28
Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required SIS300 lattice and main required parameters of the magnets parameters of the magnets

Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Embed Size (px)

Citation preview

Page 1: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka, FAIR Synchrotrons

SIS300 Preconsortium Meeting @ Protvino, March 19th 2009

SIS300 lattice and main required SIS300 lattice and main required parameters of the magnetsparameters of the magnets

Page 2: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Lasercooling

Extraction

RF Acceleration

Transf

er

Sixfold symmetry

SIS100 technical subsystems define the length and number of the straight sections of both synchrotrons

Good geometrical matching to the overall geometry

Supply Buildings

Supply buildings on top of each straight with six connections to the tunnel

OR

A parallel supply tunnel at the inner shell of the synchrotron

SIS300 OverviewSIS300 Overview

Page 3: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

SIS300 OverviewSIS300 Overview

Page 4: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

SIS300 Basic RequirementsSIS300 Basic Requirements

• The SIS300 will be installed on top of SIS100 in the same tunnel.

• The maximum magnetic rigidity is 300 Tm in high energy mode

• The magnetic rigidity is up to 100 Tm in stretcher mode

• Curved super conducting cos(θ)-type magnets will be used with a maximum field of 4.5 T in the dipoles.

• The injection into SIS300 is performed via a vertical transfer line from SIS100.

• The design injection energy is 1500 MeV (64 Tm). The expected beam emittance is 10x4 pi mm mrad. Lower injection rigidities are possible with reduced intensity down to 27 Tm in stretcher mode.

• The slow extraction is performed vertically into an extraction beamline parallel to the one of SIS100.

• In case of emergency the beam is dumped into an internal target

Page 5: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Small ring circumference and matching to the SIS100 geometry requires a FODO lattice and

curved dipole magnets.

Advantages a) chromaticity correction with minor DA reduction only

b) slow extraction with reasonable s.c. septum strength

FODO Lattice based on long (and short) curved dipoles

0. path length [mm] 180600.

-65.

y[m

m].. x[m

m] 65.

D,F Quadrupoles Dipole= Dispersion

SIS300 LatticeSIS300 Lattice

Page 6: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Lattice Characteristics The FODO structure with missing dipole arc has 14 half cells per sector and

fits to SIS100 within a few centimeters.

An additional short (missing) dipole is needed with extra power or bypass circuit. The short dipole is needed in the HEBT system too.

The necessary QP aperture is larger compared to a doublet structure but the necessary gradient is considerably lower.

Half of the number of quadrupoles is needed but the acceptance is lower

Only half of the number of sextupoles for chromaticity correction is needed. Chromaticity correction (required for Hardt condition) is easier and does not reduce the DA as much as in a doublet lattice.

The loss distribution of ionized particles is no longer peaked. The vacuum stability is assumed to be sufficient.

Lower fields in s.c. extraction septum required. Fast extraction feasible.

The available free space in each lattice cell becomes reasonable.

Page 7: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

SIS300 Cell LayoutSIS300 Cell Layout

path length [mm]-

QP QP

BPMSextupoleH/V Steerer

-80

Y [m

m]

.. X

[m

m]

+80

Page 8: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Lattice Structure FODO

Number of superperiods 6

Machine circumference [m] 1083.6

Magnetic rigidity B [Tm] 300

Number of lattice cells NF 6 x 14

Length of lattice cell LF [m] 12.9

Straight sections length [m] 4 x LF

Number of dipole magnets 48 long + 12 short

Dipole bending angle α [deg] 62/3° , 31/3°

Maximum dipole field B [T] 4.5

Bending radius R [m] 66.6666

Number of quadrupole magnets 84

Maximum field gradient [T/m] 45

SIS300 Lattice Parameters

Page 9: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

SIS300 Slow Extraction

Working Point Q_h/Q_v 13.3 / 9.8 (preliminary)

