4.559 4.939 5.319 5.699 6.079 6.459 6.839 7.599230.00 3.945 4.153 4.568 4.983 5.398 5.814 6.229 6.644 7.060 7.475 8.305240.00 4.296 4.522 4.974 5.426 5.878 6.330 6.782 7.235 7.687 8.139 9.043250.00 4.661 4.906 5.397 5.888 6.378 6.869 7.359 7.850 8.341 8.831 9.813260.00 5.041 5.307 5.837 6.368 6.899 7.429 7.960 8.491 9.021 9.552 10.613270.00 5.437 5.723 6.295 6.867 7.439 8.012 8.584 9.156 9.729 10.301 11.445280.00 5.847 6.154 6.770 7.385 8.001 8.616 9.232 9.847 10.462 11.078 12.309290.00 6.272 6.602 7.262 7.922 8.582 9.243 9.903 10.563 11.223 11.883 13.204300.00 6.712 7.065 7.772 8.478 9.185 9.891 10.598 11.304 12.011 12.717 14.130310.00 7.167 7.544 8.298 9.053 9.807 10.561 11.316 12.070 12.825 13.579 15.088

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 327

Page 329: Niemet_Buch_En_72dpi

328

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 0.5 0.6 0.7 0.8 0.9 1.0 1.25 1.50 2.0 2.5 3.0

Diam.

320.00 0.040 0.048 0.056 0.064 0.072 0.080 0.100 0.121 0.161 0.201 0.241330.00 0.043 0.051 0.060 0.068 0.077 0.085 0.107 0.128 0.171 0.214 0.256340.00 0.045 0.054 0.064 0.073 0.082 0.091 0.113 0.136 0.181 0.227 0.272350.00 0.048 0.058 0.067 0.077 0.087 0.096 0.120 0.144 0.192 0.240 0.288360.00 0.051 0.061 0.071 0.081 0.092 0.102 0.127 0.153 0.203 0.254 0.305370.00 0.054 0.064 0.075 0.086 0.097 0.107 0.134 0.161 0.215 0.269 0.322380.00 0.057 0.068 0.079 0.091 0.102 0.113 0.142 0.170 0.227 0.283 0.340390.00 0.060 0.072 0.084 0.096 0.107 0.119 0.149 0.179 0.239 0.298 0.358400.00 0.063 0.075 0.088 0.100 0.113 0.126 0.157 0.188 0.251 0.314 0.377410.00 0.066 0.079 0.092 0.106 0.119 0.132 0.165 0.198 0.264 0.330 0.396420.00 0.069 0.083 0.097 0.111 0.125 0.138 0.173 0.208 0.277 0.346 0.415430.00 0.073 0.087 0.102 0.116 0.131 0.145 0.181 0.218 0.290 0.363 0.435440.00 0.076 0.091 0.106 0.122 0.137 0.152 0.190 0.228 0.304 0.380 0.456450.00 0.079 0.095 0.111 0.127 0.143 0.159 0.199 0.238 0.318 0.397 0.477460.00 0.083 0.100 0.116 0.133 0.149 0.166 0.208 0.249 0.332 0.415 0.498470.00 0.087 0.104 0.121 0.139 0.156 0.173 0.217 0.260 0.347 0.434 0.520480.00 0.090 0.109 0.127 0.145 0.163 0.181 0.226 0.271 0.362 0.452 0.543490.00 0.094 0.113 0.132 0.151 0.170 0.188 0.236 0.283 0.377 0.471 0.565500.00 0.098 0.118 0.137 0.157 0.177 0.196 0.245 0.294 0.393 0.491 0.589525.00 0.108 0.130 0.151 0.173 0.195 0.216 0.270 0.325 0.433 0.541 0.649550.00 0.119 0.142 0.166 0.190 0.214 0.237 0.297 0.356 0.475 0.594 0.712575.00 0.130 0.156 0.182 0.208 0.234 0.260 0.324 0.389 0.519 0.649 0.779600.00 0.141 0.170 0.198 0.226 0.254 0.283 0.353 0.424 0.565 0.707 0.848625.00 0.153 0.184 0.215 0.245 0.276 0.307 0.383 0.460 0.613 0.767 0.920650.00 0.166 0.199 0.232 0.265 0.298 0.332 0.415 0.497 0.663 0.829 0.995675.00 0.179 0.215 0.250 0.286 0.322 0.358 0.447 0.536 0.715 0.894 1.073700.00 0.192 0.231 0.269 0.308 0.346 0.385 0.481 0.577 0.769 0.962 1.154725.00 0.206 0.248 0.289 0.330 0.371 0.413 0.516 0.619 0.825 1.032 1.238750.00 0.221 0.265 0.309 0.353 0.397 0.442 0.552 0.662 0.883 1.104 1.325775.00 0.236 0.283 0.330 0.377 0.424 0.471 0.589 0.707 0.943 1.179 1.414800.00 0.251 0.301 0.352 0.402 0.452 0.502 0.628 0.754 1.005 1.256 1.507825.00 0.267 0.321 0.374 0.427 0.481 0.534 0.668 0.801 1.069 1.336 1.603850.00 0.284 0.340 0.397 0.454 0.510 0.567 0.709 0.851 1.134 1.418 1.701875.00 0.301 0.361 0.421 0.481 0.541 0.601 0.751 0.902 1.202 1.503 1.803900.00 0.318 0.382 0.445 0.509 0.572 0.636 0.795 0.954 1.272 1.590 1.908925.00 0.336 0.403 0.470 0.537 0.604 0.672 0.840 1.007 1.343 1.679 2.015950.00 0.354 0.425 0.496 0.567 0.638 0.708 0.886 1.063 1.417 1.771 2.125975.00 0.373 0.448 0.522 0.597 0.672 0.746 0.933 1.119 1.492 1.866 2.239

1000.00 0.393 0.471 0.550 0.628 0.707 0.785 0.981 1.178 1.570 1.963 2.355

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 328

Page 330: Niemet_Buch_En_72dpi

329

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 20.0 25.0 30.0

Diam.

