87
ĐẠI HC QUC GIA HÀ NI TRƯỜNG ĐẠI HC KHOA HC TNHIÊN PHM VĂN QUANG NGHIÊN CU NH HƯỞNG CA STÍCH LŨY PHYTOLITH ĐẾN MT STÍNH CHT LÝ - HÓA HC ĐẤT LÚA LUN VĂN THC SĨ KHOA HC HÀ NI – 2015

Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

Embed Size (px)

DESCRIPTION

LINK MEDIAFIRE: https://www.mediafire.com/?2v15pg94qizim5j LINK BOX: https://app.box.com/s/oo6rw6tzx8b32eqtvxxb0re3mhd8v5ec

Citation preview

Page 1: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

-­‐-­‐-­‐-­‐-­‐�²�-­‐-­‐-­‐-­‐-­‐-­‐  

PHẠM VĂN QUANG

NGHIÊN CỨU ẢNH HƯỞNG CỦA SỰ TÍCH LŨY PHYTOLITH

ĐẾN MỘT SỐ TÍNH CHẤT LÝ - HÓA HỌC ĐẤT LÚA

LUẬN VĂN THẠC SĨ KHOA HỌC

HÀ NỘI – 2015

Page 2: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

-­‐-­‐-­‐-­‐-­‐�²�-­‐-­‐-­‐-­‐-­‐-­‐  

PHẠM VĂN QUANG

NGHIÊN CỨU ẢNH HƯỞNG CỦA SỰ TÍCH LŨY PHYTOLITH

ĐẾN MỘT SỐ TÍNH CHẤT LÝ - HÓA HỌC ĐẤT LÚA

Chuyên ngành: Khoa học môi trường

Mã ngành: 60440301

LUẬN VĂN THẠC SĨ KHOA HỌC

NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. NGUYỄN NGỌC MINH

HÀ NỘI – 2015

Page 3: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

i    

LỜI CẢM ƠN

 

Trong quá trình thực hiện nghiên cứu đề tài, tôi nhận được sự quan tâm

giúp đỡ nhiệt tình, sự đóng góp quý báu của tập thể và nhiều cá nhân đã tạo

điều kiện thuận lợi cho tôi hoàn thành bản luận văn này.

Lời đầu tiên, tôi xin chân thành cảm ơn các thầy cô thuộc Bộ môn Thổ

nhưỡng và Môi trường đất, Khoa Môi trường, Trường Đại học Khoa học Tự

nhiên, Đại học Quốc gia Hà Nội đã tạo mọi điều kiện thuận lợi để tôi có thể

học tập và làm việc trong suốt thời gian nghiên cứu.

Đặc biệt, với lòng biết ơn và sự kính trọng sâu sắc, tôi xin chân thành

cảm ơn PGS.TS. Nguyễn Ngọc Minh – Bộ môn Thổ nhưỡng và Môi trường Đất,

Khoa Môi trường, Trường Đại học Khoa học Tự nhiên đã trực tiếp hướng dẫn,

tận tình giúp đỡ tôi trong suốt quá trình thực hiện luận văn. Cảm ơn thầy đã

rất tâm huyết chỉ dẫn và góp ý để tôi hoàn thành luận văn này.

Tôi xin gửi lời cảm ơn tới gia đình, bạn bè luôn quan tâm động viên và

đóng góp ý kiến giúp đỡ tôi trong suốt quá trình hoàn thiện luận văn.

Tôi xin cám ơn sự hỗ trợ kinh phí thực hiện từ đề tài mã số: 105.08 –

2013.01 của Quỹ Phát triển Khoa học và Công nghệ Quốc gia - Nafosted.

Xin chân thành cảm ơn!

Hà Nội, tháng 8 năm 2015

Học viên

Phạm Văn Quang  

Page 4: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

ii    

MỤC LỤC LỜI CẢM ƠN ............................................................................................................. i

MỤC LỤC ................................................................................................................. ii

DANH MỤC BẢNG ................................................................................................ iv

DANH MỤC HÌNH ẢNH ........................................................................................ iv

DANH CHỮ VIẾT TẮT ......................................................................................... ivi

MỞ ĐẦU ................................................................................................................... 1

Chương 1 - TỔNG QUAN VỀ CÁC VẤN ĐỀ NGHIÊN CỨU ........................... 3

1.1. Silic trong đất .............................................................................................. 3

1.2. Sự tích lũy silic trong thực vật .................................................................... 6

1.2.1. Vai trò của silic với thực vật ....................................................................... 6

1.2.2. Sự hình thành của phytolith trong thực vật .............................................. 11

1.3. Con đường tích luỹ phytolith vào đất ....................................................... 18

1.4. Phytolith trong đất.................................................................................... 20

1.5. Định lượng phytolith trong đất ................................................................ 23

Chương 2 - ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU ..................... 27

2.1. Đối tượng nghiên cứu ............................................................................... 27

2.2. Phương pháp nghiên cứu .......................................................................... 28

2.2.1. Xác định đặc tính cơ bản của mẫu đất nghiên cứu .................................. 28

2.2.2. Xác định đặc tính cơ bản của mẫu phytolith tách từ rơm ........................ 29

2.2.3. Quá trình hòa tan giải phóng nguyên tố dinh dưỡng từ phytolith ............ 31

2.2.4. Phương pháp định lượng phytolith trong đất ........................................... 32

2.2.5. Ảnh hưởng của phytolith tới sự phân tán của cấp hạt sét trong đất ........ 33

Page 5: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

iii    

Chương 3 - KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN ................................ 34

3.1. Một số tính chất đất cơ bản tại khu vực nghiên cứu ................................. 34

3.2. Một số đặc tính cơ bản của phytolith ........................................................ 35

3.2.1. Đặc điểm hình thái ................................................................................... 35

3.2.2. Đặc điểm cấu trúc và đặc điểm khoáng vật học ....................................... 37

3.2.3. Đặc điểm liên kết hoá học bề mặt ............................................................. 38

3.2.4. Đặc điểm điện động học ........................................................................... 40

3.2.5. Thành phần hoá học ................................................................................. 41

3.2. Hàm lượng và sự phân bố của phytolith trong đất ................................... 45

3.3. Ảnh hưởng của sự tích luỹ phytolith đến một số tính chất đất ................. 47

3.3.1. Ảnh hưởng đến một số tính chất lý học đất .............................................. 47

3.3.2. Ảnh hưởng đến một số tính chất hoá học đất ........................................... 51

KẾT LUẬN .............................................................................................................. 58

TÀI LIỆU THAM KHẢO ....................................................................................... 59

PHỤ LỤC ................................................................................................................ 70

Page 6: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

iv    

DANH MỤC BẢNG

 

Bảng 1. Vị trí lấy mẫu đất thuộc khu vực nghiên cứu ............................................. 27

Bảng 2. Phương pháp xác định một số tính chất cơ bản của mẫu đất ..................... 28

Bảng 3. Phương pháp xác định một số tính chất lý – hóa học cơ bản của phytolith 30

Bảng 4. Một số tính chất cơ bản của mẫu đất nghiên cứu ....................................... 34

Bảng 5. Hàm lượng dạng hoà tan của một số ion trong phytolith ........................... 44

Bảng 6. Hàm lượng phytolith trong các tầng đất trong 7 phẫu diện nghiên cứu ..... 45  

 

DANH MỤC HÌNH ẢNH

Hình 1. Bồn Si, quá trình chuyển đổi và dòng Si trong đất ....................................... 3

Hình 2. Sự biến đổi của DSi trong đất ....................................................................... 4

Hình 3. Các dạng Si sinh học trong đất ..................................................................... 5

Hình 4. Vai trò của Si trong việc giảm tác động của kim loại nặng ở thực vật ......... 9

Hình 5. Một số dạng phytolith và phân bố của phytolith trong thực vật ................. 11

Hình 6. Cơ chế kiểm soát quá trình hút thu Si của lúa ............................................ 14

Hình 7. Quá trình polyme hóa axit monosilicic trong thực vật ............................... 16

Hình 8. Sản phẩm phytolith được tạo ra trong từng giai đoạn thu hoạch ................ 19

Hình 9. Lượng C bị giữ lại trong đất bởi phytolith (PhytOC) so với C tổng số ..... 21

Hình 10. Tích lũy C trong đất trồng có hàm lượng PhytOC khác nhau .................. 22

Hình 11. Sơ đồ tách phytolith từ đất bằng dung dịch nặng .................................... 23

Hình 12. Minh họa cho phương pháp luận sử dụng để giải thích cho sự hòa tan đồng

thời Si từ khoáng trong suốt quá trình chiết dạng ASi ............................. 25

Page 7: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

v    

Hình 13. Bản đồ khu vực nghiên cứu ...................................................................... 27

Hình 14. Ảnh SEM của phytolith tách từ cây lúa theo phương pháp tro hoá khô ... 36

Hình 15. Ảnh SEM mẫu phytolith trong rơm rạ xử lý ở nhiệt độ 400oC (a), 600oC

(b) và 800oC (c) ........................................................................................ 37

Hình 16. Nhiễu xạ đồ tia X của các mẫu phytolith khi rơm rạ xử lý ở các nhiệt độ

khác nhau .................................................................................................. 37

Hình 17. Phổ hồng ngoại FT-IR của mẫu phytolith xử lý tại các nhiệt độ khác nhau

.................................................................................................................. 39

Hình 18. Thế zeta (ζ) của phytolith xử lý ở các nhiệt độ khác nhau ....................... 40

Hình 19. Biểu đồ phân tích nhiệt sai của mẫu rơm rạ .............................................. 41

Hình 20. Hàm lượng CHC trong các mẫu phytolith ở các nhiệt độ khác nhau ....... 42

Hình 21. Hàm lượng Si và K trong phytolith .......................................................... 44

Hình 22. Hàm lượng phytolith trung bình tại khu vực nghiên cứu .......................... 47

Hình 23. Tương quan giữa CHC, khoáng sét và phytolith với CEC của đất ........... 49

Hình 24. Ảnh hưởng của Si đến sự phân tán của khoáng sét tại các pH khác nhau 50

Hình 25. Cơ chế tạo liên kết bề mặt của anion SiO44- với các nhóm chức trên bề mặt

khoáng sét ................................................................................................. 51

Hình 26. Khả năng hoà tan của phytolith khi được xử lý ở các nhiệt độ khác nhau 52

Hình 27. Cường độ giải phóng Si và K từ phytolith ................................................ 53

Hình 28. Hàm lượng Si hoà tan và phytolith trong phẫu diện đất nghiên cứu ........ 54

Hình 29. Mối quan hệ giữa Si-CaCl2 với Si tổng số và phytolith trong đất ............ 55

Hình 30. Tương quan giữa hàm lượng phytolith và tổng lượng Ca, Mg trao đổi

trong đất .................................................................................................... 56

Page 8: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

vi    

DANH MỤC CHỮ VIẾT TẮT

 

ASi : Dạng Si vô định hình

BSi : Dạng Si sinh học

CHC : Chất hữu cơ

CEC : Dung tích trao đổi cation

DSi : Dạng Si hoà tan

FTIR : Phương pháp phân tích phổ hấp phụ

hồng ngoại

ISi : Dạng Si vô vơ

MSi : Dạng Si trong khoáng vật

SEM : Kính hiển vị điện tử quét

TPCG : Thành phần cơ giới

ts : Tổng số

X-ray : Phương pháp nhiễu xạ tia X

ζ : Thế zeta

Page 9: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

1    

MỞ ĐẦU

Silic (Si) là nguyên tố giàu thứ hai sau oxy trong lớp vỏ trên của trái đất

(~28%) và có mặt trong hầu hết các loại đá mẹ cũng như các khoáng vật thứ sinh

trong đất. Sự tồn tại của Si thường gắn liền với oxy để tạo thành oxit silic. Ước tính

oxit silic có thể chiếm tới 66,6% lớp vỏ lục địa của trái đất. Mặc dù rất dồi dào

trong tự nhiên nhưng không phải dạng oxit silic nào thực vật cũng có thể sử dụng

được. Trải qua quá trình phong hóa, Si từ các khoáng vật được giải phóng vào đất

và có thể được thực vật hút thu trong quá trình sinh trưởng. Si được đưa vào qua hệ

rễ sau đó kết tủa trong các mô bào của thực vật để hình thành nên các “tế bào silic

sinh học” và còn có một số tên gọi khác như opal-Si hay phytolith.

Một số quan điểm cho rằng Si không phải là nguyên tố “tối quan trọng” như

N, P hay K. Tuy nhiên, thực tế đã chứng minh Si có vai trò quan trọng góp phần

làm cho thực vật trở nên cứng cáp hơn, chống chịu sâu bệnh tốt hơn. Đối với lúa

nước nếu hàm lượng Si dễ tiêu trong đất thấp hơn 40 mg/kg sẽ ảnh hưởng đến sự

sinh trưởng và phát triển của lúa (Barbosa-Filho và nnk, 2001). Một số cây trồng

khác như cà chua, dưa chuột cũng có thể cho năng suất thu hoạch cao hơn nếu được

đáp ứng đầy đủ nhu cầu về Si (Korndoerfer và Lepsch, 2001). Khi phytolith được

giải phóng và tích lũy trong đất, nguồn Si này có thể được cây trồng quay vòng sử

dụng. Việc bón phytolith vào đất sẽ giúp giải quyết tình trạng “đói Si” của thực vật

mà quá trình phong hóa không đáp ứng đủ. Một số tài liệu đã chứng minh rằng

phytolith không chỉ đóng vai trò như là nguồn cung cấp Si cho cây trồng khi được

bổ sung vào đất, mà nó còn có thể tham gia vào các quá trình hóa – lý của đất: cải

thiện CEC, tăng khả năng đệm, cố định các chất ô nhiễm, và hạn chế phát thải khí

nhà kính nhờ khả năng “hút giữ” chất hữu cơ dưới dạng khó phân hủy sinh học

(Parr và Sullivan, 2005). Tuy nhiên, vai trò của dạng Si sinh học này cũng chỉ nhận

được sự quan tâm của các nhà nghiên cứu trong hai thập kỷ gần đây.