Transverse acceptance h/v [mm mrad] 50.9 / 44.3

Natural chromaticity h/v [dQ/Q] -1.358 / -1.372

Phase advance per cell h/v [deg] 114 / 84

Gamma_t 9.35

Max. beta h/v [m] 47.2 / 47.4

Max. D h [m] 2.33

Min. D h [m] -4.58

SIS300 Working Point

Page 10: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Transfer SectionTransfer Section

Page 11: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Transfer SystemTransfer System

Page 12: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Transfer Y-type CryostatTransfer Y-type Cryostat

ACCEL Report no

1701-BP-7711-1

June 2008

Cold Mass ( 1 : 5 )

A ( 1 : 2 ) B ( 1 : 2 )

( 1 : 10 )

B

C

D

E

F

G

HH

L

M

K

I

AAA

B

C

DD

G

F

E

H

I

K

M

L

2

2

341011 8 67 51214 131516 9 1

13457 68911 1014 1215 1316

A0

Proj$ktionsm$thod$proj$ction

Maßstabscal$

Z$ichnungsnumm$rdrawingnumb$r

Ind$xR$v.

b$arb.coord.

g$prüftch$ck$d

DatumDat$

Nam$

B$n$nnungtitl$

W$rkstoffmat$rial

Ind$x/ R$v.

g$z$ichn.drawn

DatumDat$

g$z$ichn.drawn

Änd$rungst$xt / D$tails of R$vision

G$wichtw$ight

V$rsion

Status

DIN ISO 2768DIN EN ISO 13920

Allg$m$intol$ranz /Dim$nsion without tol$ranc$

Tol$ri$rung / Tol$ranc$ DIN ISO 8015

Kant$n / Edg$s DIN ISO 13715

Ob$rfläch$ / Surfac$ DIN EN ISO 1302

W$it$rgab$ sowi$ V$rvi$lfältigung di$s$r Unt$rlag$,V$rw$rtung und Mitt$ilung ihr$s Inhalt$s ist nicht g$-statt$t. Zuwid$rhandlung$n v$rpflicht$n zu Schad$n-$rsatz. All$ R$cht$ für d$n Fall d$r Pat$nt$rt$ilungod$r GM- Eintragung vorb$halt$n.

Copying of this docum$nt, and giving it to oth$rs andth$ us$ or communication of th$ cont$nts th$r$of, ar$forbidd$n without $xpr$ss authority. Off$nd$rs ar$liabl$ to th$ paym$nt of damag$s. All rights ar$ r$-s$rv$d in th$ $v$nt of th$ grant of a pat$nt or th$r$gistration of a utility mod$l or d$sign. Artik$lnumm$r

Partnumb$rKSNRCSNO

SIS B$amTransf$r

27.05.08Popov

CAD: im Entwurf

1AP55396

Z65963

CM_QU

A_L2

_65

963.

idw

/V17

UrsprungOrigin

A

B300

40

230

260

70

90

200

170

280

270

190100

190

170

250

24040

30

220

Only for information!

340

Instalation Balls

320

330

Page 13: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Ho

rizo

nta

l p

lan

e

Combination of horizontal excoriation and vertical extraction (ES+LS+MS) Chromaticity control: Hardt condition realized (separatrices coaligned) thus

minimum beam loss

+60 mm

60 m

-60 mm

SIS300 Slow Extraction

Page 14: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

SIS 300

SIS 100

Ve

rtic

al p

lan

e

Slow extraction

Page 15: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

E-dump

Ver

tica

l pla

ne

SIS 300 Emergency Beam Dump

This is an emergency beam dump only.It is not foreseen for machine development.

The dump is located at the same area of the tunnel as the dump of SIS 100.

Kickers Kickers

Page 16: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Magnets: General RemarksMagnets: General Remarks

Cooling is with supercritical He:Mass flow rate: <200g/sPressure: <3.5 bar Pressure vessel !!