320.00 0.322 0.402 0.482 0.563 0.643 0.723 0.804 0.965 1.206 1.608 2.010 2.412330.00 0.342 0.427 0.513 0.598 0.684 0.769 0.855 1.026 1.282 1.710 2.137 2.565340.00 0.363 0.454 0.544 0.635 0.726 0.817 0.907 1.089 1.361 1.815 2.269 2.722350.00 0.385 0.481 0.577 0.673 0.769 0.865 0.962 1.154 1.442 1.923 2.404 2.885360.00 0.407 0.509 0.610 0.712 0.814 0.916 1.017 1.221 1.526 2.035 2.543 3.052370.00 0.430 0.537 0.645 0.752 0.860 0.967 1.075 1.290 1.612 2.149 2.687 3.224380.00 0.453 0.567 0.680 0.793 0.907 1.020 1.134 1.360 1.700 2.267 2.834 3.401390.00 0.478 0.597 0.716 0.836 0.955 1.075 1.194 1.433 1.791 2.388 2.985 3.582400.00 0.502 0.628 0.754 0.879 1.005 1.130 1.256 1.507 1.884 2.512 3.140 3.768410.00 0.528 0.660 0.792 0.924 1.056 1.188 1.320 1.584 1.979 2.639 3.299 3.959420.00 0.554 0.692 0.831 0.969 1.108 1.246 1.385 1.662 2.077 2.769 3.462 4.154430.00 0.581 0.726 0.871 1.016 1.161 1.306 1.451 1.742 2.177 2.903 3.629 4.354440.00 0.608 0.760 0.912 1.064 1.216 1.368 1.520 1.824 2.280 3.040 3.799 4.559450.00 0.636 0.795 0.954 1.113 1.272 1.431 1.590 1.908 2.384 3.179 3.974 4.769460.00 0.664 0.831 0.997 1.163 1.329 1.495 1.661 1.993 2.492 3.322 4.153 4.983470.00 0.694 0.867 1.040 1.214 1.387 1.561 1.734 2.081 2.601 3.468 4.335 5.202480.00 0.723 0.904 1.085 1.266 1.447 1.628 1.809 2.170 2.713 3.617 4.522 5.426490.00 0.754 0.942 1.131 1.319 1.508 1.696 1.885 2.262 2.827 3.770 4.712 5.654500.00 0.785 0.981 1.178 1.374 1.570 1.766 1.963 2.355 2.944 3.925 4.906 5.888525.00 0.865 1.082 1.298 1.515 1.731 1.947 2.164 2.596 3.245 4.327 5.409 6.491550.00 0.950 1.187 1.425 1.662 1.900 2.137 2.375 2.850 3.562 4.749 5.937 7.124575.00 1.038 1.298 1.557 1.817 2.076 2.336 2.595 3.114 3.893 5.191 6.489 7.786600.00 1.130 1.413 1.696 1.978 2.261 2.543 2.826 3.391 4.239 5.652 7.065 8.478625.00 1.227 1.533 1.840 2.146 2.453 2.760 3.066 3.680 4.600 6.133 7.666 9.199650.00 1.327 1.658 1.990 2.322 2.653 2.985 3.317 3.980 4.975 6.633 8.292 9.950675.00 1.431 1.788 2.146 2.504 2.861 3.219 3.577 4.292 5.365 7.153 8.942 10.730700.00 1.539 1.923 2.308 2.693 3.077 3.462 3.847 4.616 5.770 7.693 9.616 11.540725.00 1.650 2.063 2.476 2.888 3.301 3.714 4.126 4.951 6.189 8.252 10.315 12.378750.00 1.766 2.208 2.649 3.091 3.533 3.974 4.416 5.299 6.623 8.831 11.039 13.247775.00 1.886 2.357 2.829 3.300 3.772 4.243 4.715 5.658 7.072 9.430 11.787 14.145800.00 2.010 2.512 3.014 3.517 4.019 4.522 5.024 6.029 7.536 10.048 12.560 15.072825.00 2.137 2.671 3.206 3.740 4.274 4.809 5.343 6.411 8.014 10.686 13.357 16.029850.00 2.269 2.836 3.403 3.970 4.537 5.104 5.672 6.806 8.507 11.343 14.179 17.015875.00 2.404 3.005 3.606 4.207 4.808 5.409 6.010 7.212 9.015 12.020 15.025 18.030900.00 2.543 3.179 3.815 4.451 5.087 5.723 6.359 7.630 9.538 12.717 15.896 19.076925.00 2.687 3.358 4.030 4.702 5.373 6.045 6.717 8.060 10.075 13.433 16.792 20.150950.00 2.834 3.542 4.251 4.959 5.668 6.376 7.085 8.502 10.627 14.169 17.712 21.254975.00 2.985 3.731 4.477 5.224 5.970 6.716 7.462 8.955 11.194 14.925 18.656 22.387

1000.00 3.140 3.925 4.710 5.495 6.280 7.065 7.850 9.420 11.775 15.700 19.625 23.550

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 329

Page 331: Niemet_Buch_En_72dpi

330

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0

Diam.

320.00 2.813 3.215 3.617 4.019 4.421 4.823 5.225 5.627 6.029 6.431 6.833 7.235330.00 2.992 3.419 3.847 4.274 4.702 5.129 5.557 5.984 6.411 6.839 7.266 7.694340.00 3.176 3.630 4.084 4.537 4.991 5.445 5.898 6.352 6.806 7.260 7.713 8.167350.00 3.366 3.847 4.327 4.808 5.289 5.770 6.251 6.731 7.212 7.693 8.174 8.655360.00 3.561 4.069 4.578 5.087 5.595 6.104 6.613 7.122 7.630 8.139 8.648 9.156370.00 3.761 4.299 4.836 5.373 5.911 6.448 6.985 7.523 8.060 8.597 9.135 9.672380.00 3.967 4.534 5.101 5.668 6.234 6.801 7.368 7.935 8.502 9.068 9.635 10.202390.00 4.179 4.776 5.373 5.970 6.567 7.164 7.761 8.358 8.955 9.552 10.149 10.746400.00 4.396 5.024 5.652 6.280 6.908 7.536 8.164 8.792 9.420 10.048 10.676 11.304410.00 4.619 5.278 5.938 6.598 7.258 7.918 8.577 9.237 9.897 10.557 11.216 11.876420.00 4.847 5.539 6.231 6.924 7.616 8.308 9.001 9.693 10.386 11.078 11.770 12.463430.00 5.080 5.806 6.532 7.257 7.983 8.709 9.435 10.160 10.886 11.612 12.337 13.063440.00 5.319 6.079 6.839 7.599 8.359 9.119 9.878 10.638 11.398 12.158 12.918 13.678450.00 5.564 6.359 7.153 7.948 8.743 9.538 10.333 11.127 11.922 12.717 13.512 14.307460.00 5.814 6.644 7.475 8.305 9.136 9.966 10.797 11.627 12.458 13.288 14.119 14.950470.00 6.069 6.936 7.803 8.670 9.537 10.404 11.271 12.138 13.005 13.873 14.740 15.607480.00 6.330 7.235 8.139 9.043 9.948 10.852 11.756 12.660 13.565 14.469 15.373 16.278490.00 6.597 7.539 8.482 9.424 10.366 11.309 12.251 13.193 14.136 15.078 16.021 16.963500.00 6.869 7.850 8.831 9.813 10.794 11.775 12.756 13.738 14.719 15.700 16.681 17.663525.00 7.573 8.655 9.736 10.818 11.900 12.982 14.064 15.146 16.227 17.309 18.391 19.473550.00 8.311 9.499 10.686 11.873 13.060 14.248 15.435 16.622 17.810 18.997 20.184 21.372575.00 9.084 10.382 11.679 12.977 14.275 15.572 16.870 18.168 19.466 20.763 22.061 23.359600.00 9.891 11.304 12.717 14.130 15.543 16.956 18.369 19.782 21.195 22.608 24.021 25.434625.00 10.732 12.266 13.799 15.332 16.865 18.398 19.932 21.465 22.998 24.531 26.064 27.598650.00 11.608 13.267 14.925 16.583 18.241 19.900 21.558 23.216 24.875 26.533 28.191 29.850675.00 12.518 14.307 16.095 17.883 19.672 21.460 23.248 25.037 26.825 28.613 30.402 32.190700.00 13.463 15.386 17.309 19.233 21.156 23.079 25.002 26.926 28.849 30.772 32.695 34.619725.00 14.442 16.505 18.568 20.631 22.694 24.757 26.820 28.883 30.946 33.009 35.072 37.135750.00 15.455 17.663 19.870 22.078 24.286 26.494 28.702 30.909 33.117 35.325 37.533 39.741775.00 16.502 18.860 21.217 23.575 25.932 28.289 30.647 33.004 35.362 37.719 40.077 42.434800.00 17.584 20.096 22.608 25.120 27.632 30.144 32.656 35.168 37.680 40.192 42.704 45.216825.00 18.700 21.372 24.043 26.715 29.386 32.057 34.729 37.400 40.072 42.743 45.415 48.086850.00 19.851 22.687 25.522 28.358 31.194 34.030 36.866 39.701 42.537 45.373 48.209 51.045875.00 21.036 24.041 27.046 30.051 33.056 36.061 39.066 42.071 45.076 48.081 51.086 54.091900.00 22.255 25.434 28.613 31.793 34.972 38.151 41.330 44.510 47.689 50.868 54.047 57.227925.00 23.508 26.867 30.225 33.583 36.942 40.300 43.658 47.017 50.375 53.733 57.092 60.450950.00 24.796 28.339 31.881 35.423 38.965 42.508 46.050 49.592 53.135 56.677 60.219 63.762975.00 26.118 29.850 33.581 37.312 41.043 44.774 48.506 52.237 55.968 59.699 63.430 67.162

1000.00 27.475 31.400 35.325 39.250 43.175 47.100 51.025 54.950 58.875 62.800 66.725 70.650

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 330

Page 332: Niemet_Buch_En_72dpi

331

WEIGHT CALCULATION: CIRCLE

Weight per item to be calculated:Multiply volume value/item of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickn. 95.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 200.0

Diam.