Page 10: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

2    

Tập quán vùi rơm rạ lại ruộng, đốt tại ruộng hay sử dụng tro bếp để bón

ruộng đã được bà con nông dân thực hiện từ rất xa xưa, đây được biết đến như một

cách thức để hoàn trả một số khoáng chất quan trọng cho đất. Đây cũng là những

phương thức mà phytolith được hoàn trả lại đất sau mỗi vụ thu hoạch. Tuy nhiên,

các phương thức này tác động tới tính chất của phytolith trong rơm rạ ra sao và khi

đó vai trò của phytolith trong đất sẽ thay đổi thế nào thì chưa có nhiều nghiên cứu

nhắc tới.

Với những vai trò đặc biệt kể trên, đề tài “Nghiên cứu ảnh hưởng của sự tích lũy

phytolith đến một số tính chất lý - hóa học đất lúa” được tiến hành thực hiện với

một số mục tiêu đặt ra:

-   Cung cấp thông tin về một số tính chất đất cơ bản tại khu vực nghiên cứu,

-   Khảo sát một số đặc tính chung của phytolith trong rơm rạ,

-   Định lượng hàm lượng phytolith trong đất, và

-   Đánh giá mối quan hệ của hàm lượng phytolith tích luỹ tới một số tính chất

đất tại khu vực nghiên cứu.

Page 11: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

3    

Chương 1 - TỔNG QUAN VỀ CÁC VẤN ĐỀ NGHIÊN CỨU

 

1.1.   Silic trong đất

Đất là yếu tố chính làm nên hệ sinh thái trên cạn trong đó quá trình hóa học

và quá trình sinh học tác động qua lại lẫn nhau. Trong đất các chất dinh dưỡng được

cố định, hòa tan, biến động cũng như được vận chuyển ngang dọc do các tác nhân

khác nhau. Quá trình vận chuyển ngang và dọc, quá trình cố định tạm thời hay lâu

dài hoạt động ở nhiều mức độ, tạo nên rất nhiều bồn chứa Si cũng như các nguyên

tố khác trong đất. Theo đó, Si có thể bị chia nhỏ ra thành bồn Si vô cơ và bồn Si

sinh học.

Hình 1. Bồn Si, quá trình chuyển đổi và dòng Si trong đất

(không tính xói mòn/lắng)

Trong bồn Si vô cơ, Si có mặt trong trên 370 khoáng vật hình thành đá và là

nguyên tố cơ bản của các loại đá mẹ hình thành đất. Có thể chia Si trong bồn vô cơ

thành bốn pha tồn tại như một dạng sản phẩm trong quá trình phong hoá hình thành

đất: (1) các khoáng vật nguyên sinh có nguồn gốc từ đá mẹ, (2) các khoáng vật thứ

sinh chủ yếu là khoáng sét, (3) các dạng khoáng vật nano có độ trật tự thấp (opal-A,

imogolit, allophan) (Monger và Kelly, 2002) và (4) cuối cùng là dạng Si hoà tan

Page 12: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

4    

trong dung dịch đất (DSi). Trong đó dạng DSi có thể biến đổi sang các dạng còn lại

và là dạng duy nhất thực vật có thể sử dụng (Hình 2).

Hình 2. Sự biến đổi của DSi trong đất

DSi có thể liên kết với Al hòa tan để tạo thành dạng khoáng vật chuyển tiếp

như imogolite hoặc allophanes (Harsh và nnk, 2002) hoặc có thể kết tủa từ dung

dịch đất lên bề mặt khoáng vật (Drees và nnk, 1989). Ngoài ra, DSi còn được hấp

phụ hóa học ở bề mặt của các thành phần khác trong đất khác như cacbonat, oxit

hoặc hydroxit sắt và nhôm (Dietzel, 2002). Trong quá trình này, hydroxit sắt đóng

vai trò quan trọng trong quá trình tương tác giữa thể rắn và thể lỏng trong đất do sự

hình thành axit polysilicic từ DSi trên bề mặt của hydroxit này (Dietzel, 2002). DSi

trong dung dịch đất có thể kết tinh lại dẫn đến sự tích tụ Si. Trong vùng khí hậu với

giai đoạn khô rõ rệt, tầng đất bị cứng hơn bởi sự bổ sung của Si vô định hình gây ra

sự gắn kết của các hạt đất. Những quá trình này dẫn đến sự chai cứng của

đất (Monger và Kelly, 2002).

Page 13: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

5    

Hình 3. Các dạng Si sinh học trong đất (Puppe và nnk, 2015)

Si sinh học (BSi) trong đất có thể chia thành Si hữu cơ có nguồn gốc từ động

vật, Si trong thực vật (Si phytogenic) đặc biệt là các loài thuộc nhóm siêu tích lũy

Si, vi khuẩn và sinh vật đơn bào (chủ yếu là tảo diatomit) (Hình 3). Nhìn chung,

hiểu biết về các dạng Si này vẫn hạn chế ở hầu hết các loại đất. Chưa có nhiều

thông tin được đưa ra với vi khuẩn và sinh vật đơn bào mà chỉ có những bằng

chứng cho sự tồn tại của chúng trong đất dưới dạng sống hoặc vết tích khảo cổ

(Clarke, 2003). Hầu hết thông tin về BSi có được nhờ các kết quả nghiên cứu về Si

phytogenic – dạng Si vô định hình kết tinh tại rễ, thân cây, cành, lá và gai ở cây.

Thành phần của Si phytogenic trong đất dao động từ 0,01% tới 50% (Clarke, 2003).

Nếu tốc độ tích tụ dạng Si phytogenic lớn hơn tốc độ phân rã, một bồn BSi có thể

hình thành trong đất. Meunier và nnk (1999) nghiên cứu lớp đất giàu Si phytogenic

dày 15 cm tại phía bờ tây của Piton des Neiges (đảo La Réunion, Ấn Độ

Dương) nơi có loài tre đặc hữu Nastus borbonicus. Kết quả của ông chỉ ra rằng, loài

tre này có chứa lượng Si vô định hình lên tới 41 đến 58 mg/g sinh khối khô và ước

tính dạng Si vô định hình lắng đọng trong đất từ sinh khối tre cho giá trị khoảng 453

– 649 kg/ha/năm. Việc trồng cây có hàm lượng Si cao như lúa, mía, có thể dẫn đến

sự tích lũy Si trong hệ nhiều hơn. Một ví dụ khác, hơn 100 kg Si/ha có thể được trả

lại đất sau mỗi năm ở các cánh đồng mía (Berthelsen và nnk, 2001).

Lượng Si mất đi từ đất trong hệ có thực vật bao phủ có thể gấp 2 - 8 lần so

với các vùng đất trống (Moulton và nnk, 2000). Lucas (2001) đã giải thích điều này

Page 14: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

6    

do sự phong hóa dưới tác động của sinh vật đặc biệt là thực vật diễn ra nhanh hơn

so với sự phong hóa khoáng do các cơ chế vật lý, hóa học. Những thay đổi của vòng

tuần hoàn Si trên mặt đất dưới tác động của con người đã trở thành một vấn đề có

thể tác động đến trạng thái cân bằng và phát triển bền vững nông nghiệp. Nếu coi

phytogenic là nguồn Si duy nhất cho cây trồng, với tộc độ mất Si là 50 – 100

kg/ha/năm và lượng phytogenic bổ sung là 1 tấn/ha/năm thì bể chứa này sẽ bị cạn

kiệt trong vòng vài thập kỷ (Bartoli, 1983). Hay ở Úc, 30 năm canh tác mía dẫn đến

sự sụt giảm của Si dễ tiêu có sẵn trong đất đến khoảng một nửa so với số lượng ban

đầu (tương ứng là 5,3 và 13,1 mg/kg) (Berthelsen và nnk, 2001). Trong nghiên cứu

thực hiện bởi Klotzbücher và nnk (2014) tại Laguna, Philipin trên cây lúa nước cho

thấy, tổng Si hấp thu bởi cây lúa khi thu hoạch là 51,4 - 70,8 g Si/m2 và phần lớn Si

đã được lưu trữ trong tàn dư sau thu hoạch (> 86%). Với việc người dân không

hoàn trả lượng lớn phụ phẩm sau thu hoạch lại cho đất và hàm lượng Si có trong

nước tưới ở dưới giới hạn phát hiện gây ảnh hưởng tới năng suất của vụ kế tiếp cho

thấy tàn dư sinh khối sau thu hoạch là một nguồn cung Si quan trọng.

Trong hệ sinh thái lúa nước Việt Nam và Philipin, hàm lượng Si cây trồng có

thể hấp thụ được trên tầng đất mặt ở Philipin cao hơn so với Việt Nam (222 ± 92

mg/kg so với 37 ± 14 mg/kg). Do ở Việt Nam, nguồn Si chủ yếu giải phóng ra từ

quá trình phong hoá các tầng đất cổ, trong khi ở Philipin có sự bổ sung từ tro của

các núi lửa đang hoạt động hoặc nguồn nước chảy ra từ các núi lửa hoạt động âm ỉ.

Tổng Si hấp thu bởi cây lúa của Philippin cũng cao hơn đáng kể ở Việt Nam, 709 ±

144 kg/ha so với 201 ± 102 kg/ha, sự khác biệt này có thể là do tác động phương

thức canh tác nông nghiệp ở mỗi đất nước là khác nhau (giống, khí hậu, chế độ thuỷ

lợi và đặc biệt là phương thức quản lý dư lượng cây trồng) (Marxen và nnk, 2014).

1.2.   Sự tích lũy silic trong thực vật

1.2.1.   Vai trò của silic với thực vật

Si được coi là một nguyên tố dinh dưỡng “không bình thường” bởi xét về

vai trò dinh dưỡng có lẽ nó không thật sự cần thiết cho sự sinh trưởng và phát

Page 15: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

7    

triển của thực vật. Nhưng dù sao Si hữu hiệu vẫn thúc đẩy sự sinh trưởng,

phát triển và năng suất của một vài loại cây trồng, bao gồm: lúa, mía đường, lúa

mì và một số loại cây hai lá mầm. Trong mô tế bào, Si được tìm thấy với một khối

lượng lớn và chúng ngang bằng với tổng các chất dinh dưỡng thiết yếu (N, P,

K, Ca, Mg). Cây trồng hút Si ở một dạng duy nhất là axit monosilicic, phổ biến

gọi là axit Ortho-Si và tích lũy thông qua việc hình thành cấu trúc ở lá, thân và hệ

thống rễ (Parr và Sullivan, 2005). Vai trò của Si trong vòng đời của cây trồng thể

hiện qua một số khía cạnh sau:

- Tăng khả năng quang hợp, điều hòa dinh dưỡng khoáng

Si giúp cho cây mọc thẳng cứng cáp, lá đứng giúp cây sử dụng ánh sáng hiệu

quả, tăng khả năng quang hợp. Si đã được coi là quan trọng cho sự phát triển bình

thường của cây lúa. Chức năng sinh lý của Si trong trong hệ thống biểu bì lá là có

thể hoạt động như một "cửa sổ" để tạo thuận lợi cho việc truyền ánh sáng đến mô

thịt lá. Tầm quan trọng của góc lá đối với quang hợp của tán ruộng trồng được biết

nhiều, lá đứng được mong muốn ở giống lúa có năng suất cao. Góc lá là yếu tố đặc

trưng của giống, nó cũng bị ảnh hưởng tình trạng dinh dưỡng. Nitơ có khuynh

hướng làm cho lá lúa rủ xuống trong khi đó Si làm cho lá đứng thẳng. Sự rủ xuống

của lá lúa là một chỉ tiêu quan sát để biết đến sự thiếu hụt Si trong cây lúa. Hiện

tượng không xuất hiện ngay sau khi cấy lúa vào trong dung dịch không có Si. Một

tuần sau khi cấy và thời gian sau thì có sự khác nhau giữa hai dung dịch có và

không có Si. Lá lúa của dung dịch có cung cấp Si thì đứng thẳng trong khi lá lúa

không cung cấp Si thì rủ xuống. Sự rủ xuống của lá lúa là do ảnh hưởng của mức độ

cung cấp nitơ. Khi nồng động nitơ trong dung dịch thấp thì mức độ rủ xuống của lá

lúa khi thiếu Si trở nên nhỏ và ngược lại. Si có ảnh hưởng rõ ràng đến hoạt tính

của một vài loại enzim có liên quan đến quang hợp của cây lúa thông qua việc

hạn chế sự già cỗi của lá lúa. Si có thể làm giảm sự thoát ra ngoài của các chất

điện phân từ lá lúa và vì vậy đã giúp đẩy mạnh hơn quá trình quang hợp của các

loại cây trồng được trồng trong điều kiện khô hạn hoặc nắng nóng.

Page 16: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

8    

Ngoài ra, sự tăng hấp thu Si làm giảm quá trình bốc thoát hơi nước và tăng

tính chống chịu của cây đối với giảm thế năng thẩm thấu trong môi trường mọc

rễ. Sự hấp thu Si tăng làm tăng lực oxy hóa của rễ và giảm sự hấp thu thái quá

của Fe và Mn giúp cây lúa sinh trưởng tốt (Okuda và Takahashi, 1965). Si tăng

cường sự hấp thu P của cây, giảm sự giữ chặt P trong đất, giúp tăng hàm lượng P dễ

tiêu cho cây. Theo Ma và Takahashi (1990), Si tác động gián tiếp đến tăng trưởng

thực vật khi nồng độ P thấp hay cao trong đất. Phương thức này tác động khác nhau

theo mức P trong dung dịch. Khi P thấp, Si làm hạn chế sự cố định P gây ra bởi Fe

và Mn và do đó làm tăng P hữu dụng trong cây. Khi P cao, Si làm giảm sự hấp thu

P và do đó P tập trung ở chồi. Si còn có tác dụng tăng hiệu lực của phân N và các

chất dinh dưỡng khác. Nhiều nghiên cứu cho thấy, Si giúp cây loại bỏ khả năng bị

ngộ độc Mn, Fe và Al vì Si giúp cây phân phối các nguyên tố kim loại này một cách

hợp lý. Nếu thiếu Si, các nguyên tố kim loại này tích trữ không đều và gây ngộ độc.