All Dipoles, focusing and defocusing quadrupoles are powered in series

3 pairs of bus bars

All corrector magnets are powered individuallyLow current option: I<250 A

Chromaticity Sextupoles: two families, powered in series of 4 magnets(to taylor the DA for slow extraction some will be powered individually)

Page 17: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Basic Magnet ParametersBasic Magnet Parameters

Flat top up to 100s during extraction

DipolesHigh energy mode ramped from 1 T to 4.5 TStretcher mode static (but ramped to) 0.4 T to 1.5 TRamp rate 1 T/s

QuadrupolesHigh energy mode ramped from 10 T/m - 45 T/mStretcher mode static (but ramped to) 4 T/m - 15 T/mRamp rate 10 T/(ms)

Page 18: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Main Dipole ParametersMain Dipole Parameters

short long

Maximum magnetic field [T] 4.5

Number of magnets in the ring + reference magnets 12 +1 48 + 1

Magnetic length [mm] 3878.5 7757.0

Bending angle / radius [deg] / [m] 3.333 / 66.67 6.667 / 66.67

Free aperture (beam pipe ID) [mm] 86

Coil inner diameter [mm] 100

Field quality at r=35mm [units] 2

Ramp rate [T/s] 1

Cos magnetsSupercritical He is recooled

Page 19: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Main DipolesMain Dipoles

Block number 5

Turn number/quadrant 34 (17+9+4+2+2)

Operating current 8924 A

Yoke inner radius 98 mm

Peak field on conductor (with self field) 4.90 T

Bpeak / Bo 1.09

Working point on load line 69%

Current sharing temperature 5.69 K

Inductance/length 2.9 mH/m

Stored energy/length 116.8 kJ/m

Discorap-Project by INFNMagnet finished in 2010

(courtesy P. Fabbricatore)

(courtesy R. Marabotto)

Page 20: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Main Dipoles / Low Loss ConductorMain Dipoles / Low Loss Conductor

Diameter after coating [mm] 0.825 ± 0.003

Filament twist pitch [mm] 5 +0.5 -0

Effective Filament Diameter [µm] 2.5 – 3.5

Interfilament matrix material Cu-0.5 wt% Mn

Filament twist direction right handed (clockwise)

Ic @ 5 T, 4.22 K [A] 541

n-index @ 5 T, 4.22 K 30

Stabilization matrix Pure Cu

ρt at 4.22 K [n∙m] 0.4 + 0.09 B [T]

Cu+CuMn:NbTi ratio (α) >1.5 ± 0.1

Surface coating material Stabrite (Sn-5 wt% Ag)

Strand Number 36

Width [mm] 15.10 +0 -0.020

Thickness, thin edge [mm] 1.362 ± 0.006

Thickness, thick edge [mm] 1.598 ± 0.006

Mid-thickness at 50 MPa [mm] 1.480 ± 0.006

Edge radius [mm] ≥ 0.30

Core material AISI 316 L stainless steel, annealed

Core width [mm] 13

Core thickness [µm] 25

Transposition pitch [mm] 100 ± 5

Cable transposition direction left-handed screw thread

Ic @ 5 T, 4.22 K [A] >18,540

Stabilization matrix RRR >70

Wire Cable

Page 21: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Main Quadrupole ParametersMain Quadrupole Parameters

Magnetic field Gradient [T/m] 45

Number of magnets in the ring +reference magnets 84 + 2

Magnetic length [m] 1

Free aperture (beam pipe ID) [mm] >105

Coil inner diameter [mm] 125

Field quality at r=40 mm [units] 2

Ramp rate [T/(ms)] 10

Design principles:

Cos2-magnetOne layer coilNo recooling of supercritical HeLow loss Rutherford cable

TRANSFER

Quadrupole magnets

Equivalent pole tip field [T]

Max. field gradient

[T/m]

Effective field length

[m]

Yoke length [m]

Usable free aperture hxv

[mm]

Max. ramp rate

[T / (ms)]

4x Warm iron 0.72 18 1.0 0.92 80 x 80 38

Page 22: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Main QuadrupolesMain Quadrupoles

Block number 3

Turn number/coil 20 (8+7+5)

Strands in cable 19

Strand diameter 0.825 mm

Operating current 6220 A

Yoke inner radius 95 mm

Peak field on conductor (with self field)

3.57 T

Minimum temperature margin 1.6 K

Inductance/length 2.46 mH/m

Stored energy/length 44.4 kJ/m

Ramp-up voltage 3.4 V

IHEP Design Study

(courtesy L. Tkachenko)

Page 23: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Correction SystemCorrection System

Chromaticity correction sextupoles (6x2x2), arcs

Resonance sextupoles (6x2), straights

Steering magnets (6x12), each cell except 2 in the arcs

Correction multipoles (6x2), end of the arcs

Page 24: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

The chromaticity sextupoles are powered in series with one adjacent arc.