320.00 7.636 8.038 8.842 9.646 10.450 11.254 12.058 12.861 13.665 14.469 16.077330.00 8.121 8.549 9.404 10.258 11.113 11.968 12.823 13.678 14.533 15.388 17.097340.00 8.621 9.075 9.982 10.890 11.797 12.704 13.612 14.519 15.427 16.334 18.149350.00 9.135 9.616 10.578 11.540 12.501 13.463 14.424 15.386 16.348 17.309 19.233360.00 9.665 10.174 11.191 12.208 13.226 14.243 15.260 16.278 17.295 18.312 20.347370.00 10.209 10.747 11.821 12.896 13.971 15.045 16.120 17.195 18.269 19.344 21.493380.00 10.769 11.335 12.469 13.602 14.736 15.870 17.003 18.137 19.270 20.404 22.671390.00 11.343 11.940 13.134 14.328 15.522 16.716 17.910 19.104 20.298 21.492 23.880400.00 11.932 12.560 13.816 15.072 16.328 17.584 18.840 20.096 21.352 22.608 25.120410.00 12.536 13.196 14.515 15.835 17.155 18.474 19.794 21.113 22.433 23.753 26.392420.00 13.155 13.847 15.232 16.617 18.002 19.386 20.771 22.156 23.541 24.925 27.695430.00 13.789 14.515 15.966 17.418 18.869 20.321 21.772 23.223 24.675 26.126 29.029440.00 14.438 15.198 16.717 18.237 19.757 21.277 22.796 24.316 25.836 27.356 30.395450.00 15.101 15.896 17.486 19.076 20.665 22.255 23.844 25.434 27.024 28.613 31.793460.00 15.780 16.611 18.272 19.933 21.594 23.255 24.916 26.577 28.238 29.899 33.221470.00 16.474 17.341 19.075 20.809 22.543 24.277 26.011 27.745 29.479 31.213 34.681480.00 17.182 18.086 19.895 21.704 23.512 25.321 27.130 28.938 30.747 32.556 36.173490.00 17.905 18.848 20.733 22.617 24.502 26.387 28.272 30.157 32.041 33.926 37.696500.00 18.644 19.625 21.588 23.550 25.513 27.475 29.438 31.400 33.363 35.325 39.250525.00 20.555 21.637 23.800 25.964 28.128 30.291 32.455 34.619 36.782 38.946 43.273550.00 22.559 23.746 26.121 28.496 30.870 33.245 35.619 37.994 40.369 42.743 47.493575.00 24.656 25.954 28.549 31.145 33.740 36.336 38.931 41.527 44.122 46.717 51.908600.00 26.847 28.260 31.086 33.912 36.738 39.564 42.390 45.216 48.042 50.868 56.520625.00 29.131 30.664 33.730 36.797 39.863 42.930 45.996 49.063 52.129 55.195 61.328650.00 31.508 33.166 36.483 39.800 43.116 46.433 49.749 53.066 56.383 59.699 66.333675.00 33.978 35.767 39.343 42.920 46.497 50.073 53.650 57.227 60.803 64.380 71.533700.00 36.542 38.465 42.312 46.158 50.005 53.851 57.698 61.544 65.391 69.237 76.930725.00 39.198 41.262 45.388 49.514 53.640 57.766 61.892 66.019 70.145 74.271 82.523750.00 41.948 44.156 48.572 52.988 57.403 61.819 66.234 70.650 75.066 79.481 88.313775.00 44.792 47.149 51.864 56.579 61.294 66.009 70.724 75.439 80.153 84.868 94.298800.00 47.728 50.240 55.264 60.288 65.312 70.336 75.360 80.384 85.408 90.432 100.480825.00 50.758 53.429 58.772 64.115 69.458 74.801 80.144 85.487 90.829 96.172 106.858850.00 53.880 56.716 62.388 68.060 73.731 79.403 85.074 90.746 96.418 102.08 113.433875.00 57.096 60.102 66.112 72.122 78.132 84.142 90.152 96.163 102.173 108.18 120.203900.00 60.406 63.585 69.944 76.302 82.661 89.019 95.378 101.736 108.095 114.45 127.170925.00 63.808 67.167 73.883 80.600 87.317 94.033 100.750 107.467 114.183 120.90 134.333950.00 67.304 70.846 77.931 85.016 92.100 99.185 106.269 113.354 120.439 127.52 141.693975.00 70.893 74.624 82.086 89.549 97.011 104.474 111.936 119.399 126.861 134.323 149.248

1000.00 74.575 78.500 86.350 94.200 102.050 109.900 117.750 125.600 133.450 141.300 157.000

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 331

Page 333: Niemet_Buch_En_72dpi

332

WEIGHT CALCULATION: BAR

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

∏ Ø™®†‰ ¸†˝™

Dimension RD VK SK

2.00 0.003 0.004 0.0032.50 0.005 0.006 0.0053.00 0.007 0.009 0.0083.50 0.010 0.012 0.0114.00 0.013 0.016 0.0144.50 0.016 0.020 0.0185.00 0.020 0.025 0.0225.50 0.024 0.030 0.0266.00 0.028 0.036 0.0316.50 0.033 0.042 0.0377.00 0.038 0.049 0.0427.50 0.044 0.056 0.0498.00 0.050 0.064 0.0558.50 0.057 0.072 0.0639.00 0.064 0.081 0.0709.50 0.071 0.090 0.078

10.00 0.079 0.100 0.08710.50 0.087 0.110 0.09511.00 0.095 0.121 0.10511.50 0.104 0.132 0.11512.00 0.113 0.144 0.12512.50 0.123 0.156 0.13513.00 0.133 0.169 0.14613.50 0.143 0.182 0.15814.00 0.154 0.196 0.17014.50 0.165 0.210 0.18215.00 0.177 0.225 0.19515.50 0.189 0.240 0.20816.00 0.201 0.256 0.22216.50 0.214 0.272 0.23617.00 0.227 0.289 0.25017.50 0.240 0.306 0.26518.00 0.254 0.324 0.28118.50 0.269 0.342 0.29619.00 0.283 0.361 0.31319.50 0.298 0.380 0.32920.00 0.314 0.400 0.34620.50 0.330 0.420 0.36421.00 0.346 0.441 0.38221.50 0.363 0.462 0.40022.00 0.380 0.484 0.41922.50 0.397 0.506 0.438

Dia- ∏ Ø™®†‰ ¸†˝™

meter RD VK SK

23.00 0.415 0.529 0.45823.50 0.434 0.552 0.47824.00 0.452 0.576 0.49924.50 0.471 0.600 0.52025.00 0.491 0.625 0.54125.50 0.510 0.650 0.56326.00 0.531 0.676 0.58526.50 0.551 0.702 0.60827.00 0.572 0.729 0.63127.50 0.594 0.756 0.65528.00 0.615 0.784 0.67928.50 0.638 0.812 0.70329.00 0.660 0.841 0.72829.50 0.683 0.870 0.75430.00 0.707 0.900 0.77930.50 0.730 0.930 0.80631.00 0.754 0.961 0.83231.50 0.779 0.992 0.85932.00 0.804 1.024 0.88732.50 0.829 1.056 0.91533.00 0.855 1.089 0.94333.50 0.881 1.122 0.97234.00 0.907 1.156 1.00134.50 0.934 1.190 1.03135.00 0.962 1.225 1.06135.50 0.989 1.260 1.09136.00 1.017 1.296 1.12236.50 1.046 1.332 1.15437.00 1.075 1.369 1.18637.50 1.104 1.406 1.21838.00 1.134 1.444 1.25138.50 1.164 1.482 1.28439.00 1.194 1.521 1.31739.50 1.225 1.560 1.35140.00 1.256 1.600 1.38640.50 1.288 1.640 1.42041.00 1.320 1.681 1.45641.50 1.352 1.722 1.49242.00 1.385 1.764 1.52842.50 1.418 1.806 1.56443.00 1.451 1.849 1.60143.50 1.485 1.892 1.639