Bên cạnh đó, Si còn giúp loại bỏ sự mất cân đối dinh dưỡng có hại giữa Zn và P

trong cây làm cho cây khỏe hơn (Ma, 2004).

- Tăng cường sức chống chịu cơ học

Trong cây, Si kết hợp với lớp biểu bì làm thành tế bào trở nên chắc chắn hơn.

Nhiều mối liên kết như vậy giúp cây cứng cáp nhưng lại có khả năng đàn hồi. Si tạo

nên các phức hợp với polyphenol để hình thành những hợp chất với lignin tăng

cường độ cứng của thành tế bào.

- Tăng sức chống chịu với điều kiện bất lợi của môi trường

Trong đất phèn, Si tạo phức với Fe, Al thành những hợp chất khó tan, qua

đó, giảm nồng độ các yếu tố độc hại như Fe, Mn và Al trong dung dịch đất (Datnoff

và nnk, 2005). Bên cạnh đó, Si đóng vai trò quan trọng trong giảm độc tính Cd ở

lúa bằng cách tăng tích lũy Cd trong rễ và giảm vận chuyển Cd từ rễ đến chồi (Ma

và nnk, 2001,2012; Epstein và Bloom, 2005).

Page 17: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

9    

Hình 4. Vai trò của Si trong việc giảm tác động của kim loại nặng ở thực vật

(Meharg và nnk, 2015)

Cây trồng được hấp thu Si ở điều kiện có muối sẽ kích thích màng không bào

của tế bào rễ cây, phần bề mặt xung quanh không bào tạo ra enzym H+-ATPase và

H+-PPase, hai loại enzym này sẽ kết hợp với nhau trong việc đưa gốc Na+ từ tế bào

chất vào trong không bào, điều này làm cho việc vận chuyển Na+ từ rễ cây đến ngọn

và lá giảm đi so với cây không được hấp thụ Si. Nếu trong lá cây có lượng Na+ cao

sẽ làm cho lượng chlorophyl giảm, khả năng quang hợp của cây cũng giảm đi. Khi

cây trồng phát triển ở điều kiện có muối thì sẽ làm cho cây bị “stress” và sinh ra các

gốc tự do, khi tích tụ ở mức độ nhiều sẽ gây nguy hiểm cho tế bào. Nếu được hấp

thụ Si vừa đủ sẽ tạo ra nhóm enzym có khả năng kiểm soát các chất thuộc nhóm tự

do như nhóm enzym antioxidant. Ngoài ra, Si làm giảm các tổn thương được gây ra

bởi các điều kiện bất lợi của khí hậu như bão, mưa đá đối với cây lúa, làm giảm

bớt khả năng ảnh hưởng của nhiệt độ thấp đối với cây mía và một số loại cây

trồng khác.

- Tăng sức đề kháng, ngăn ngừa sâu bệnh

Si là một nguyên tố có hoạt tính sinh học tác dụng cả hai cơ chế sinh học và

sinh lý. Si tác động như một chất điều chỉnh liên quan đến thời điểm và mức độ

Page 18: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

10    

phản ứng của cây trồng tạo sức đề kháng cho cây trồng. Việc bổ sung Si có tác động

đến việc kiểm soát nhiều bệnh quan trọng của cây lúa. Những nghiên cứu cho thấy

khi bón bổ sung từ 1,5 – 2 tấn/ha các nguồn Si khác nhau trên những ruộng thiếu Si

đã làm giảm đột ngột tỷ lệ mắc bệnh và giảm thiệt hại do bệnh đạo ôn, đốm nâu,

khô vằn và bạc lá cây lúa Oryza sativa (Ma và nnk, 2002). Datnoff và nnk (1991)

chứng minh rằng bón Si dưới dạng CaAl2Si2O8 làm giảm 73 – 78% tỷ lệ lúa bị

nhiễm đạo ôn và giảm được 58 – 75% tỷ lệ lúa bị nhiễm đốm nâu giúp tăng năng

suất và phẩm chất lúa.

Ở chồi và lá, sự phân phối Si phụ thuộc vào tỉ lệ thoát hơi nước của cây và

được tích tụ ở giai đoạn cuối của dòng thoát hơi nước thường ở ngoài và trong

thành tế bào biểu bì lá. Thành tế bào biểu bì lá bị thấm một màng mỏng Si và trở

thành những rào cản có hiệu quả chống lại sự mất nước do thoát hơi nước qua lớp

cutin và sự xâm nhiễm của nấm (Epstein và Bloom, 2005; Ma và nnk, 2002).

Si cũng ngăn chặn côn trùng gây hại như sâu đục thân, châu chấu và rầy lưng

trắng, bọ hình nhện và bọ ve. Dưỡng chất giúp cây trồng kháng lại sâu bệnh bằng

cách làm thay đổi hình thái, cấu trúc hay hóa học của cây ở vào một số giai đoạn

sinh trưởng và phát triển. Chẳng hạn như làm cho tế bào biểu bì của lá dày hơn,

mức độ hóa gỗ của các mô mạnh hơn, giúp lá chống lại sự xâm nhiễm của nấm

bệnh; thân, lá cứng cáp hơn, chống lại sự tấn công của côn trùng; hoặc cây sản sinh

ra những chất ngăn cản hay xua đuổi côn trùng.

- Tăng năng suất và phẩm chất cây trồng

Ngoài các cơ chế tác động tới khả năng quang hợp, đặc điểm cấu tạo cũng

như khả năng chống lại một số sâu bệnh và sự thay đổi thiếu tích cực của điều kiện

môi trường, các kết quả nghiên cứu cũng cho thấy Si có tác dụng làm tăng số bông,

số hạt/bông và số hạt chắc, tăng năng suất lúa cũng như một số loài cây hai lá mầm

khác. Theo một nghiên cứu tại Hàn Quốc ở lúa gạo: bón 2.000 kg phân Si/ha, năng

suất tăng 28% so đối chứng (không bón phân Si); lúa mì: bón 2.500 kg phân Si/ha,

năng suất tăng 20%; lúa mạch: bón 1.370 kg phân Si/ha, năng suất tăng 37% (Đỗ

Page 19: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

11    

Hải Triều, 2008). Bón phân chứa Si còn có tác dụng giảm tỷ lệ lép hạt, giúp cho hạt

lúa vàng sáng, sạch bệnh, góp phần tăng phẩm chất và giá trị của lúa gạo.

1.2.2.   Sự hình thành của phytolith trong thực vật

Phytolith (trong tiếng Hy Lạp, phyto = cây, lithos = đá: “cây hóa thạch”) là

dạng oxit silic vô định hình (có công thức tổng quát là SiO2.nH2O) hình thành trong

cả nội hay ngoại bào các mô của thực vật sống (Jones và nnk, 1967).

Hình 5. Một số dạng phytolith và phân bố của phytolith trong thực vật

Nhiều họ thực vật hạt kín, hạt trần và một vài họ của Pteridophytes (thực vật

không có hoa, đặc biệt là dương xỉ) được biết đến như các “nhà máy” sản xuất

phytolith với lượng khác nhau từ 0,1 đến 16% (Epstein và nnk, 2005). Sự hình

thành và phát triển của phytolith trong thực vật liên quan đến một số yếu tố, bao

gồm điều kiện khí hậu, tính chất đất, lượng nước trong đất, độ tuổi của cây và quan

trọng nhất sự tương tác qua lại giữa các thành tố này. Quá trình hình thành phytolith

được bắt đầu khi thực vật hấp thụ Si hòa tan qua rễ và kết thúc khi các tế bào Si rắn

được hình thành trên thành tế bào, tế bào nội chất, hoặc các khoảng gian bào. Quá

trình này đôi khi ở giai đoạn rất sớm hoặc cũng có thể rất muộn trong vòng đời phát

triển của thực vật tuỳ thuộc vào loại thực vật và điều kiện môi trường sống của

chúng.

Page 20: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

12    

1.2.2.1.   Cơ chế hút thu Si của thực vật

Si hoà tan được thực vật hút thu qua lông hút của rễ và vận chuyển lên các

cơ quan khí sinh trong dòng vận chuyển nước qua hệ thống mạch dẫn xylem. Dạng

Si trong dung dịch đất đi vào thực vật là axit monosilicic, Si(OH)4 trong điều kiện

pH dao động từ 2 tới 9. Quá trình hút thu Si của thực vật dựa trên hai cơ chế: hút

thu chủ động có tiêu tốn năng lượng trong quá trình trao đổi chất và hút thu thụ

động thông qua dòng không chuyên biệt cùng dòng hút thu các nguyên tố dinh

dưỡng khác hoặc dòng thoát hơi.

Có một số lượng đáng kể các nghiên cứu cho thấy sự hấp thu thụ động và

truyền dẫn của axit monosilicic trong các loài thực vật (Raven, 1983). Một số

nghiên cứu trong phòng thí nghiệm đã chỉ ra rằng lượng Si (đo bằng phần trăm khối

lượng khô) ở một số loài tích lũy Si tăng tỷ lệ thuận với lượng Si hòa tan trong các

môi trường sinh trưởng (Jones và Handreck, 1965). Jones và Handreck (1965) có

thể dự đoán tương đối chính xác hàm lượng Si trong yến mạch và cỏ ở vùng đất khô

hạn bằng việc biết nồng độ của axit monosilicic trong đất và lượng thoát hơi nước

của cây. Mối quan hệ thuận này được xem như kết quả và minh chứng cho sự hấp

thu Si thụ động của thực vật.

Mặt khác, có những bằng chứng thuyết phục cho sự vận chuyển chủ động Si

hòa tan của một số loài thực vật. Okuda và Takahashi (1964) thấy rằng axit

monosilicic xuất hiện trong hệ thống xylem dẫn truyền nhựa lên các chồi lúa với

nồng độ cao mà không tuân theo gradient nồng độ. Van der Worm (1980) cũng đã

chứng minh sự hấp thu tích cực Si trong mía đường, lúa mì và lúa nước. Ví dụ khác,

dưa chuột (Cucumis sativus) hấp thu và vận chuyển Si có thể bị ức chế mạnh bởi

nhiệt độ thấp và chất 2,4-dinitrophenol, trong khi các chất ức chế chuyển hóa tương

tự không có tác dụng với việc hạn chế Si xâm nhập thụ động vào qua dòng vận

chuyển nước của cây đậu răng ngựa (Vicia faba) (Liang và nnk, 2005). Rõ ràng,

thực vật có tích luỹ phytolith phải có một số cơ chế hút thu có kiểm soát hoặc từ

chối sự xâm nhập của axit monosilicic ở bề mặt rễ hoặc ngăn không cho nó đi từ rễ

Page 21: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

13    

vào các cơ quan khí sinh. Jones và Handreck (1969) kết luận rằng rễ của các loài

thực vật ít hoặc không tích luỹ Si có thể tạo ra lớp “rào chắn” trong lớp biểu bì, cho

phép axit monosilicic xâm nhập vào với tỷ lệ thấp hơn nhiều so với sự xâm nhập

của nước, trong trường hợp này, việc xâm nhập thụ động của axit monosilicic đã

được kiểm soát. Cơ chế tương tự cũng được phát hiện trong nghiên cứu thực

nghiệm của Parry và Winslow (1977). Việc cắt bỏ một phần rễ của cây đậu Hà Lan

(loài tích luỹ Si ở mức thấp), dẫn đến sự tích luỹ cao của Si trong thành tế bào của

lá và tua (tuy nhiên không phải ở dạng tế bào rắn màu trắng đục, phytolith); trong

khi các cây được trồng trong dung dịch Si tương tự với rễ còn nguyên vẹn không

thấy có tích lũy như vậy. Điều này chỉ ra rằng một cơ chế hạn chế Si tồn tại trong rễ

và có lẽ nằm ở bề mặt bên ngoài của rễ, vì không phát hiện thấy Si trong rễ cây còn

nguyên vẹn. Parry và Winslow (1977) tiếp tục chỉ ra rằng lông rễ của một số thực

vật tích luỹ phytolith thấp được bao bọc bởi một lớp mỏng chất béo có tính chất

tương tự cutin và suberin, trong khi chất này duy trì tính thấm với nước lại trở thành

một rào cản đối với axit monosilicic. Ở một số loài thực vật còn hình thành các gen

chuyên hoá kiểm soát quá trình hút thu và vận chuyển Si từ môi trường ngoại bào.

Ví dụ ở lúa, Ma và nnk (2004) đã phân lập và tìm ra được gen nằm trên màng

plasma ở vỏ tế bào rễ (SIT1 hay LSi1 - Low silicon rice 1) và một số khác nằm trên

màng plasma của các tế bào nhu mô của xylem (SIT2 hay LSi2 - Low silicon rice 2)

(Ma và nnk, 2004) (Hình 6).

Ngoài vai trò neo giữ vào giá thể của hệ rễ, thực vật còn chủ động tăng

cường khả năng hút thu Si bằng cách tiết qua hệ thống rễ các hợp chất axit hữu cơ

hoặc H2CO3 để hoà tan các khoáng vật silicat trong giá thể mà chúng sinh trưởng.

Nói cách khác, mức Si hoà tan trong đất không có giới hạn dưới cho việc chấm dứt

sự hình thành phytolith trong các loài loài tích lũy Si. Blackman (1969) đã tăng số

lượng cỏ trồng trên đất nghèo Si hoà tan và vẫn quan sát thấy hàm lượng đáng kể

phytolith được tạo ra. McNaughton và Tarrants (1983) cũng đưa ra giả thiết rằng cỏ

có khả năng hòa tan Si từ hạt sét để tạo ra lượng Si cần thiết cho nhu cầu của chúng.