All other correction elements have individual power supplies.

Steerer magnets are combined horizontal and vertical steerers.

1 2 3 4

= Main Quadrupoles = Cryostat

SIS 300 Straight

1 2 3 4 5 6 7 8 9 10

= Steerer = Chrom. sextupoles = Ext. sextupole= Err. corr. multipole

SIS 300 Arc Two chromaticity sextupole families

SIS300 Correction SystemSIS300 Correction System

Page 25: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

CryomodulesCryomodules

Type B Type A

Chromaticity sextupole 105

Main quadrupole 105

Chromaticity sextupole 105

Main quadrupole 105Steerer 105

Long dipole 86

Type D Type CType E

Steerer 105Main quadrupole

105 Extraction

sextupole 86

Short dipole 86Error compensation multipole 105

Connection cryostat

Long dipole 86

Steerer 105Main quadrupole

105

Page 26: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Chromaticity sextupoles

Number of magnets 24

Physical length 0.75 m

Effective length 0.78 m

Aperture 105 mm

Main field strength* 130 T/m2

Ramp time to Max. 0.208 sec.

Requirements

Chromaticity sextupoles

Current [A] 220

Stored energy [J] 1376

Inductance [mH] 56.7

Inductive voltage [V] 60

Peak power [W] 13200

Computation results

Resonance sextupoles

Number of magnets 12

Physical length 1.0 m

Effective length 0.975 m

Aperture 86 mm

Main field strength* 325 T/m2

Ramp time to Max. 0. 5 sec.

Resonance sextupoles

Current [A] 216

Stored energy [J] 3120

Inductance [mH] 133.7

Inductive voltage [V] 58

Peak power [W] 12500

BBy iBx (Bnn1

iAn )(x iy)n1*Super-ferric magnet (also cos option possible)

SIS300 Sextupole Magnets

Page 27: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

SIS 300 Steerer MagnetSIS 300 Steerer Magnet Requirements

H/V dipole

Number of magnets

HEBT (Phase A / B)

72

1 / 5

Physical length 0.75 m

Effective length 0.65 m

Aperture 105 mm

Main field strength 0.5 T

Ramp time to Max. 2.27 sec.

Computation results

H/V dipole

Current [A] 228

Stored energy [J] 871

Inductance [mH] 33.4

Inductive voltage [V] 3.36

Peak power [W] 767

Saddle coils

Insulated Superconducting wires

Page 28: Niels Pyka, FAIR Synchrotrons SIS300 Preconsortium Meeting @ Protvino, March 19th 2009 SIS300 lattice and main required parameters of the magnets

Niels Pyka SIS300 Preconsortium Meeting, Protvino, 19th March 2009

Multipole CorrectorMultipole Corrector

Sextupole Octupole

Quadrupole

12

Number of magnets

Physical length 0.75 m

Magnetic length 0.65 m

Aperture 105 mm

B2 = 1.8T/m B4 = 767T/m3

Max. field strength*

Ramp time to max. 2.25 sec. 2.18 sec. 2.24 sec.

Nested magnet

Saddle coils with insulated superconducting wires

Requirements

Quad. Sext. Oct.

Current [A] 228 219 211

Stored energy [J] 26 72 42

Inductance [mH] 1 3 2

Inductive Voltage [V] 0.1 0.3 0.2

Peak power [W] 23 66 38

Computation results

BBy iBx (Bnn1

iAn )(x iy)n1*