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 332

Page 334: Niemet_Buch_En_72dpi

333

WEIGHT CALCULATION: BAR

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

∏ Ø™®†‰ ¸†˝™

Dimension RD VK SK

44.00 1.520 1.936 1.67744.50 1.554 1.980 1.71545.00 1.590 2.025 1.75445.50 1.625 2.070 1.79346.00 1.661 2.116 1.83346.50 1.697 2.162 1.87347.00 1.734 2.209 1.91347.50 1.771 2.256 1.95448.00 1.809 2.304 1.99548.50 1.847 2.352 2.03749.00 1.885 2.401 2.07949.50 1.923 2.450 2.12250.00 1.963 2.500 2.16551.00 2.042 2.601 2.25352.00 2.123 2.704 2.34253.00 2.205 2.809 2.43354.00 2.289 2.916 2.52555.00 2.375 3.025 2.62056.00 2.462 3.136 2.71657.00 2.550 3.249 2.81458.00 2.641 3.364 2.91359.00 2.733 3.481 3.01560.00 2.826 3.600 3.11861.00 2.921 3.721 3.22262.00 3.018 3.844 3.32963.00 3.116 3.969 3.43764.00 3.215 4.096 3.54765.00 3.317 4.225 3.65966.00 3.419 4.356 3.77267.00 3.524 4.489 3.88868.00 3.630 4.624 4.00569.00 3.737 4.761 4.12370.00 3.847 4.900 4.24471.00 3.957 5.041 4.36672.00 4.069 5.184 4.48973.00 4.183 5.329 4.61574.00 4.299 5.476 4.74275.00 4.416 5.625 4.87176.00 4.534 5.776 5.00277.00 4.654 5.929 5.13578.00 4.776 6.084 5.26979.00 4.899 6.241 5.405

Dia- ∏ Ø™®†‰ ¸†˝™

meter RD VK SK

80.00 5.024 6.400 5.54381.00 5.150 6.561 5.68282.00 5.278 6.724 5.82383.00 5.408 6.889 5.96684.00 5.539 7.056 6.11185.00 5.672 7.225 6.25786.00 5.806 7.396 6.40587.00 5.942 7.569 6.55588.00 6.079 7.744 6.70789.00 6.218 7.921 6.86090.00 6.359 8.100 7.01591.00 6.501 8.281 7.17292.00 6.644 8.464 7.33093.00 6.789 8.649 7.49094.00 6.936 8.836 7.65295.00 7.085 9.025 7.81696.00 7.235 9.216 7.98197.00 7.386 9.409 8.14898.00 7.539 9.604 8.31799.00 7.694 9.801 8.488

100.00 7.850 10.000 8.660105.00 8.655 11.025 9.548110.00 9.499 12.100 10.479115.00 10.382 13.225 11.453120.00 11.304 14.400 12.471125.00 12.266 15.625 13.532130.00 13.267 16.900 14.636135.00 14.307 18.225 15.783140.00 15.386 19.600 16.974145.00 16.505 21.025 18.208150.00 17.663 22.500 19.486155.00 18.860 24.025 20.806160.00 20.096 25.600 22.170170.00 22.687 28.900 25.028175.00 24.041 30.625 26.522180.00 25.434 32.400 28.059185.00 26.867 34.225 29.640190.00 28.339 36.100 31.264195.00 29.850 38.025 32.931200.00 31.400 40.000 34.641205.00 32.990 42.025 36.395210.00 34.619 44.100 38.192

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 333

Page 335: Niemet_Buch_En_72dpi

334

WEIGHT CALCULATION: BAR

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

∏ Ø™®†‰ ¸†˝™

Dimension RD VK SK

215.00 36.287 46.225 40.032220.00 37.994 48.400 41.916225.00 39.741 50.625 43.843230.00 41.527 52.900 45.813235.00 43.352 55.225 47.826240.00 45.216 57.600 49.883245.00 47.120 60.025 51.983250.00 49.063 62.500 54.127255.00 51.045 65.025 56.313260.00 53.066 67.600 58.543265.00 55.127 70.225 60.817270.00 57.227 72.900 63.133275.00 59.366 75.625 65.493280.00 61.544 78.400 67.896285.00 63.762 81.225 70.343290.00 66.019 84.100 72.833295.00 68.315 87.025 75.366300.00 70.650 90.000 77.942305.00 73.025 93.025 80.562310.00 75.439 96.100 83.225315.00 77.892 99.225 85.931320.00 80.384 102.400 88.681325.00 82.916 105.625 91.474330.00 85.487 108.900 94.310335.00 88.097 112.225 97.190340.00 90.746 115.600 100.113345.00 93.435 119.025 103.079350.00 96.163 122.500 106.088355.00 98.930 126.025 109.141

Dia- ∏ Ø™®†‰ ¸†˝™

meter RD VK SK

360.00 101.736 129.600 112.237365.00 104.582 133.225 115.376370.00 107.467 136.900 118.559375.00 110.391 140.625 121.785380.00 113.354 144.400 125.054385.00 116.357 148.225 128.367390.00 119.399 152.100 131.722395.00 122.480 156.025 135.122400.00 125.600 160.000 138.564410.00 131.959 168.100 145.579415.00 135.197 172.225 149.151420.00 138.474 176.400 152.767425.00 141.791 180.625 156.426430.00 145.147 184.900 160.128435.00 148.542 189.225 163.874440.00 151.976 193.600 167.663445.00 155.450 198.025 171.495450.00 158.963 202.500 175.370455.00 162.515 207.025 179.289460.00 166.106 211.600 183.251465.00 169.737 216.225 187.256470.00 173.407 220.900 191.305475.00 177.116 225.625 195.397480.00 180.864 230.400 199.532485.00 184.652 235.225 203.711490.00 188.479 240.100 207.933495.00 192.345 245.025 212.198500.00 196.250 250.000 216.506

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 334

Page 336: Niemet_Buch_En_72dpi

335

WEIGHT CALCULATION: U-PROFILE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.2 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

6 x 6 0.016 0.019 0.023 0.028 0.033 – – – – – – – –8 x 8 0.022 0.026 0.032 0.040 0.048 0.054 0.060 – – – – – –