Page 22: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

14    

Hình 6. Cơ chế kiểm soát quá trình hút thu Si của lúa (Ma và nnk, 2004)

Các nghiên cứu cho ra những bằng chứng tương đối thuyết phục chứng minh

cho sự tồn tại của hai cơ chế hút thu Si của thực vật, tuy nhiên, mối quan hệ cũng

như vai trò riêng biệt của mỗi cơ chế trong quá trình hút thu Si ra sao thì chưa được

làm rõ. Trong thực vật thường tồn tại đồng thời hai cơ chế hút thu Si chủ động và

thụ động; tuỳ vào điều kiện môi trường mà mối quan hệ giữa hai có chế có thể là

tương hỗ hoặc cản trở nhau (ở đây là sự điều chỉnh quá trình hút thu thụ động dựa

trên các cơ chế hút thu chủ động qua việc tăng cường hoặc cản trở sự xâm nhập của

Si qua màng tế bào lông hút hoặc màng tế bào xylem). Tuy nhiên, sự biến động

hàm lượng Si trong các loài thực vật được cho là phụ thuộc chủ yếu vào các yếu tố

môi trường quy định nồng độ của Si hòa tan trong thực vật. Các yếu tố này chủ yếu

là những yếu tố ảnh hưởng đến mức độ Si hòa tan trong đất (mức độ phong hoá

khoáng vật silicat và dạng tồn tại của Si trong đất). pH là yếu tố ảnh hưởng đáng kể

tới Si hòa tan, pH liên quan đến sự hấp thụ axit monosilicic bởi oxit sắt, nhôm và

khoáng sét trong đất. Những sesquioxit thường hấp thụ hoặc liên kết với axit

monosilicic lên bề mặt và tách nó ra khỏi dung dịch đất. Quá trình hấp phụ này

được cho là tối ưu ở khoảng pH 9,5. Trong khi đó, khả năng hấp phụ Si hoà tan của

đất thay đổi theo các thay đổi pH và đạt giá trị tốt nhất trong khoảng pH 8 và 9. Có

nhiều nghiên cứu chỉ ra rằng sự hấp thu của Si bởi các thực vật tăng lên cùng với

Page 23: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

15    

tăng hàm lượng nước và có thể là nhiệt độ của đất (Jones và Handreck, 1967). Jones

và Handreek (1967) nhận xét rằng lúa nước gần như chắc chắn có chứa Si nhiều

hơn lúa trồng cạn khoảng 10 – 15%. Miller (1980) cũng nhận thấy rằng cỏ trồng

trong điều kiện ấm áp, môi trường ẩm có quá trình phytolith hoá hoàn chỉnh hơn ở

các lớp biểu bì so với cỏ ở các vùng có kiều kiện khô lạnh. Bên cạnh đó, có bằng

chứng cho thấy các loại đất có hàm lượng chất hữu cơ hòa tan cao thường kèm theo

sự gia tăng lượng Si hòa tan, trong khi, sự hiện diện của N và P với hàm lượng lớn

được cho là dẫn đến giảm nồng độ của Si trong thực vật (Jones và Handreck, 1967).

1.2.2.2.   Quá trình hình thành phytolith trong thực vật

Khi axit monosilicic đi vào mô thực vật quá trình hình thành phytolith được

bắt đầu, theo đó một phần Si hoà tan được polyme hóa và hình thành dạng rắn của

oxit silic (dạng SiO2 ngậm nước có tính chất giống với silica gel) lắng đọng trong

và xung quanh các tế bào thực vật. Trong mô thực vật có ba vị trí có thể xảy ra sự

lắng đọng Si: (1) kết tủa trên thành tế bào, (2) lấp đầy hệ thống lumen của tế bào và

(3) lắng đọng ở không bào. Các thông tin ở cấp độ tế bào của quá trình lắng đọng Si

trong thực vật trên cạn chưa được giải thích một cách thoả đáng và có hai giả thiết

được đưa ra giải thích cho quá trình này: kết tủa và lắng đọng xảy ra một cách thụ

động như là kết quả của quá trình hút nước và thoát hơi nước hoặc được kiểm soát

một cách chủ động. Trong thực tế, hai giả thuyết tương thích với nhau và cơ chế

hoạt động phụ thuộc vào loại tế bào (Motomura và nnk, 2004).

Quan sát cơ quan khí sinh của cỏ, Jones và Handreck (1967) cùng Raven

(1983) kết luận rằng hàm lượng SiO2 lắng đọng ở lá cao hơn nhiều so với ở thân và

rễ. Nguyên nhân do ở lá có mật độ khí khổng cao hơn nhiều so với ở thân trong khi

ở rễ thì hoàn toàn không có. Sự mất nước trong quá trình thoát hơi nước dẫn đến

nồng độ Si trong tế bào lá tăng lên tương đối tại một thời điểm nào đó (khi lượng

thoát hơi nước từ khí khổng lớn hơn so với lượng nước dẫn truyền lên qua xylem

sau khi được hút thu bởi rễ), tại thời điểm này quá trình trùng hợp các phân tử axit

monosilicic diễn ra.

Page 24: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

16    

Hình 7. Quá trình polyme hóa axit monosilicic trong thực vật

Perry và nnk (2003) cho rằng khi nồng độ Si hoà tan trong thực vật đạt

ngưỡng 100 - 200 mg/kg, phản ứng trùng hợp của axit monosilicic sẽ diễn ra hình

thành hạt nhân cơ sở, các hạt nhân này tiếp tục phát triển thành các hạt hình cầu ổn

định với kích thước tới hạn. Phản ứng polyme hoá tiếp tục ở cấp độ các hạt hình cầu

tạo thành chuỗi phân nhánh hoặc cấu trúc hình học đặc trưng (Hình 7). Khi hạt

polyme Si phát triển tiệm cận kích thước 1 – 3 nm chúng sẽ mang điện tích âm bề

mặt. Các hạt này sau đó tương tác với môi trường nội bào và lắng đọng tạo thành

các lớp Si tiếp giáp với màng tế bào (phủ bên ngoài hoặc lót bên trong tế bào).

Các nghiên cứu khác đã cho rằng Si trong quá trình trùng hợp có thể được

liên kết với các chất hữu cơ tham gia vào quá trình lignin hoá. Cơ sở của quá trình

được hình thành bởi ái lực mạnh mẽ của axit monosilicic với hợp chất hữu cơ

polyhydroxy tham gia vào tổng hợp lignin (Perry và Keeling-Tucker, 2000). Ví dụ,

trong ngô các phối tử Si liên kết với teosinte glume architecture1 (tga1) (Dorweiler

và Doebley, 1997); trong khi ở bí ngô (Cucurbita), sự hình thành phytolith chủ yếu

được quyết định bởi một locus về di truyền chi phối được ký hiệu là “Hr” (hard

rind) (Piperno và nnk, 2002). Bên cạnh đó, một số đại phân tử hữu cơ khác giúp

hình thành các ma trận hữu cơ tương hỗ cho sự lắng đọng của Si (Harrison, 1996).

Có thể kể đến như lysine và arginine được tổng hợp tư gen PRP1 (proline-rich

protein 1) ở dưa chuột (Sativus) (Kauss và nnk, 2003), peptit này mang điện tích

dương với mật độ lớn và có thể kết hợp với sản phẩm polyme của axit monosilicic

Page 25: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

17    

để tạo thành các lớp Si lắng đọng. Vai trò tương tự được tìm thấy ở serine,

glutamine hay axit glutamic và glycine (Perry và Keeling-Tucker, 1998).

1.2.2.3.   Thời điểm hình thành, sự phân bố và vai trò của phytolith trong thực vật

Như đã đề cập trong phần cơ chế thành tạo phytolith trong thực vật, sự lắng

đọng Si hoà tan có liên quan chặt chẽ với quá trình bốc thoát hơi nước và quá trình

này cũng trở thành yếu tố chi phối tới sự phân bố của phytolith trong thực vật. Tốc

độ lắng đọng và phát triển của phytolith phụ thuộc vào giai đoạn phát triển hay tuổi

của thực vật. Ở giai đoạn cây non, quá trình phân hoá tạo các tế bào mới diễn ra

mạnh mẽ, thời gian tồn tại của tế bào trước khi phân chia không đủ để hình thành

các màng Si hoàn chỉnh. Do vậy, trong giai đoạn này rất ít phytolith được hình

thành. Sang giai đoạn phát triển ổn định của thực vật, các bộ phận đạt kích thước tối

đa (đặc biệt là tế bào lá), các tế bào chồi có tốc độ hình thành mới chậm dần. Lúc

này, quá trình tích luỹ Si, hình thành và phát triển của phytolith diễn ra trọn vẹn

hơn. Hay nói các khác, hàm lượng phytolith tích lũy trong các mô hoàn chỉnh nhiều

hơn trong các mô mới phát sinh hay đang phát triển (Ma và Yamaji, 2006).

Hàm lượng phytolith trong cây trồng thay đổi theo mô (Li và nnk, 2013),

tuổi (Ma và Yamaji, 2006), các loài (Parr và Sullivan, 2005, 2011; Li và nnk, 2013)

và giống cây trồng (Parr và Sullivan, 2011). Ví dụ: lúa nước, lúa mì, ngô, mía và

tích lũy nhiều hơn phytolith (>30 mg/g sinh khối khô) so với các cây trồng khác

(<10 mg/g) (Parr và nnk, 2009; Parr và Sullivan, 2011). Ngay trong loài lúa mì

(Triticum sp.), các giống khác nhau tích luỹ một lượng phytolith khác nhau, thay

đổi từ 26,8 - 78,5 mg/g (Parr và Sullivan, 2011).

Trong khi độ tuổi của thực vật quyết định tốc độ hình thành phytolith (Ma và

Yamaji, 2006) thì cường độ thoát hơi nước (đại diện là mật độ khí khổng) quy định

sự phân bố của phytolith trong thực vật. Tuân theo quy luật về sự phân bố khí

khổng trong cây, hàm lượng phytolith trong vỏ cây và lá là cao hơn nhiều so với các

hạt và rễ (Li và nnk, 2013). Ví dụ trong cây lúa, hàm lượng phytolith thay đổi từ

12,46 đến 23,6% trong rơm rạ; 13,1 - 24,3% trong trấu; 5,5 - 11,4% trong rễ; 0,2 -

Page 26: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

18    

1,9% đối với hạt (Prajapati và nnk, 2015). Tại từng bộ phận của thực vật, Si và

phytolith có xu hướng tích luỹ ở phần ngoài cùng tiếp giáp với lớp biểu bì và những

phần khung gia cố cho các bộ phận này (Li và nnk, 2013).

1.3.   Con đường tích luỹ phytolith vào đất

Vai trò của Si (đại diện là phytolith) trong thực vật, đặc biệt là thực vật siêu

tích luỹ Si, ngày càng trở nên quan trọng và trở thành yếu tố chi phối năng suất của

thực vật giống như các nguyên tố dinh dưỡng khác. Si tồn tại trong đất với hàm

lượng lớn (~28,8%) và sẽ không có gì đáng nói nếu quá trình phong hoá tạo ra

lượng Si hoà tan đáp ứng đủ nhu cầu của thực vật. Tuy nhiên, trong tự nhiên, Si tồn

tại dưới dạng DSi có hàm lượng dao động từ khoảng 0,1 đến 0,6 mM (Epstein,

1994). Hàm lượng như vậy là tương đối thấp đối với các loại cây tích luỹ Si với

hàm lượng cao, ví dụ như ở lúa nếu hàm lượng Si dễ tiêu trong đất thấp hơn 40

mg/kg sẽ ảnh hưởng đến sự sinh trưởng và phát triển của lúa (Barbosa-Filho và nnk,

2001).

Trong các hệ sinh thái tự nhiên, điều này hoàn toàn có thể được khắc phục

khi các dạng Si trong sinh khối thực vật (Si hoà tan và phytolith) được quay trở lại

đất. Trong khi đó, các hệ sinh thái nhân tạo, cùng với sự mang đi của sinh khối, sự

thiếu hụt Si càng trở nên trầm trọng. Các hệ sinh thái nông nghiệp chiếm một khu

vực khoảng 15,33 × 108 ha diện tích toàn cầu và đóng vai trò quan trọng trong việc

tuần hoàn các nguyên tố trong đó có C và Si (Song và nnk, 2013). Ước tính, canh

tác toàn cầu và thu hoạch các loại cây trồng có thể mang đi 50 – 100 kg Si/ha/năm

(Meunier và nnk, 2008) hay 220 – 820 Tg Si/năm (1 Tg = 1012 g, Carey và

Fulweiler, 2012), trong khi Si rửa trôi theo các thuỷ vực ra đại dương ~ 140 Tg

Si/năm (Tréguer và nnk, 1995) có thể làm cạn kiệt bồn Si trong đất (Meunier và

nnk, 2008; Vandevenne và nnk, 2012; Barão và nnk, 2014).

Do đó, hàm lượng phytolith trong đất và việc bồi hoàn dạng Si này lại cho

đất sau mỗi mùa vụ trở thành yếu tố quyết định hàm lượng Si hoà tan cung cấp cho

cây trồng. Gạo, ngô và lúa mì là các cây trồng chính góp phần vào sự hình thành

Page 27: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

19    

phytolith trong sản phẩm lương thực trên thế giới vì khu vực phân bố lớn của chúng

và thông lượng sản xuất phytolith cao lần lượt khoảng 617 ± 132 kg/ha/năm, 404 ±

116 kg/ha/năm và 342 ± 114 kg/ha/năm (Carey và Fulweiler, 2012; Rajendran và

nnk, 2012; Song và nnk, 2014). Ước tính rộng hơn trên quy mô toàn sinh quyển, tỷ

lệ sản xuất phytolith có thể lên tới 167 – 286 Tg SiO2/năm (Rajendran và nnk,

2012) hay 240 ± 66 Tg SiO2/năm (Song và nnk, 2013).