10 x 10 0.028 0.033 0.041 0.052 0.063 0.072 0.081 0.088 – – – – –10 x 20 0.048 0.057 0.071 0.092 0.113 0.132 0.151 0.168 – – – – –12 x 12 0.034 0.040 0.050 0.064 0.078 0.090 0.102 0.112 0.130 – – – –12 x 15 0.040 0.048 0.059 0.076 0.093 0.108 0.123 0.136 0.160 – – – –13 x 20 0.051 0.061 0.075 0.098 0.120 0.141 0.161 0.180 0.215 0.246 – – –15 x 15 0.043 0.051 0.063 0.082 0.100 0.117 0.133 0.148 0.175 0.198 – – –15 x 20 0.053 0.063 0.078 0.102 0.125 0.147 0.168 0.188 0.225 0.258 – – –15 x 25 0.063 0.075 0.093 0.122 0.150 0.177 0.203 0.228 0.275 0.318 – – –16 x 28 0.070 0.084 0.104 0.136 0.168 0.198 0.228 0.256 0.310 0.360 – – –17 x 25 0.065 0.078 0.096 0.126 0.155 0.183 0.210 0.236 0.285 0.330 0.408 – –18 x 18 0.052 0.062 0.077 0.100 0.123 0.144 0.165 0.184 0.220 0.252 0.304 – –18 x 25 0.066 0.079 0.098 0.128 0.158 0.186 0.214 0.240 0.290 0.336 0.416 – –18 x 28 0.072 0.086 0.107 0.140 0.173 0.204 0.235 0.264 0.320 0.372 0.464 – –20 x 8 0.034 0.040 0.050 0.064 0.078 0.090 0.102 0.112 0.130 0.144 0.160 – –20 x 10 0.038 0.045 0.056 0.072 0.088 0.102 0.116 0.128 0.150 0.168 0.192 – –20 x 15 0.048 0.057 0.071 0.092 0.113 0.132 0.151 0.168 0.200 0.228 0.272 – –20 x 20 0.058 0.069 0.086 0.112 0.138 0.162 0.186 0.208 0.250 0.288 0.352 – –20 x 25 0.068 0.081 0.101 0.132 0.163 0.192 0.221 0.248 0.300 0.348 0.432 – –20 x 30 0.078 0.093 0.116 0.152 0.188 0.222 0.256 0.288 0.350 0.408 0.512 – –20 x 35 0.088 0.105 0.131 0.172 0.213 0.252 0.291 0.328 0.400 0.468 0.592 – –20 x 40 0.098 0.117 0.146 0.192 0.238 0.282 0.326 0.368 0.450 0.528 0.672 – –25 x 10 0.043 0.051 0.063 0.082 0.100 0.117 0.133 0.148 0.175 0.198 0.232 0.250 0.25225 x 15 0.053 0.063 0.078 0.102 0.125 0.147 0.168 0.188 0.225 0.258 0.312 0.350 0.37225 x 20 0.063 0.075 0.093 0.122 0.150 0.177 0.203 0.228 0.275 0.318 0.392 0.450 0.49225 x 25 0.073 0.087 0.108 0.142 0.175 0.207 0.238 0.268 0.325 0.378 0.472 0.550 0.61225 x 32 0.087 0.104 0.129 0.170 0.210 0.249 0.287 0.324 0.395 0.462 0.584 0.690 0.78025 x 50 0.123 0.147 0.183 0.242 0.300 0.357 0.413 0.468 0.575 0.678 0.872 1.050 1.21230 x 10 0.048 0.057 0.071 0.092 0.113 0.132 0.151 0.168 0.200 0.228 0.272 0.300 0.31230 x 15 0.058 0.069 0.086 0.112 0.138 0.162 0.186 0.208 0.250 0.288 0.352 0.400 0.43230 x 20 0.068 0.081 0.101 0.132 0.163 0.192 0.221 0.248 0.300 0.348 0.432 0.500 0.55230 x 30 0.088 0.105 0.131 0.172 0.213 0.252 0.291 0.328 0.400 0.468 0.592 0.700 0.79230 x 40 0.108 0.129 0.161 0.212 0.263 0.312 0.361 0.408 0.500 0.588 0.752 0.900 1.03235 x 20 0.073 0.087 0.108 0.142 0.175 0.207 0.238 0.268 0.325 0.378 0.472 0.550 0.61235 x 30 0.093 0.111 0.138 0.182 0.225 0.267 0.308 0.348 0.425 0.498 0.632 0.750 0.85235 x 40 0.113 0.135 0.168 0.222 0.275 0.327 0.378 0.428 0.525 0.618 0.792 0.950 1.09240 x 15 0.068 0.081 0.101 0.132 0.163 0.192 0.221 0.248 0.300 0.348 0.432 0.500 0.55240 x 20 0.078 0.093 0.116 0.152 0.188 0.222 0.256 0.288 0.350 0.408 0.512 0.600 0.67240 x 30 0.098 0.117 0.146 0.192 0.238 0.282 0.326 0.368 0.450 0.528 0.672 0.800 0.91240 x 40 0.118 0.141 0.176 0.232 0.288 0.342 0.396 0.448 0.550 0.648 0.832 1.000 1.15240 x 50 0.138 0.165 0.206 0.272 0.338 0.402 0.466 0.528 0.650 0.768 0.992 1.200 1.392

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 335

Page 337: Niemet_Buch_En_72dpi

336

WEIGHT CALCULATION: U-PROFILE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.2 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

40 x 60 0.158 0.189 0.236 0.312 0.388 0.462 0.536 0.608 0.750 0.888 1.152 1.400 1.63240 x 100 0.238 0.285 0.356 0.472 0.588 0.702 0.816 0.928 1.150 1.368 1.792 2.200 2.59245 x 12 0.067 0.080 0.099 0.130 0.160 0.189 0.217 0.244 0.295 0.342 0.424 0.490 0.54045 x 25 0.093 0.111 0.138 0.182 0.225 0.267 0.308 0.348 0.425 0.498 0.632 0.750 0.85245 x 45 0.133 0.159 0.198 0.262 0.325 0.387 0.448 0.508 0.625 0.738 0.952 1.150 1.33250 x 15 0.078 0.093 0.116 0.152 0.188 0.222 0.256 0.288 0.350 0.408 0.512 0.600 0.67250 x 20 0.088 0.105 0.131 0.172 0.213 0.252 0.291 0.328 0.400 0.468 0.592 0.700 0.79250 x 25 0.098 0.117 0.146 0.192 0.238 0.282 0.326 0.368 0.450 0.528 0.672 0.800 0.91250 x 30 0.108 0.129 0.161 0.212 0.263 0.312 0.361 0.408 0.500 0.588 0.752 0.900 1.03250 x 32 0.112 0.134 0.167 0.220 0.273 0.324 0.375 0.424 0.520 0.612 0.784 0.940 1.08050 x 40 0.128 0.153 0.191 0.252 0.313 0.372 0.431 0.488 0.600 0.708 0.912 1.100 1.27250 x 50 0.148 0.177 0.221 0.292 0.363 0.432 0.501 0.568 0.700 0.828 1.072 1.300 1.51254 x 54 0.160 0.192 0.239 0.316 0.393 0.468 0.543 0.616 0.760 0.900 1.168 1.420 1.65655 x 25 0.103 0.123 0.153 0.202 0.250 0.297 0.343 0.388 0.475 0.558 0.712 0.850 0.97255 x 45 0.143 0.171 0.213 0.282 0.350 0.417 0.483 0.548 0.675 0.798 1.032 1.250 1.45256 x 56 0.166 0.199 0.248 0.328 0.408 0.486 0.564 0.640 0.790 0.936 1.216 1.480 1.72860 x 15 0.088 0.105 0.131 0.172 0.213 0.252 0.291 0.328 0.400 0.468 0.592 0.700 0.79260 x 20 0.098 0.117 0.146 0.192 0.238 0.282 0.326 0.368 0.450 0.528 0.672 0.800 0.91260 x 25 0.108 0.129 0.161 0.212 0.263 0.312 0.361 0.408 0.500 0.588 0.752 0.900 1.03260 x 30 0.118 0.141 0.176 0.232 0.288 0.342 0.396 0.448 0.550 0.648 0.832 1.000 1.15260 x 40 0.138 0.165 0.206 0.272 0.338 0.402 0.466 0.528 0.650 0.768 0.992 1.200 1.39260 x 50 0.158 0.189 0.236 0.312 0.388 0.462 0.536 0.608 0.750 0.888 1.152 1.400 1.63260 x 60 0.178 0.213 0.266 0.352 0.438 0.522 0.606 0.688 0.850 1.008 1.312 1.600 1.87265 x 25 0.113 0.135 0.168 0.222 0.275 0.327 0.378 0.428 0.525 0.618 0.792 0.950 1.09265 x 40 0.143 0.171 0.213 0.282 0.350 0.417 0.483 0.548 0.675 0.798 1.032 1.250 1.45265 x 45 0.153 0.183 0.228 0.302 0.375 0.447 0.518 0.588 0.725 0.858 1.112 1.350 1.57265 x 55 0.173 0.207 0.258 0.342 0.425 0.507 0.588 0.668 0.825 0.978 1.272 1.550 1.81269 x 69 0.205 0.246 0.306 0.406 0.505 0.603 0.700 0.796 0.985 1.170 1.528 1.870 2.19670 x 20 0.108 0.129 0.161 0.212 0.263 0.312 0.361 0.408 0.500 0.588 0.752 0.900 1.03270 x 30 0.128 0.153 0.191 0.252 0.313 0.372 0.431 0.488 0.600 0.708 0.912 1.100 1.27270 x 35 0.138 0.165 0.206 0.272 0.338 0.402 0.466 0.528 0.650 0.768 0.992 1.200 1.39270 x 40 0.148 0.177 0.221 0.292 0.363 0.432 0.501 0.568 0.700 0.828 1.072 1.300 1.51275 x 30 0.133 0.159 0.198 0.262 0.325 0.387 0.448 0.508 0.625 0.738 0.952 1.150 1.33275 x 55 0.183 0.219 0.273 0.362 0.450 0.537 0.623 0.708 0.875 1.038 1.352 1.650 1.93280 x 20 0.118 0.141 0.176 0.232 0.288 0.342 0.396 0.448 0.550 0.648 0.832 1.000 1.15280 x 24 0.126 0.151 0.188 0.248 0.308 0.366 0.424 0.480 0.590 0.696 0.896 1.080 1.24880 x 30 0.138 0.165 0.206 0.272 0.338 0.402 0.466 0.528 0.650 0.768 0.992 1.200 1.39280 x 40 0.158 0.189 0.236 0.312 0.388 0.462 0.536 0.608 0.750 0.888 1.152 1.400 1.63280 x 45 0.168 0.201 0.251 0.332 0.413 0.492 0.571 0.648 0.800 0.948 1.232 1.500 1.75280 x 50 0.178 0.213 0.266 0.352 0.438 0.522 0.606 0.688 0.850 1.008 1.312 1.600 1.87280 x 60 0.198 0.237 0.296 0.392 0.488 0.582 0.676 0.768 0.950 1.128 1.472 1.800 2.11280 x 80 0.238 0.285 0.356 0.472 0.588 0.702 0.816 0.928 1.150 1.368 1.792 2.200 2.592