Trong các hệ sinh thái trên cạn ít được quản lý, hầu hết sinh khối thực vật

chứa phytolith được trả lại cho đất thông qua tàn dư sinh khối sau thu hoạch hoặc

phân hủy từ rễ (Bartoli, 1983). Ví dụ ở khu vực canh tác lúa, sau khi thu hoạch vụ

mùa, một phần phytolith trong rơm và / hoặc rễ có thể được trả trực tiếp (Ngoc

Nguyen và nnk, 2014) hoặc gián tiếp qua than sinh học - dạng than sau đốt trực tiếp

trên đồng ruộng hoặc qua các quá trình đốt cháy khác - vào đất tại ngay khu vực

canh tác (Houben và nnk, 2014). Ngược lại, một tỷ lệ đáng kể của phytolith được

thoát khỏi hoàn toàn hệ sinh thái trong các sản phẩm thu hoạch (Meunier và nnk,

2008). Dạng phytolith này sẽ được chuyển qua chất thải của người và động vật vào

đất hoặc các nguồn nước bề mặt (Vandevenne và nnk, 2012; Song và nnk, 2013).

Hình 8. Sản phẩm phytolith được tạo ra trong từng giai đoạn thu hoạch

và sử dụng sản phẩm canh tác

Page 28: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

20    

Ở Việt Nam, trung bình trong 10 năm qua (2004 – 2013) diện tích cây lương

thực có hạt chiếm 8.476,7 nghìn ha trong đó có tới 7.497,15 nghìn ha diện tích

trồng lúa với sản lượng 39.167,2 nghìn tấn/năm (Tổng cục thống kê, 2015). Theo

Putun và nnk (2004), rơm rạ chiếm hơn 50% tổng trọng lượng cây lúa, lượng rơm

rạ phát sinh hằng năm của cả nước ~ 40 triệu tấn. Rơm rạ được sử dụng vào nhiều

mục đích khác nhau như trồng nấm, đun nấu, đốt trên cánh đồng, phân bón, thức ăn

chăn nuôi (23%), phủ luống trồng cây ăn quả, trong đó tỷ lệ đốt bỏ trung bình lên

tới 42% (Tổ chức Phát triển Hà Lan SNV, 2012). Như vậy, sau mỗi vụ, có thể có tới

4,9 triệu tấn – 9,4 triệu tấn phytolith được hoàn trả lại đất theo con đường tiêu huỷ

sinh khối (phytolith chiếm 12,46 đến 23,6% rơm rạ theo Prajapati và nnk, 2015).

Tuy nhiên, khác với phytolith hoàn trả lại đất theo con đường vùi lấp rơm rạ (đặc

biệt là thời gian chuyển giao giữa vụ xuân hè sang hè thu khi mà ruộng luôn tồn tại

nước), khi sinh khối được đốt bỏ phần nào đó của phytolith sẽ biến đổi tính chất

phụ thuộc vào phương thức đốt (đốt đống, đốt rãi rác,…); trạng thái sinh khối (bộ

phận, độ ẩm, kích thước,...); điều kiện đồng ruộng (mực nước trong ruộng, điệu

kiện gió, địa hình). Tác động của phytolith tới tính chất đất và dinh dưỡng cây trồng

vì thế sẽ thay đổi, điều này chưa thực sự được nghiên cứu một cách cụ thể và sẽ

được làm rõ phần nào đó trong luận văn này.

1.4. Phytolith trong đất

Nếu như phytolith trong thực vật đã và đang được các nhà khoa học quan

tâm nghiên cứu thì sự có mặt chúng tồn tại ra sao, tương tác với các hợp phần khác

trong đất thế nào vẫn còn là một bí ẩn chưa được làm sáng tỏ. Các nghiên cứu về

vấn đề này mới chỉ tập trung vào khả năng và vai trò của phytolith trong việc tích

luỹ, cố định C trong đất cũng như những tác động có thể có của một số yếu tố trong

đất tới tính bền vững của phytolith. Trong khi đó, những công bố khoa học liên

quan tới sự có mặt của phytolith tác động như thế nào tới tính chất đất lại vô cùng

hạn chế.

Page 29: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

21    

Các ion Si4+ là các hạt nhân liên kết và nhờ chuỗi các phản ứng polyme hóa

để phát triển cấu trúc của phytolith. Trong quá trình kết tủa, các màng Si có thể bao

bọc các lipit, protein hay cacbonhydrat. Lượng chất hữu cơ bị phytolith hấp phụ và

tích lũy trong đất có thể lên đến 5% và chúng được gọi chung là PhytOC. Ngay cả

khi phytolith được đưa trở lại môi trường đất, những hợp chất PhytOC này vẫn có

thể được bảo quản trong một thời gian rất dài chống lại sự phân hủy sinh học bởi

các vi sinh vật nhờ các màng Si vững chắc (Elbauma và nnk, 2009). Do đó, tốc độ

khoáng hóa chất hữu cơ chậm lại sẽ góp phần giảm phát thải các khí nhà kính từ đất

vào không khí (Parr và nnk, 2009).

Tuy nhiên, tỷ lệ tích lũy, giải phóng phytolith và cô lập cacbon trong

phytolith thay đổi nhiều giữa các loại thực vật. Nghiên cứu xem xét phần PhytOC

tích lũy trên một số vùng đất nhiệt đới tại miền Tây nước Anh, Parr và Sullivan

(2005) đã đưa ra biểu đồ mô phỏng sự tích lũy PhytOC trong đất.

Hình 9. Lượng C bị giữ lại trong đất bởi phytolith (PhytOC) so với C tổng số

được vùi vào đất qua thời gian (Parr và Sullivan, 2005) Nghiên cứu của Schlesinger (1990) chứng minh khả năng giữ chất hữu cơ

của phytolith là rất có ý nghĩa với thực trạng tác động của hiệu ứng nhà kính ngày

càng gia tăng như hiện nay. Nghiên cứu mô phỏng này dựa trên các điều kiện biên:

1) tỷ lệ phân hủy PhytOC là 25%/100 năm, 2) cây trồng được phát triển liên tục.

Mô hình thí nghiệm được bố trí trên nền đất “trưởng thành”.

Page 30: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

22    

Hình 10. Tích lũy C trong đất trồng có hàm lượng PhytOC khác nhau

Kết quả nghiên cứu chỉ ra rằng: quá trình tích lũy C trong tự nhiên tương đối

chậm, đạt ~25 kg/m2 sau khoảng 20.000 năm. Quá trình này tăng lên khi thực vật

canh tác là kê (~38 kg/m2) và lên tới ~110 kg/m2 khi canh tác các loài siêu tích lũy

Si như mía. Như vậy, các loài siêu tích lũy Si như mía có thể giúp cố định C trong

đất gấp ~4,4 lần quá trình tự nhiên.

Sự biến đổi, chuyển hóa của phytolith trong môi trường đất tương đối phức

tạp và phụ thuộc vào các yếu tố như pH, Eh, nồng độ cation, anion trong dung dịch

hay sự có mặt của chất hữu cơ hòa tan… Những yếu tố này tương tác với các nhóm

hoạt động bề mặt và quyết định tốc độ hòa tan của phytolith. Các tứ diện SiO4 liên

với nhau thông qua cầu nối oxy để tạo thành bề mặt của phytolith. Quá trình thủy

phân bề mặt là nguyên nhân dẫn đến các liên kết Si-O bị phá vỡ và Si được giải

phóng. pH (độ chua của đất) là một trong những yếu tố quan trọng nhất góp phần

tăng cường quá trình thủy phân bề mặt (Fraysse và nnk, 2006). Bổ sung cation kim

loại kiềm và kiềm thổ (Na, Ca) vào đất có thể làm cho pH tăng và thúc đẩy quá

trình hòa tan phytolith (Dove, 1999). Tuy nhiên, một số nghiên cứu khác lại cho

rằng sự có mặt của các cation trong dung dịch và chất hữu cơ trong “sẵn có” trong

cấu trúc của phytolith có thể gây cản trở quá trình hòa tan. Trong đất lúa, tương tác

với các phức của Fe/Al có thể làm giảm tốc độ hòa tan của phytolith (Sommer và

Page 31: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

23    

nnk, 2006). Khác với các cation, anion có thể tác động vào “nhân Si” của khối tứ

diện SiO4 theo cơ chế tương tự như OH-. Sự hấp phụ anion vào “nhân Si” được cho

là nguyên nhân chính làm yếu đi các mối liên kết Si-O và tạo tiền đề cho Si có thể

tách ra khỏi bề mặt siloxan (Ehrlich và nnk, 2010).

1.5. Định lượng phytolith trong đất

Hình 11. Sơ đồ tách phytolith từ đất bằng dung dịch nặng

Trong số ít nghiên cứu về quá trình phong hóa lục địa và chu trình sinh địa

hoá của Si (Dürr và nnk, 2011; Struyf và Conley, 2012; Tréguer và De La Rocha,

2013) hai tham số được quan tâm phổ biến là: Si ở dạng hòa tan – DSi (dissolved

silica) và Si ở dạng hạt - PSi (particulate silica). Trong đất, PSi bao gồm: 1) dạng Si

vô định hình - ASi (amorphous silica) chủ yếu là phytolith (dạng Si sinh học hình

thành trong quá trình sinh trưởng và phát triển của thực vật và được trả lại đất sau

khi thực vật chết đi; the biogenic silica, BSi) (Bartoli, 1983; Cornelis và nnk,

2011a). Bên cạnh đó, trong đất cũng có thể có các hạt Si hữu cơ khác như xác tảo

diatomit, bọt biển, các loại amip (Cary và nnk, 2005; Clarke, 2003; Sommer và nnk,

2006) và phần rất nhỏ Si ở dạng phi tinh thể vô cơ (ISi) (Saccone và nnk, 2007;

Mẫu đất qua xử lý cơ học

Loại bỏ cacbonat và các oxit/hydroxit (đặc biệt Fe, Al)

(HCl, HNO3, …)

Loại bỏ CHC (H2O2, …)

Phân tán trong dung dịch (EDTA, …)

Tách hỗn hợp limon + phytolith

Tuyển nổi phytolith bằng dung dịch nặng

Hạ trọng lượng riệng của dung dịch nặng, ly tâm

thu phytolith

Sấy khô thu phytolith bột

Page 32: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

24    

Sauer và nnk, 2006); 2) dạng Si có cấu trúc tinh thể có nguồn ngốc từ đá mẹ (các

khoáng Si nguyên sinh) hoặc thứ sinh là sản phẩm của quá trình hình thành đất

(Saccone và nnk, 2007).

Như vậy, việc định lượng phytolith trong đất trở nên khó khăn hơn khi

không những phải tách biệt được với dạng dạng Si có cấu trúc tinh thể mà còn phải

loại bỏ ảnh hưởng của tảo diatomit, bọt biển, các loại amip, đặc biệt là ở các mẫu

đất của sông ven biển. Phương pháp đầu tách phytolith đầu tiên được áp dụng dựa

trên khả năng “tan” của phytolith trong các dung dịch nặng có khối lượng riêng là

2,3 g/cm3 (Cornelis và nnk, 2010, 2011b) (Hình 11).

Một số dung dịch nặng thường được sử dụng có thể kể tới như: CdI2/KI,

ZnBr2/HCl, ZnI2/H2O, SPT (sodium polytungstate, 3Na2WO4.9WO3.H2O), …

Phương pháp này thu được phytolith tương đối nguyên vẹn và rất có ý nghĩa trong

khảo cổ học, tuy nhiên, nó cũng mắc phải những hạn chế nhất định: khả năng tái sử

dụng dung dịch nặng thấp (Herbauts và nnk, 1994); một phần ASi có thể bị hòa tan

cùng tác nhân chiết rút (Zhao and Pearsall, 1998) và khả năng tách không triệt để

khi bỏ qua phần phytolith có kích thước nhỏ tương đồng với cấp hạt sét của đất mặc

dù tỷ lệ của phần này là rất nhỏ (Saccone và nnk, 2007).

Cách tiếp cận thứ hai dựa trên độ tan của Si vô định hình tăng mạnh tại giá

trị pH cao (Iler, 1979). Hai phương pháp chiết hóa học với NaOH (bazơ mạnh) hoặc

Na2CO3 (bazơ yếu) thường được sử dụng để phân tích ASi trong đất (Foster, 1953;

Follett và nnk, 1965), cũng như BSi trong nước ngọt và trầm tích biển (DeMaster,

1979, 1981; Mortlock và Froelich, 1989; Müller và Schneider, 1993; Conley và

Schelske, 2001; Koning và nnk, 2002). Theo kết quả nghiên cứu của Saccone và

nnk (2007), phương pháp sử dụng NaOH thường cho kết quả lượng ASi hoặc BSi

tương đương hoặc cao hơn so với sử dụng Na2CO3. Tuy nhiên, việc sử dụng kiềm

mạnh (NaOH) cũng dẫn tới sự hòa tan của các tinh thể khoáng Si mạnh mẽ hơn và

sự ảnh hưởng tới tính chính xác của phương pháp từ quá trình hòa tan này cũng trở

nên khó loại bỏ hơn (Sauer và nnk, 2006). Điều này được quan tâm tới trong nghiên

Page 33: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

25    

cứu của DeMaster (1981, 1991) và cho tới nay, phương pháp chiết dạng BSi được

phát triển từ những nghiên cứu của ông vẫn là phương pháp được sử dụng phổ biến

nhất và đơn giản nhất. DeMaster (1981) đã thử nghiệm một loạt mốc nhiệt độ, nồng

độ bazơ khác nhau và sử dụng các vật liệu khác nhau (sét, diatomit, amip protozoa

và ASi) để kiểm tra các điều kiện tốt nhất cho hoà tan tất cả các BSi trong khi giảm

thiểu sự tan rã của Si từ khoáng chất. Phương pháp của ông dựa trên hai giả thiết (1)

Có sự khác biệt lớn về khả năng hoà tan giữa ASi và Si trong các khoáng silicat

(MSi) trong đất (Van Cappellen, 2003), và (2) sự hoà tan ASi là một quá trình bề

mặt (Koning và nnk, 2002).

Hình 12. Minh họa cho phương pháp luận sử dụng để giải thích cho sự hòa tan đồng

thời Si từ khoáng trong suốt quá trình chiết dạng ASi

(DeMaster, 1981; Koning và nnk, 2002)

Trong các thí nghiệm của DeMaster, mẫu chứa các dạng ASi ngâm trong

dung dịch Na2CO3 ở 80 – 85oC với tổng thời gian 6 giờ, mẫu được lấy 1 giờ/lần.

DeMaster quan sát thấy rằng, các dạng ASi hòa tan hoàn toàn trong ~2 giờ đầu tiên,

trong khi các khoáng silicat có tốc độ hòa tan là không đổi trong suốt thời gian thí

Page 34: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

26    

nghiệm. Phép ngoại suy các giá trị nồng độ Si trong giai đoạn nồng độ Si trong

dung dịch được gia tăng bởi sự hoà tan của các khoáng silicat cho phép tính gián

tiếp ra lượng Si hòa tan ra từ các dạng ASi và định lượng ra được hàm lượng của

các dạng ASi trong mẫu (Hình 12).

Page 35: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

27    

Chương 2 - ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU

 

2.1.   Đối tượng nghiên cứu

2.1.1.  Mẫu đất

Các mẫu đất được thu thập ở khu vực canh tác lúa nước điển hình của đồng

bằng sông Hồng với diện tích ~80 ha có cơ cấu 2 vụ lúa/năm và không có vụ trồng

màu của xã Đại Áng, huyện Thanh Trì, Hà Nội vào tháng 11/2014. Tại một vị trí

lấy mẫu, mẫu đất được lấy hỗn hợp từ hai mẫu khác nhau trong cùng khu vực (với

khoan đất chuyên dụng) theo các tầng 0 - 25, 25 - 50, 50 - 75 và 75 – 100 cm, ví trí

chi tiết của các mẫu đất được trình bày trong Bảng 1 và Hình 13. Mẫu đất được để

khô không khí trong phòng thí nghiệm, xử lý các vật liệu lẫn, đồng nhất, rây qua rây

2 mm và bảo quản trong túi plastic.

Mẫu đất sau đó được phân tích những chỉ tiêu lý hoá cơ bản nhằm cung cấp

thông tin cơ sở về tính chất đất của khu vực nghiên cứu; xác định hàm lượng tích

luỹ của phytolith và qua đó đánh giá sự ảnh hưởng cũng như mối tương quan giữa

sự tích luỹ phytolith và một số tính chất cơ bản của đất.

Bảng 1. Các vị trí lấy mẫu đất thuộc

khu vực nghiên cứu (*)

Hình 13. Bản đồ khu vực nghiên cứu

Ký hiệu Vị trí

Vĩ độ Kinh độ

Đ1 20°54'34,8" 105°49'17,6"

Đ2 20°54'45,9" 105°49'20,9"

Đ3 20°54'37,9" 105°49'28,0"

Đ4 20°54'28,7" 105°49'28,3"

Đ5 20°54'26,1" 105°49'37,2"

Đ6 20°54'35,5" 105°49'39,9"

Đ7 20°54'43,1" 105°49'35,1"  

Page 36: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

28    

2.1.2.  Mẫu phytolith

Hiện nay, cây lúa đang là cây trồng chính trong nền nông nghiệp ở nước ta

và là cây nông nghiệp duy nhất tại khu vực nghiên cứu. Do đó, đây là nguồn

phytolith duy nhất bổ sung cho đất tại khu vực xã Đại Áng, huyện Thanh Trì, Hà

Nội. Do đó, mẫu phytolith dùng trong nghiên cứu được tách ra từ rơm rạ sau thu

hoạch theo phương pháp tro hoá khô (Parr và nnk, 2001). Phytolith được phân tích

một số đặc tính lý hoá học cơ bản làm cơ sở để dự đoán và đánh giá ảnh hưởng của

lượng phytolith tích luỹ trong đất tới một số tính chất đất tại khu vực nghiên cứu.

Rơm rạ sau thu hoạch được rửa sạch, phơi khô, cắt nhỏ tới 1 – 2 cm và nung

trong bát sứ ở các mức nhiệt độ khác nhau: 300, 400, 500, 600, 700, 800, 900,

1000oC trong 2 giờ với lò nung Controller B170 (hãng Nabertherm – CHLB Đức).

Sản phẩm nung được để nguội về nhiệt độ phòng khi kết thúc quá trình gia nhiệt.

Sau đó được rửa nhanh với nước cất 3 lần, sấy khô tại 90oC và nghiền nhỏ qua rây

0,2 mm.

2.2.   Phương pháp nghiên cứu

2.2.1.   Xác định đặc tính cơ bản của mẫu đất nghiên cứu

Phương pháp phân tích một số tính chất cơ bản của mẫu đất sau khi xử lý sơ

bộ (phơi khô không khí và đồng nhất qua rây 1 mm) được trình bày trong bảng sau:

Bảng 2. Phương pháp xác định một số tính chất cơ bản của mẫu đất

Tính chất Phương pháp phân tích

Thành phần

nguyên tố (Sits và

Kts)

Phương pháp huỳnh quang tia X (Particle Induce X-Ray

Emission, PIXE), Khoa Vật lý, Trường Đại học Khoa học Tự

nhiên.

Page 37: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

29    

pHKCl - 10 g đất khô không khí rây qua 1mm : 25 ml KCl 1 N

- Lắc 15 phút tại 150 vòng/phút, để yên 2 giờ và đo pH với

máy pH meter Starter 3000, Ohaus, Mỹ.

Thành phần cơ

giới

Phương pháp gạn lắng trong môi trường thủy tĩnh theo

phương trình lắng Stockes sử dụng ống hút Robinson.

Chất hữu cơ Phương pháp Walkley_Black

Si hòa tan trong

dung dịch đất  

(Theo Haysom and

Chapman, 1975)

- 0,01 M CaCl2, tỷ lệ mẫu: dung dịch = 1 g : 20 ml

- 16 giờ lắc liên tục ở 150 vòng/phút

- Si hòa tan được phân tích theo phương pháp so màu xanh

molipden (chi tiết được trình bày trong mục 2.2.3)

Ca và Mg trao đổi - 1 N KCl, tỷ lệ mẫu: dung dịch = 1 g : 5 ml

- Lắc 1 giờ ở 150 vòng/phút

- Ca, Mg hoà tan được phân tích trên máy Quang phổ hấp thụ

nguyên tử AAS.

CEC Scheffer

Tỷ trọng Phương pháp khối lượng với picnômét

2.2.2.   Xác định đặc tính cơ bản của mẫu phytolith tách từ rơm

Mẫu phytolith tách từ rơm rạ theo phương thức tro hoá khô ở các nhiệt độ

khác nhau (trong khoảng 300 – 1000oC) được xác định đặc điểm vật lý và hóa học

cơ bản, chi tiết về phương pháp phân tích được trình bày trong Bảng 3:

Page 38: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

30    

Bảng 3. Phương pháp xác định một số tính chất lý – hóa học cơ bản của phytolith

Tính chất Phương pháp phân tích Thiết bị phân tích

Đặc điểm hình

thái

Kính hiển vi điện tử quét JSM – 5410LV, hãng

Joel

Đặc điểm cấu

trúc

Nhiễu xạ tia X Bruker-AXS D5005,

hãng Siemens, Đức

Nhóm hoạt

động bề mặt

Phổ hấp thụ hồng ngoại FT-IR Nicolet™ iS™5 FTIR

Spectrometer, hãng

Thermo Scientific, Mỹ

Diện tích bề mặt

riêng (BET)

Quantachrome,

NOVA-4000e,

Boynton Beach, FL,

Mỹ

Điện tích bề mặt Phân tích thế điện động zeta Mütek PCD – 05, hãng

BTG, Đức

Thành phần

nguyên tố chính

(Si và K)

-  Mẫu tro sau nung được rửa sạch phần

khoáng hoà tan bằng nước cất: 10g tro

+ 50ml H2O lắc trong 3p với tốc 150

vòng/phút. Ly tâm thu phần rắn và lặp

lại quy trình 3 – 5 lần. Mẫu sau đó

được sấy tại 105oC trong 1 giờ.

-  Si và K trong mẫu tro sau khi loại bỏ

phần khoáng dễ tan trong nước được

xác định theo phương pháp: tro hóa khô

mẫu bằng phương pháp nung chảy với

- Lò nung Controller

B170 (Nabertherm –

Đức)

- Quang kế ngọn lửa

(PFP7, Jenway, Anh)

Page 39: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

31    

chất nóng chảy natri cacbonat

(Na2CO3) trong chén platin tại 1000oC

với lò nung Controller B170. Sau đó

chuyển dạng nung chảy trong chén

platin về dạng dung dịch bằng dung

dịch HCl 1:1. Si và K sau đó được xác

định bằng phương pháp gelatin – HCl

(lò nung Controller B170) và quang kế

ngọn lửa (PFP7, Jenway).

CHC Chiurin -

2.2.3.   Quá trình hòa tan giải phóng nguyên tố dinh dưỡng từ phytolith

Khả năng giải phóng nguyên tố dinh dưỡng từ phytolith: Mẫu phytolith tách

từ rơm rạ qua quá trình xử lý nhiệt ở các nền nhiệt độ khác nhau từ 300oC đến

1000oC được ngâm trong nước cất theo tỷ lệ 1 mg/ml trong bình tam giác plastic ở

nhiệt độ phòng. Lắc nhẹ dung dịch và để yên 24 giờ. Dịch lọc được xác định Na, K

hòa tan trên máy quang kế ngọn lửa (PFP7, Jenway, Anh); PO43- và Si hòa tan theo

phương pháp so màu xanh; Ca và Mg được phân tích trên máy quang phổ hấp thụ

nguyên tử AAS; Cl- và SO42- được xác định theo phương pháp Mohr và phương

pháp chuẩn độ ngược theo Xlap.

Tốc độ giải phóng nguyên tố dinh dưỡng từ phytolith: Phytolith tạo ra tại 400

và 800oC được đem ngâm với nước cất theo tỷ lệ 1 mg/ml ở nhiệt độ phòng. Hàm

lượng K và Si hòa tan trong dung dịch được xác định sau mỗi khoảng thời gian 24

giờ và kéo dài 7 ngày, cụ thể: 50 mg mẫu cùng 50 ml nước cất được cho vào lọ

nhựa dung tích 100 ml. Hỗn hợp được lắc nhẹ và để ổn định trong 24 giờ ở nhiệt độ

phòng. Sau mỗi 24 giờ, hỗn hợp được lắc nhẹ, đều và hút 5 ml dung dịch bằng pipet

tự động sử dụng đầu côn nhựa. Dung dịch được lọc qua giấy lọc băng xanh và bảo

Page 40: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

32    

quản trong lọ nhựa để để xác định Si và K hòa tan tại thời điểm thí nghiệm tương

ứng.

Kết quả về tính chất lý hoá học của pytolith cũng như khả năng và tốc độ của

hoà tan giải phóng nguyên tố dinh dưỡng kết hợp với kết quả phân tích hàm lượng

của phytolith trong đất (trình bày trong phần kế tiếp) và các tính chất cơ bản của đất

giúp đưa ra được tương quan giữa sự có mặt của phytolith tới một số tính chất lý

hoá học cở bản của đất tịa khu vực xã Đại Áng, huyện Thanh Trì, Hà Nội.

2.2.4.   Phương pháp định lượng phytolith trong đất

Dựa theo các nghiên cứu của DeMaster (1981),   Koning và nnk (2002),

Saccone và nnk (2006), Meunier và nnk (2014) phương pháp định lượng phytolith

trong đất được cụ thể hóa cho mẫu nghiên cứu như sau: mẫu đất khô không khí rây

qua rây 0,25 mm sau đó rửa 3 lần với nước cất (10 g đất + 50 ml H2O, lắc 3 phút, ly

tâm thu phần rắn tại 3000 vòng/phút trong 5 phút) sau đó được sấy khô tại 105oC.

Cân 30 mg mẫu đất sau xử lý vào lọ nhựa dung tích 100 ml, bổ sung 40 ml dung

dịch Na2CO3 1% (pH = 11,2) đã được làm nóng tới 85oC. Lắc đều và duy trì nhiệt

độ dung dịch trong lọ nhựa bằng bể ổ nhiệt ở 85oC trong 7 giờ. Sau mỗi khoảng thời

gian 1 giờ, 5 ml dung dịch huyền phù trong lọ được lấy bằng pipet tự động với đầu

côn nhựa sau khi lắc đều hỗn hợp. 5 ml mẫu vừa lấy được ly tâm thu dung dịch và

phân tích nồng độ Si (mg Si/l) hòa tan theo phương pháp so màu xanh molipden(*)

trên máy quang phổ khả kiến (Labnics, L_VIS_400).

Phương trình hồi quy tuyến tính các giá trị nồng độ Si thu được sau 3, 4, 5, 6

và 7 giờ thí nghiệm có dạng: y = ax + b (Hình 12). Trong đó: y (mg Si/l) là nồng độ

Si tại thời điểm >2 giờ; x (giờ, x > 2) là thời gian thí nghiệm; a (mg DSi/giờ) là hệ

số góc của phương trình, biểu thị tốc độ giải phóng Si từ các khoáng silica trong

đất; b là hệ số biểu thị nồng độ Si chỉ do lượng BSi hòa tan hết gây ra mà không

tính tới sự đóng góp của các khoáng vật.

(*) Phương pháp xác định Si hòa tan – phương pháp so màu xanh molipden:

Page 41: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

33    

-   Hút 0,5 ml dịch lọc cho vào ống nghiệm plastic dung tích 15 ml. Sau đó thêm

lần lượt vào 2 ml molipdat 1% + 3 ml axit tactaric 3,3%, lắc đều và để yên 10

phút.

-   Tiếp tục thêm 2 ml axit ascobic 0,4%. Nước cất được thêm vào sao cho tổng thể

tích dung dịch trong ống nghiệm là 10 ml, lắc đều và để ổn định 15 phút rồi đem

so màu dung dịch ở bước sóng 810 nm.

2.2.5.   Ảnh hưởng của phytolith tới sự phân tán của cấp hạt sét trong đất

Cấp hạt sét trong mẫu đất tầng mặt được tách theo phương pháp gạn lắng với

thời gian tách được tính toán theo phương trình chìm lắng Stockes. Huyền phù sét

sau khi tách được điều chỉnh bằng H2O để được dung dịch làm việc với hàm lượng

10 mg sét/ml.