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 336

Page 338: Niemet_Buch_En_72dpi

337

WEIGHT CALCULATION: U-PROFILE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.2 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

84 x 50 0.182 0.218 0.272 0.360 0.448 0.534 0.620 0.704 0.870 1.032 1.344 1.640 1.92084 x 84 0.250 0.300 0.374 0.496 0.618 0.738 0.858 0.976 1.210 1.440 1.888 2.320 2.73685 x 25 0.133 0.159 0.198 0.262 0.325 0.387 0.448 0.508 0.625 0.738 0.952 1.150 1.33285 x 85 0.253 0.303 0.378 0.502 0.625 0.747 0.868 0.988 1.225 1.458 1.912 2.350 2.77286 x 40 0.164 0.196 0.245 0.324 0.403 0.480 0.557 0.632 0.780 0.924 1.200 1.460 1.70486 x 86 0.256 0.307 0.383 0.508 0.633 0.756 0.879 1.000 1.240 1.476 1.936 2.380 2.80890 x 40 0.168 0.201 0.251 0.332 0.413 0.492 0.571 0.648 0.800 0.948 1.232 1.500 1.75290 x 50 0.188 0.225 0.281 0.372 0.463 0.552 0.641 0.728 0.900 1.068 1.392 1.700 1.99294 x 94 0.280 0.336 0.419 0.556 0.693 0.828 0.963 1.096 1.360 1.620 2.128 2.620 3.09696 x 96 0.286 0.343 0.428 0.568 0.708 0.846 0.984 1.120 1.390 1.656 2.176 2.680 3.16899 x 99 0.295 0.354 0.441 0.586 0.730 0.873 1.015 1.156 1.435 1.710 2.248 2.770 3.276

100 x 20 0.138 0.165 0.206 0.272 0.338 0.402 0.466 0.528 0.650 0.768 0.992 1.200 1.392100 x 40 0.178 0.213 0.266 0.352 0.438 0.522 0.606 0.688 0.850 1.008 1.312 1.600 1.872100 x 50 0.198 0.237 0.296 0.392 0.488 0.582 0.676 0.768 0.950 1.128 1.472 1.800 2.112100 x 55 0.208 0.249 0.311 0.412 0.513 0.612 0.711 0.808 1.000 1.188 1.552 1.900 2.232100 x 100 0.298 0.357 0.446 0.592 0.738 0.882 1.026 1.168 1.450 1.728 2.272 2.800 3.312100 x 100 0.498 0.597 0.746 0.992 1.238 1.482 1.726 1.968 2.450 2.928 3.872 4.800 5.712100 x 80 0.258 0.309 0.386 0.512 0.638 0.762 0.886 1.008 1.250 1.488 1.952 2.400 2.832101 x 101 0.301 0.361 0.450 0.598 0.745 0.891 1.036 1.180 1.465 1.746 2.296 2.830 3.348104 x 104 0.310 0.372 0.464 0.616 0.768 0.918 1.068 1.216 1.510 1.800 2.368 2.920 3.456105 x 40 0.183 0.219 0.273 0.362 0.450 0.537 0.623 0.708 0.875 1.038 1.352 1.650 1.932106 x 40 0.184 0.220 0.275 0.364 0.453 0.540 0.627 0.712 0.880 1.044 1.360 1.660 1.944106 x 106 0.316 0.379 0.473 0.628 0.783 0.936 1.089 1.240 1.540 1.836 2.416 2.980 3.528108 x 50 0.206 0.247 0.308 0.408 0.508 0.606 0.704 0.800 0.990 1.176 1.536 1.880 2.208110 x 110 0.328 0.393 0.491 0.652 0.813 0.972 1.131 1.288 1.600 1.908 2.512 3.100 3.672114 x 114 0.340 0.408 0.509 0.676 0.843 1.008 1.173 1.336 1.660 1.980 2.608 3.220 3.816116 x 116 0.346 0.415 0.518 0.688 0.858 1.026 1.194 1.360 1.690 2.016 2.656 3.280 3.888120 x 20 0.158 0.189 0.236 0.312 0.388 0.462 0.536 0.608 0.750 0.888 1.152 1.400 1.632120 x 40 0.198 0.237 0.296 0.392 0.488 0.582 0.676 0.768 0.950 1.128 1.472 1.800 2.112120 x 45 0.208 0.249 0.311 0.412 0.513 0.612 0.711 0.808 1.000 1.188 1.552 1.900 2.232120 x 55 0.228 0.273 0.341 0.452 0.563 0.672 0.781 0.888 1.100 1.308 1.712 2.100 2.472120 x 60 0.238 0.285 0.356 0.472 0.588 0.702 0.816 0.928 1.150 1.368 1.792 2.200 2.592120 x 65 0.248 0.297 0.371 0.492 0.613 0.732 0.851 0.968 1.200 1.428 1.872 2.300 2.712135 x 135 0.403 0.483 0.603 0.802 1.000 1.197 1.393 1.588 1.975 2.358 3.112 3.850 4.572140 x 40 0.218 0.261 0.326 0.432 0.538 0.642 0.746 0.848 1.050 1.248 1.632 2.000 2.352140 x 60 0.258 0.309 0.386 0.512 0.638 0.762 0.886 1.008 1.250 1.488 1.952 2.400 2.832150 x 50 0.248 0.297 0.371 0.492 0.613 0.732 0.851 0.968 1.200 1.428 1.872 2.300 2.712150 x 25 0.198 0.237 0.296 0.392 0.488 0.582 0.676 0.768 0.950 1.128 1.472 1.800 2.112152 x 152 0.454 0.544 0.680 0.904 1.128 1.350 1.572 1.792 2.230 2.664 3.520 4.360 5.184160 x 80 0.318 0.381 0.476 0.632 0.788 0.942 1.096 1.248 1.550 1.848 2.432 3.000 3.552160 x 160 0.478 0.573 0.716 0.952 1.188 1.422 1.656 1.888 2.350 2.808 3.712 4.600 5.472174 x 174 0.520 0.624 0.779 1.036 1.293 1.548 1.803 2.056 2.560 3.060 4.048 5.020 5.976

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 337

Page 339: Niemet_Buch_En_72dpi

338

WEIGHT CALCULATION: U-PROFILE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.2 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

180 x 50 0.278 0.333 0.416 0.552 0.688 0.822 0.956 1.088 1.350 1.608 2.112 2.600 3.072180 x 64 0.306 0.367 0.458 0.608 0.758 0.906 1.054 1.200 1.490 1.776 2.336 2.880 3.408180 x 180 0.538 0.645 0.806 1.072 1.338 1.602 1.866 2.128 2.650 3.168 4.192 5.200 6.192200 x 40 0.278 0.333 0.416 0.552 0.688 0.822 0.956 1.088 1.350 1.608 2.112 2.600 3.072200 x 100 0.398 0.477 0.596 0.792 0.988 1.182 1.376 1.568 1.950 2.328 3.072 3.800 4.512200 x 100 0.398 0.477 0.596 0.792 0.988 1.182 1.376 1.568 1.950 2.328 3.072 3.800 4.512

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 338

Page 340: Niemet_Buch_En_72dpi

339

WEIGHT CALCULATION: ANGLE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1..8PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