Sự ảnh hưởng của các Si hòa tan đối với sự phân tán của khoáng sét trong

dung dịch được xác định theo phương pháp Lagaly cải biên: Hút 2 ml huyền phù sét

vào ống nghiệm, dung dịch axit HCl 0,1 N và NaCl 0,1 N được thêm vào với thể

tích tương ứng để có pH thay đổi từ 1 – 7 và nền điện ly (EB) được duy trì tại 0,16

mol/l. Dung dịch Si và nước cất được bổ sung sao cho tổng thể tích trong ống

nghiệm đạt 10 ml và nồng độ Si đạt 0, 5, 10, 15, 20, 30, 35 và 40 mg/l. Mẫu được

phân tán bằng máy rung siêu âm TCP–40 trong 1 phút, sau đó để lắng 3 giờ và hút 2

cm dung dịch trong ống nghiệm (tính từ mặt thoáng, tương ứng với ~2 ml dung

dịch) để xác định độ truyền qua (T%) tại bước sóng 600 nm. Độ truyền qua lớn biểu

thị cho dung dịch không còn các hạt lơ lửng hay các hạt sét tồn tại ở trạng thái gel

(tụ keo). Ngược lại lại độ truyền qua nhỏ, dung dịch chứa các hạt lơ lửng và các hạt

keo tồn tại ở trạng thái huyền phù (tán keo).

Page 42: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

34    

Chương 3 - KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN

 

3.1.   Một số tính chất đất cơ bản tại khu vực nghiên cứu

Mẫu đất trong khu vực nghiên cứu có phản ứng trung tính (pHKCl 6,7 - 7,2), thành phần cơ giới nặng (thịt pha sét và pha limon) với hàm lượng sét khá cao (ở độ sâu 25 cm ~ 31%, tới độ sâu 100 cm ~ 51%). Hàm lượng chất hữu cơ trong tầng mặt ở mức trung bình (2,1%) và giảm dần theo chiều sâu phẫu diện, điều này cho thấy tàn tích thực vật được tích tụ sau mùa vụ có khối lượng không lớn. Hàm lượng CHC và sét từ trung bình đến cao kéo theo giá trị CEC cao trong các tầng đất, giá trị này dao động từ 15,2 – 18,0 cmol/kg. Ngược lại với khả năng giữ lại các cation (thể hiện qua giá trị CEC) của mẫu đất, hàm lượng ở dạng hoà tan của các nguyên tố Si, Ca, Mg chiết rút được tương đối thấp với các giá trị lần lượt đạt 6,5 – 13,8 mg Si/kg; 5,17 – 5,80 mlđl/100 g đất và 1,36 – 1,49 mlđl/100 g đất. Trái ngược với 3 nguyên tố trên, mẫu đất nghiên cứu có hàm lượng Kts rất giàu, sự tích luỹ cao nhất lên tới ~7% ở tầng 50 – 75 cm (Bảng 4).

Bảng 4. Một số tính chất cơ bản của mẫu đất nghiên cứu

Tính chất Đơn vị Tầng đất(*) (cm)

0 – 25 25 – 50 50 – 75 75 – 100

CHC % 2,1 1,2 1,8 1,6

pHKCl - 7,1 7,2 6,9 6,7

CEC cmol/kg 16,1 15,2 17,1 18,0

Sits % 26,04 26,67 27,03 26,76

DSi mg/kg 6,5 8,6 13,8 11,9

Kts % 3,15 3,17 7,15 3,10

Ca2+ meq/100g 5,17 5,37 5,80 5,46

Mg2+ meq/100g 1,38 1,36 1,41 1,49

Tỷ trọng g/cm3 2,2 2,4 2,6 2,6

Page 43: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

35  

TPCG

Sét % 30,79 31,88 37,26 50,82

Limon % 59,90 61,26 55,62 42,17

Cát % 9,31 6,86 7,12 7,01

Tên phân loại Thịt pha sét, pha limon

Thịt pha sét, pha limon

Thịt pha sét, pha limon

Sét pha limon

Sét: <0,002 mm; Limon: 0,002 – 0,05 mm; Cát: 0,05 – 2 mm (*): Kết quả được tính trung bình cho 7 phẫu diện nghiên cứu

3.2.   Một số đặc tính cơ bản của phytolith

Phytolith được hoàn trả lại đất như một phần đi cùng của rơm rạ khi được bổ

sung vào đất sau mỗi vụ thu hoạch. Do đó, phytolith không tồn tại độc lập mà luôn

có sự song hành của CHC, nước và các phần vô cơ khác trong thực vật với hàm

lượng khác nhau tuỳ thuộc vào cách mà rơm rạ được đưa lại ruộng. Khác với bỏ

rơm rạ tự nhiên hoặc vùi xuống đất, phương thức đốt bỏ rơm rạ có thể làm biến đổi

tính chất và hàm lượng các chất trong cũng như đi cùng phytolith trước khi chúng

quay trở lại đất. Việc đốt rơm rạ thường được áp dụng hàng loạt ngay sau khi thu

hoạch trong thực tế canh tác ở Việt Nam những năm gần đây do những ưu điểm mà

phương thức này mang lại như: nhanh, tiện dụng, chi phí thấp và phòng từ được các

mầm bệnh của vụ trước. Do đó, tính chất của phytolith trước khi được trả vào đất

theo phương thức đốt bỏ rơm rạ được đề tài tập trung tìm hiểu. Một số kết quả thu

được trong quá trình nghiên cứu về đặc điểm chung của dạng phytolith này có thể

kể tới như sau:

3.2.1.   Đặc điểm hình thái

Phytolith trong cây lúa được tạo thành với hai dạng hình thái cơ bản: hình

quả tạ (dumb-bells) và hình chữ thập với chiều dài cạnh trung bình, trong đó dạng

quả tạ chiếm chủ yếu (Saxena và nkk, 2006). Hình thái phytolith tương tự được tìm

thấy trong mẫu rơm lúa tại khu vực nghiên cứu với kích thước ~20 µm (Hình 14).

Page 44: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

36  

Mặt khác, bề mặt sần sùi và cấu trúc vi xốp là đặc điểm hình thái điển hình của

phytolith, điều này giúp phytolith có bề mặt riêng lớn và cấu trúc cơ học bền vững.

Hình 14. Ảnh SEM của phytolith tách từ cây lúa theo phương pháp tro hoá khô

Nếu coi axit monosilicic và các phân tử hữu cơ là các nguyên liệu kết dính

thì mỗi tế bào thực vật được ví như một “khuôn đúc” thành tạo nên phytolith. Và

như một hệ quả tất yếu, hình dạng của phytolith phản ánh lại đặc điểm cấu tạo của

tế bào và cũng trở nên phong phú, đa dạng như chính khuôn mẫu tạo ra chúng. Đặc

điểm này giúp phytolith trở thành yếu tố tin cậy được các nhà khảo cổ học sử dụng

trong việc nhận diện các loại thực vật và sự xuất hiện của các nền văn minh nông

nghiệp trong lịch sử.

Tuy nhiên, phytolith được trả lại đất theo phương thức đốt rơm rạ lại có bề

mặt bị biến đổi do sự thay đổi trình tự sắp xếp các liên kết trên lớp vỏ Si của khi

rơm rạ được xử lý tại các nhiệt độ khác nhau. Mẫu phytolith được xử lý ở nhiệt độ

400oC có bề mặt xù xì, rỗng xốp trong khi mẫu xử lý ở nhiệt độ 800oC có bề mặt

nhẵn và các lỗ rỗng trên bề mặt được lấp đầy (Hình 15). Nhiệt độ tăng cao có thể

khiến lớp Si của phytolith bị tái kết tinh thành các tinh thể oxit silic làm cho lớp vỏ

này trở nên trơ hơn và cố định chặt các chất bên trong phytolith không cho giải

phóng ra ngoài.

Page 45: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

37  

(a) (b) (c)

Hình 15. Ảnh SEM mẫu phytolith trong rơm rạ xử lý ở nhiệt độ 400oC (a), 600oC (b) và 800oC (c)

3.2.2.   Đặc điểm cấu trúc và đặc điểm khoáng vật học

Hình 16. Nhiễu xạ đồ tia X của các mẫu phytolith khi rơm rạ xử lý ở các nhiệt độ khác nhau

Phytolith được hình thành nhờ quá trình kết tủa Si quanh các vách tế bào của

mô cây để hình thành các lớp oxit silic hydrat hóa SiO2.nH2O. Do đó, khác với đa

số các khoáng Si trong tự nhiên, phytolith không có cấu trúc mạng tinh thể. Điều

này đồng nghĩa với nhiễu xạ đồ tia X của phytolith sẽ không có hiệu ứng nào đặc

Page 46: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

38  

trưng. Tuy nhiên, cách mà phytolith được đưa trở lại đất đôi khi lại làm biến đổi

trạng thái cấu tạo của chúng (Hình 16), đặc biệt là với các phương thức đốt sinh

khối.

Kết quả phân tích nhiễu xạ tia X cho thấy không có bất cứ hiệu ứng nhiễu xạ

của dạng tinh thể điển hình nào trong mẫu rơm rạ được xử lý ở nhiệt độ < 700oC. Ở

nhiệt độ xử lý > 700oC lớp vỏ Si vô định hình của phytolith bắt đầu chuyển hóa

thành một số dạng oxit silic bền vững như: cristobalit, tridymit. Trong đó, dạng

cristobalit chiếm chủ yếu và có thể được nhận biết nhờ sự có mặt của hiệu ứng

nhiễu xạ tại góc 2-theta: 21,9o; 31,5o; và 36,3o (Hình 16). Điều này giúp giải thích

rõ hơn về sự biến đổi bề mặt của các mẫu phytolith được đốt ở các nhiệt độ khác

nhau (Hình 15). Mặt khác, kết quả phân tích diện tích bề mặt chỉ ra rằng, quá trình

nóng chảy và tái kết tinh của lớp vỏ Si dẫn đến sự sụp đổ của cấu trúc vi xốp điển

hình của phytolith. Giá trị diện tích bề mặt giảm từ 68,9 m2/g xuống 19,8 m2/g và 1

m2/g khi lần lượt ở các nhiệt độ 400, 600 và 800oC. Mất cấu trúc xốp và bề mặt

nhẵn hơn sẽ dẫn đến giảm tốc độ phá hủy cấu trúc Si, và K nhiều khả năng sẽ bị giữ

chặt hơn trong cấu trúc cũng như giảm hoạt tính của phytolith.

3.2.3.   Đặc điểm liên kết hoá học bề mặt

Kết quả phân tích hồng ngoại cho thấy bề mặt của phytolith được cấu thành

chủ yếu từ các liên kết >Si-O-Si< (siloxan), >Si-OH (silanol). Các hiệu ứng ở

khoảng số sóng 1.100 cm-1 và 810 cm-1 biểu thị dao động giãn của các tứ diện SiO4

và dao động uốn của các liên kết nội tứ diện >Si-O-Si<. Trong khi đó, hiệu ứng

quanh khoảng số sóng 950 cm-1 là dấu hiệu tồn tại của dao động Si-O của nhóm

>Si-OH lại biểu hiện không rõ ràng và hoàn toàn biến mất khi mẫu phytolith được

gia nhiệt ở nhiệt độ > 800oC, song song với đó là sự gia tăng của nhóm liên kết >Si-

O-Si< (thể hiện ở sự tăng về chiều cao và diện tích hiệu ứng tại khoảng số sóng -

1.100 cm-1 trong các nhiễu xạ đồ của mẫu phytolith được tác động nhiệt > 800oC so

với các hiệu ứng khác trong cùng nhiễu xạ đồ) (Hình 17). Như vậy, nhiệt độ đốt

rơm rạ có thể làm biến đổi bề mặt phytolith thông qua việc chuyển hoá nhóm >Si-

OH thành >Si-O-Si<.

Page 47: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

39  

Hình 17. Phổ hồng ngoại FT-IR của mẫu phytolith xử lý tại các nhiệt độ khác nhau

Đối với các liên kết >Si-O-Si<, lực liên kết lớn làm cho nhóm này trở nên

khá trơ về mặt hóa học. Ngược lại, nhóm >Si-OH có khả năng tham gia vào quá

trình cho nhận proton tùy thuộc vào điều kiện môi trường. Ion H+ từ nhóm này có

thể tách trong một số trường hợp (ví dụ khi pH tăng) và làm cho bề mặt trở nên

thiếu hụt điện tích. Như vậy, phytolith có thể bị giảm khả năng hấp phụ cation nếu

được xử lý ở nhiệt độ cao trước khi được đưa trả lại đất.

Ngoài hai nhóm liên kết >Si-O-Si< (siloxan), >Si-OH (silanol) điển hình cho

phytolith, ta cũng có thể quan sát thấy một số nhóm chức hoạt động bề mặt và các

liên kết khác trên bề mặt phytolith do sự có mặt của CHC mang lại như: -OH

(~3.500 cm-1), -C=C- (~1.600 cm-1), -COOH (~1.710 cm-1), -C-C- (500 cm-1), -C-H

(~3.000 cm-1). Các liên kết này sẽ biến mất cùng sự phân huỷ của CHC theo nhiệt

độ đốt rơm rạ.

Page 48: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

40  

3.2.4.   Đặc điểm điện động học

Với bề mặt chứa nhiều nhóm chức có khả năng phân ly H+ khiến bề mặt

phytolith có độ âm điện khá cao. Điều này được thể hiện qua thế zeta (ζ) đo được

khi mẫu phytolith được ngâm với dung dịch nước cất (Hình 18). Kết quả cho thấy,

mẫu phytolith chịu tác động ở nhiệt độ 300oC có ζ đạt -975 mV và giảm xuống -

1.492 mV với mẫu xử lý ở 1000oC. Nguyên nhân dẫn tới sự sụt giảm thế điện động

này do quá trình phân huỷ CHC bao bọc phytolith dưới tác động của nhiệt độ tạo

điều kiện cho bề mặt silanol lộ ra nhiều hơn. Như vậy, ngoại trừ phương thức đốt cá

biệt (đốt với đống lớn), nếu phytolith được đưa trở lại đất theo cách đốt bỏ sinh khối

rơm rạ theo cách thông thường (nhiệt độ không cao quá 400oC) thì sản phẩm này sẽ

có thế điện động bề mặt dao động trong khoảng -1.000 tới -1.200 mV. Thế điện

động là giá trị tỷ lệ thuận và biểu diễn cho điện tích của bề mặt pha rắn điều này

đồng nghĩa với dung tích hấp phụ cation của phytolith là rất cao và nó có thể cao

hơn nhiều so với một số loại khoáng sét, đặc biệt là khoáng sét trong đất vùng nhiệt

đới.