10 x 10 0.019 0.028 0.036 0.044 0.051 0.058 0.064 0.075 0.084 0.096 – –12 x 12 0.023 0.034 0.044 0.054 0.063 0.072 0.080 0.095 0.108 0.128 0.140 –15 x 10 0.024 0.035 0.046 0.056 0.066 0.075 0.084 0.100 0.114 0.136 – –15 x 15 0.029 0.043 0.056 0.069 0.081 0.093 0.104 0.125 0.144 0.176 0.200 0.21620 x 10 0.029 0.043 0.056 0.069 0.081 0.093 0.104 0.125 0.144 0.176 – –20 x 15 0.034 0.050 0.066 0.081 0.096 0.110 0.124 0.150 0.174 0.216 0.250 0.27620 x 20 0.039 0.058 0.076 0.094 0.111 0.128 0.144 0.175 0.204 0.256 0.300 0.33625 x 10 0.034 0.050 0.066 0.081 0.096 0.110 0.124 0.150 0.174 0.216 – –25 x 15 0.039 0.058 0.076 0.094 0.111 0.128 0.144 0.175 0.204 0.256 0.300 0.33625 x 20 0.044 0.065 0.086 0.106 0.126 0.145 0.164 0.200 0.234 0.296 0.350 0.39625 x 25 0.049 0.073 0.096 0.119 0.141 0.163 0.184 0.225 0.264 0.336 0.400 0.45630 x 10 0.039 0.058 0.076 0.094 0.111 0.128 0.144 0.175 0.204 0.256 – –30 x 15 0.044 0.065 0.086 0.106 0.126 0.145 0.164 0.200 0.234 0.296 0.350 0.39630 x 20 0.049 0.073 0.096 0.119 0.141 0.163 0.184 0.225 0.264 0.336 0.400 0.45630 x 25 0.054 0.080 0.106 0.131 0.156 0.180 0.204 0.250 0.294 0.376 0.450 0.51630 x 30 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 0.500 0.57635 x 10 0.044 0.065 0.086 0.106 0.126 0.145 0.164 0.200 0.234 0.296 – –35 x 15 0.049 0.073 0.096 0.119 0.141 0.163 0.184 0.225 0.264 0.336 0.400 0.45635 x 20 0.054 0.080 0.106 0.131 0.156 0.180 0.204 0.250 0.294 0.376 0.450 0.51635 x 25 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 0.500 0.57635 x 35 0.069 0.103 0.136 0.169 0.201 0.233 0.264 0.325 0.384 0.496 0.600 0.69640 x 10 0.049 0.073 0.096 0.119 0.141 0.163 0.184 0.225 0.264 0.336 – –40 x 15 0.054 0.080 0.106 0.131 0.156 0.180 0.204 0.250 0.294 0.376 0.450 0.51640 x 20 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 0.500 0.57640 x 25 0.064 0.095 0.126 0.156 0.186 0.215 0.244 0.300 0.354 0.456 0.550 0.63640 x 30 0.069 0.103 0.136 0.169 0.201 0.233 0.264 0.325 0.384 0.496 0.600 0.69640 x 40 0.079 0.118 0.156 0.194 0.231 0.268 0.304 0.375 0.444 0.576 0.700 0.81645 x 10 0.054 0.080 0.106 0.131 0.156 0.180 0.204 0.250 0.294 0.376 – –45 x 15 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 0.500 0.57645 x 20 0.064 0.095 0.126 0.156 0.186 0.215 0.244 0.300 0.354 0.456 0.550 0.63645 x 25 0.069 0,103 0.136 0.169 0.201 0.233 0.264 0.325 0.384 0.496 0.600 0.69645 x 45 0.089 0.133 0.176 0.219 0.261 0.303 0.344 0.425 0.504 0.656 0.800 0.93650 x 10 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 – –50 x 15 0.064 0.095 0.126 0.156 0.186 0.215 0.244 0.300 0.354 0.456 0.550 0.63650 x 20 0.069 0.103 0.136 0.169 0.201 0.233 0.264 0.325 0.384 0.496 0.600 0.69650 x 25 0.074 0.110 0.146 0.181 0.216 0.250 0.284 0.350 0.414 0.536 0.650 0.75650 x 30 0.079 0.118 0.156 0.194 0.231 0.268 0.304 0.375 0.444 0.576 0.700 0.81650 x 35 0.084 0.125 0.166 0.206 0.246 0.285 0.324 0.400 0.474 0.616 0.750 0.87650 x 40 0.089 0.133 0.176 0.219 0.261 0.303 0.344 0.425 0.504 0.656 0.800 0.93650 x 50 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.900 1.05660 x 15 0.074 0.110 0.146 0.181 0.216 0.250 0.284 0.350 0.414 0.536 0.650 0.75660 x 20 0.079 0.118 0.156 0.194 0.231 0.268 0.304 0.375 0.444 0.576 0.700 0.816

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 339

Page 341: Niemet_Buch_En_72dpi

340

WEIGHT CALCULATION: ANGLE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

60 x 25 0.084 0.125 0.166 0.206 0.246 0.285 0.324 0.400 0.474 0.616 0.750 0.87660 x 30 0.089 0.133 0.176 0.219 0.261 0.303 0.344 0.425 0.504 0.656 0.800 0.93660 x 40 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.900 1.05660 x 50 0.109 0.163 0.216 0.269 0.321 0.373 0.424 0.525 0.624 0.816 1.000 1.17660 x 60 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.100 1.29665 x 15 0.079 0.118 0.156 0.194 0.231 0.268 0.304 0.375 0.444 0.576 0.700 0.81665 x 20 0.084 0.125 0.166 0.206 0.246 0.285 0.324 0.400 0.474 0.616 0.750 0.87665 x 25 0.089 0.133 0.176 0.219 0.261 0.303 0.344 0.425 0.504 0.656 0.800 0.93665 x 50 0.114 0.170 0.226 0.281 0.336 0.390 0.444 0.550 0.654 0.856 1.050 1.23665 x 65 0.129 0.193 0.256 0.319 0.381 0.443 0.504 0.625 0.744 0.976 1.200 1.41670 x 15 0.084 0.125 0.166 0.206 0.246 0.285 0.324 0.400 0.474 0.616 0.750 0.87670 x 20 0.089 0.133 0.176 0.219 0.261 0.303 0.344 0.425 0.504 0.656 0.800 0.93670 x 25 0.094 0.140 0.186 0.231 0.276 0.320 0.364 0.450 0.534 0.696 0.850 0.99670 x 30 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.900 1.05670 x 50 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.100 1.29670 x 50 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.100 1.29670 x 70 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.300 1.53675 x 50 0.124 0.185 0.246 0.306 0.366 0.425 0.484 0.600 0.714 0.936 1.150 1.35680 x 15 0.094 0.140 0.186 0.231 0.276 0.320 0.364 0.450 0.534 0.696 0.850 0.99680 x 20 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.900 1.05680 x 25 0.104 0.155 0.206 0.256 0.306 0.355 0.404 0.500 0.594 0.776 0.950 1.11680 x 30 0.109 0.163 0.216 0.269 0.321 0.373 0.424 0.525 0.624 0.816 1.000 1.17680 x 40 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.100 1.29680 x 50 0.129 0.193 0.256 0.319 0.381 0.443 0.504 0.625 0.744 0.976 1.200 1.41680 x 60 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.300 1.53680 x 80 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.500 1.77690 x 30 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.100 1.29690 x 90 0.179 0.268 0.356 0.444 0.531 0.618 0.704 0.875 1.044 1.376 1.700 2.016

100 x 20 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.100 1.296100 x 30 0.129 0.193 0.256 0.319 0.381 0.443 0.504 0.625 0.744 0.976 1.200 1.416100 x 40 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.300 1.536100 x 50 0.149 0.223 0.296 0.369 0.441 0.513 0.584 0.725 0.864 1.136 1.400 1.656100 x 60 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.500 1.776100 x 65 0.164 0.245 0.326 0.406 0.486 0.565 0.644 0.800 0.954 1.256 1.550 1.836100 x 70 0.169 0.253 0.336 0.419 0.501 0.583 0.664 0.825 0.984 1.296 1.600 1.896100 x 75 0.174 0.260 0.346 0.431 0.516 0.600 0.684 0.850 1.014 1.336 1.650 1.956100 x 80 0.179 0.268 0.356 0.444 0.531 0.618 0.704 0.875 1.044 1.376 1.700 2.016100 x 100 0.199 0.298 0.396 0.494 0.591 0.688 0.784 0.975 1.164 1.536 1.900 2.256105 x 105 0.209 0.313 0.416 0.519 0.621 0.723 0.824 1.025 1.224 1.616 2.000 2.376110 x 30 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.300 1.536120 x 20 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.300 1.536120 x 40 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.500 1.776

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 340

Page 342: Niemet_Buch_En_72dpi

341

WEIGHT CALCULATION: ANGLE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0 12.0

Height x width

120 x 44 0.163 0.244 0.324 0.404 0.483 0.562 0.640 0.795 0.948 1.248 1.540 1.824120 x 50 0.169 0.253 0.336 0.419 0.501 0.583 0.664 0.825 0.984 1.-96 1.600 1.896120 x 60 0.179 0.268 0.356 0.444 0.531 0.618 0.704 0.875 1.044 1.376 1.700 2.016120 x 80 0.199 0.298 0.396 0.494 0.591 0.688 0.784 0.975 1.164 1.536 1.900 2.256120 x 100 0.219 0.328 0.436 0.544 0.651 0.758 0.864 1.075 1.284 1.696 2.100 2.496120 x 120 0.239 0.358 0.476 0.594 0.711 0.828 0.944 1.175 1.404 1.856 2.300 2.736125 x 80 0.204 0.305 0.406 0.506 0.606 0.705 0.804 1.000 1.194 1.576 1.950 2.316130 x 30 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.500 1.776130 x 65 0.194 0.290 0.386 0.481 0.576 0.670 0.764 0.950 1.134 1.496 1.850 2.196130 x 80 0.209 0.313 0.416 0.519 0.621 0.723 0.824 1.025 1.224 1.616 2.000 2.376140 x 18 0.157 0.235 0.312 0.389 0.465 0.541 0.616 0.765 0.912 1.200 1.480 1.752140 x 40 0.179 0.268 0.356 0.444 0.531 0.618 0.704 0.875 1.044 1.376 1.700 2.016150 x 40 0.189 0.283 0.376 0.469 0.561 0.653 0.744 0.925 1.104 1.456 1.800 2.136150 x 50 0.199 0.298 0.396 0.494 0.591 0.688 0.784 0.975 1.164 1.536 1.900 2.256150 x 75 0.224 0.335 0.446 0.556 0.666 0.775 0.884 1.100 1.314 1.736 2.150 2.556160 x 40 0.199 0.298 0.396 0.494 0.591 0.688 0.784 0.975 1.164 1.536 1.900 2.256180 x 80 0.259 0.388 0.516 0.644 0.771 0.898 1.024 1.275 1.524 2.016 2.500 2.976180 x 150 0.329 0.493 0.656 0.819 0.981 1.143 1.304 1.625 1.944 2.576 3.200 3.816200 x 100 0.299 0.448 0.596 0.744 0.891 1.038 1.184 1.475 1.764 2.336 2.900 3.456230 x 100 0.329 0.493 0.656 0.819 0.981 1.143 1.304 1.625 1.944 2.576 3.200 3.816250 x 100 0.349 0.523 0.696 0.869 1.041 1.213 1.384 1.725 2.064 2.736 3.400 4.056

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 341

Page 343: Niemet_Buch_En_72dpi

342

WEIGHT CALCULATION: T-PROFILE

Weight per running metre to be calculated:Multiply volume value/m of the table by the spec. weight Process tolerance approx. + / ·/· 5%

Al99.5 2.70AlCuMg1 2.80AlCuMg2 2.77AlCuMgPb 2.85AlMg1 2.69AlMg3 2.66AlMg5 2.64

AlMg4.5Mn 2.66AlMgSi0.5 2.70AlMgSi1 2.70AlMgSiPb 2.75AlZn4.5Mg1 2.77AlZnMgCu0.5 2.78AlZnMgCu1.5 2.80

CuAl10Ni 7.50CuNi10Fe 8.90CuSn6 8.80CuSn8 8.80CuZn15 8.80CuZn20Al2 8.30CuZn30 8.50

CuZn35Ni2 8.90CuZn37 8.40CuZn38Pb2 8.40CuZn39Pb2 8.40CuZn39Pb3 8.50Stainless steel 7.85E-Cu 8.90

SE-Cu 8.90SF-Cu 8.90RG7 8.80SNBZ12 8.60PMMA 1.18POM 1.42PE (HD) 0.98

PA 1.14PC 1.20PP 0.99PTFE 2.15PVC 1.18PVDF 1.78RCH 1000 0.94

Thickness 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 6.0 8.0 10.0

Height x width

10 x 10 0.019 0.028 0.036 0.044 0.051 0.058 0.064 0.075 0.084 0.096 –12 x 12 0.023 0.034 0.044 0.054 0.063 0.072 0.080 0.095 0.108 0.128 0.14015 x 15 0.029 0.043 0.056 0.069 0.081 0.093 0.104 0.125 0.144 0.176 0.20015 x 30 0.044 0.065 0.086 0.106 0.126 0.145 0.164 0.200 0.234 0.296 0.35020 x 10 0.029 0.043 0.056 0.069 0.081 0.093 0.104 0.125 0.144 0.176 –20 x 20 0.039 0.058 0.076 0.094 0.111 0.128 0.144 0.175 0.204 0.256 0.30020 x 40 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 0.50025 x 25 0.049 0.073 0.096 0.119 0.141 0.163 0.184 0.225 0.264 0.336 0.40030 x 30 0.059 0.088 0.116 0.144 0.171 0.198 0.224 0.275 0.324 0.416 0.50030 x 50 0.079 0.118 0.156 0.194 0.231 0.268 0.304 0.375 0.444 0.576 0.70030 x 120 0.149 0.223 0.296 0.369 0.441 0.513 0.584 0.725 0.864 1.136 1.40035 x 35 0.069 0.103 0.136 0.169 0.201 0.233 0.264 0.325 0.384 0.496 0.60035 x 20 0.054 0.080 0.106 0.131 0.156 0.180 0.204 0.250 0.294 0.376 0.45040 x 25 0.064 0.095 0.126 0.156 0.186 0.215 0.244 0.300 0.354 0.456 0.55040 x 30 0.069 0.103 0.136 0.169 0.201 0.233 0.264 0.325 0.384 0.496 0.60040 x 40 0.079 0.118 0.156 0.194 0.231 0.268 0.304 0.375 0.444 0.576 0.70040 x 60 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.90040 x 80 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.10040 x 100 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.30045 x 105 0.149 0.223 0.296 0.369 0.441 0.513 0.584 0.725 0.864 1.136 1.40045 x 120 0.164 0.245 0.326 0.406 0.486 0.565 0.644 0.800 0.954 1.256 1.55050 x 50 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.90050 x 100 0.149 0.223 0.296 0.369 0.441 0.513 0.584 0.725 0.864 1.136 1.40060 x 40 0.099 0.148 0.196 0.244 0.291 0.338 0.384 0.475 0.564 0.736 0.90060 x 60 0.119 0.178 0.236 0.294 0.351 0.408 0.464 0.575 0.684 0.896 1.10060 x 80 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.30060 x 100 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.50060 x 120 0.179 0.268 0.356 0.444 0.531 0.618 0.704 0.875 1.044 1.376 1.70070 x 70 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.30080 x 50 0.129 0.193 0.256 0.319 0.381 0.443 0.504 0.625 0.744 0.976 1.20080 x 60 0.139 0.208 0.276 0.344 0.411 0.478 0.544 0.675 0.804 1.056 1.30080 x 80 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.50085 x 100 0.184 0.275 0.366 0.456 0.546 0.635 0.724 0.900 1.074 1.416 1.750

100 x 60 0.159 0.238 0.316 0.394 0.471 0.548 0.624 0.775 0.924 1.216 1.500100 x 80 0.179 0.268 0.356 0.444 0.531 0.618 0.704 0.875 1.044 1.376 1.700100 x 100 0.199 0.298 0.396 0.494 0.591 0.688 0.784 0.975 1.164 1.536 1.900

NiemannENG_283_Kunststoffe-REST 27.09.2007 13:43 Uhr Seite 342