Hình 18. Thế zeta (ζ) của phytolith xử lý ở các nhiệt độ khác nhau

Page 49: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

41  

Nghiên cứu về sự di chuyển của kim loại nặng trong đất tại cùng khu vực

nghiên cứu, tác giả Khương Minh Phượng (2011) phát hiện thấy rằng có thể định

lượng một cách tương đối các loại khoáng sét chính trong mẫu đất tại khu vực này

theo thứ tự giảm dần từ illit > kaolinit > clorit. Các khoáng sét này đều thuộc nhóm

có dung tích trao đổi cation thấp (illit: 15 – 30 cmol(-)/kg; kaolinit: 8 – 10 cmol(-)/kg;

clorit(-): 1,0 – 2,5 cmol(-)/kg) (Ross, 1975; Ross và Kodama, 1976; Jaynes và

Bigham, 1986; Kohut, 1994) do sự trao đổi đồng hình trong cấu trúc là rất hạn chế.

Như vậy, sự có mặt của phytolith trong đất, đặc biệt là tại khu vực nghiên cứu có

vai trò rất lớn trong việc nâng cao khả năng lưu giữ các chất dinh dưỡng trong đất

phục vụ cho nhu cầu phát triển của cây trồng.

3.2.5.   Thành phần hoá học

- Chất hữu cơ

Hình 19. Biểu đồ phân tích nhiệt sai của mẫu rơm rạ

CHC có khả năng bị giữ bên trong cấu trúc của phytolith trong suốt quá trình

kết tủa hình thành những tế bào phytolith. Mặt khác, màng CHC bên ngoài có thể

bao bọc phytolith thông qua liên Si - hữu cơ với lớp vỏ Si, phần CHC này quyết

Page 50: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

42  

định lượng CHC “đồng hành” cùng phytolith vào môi trường đất và vai trò cố định

C của phytolith. Chưa có nghiên cứu cụ thể về mức độ bao bọc và sự bền vững của

các liên kết Si – hữu cơ để chỉ ra lượng CHC bám trên bề mặt phytolith còn lại sau

quá trình phân giải CHC khi rơm rạ tươi được vùi vào đất. Lượng CHC này có thể

dao động từ 0 – 80% nếu trả lại đất theo phương thức vùi sinh khối, tuy nhiên theo

phương thức đốt thì lượng CHC sẽ biến đổi theo nhiệt độ mà các phương thức đốt

khác nhau tạo ra.

Về cơ bản, khi đốt rơm rạ sẽ loại bỏ một lượng nhất định nước và CHC. Sự

mất nước diễn ra ở khoảng nhiệt độ thấp < 220oC trong khi đó CHC bị phân hủy ở

khoảng nhiệt độ 250 - 480oC (Hình 19). Khi nhiệt độ đốt > 480oC, phần rắn thu

được sau khi đốt còn khoảng 23%, phần rắn này bao gồm chủ yếu là phytolith và

CHC không cháy với hàm lượng thấp (Hình 20). Kết quả nghiên cứu cho thấy, khi

nhiệt độ đốt biến đổi từ 300 – 1000oC thì lượng CHC bao bọc phytolith sẽ giảm từ

22,5 – 0% (Hình 20).  

Hình 20. Hàm lượng CHC trong các mẫu phytolith ở các nhiệt độ khác nhau

Trong thực tế, nhiệt độ đốt sinh khối rơm rạ thường dao động từ 245 – 415oC

(Li và nnk, 2012) và có thể đạt cao nhất tới 750 – 800oC (Miura và Kanno, 1997)

Page 51: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

43  

tuỳ theo phương thức đốt. Do đó, tổng lượng CHC cùng với phytolith đi vào đất sẽ

dao động từ 15 đến 22,5%. Như vậy, nếu 1 tấn rơm rạ được đốt ngay trên đồng

ruộng sau khi thu hoạch, lượng phytolith cung cấp vào đất sẽ tương đương 150 kg

(hàm lượng phytolith trong lúa nước ~15%, Nguyễn Ngọc Minh và nnk (2011)) với

lượng CHC sẽ dao động từ 176,5 - 193,5 kg.

- Silic và Kali

Ngoài Si, nguyên tố chiếm hàm lượng cao thứ hai trong phytolith là K.

Tương tự như CHC, hàm lượng hai nguyên tố này cũng bị biến đổi theo cách mà

phytolith được trả lại đất. Nếu nhiệt độ đốt cháy rơm rạ tăng từ 300 – 1000oC, hàm

lượng Si và K sẽ tăng lên tương ứng từ 15,0 – 35,6% và 0,4 – 7,6% (Hình 21). Hàm

lượng Si và K tăng lên do sự mất đi của CHC bao bọc quanh phytolith, từ khoảng

nhiệt độ 600 – 700oC trở đi, quá trình mất CHC xảy ra chậm dần do vậy sự tăng lên

tương đối của hàm lượng Si và K cũng vì thế mà chậm dần (Hình 21). Theo nguyên

tắc bảo toàn vật chất, hàm lượng Si và K chỉ thay đổi về trị số % so với phần tro sau

khi gia nhiệt do hai nguyên tố này không bị mất đi. Tuy nhiên, tỷ số hàm lượng

Si/K lại giảm dần theo nhiệt độ tác động tới rơm rạ từ 41,9 xuống 36,7 khi nhiệt độ

tăng từ 300 lên 500oC và giảm mạnh xuống 7,3 khi nhiệt độ tăng thêm 100oC và ổn

định ở ~4,6 trong quãng nhiệt độ sau đó (Hình 21). Tỷ lệ Si/K thay đổi do sự hoà

tan Si trong quá trình rửa phần khoáng hoà tan trong sản phẩm nung trước khi phân

tích Si và K dẫn đến sự thoát ra của K vốn bị bọc lại trong phytolith sau lớp vỏ Si.

Như vậy, nhiệt độ các đống đốt cao (> 600oC) lớp vỏ Si của phytolith bị biến đổi và

trở nên khó bị hoà tan hơn kéo theo sự cố định K chặt hơn. Nhiệt độ đốt đồng thực

tế thường không cao quá 400oC, điều này đồng nghĩa với việc khả năng giải phóng

Si và K từ phytolith vào đất là khá nhanh khi các chân ruộng có nước sau khi rơm rạ

được đốt.

Page 52: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

44  

Hình 21. Hàm lượng Si và K trong phytolith

khi rơm rạ được đốt ở các nhiệt độ khác nhau

-   Các nguyên tố dinh dưỡng khác

Ngoài ba nguyên tố Si, K và C, phytolith còn có thể chứa các nguyên tố khác

như Al, Fe, Mn, Mg, P … với hàm lượng thấp (Piperno và nnk, 2006). Khả năng

giải phóng các nguyên tố này từ phytolith được trình bày trong Bảng 5.

Bảng 5. Hàm lượng dạng hoà tan của một số ion trong phytolith

Mẫu phytolith Hàm lượng ion hoà tan (mg/kg)

Na+ K+ Ca2+ Mg2+ Cl- PO43- SO4

2-

400oC 505 521 220 180 19,9 3,5 13,8

800oC 455 153 65 145 7,0 1,7 11,6

Nhiệt độ đốt rơm rạ khiến bề mặt phytolith trở nên khó bị phá huỷ và hạn chế

khả năng giải phóng các nguyên tố hoá học. Hệ quả là hàm lượng ion hoàn tan từ

phytolith giảm lần lượt 9,9%; 74,1%; 70,1%; 19,45%; 64,8%; 51,42% và 15,9% của

các nguyên tố Na+, K+, Ca2+, Mg2+, Cl-, PO43- và PO4

3- ở mẫu phytolith trong rơm

được đốt ở 800oC so với mẫu ở 400oC.

0

10

20

30

40

50

0

5

10

15

20

25

30

35

300 400 500 600 700 800 900 1000

K Si Si/K

Nhiệt độ (oC)

Tỷlệ

Si/K

Hàm

lượn

gSi

(K) c

òn lạ

i (%

)

Page 53: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

45  

3.2.   Hàm lượng và sự phân bố của phytolith trong đất

Sự phân bố theo độ sâu của phytolith trong đất là khác nhau theo từng loại

đất, nhưng nói chung, hàm lượng cao nhất thường được tìm thấy trong lớp đất phía

trên và giảm dần theo độ sâu (Saccone và nnk, 2007). Sự phân bố này phản ánh sự

cân bằng giữa tỷ lệ phytolith đầu vào thông qua bổ sung sinh khối và tỷ lệ đầu ra

qua sự hòa tan.

Trong đất canh tác, kết quả phân tích hàm lượng phytolith có thể không tuân

theo quy luật trên và bị chi phối bởi vòng tuần hoàn sinh khối. Việc thu hoạch cây

trồng lặp đi lặp lại có thể làm giảm hàm lượng có sẵn có của phytolith đến mức mà

việc bón phân Si để duy trì năng suất cây trồng là cần thiết (Datnoff và Rodrigues,

2005; Eneji và nnk, 2005; Meunier và nnk, 2008). Tương tự, Desplanques và nnk

(2006) chỉ ra rằng nếu coi silica vô định hình như nguồn cung cấp Si duy nhất cho

thực vật thì trữ lượng này sẽ bị cạn kiệt sau 5 năm canh tác (khu vực nghiên cứu tại

Camargu, Pháp).

Tại khu vực nghiên cứu, hàm lượng phytolith trong đất dao động từ 0,41 –

1,01% ở các phẫu diện có độ sâu 100 cm (Bảng 6). Khi lượng phytolith trong đất

trung bình dao động từ 0,1% tới 3% (Clarke, 2003), giá trị hàm lượng phytolith tại

khu vực nghiên cứu được đánh giá ở mức trung bình. Tuy nhiên, so sánh với hàm

lượng phytolith trong cách hệ sinh thái cạn khác như đất rừng hay đồng cỏ thì hàm

lượng phytolith ở khu vực nghiên cứu nhỏ hơn khá nhiều (phytolith thường chiếm

0,7 - 3% trọng lượng khô của đất rừng (Bartoli, 1985) và 1 - 2% trong đất đồng cỏ

(Jones và Handreck, 1967)).

Bảng 6. Hàm lượng phytolith trong các tầng đất trong 7 phẫu diện nghiên cứu

Mẫu

Nồng độ Si

tại các thời điểm lấy mẫu Phương trình

hồi quy

Hệ số

Hệ số b

(mgSi/l)

Phytolith

(%SiO2) 1h 2h 3h 4h 5h 6h 7h

Đ1.1 1,8 2,5 2,9 3,5 3,6 4,1 4,3 y = 0,3589x + 1,8785 0,97 1,88 0,54

Đ1.2 1,8 3,3 3,4 3,5 3,9 4,1 4,4 y = 0,2277x + 2,7303 0,94 2,73 0,78

Đ1.3 2,6 4,3 4,5 4,5 4,8 5,2 5,9 y = 0,2950x + 3,5267 0,88 3,53 1,01

Page 54: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

46  

Đ1.4 1,7 3,3 4,1 4,5 5,0 5,0 6,1 y = 0,4876x + 2,4951 0,94 2,50 0,71

Đ2.1 1,6 2,3 2,5 2,8 3,1 3,1 3,1 y = 0,2345x + 1,8170 0,96 1,82 0,52

Đ2.2 1,6 2,5 2,6 3,0 3,3 3,2 3,5 y = 0,2047x + 2,0730 0,91 2,07 0,59

Đ2.3 2,1 2,9 3,4 3,7 4,3 4,0 4,5 y = 0,2907x + 2,4776 0,88 2,48 0,71

Đ2.4 1,7 3,0 3,6 3,9 4,5 4,7 5,5 y = 0,4697x + 2,1030 0,98 2,10 0,60

Đ3.1 1,3 2,6 2,9 3,2 3,4 3,5 4,2 y = 0,2880x + 1,9757 0,90 1,98 0,56

Đ3.2 1,3 2,3 2,4 2,9 3,6 3,7 3,9 y = 0,3593x + 1,5157 0,93 1,52 0,43

Đ3.3 2,5 3,8 4,0 4,6 4,8 5,1 5,3 y = 0,3193x + 3,1607 0,96 3,16 0,90

Đ3.4 2,2 3,5 3,7 4,5 5,1 5,6 6,3 y = 0,5790x + 2,1537 0,99 2,15 0,62

Đ4.1 1,0 2,3 2,6 2,7 3,2 3,5 3,8 y = 0,2967x + 1,6806 0,97 1,68 0,48

Đ4.2 1,6 2,4 2,4 2,8 3,0 3,9 3,9 y = 0,3389x + 1,5485 0,91 1,55 0,44

Đ4.3 1,9 2,2 2,8 3,5 3,8 4,1 4,2 y = 0,4001x + 1,6285 0,93 1,63 0,47

Đ4.4 1,5 3,1 3,3 3,7 4,4 4,6 5,1 y = 0,4346x + 2,0761 0,98 2,08 0,59

Đ5.1 1,1 2,2 2,7 2,9 3,0 3,5 3,8 y = 0,3023x + 1,6447 0,98 1,64 0,47

Đ5.2 1,6 2,7 2,9 3,0 3,7 3,8 4,4 y = 0,3416x + 1,8804 0,93 1,88 0,54

Đ5.3 1,6 3,5 3,6 4,2 4,7 4,8 5,2 y = 0,3693x + 2,6690 0,97 2,67 0,76

Đ5.4 2,1 3,6 3,7 4,4 5,0 5,3 6,1 y = 0,5044x + 2,4059 0,97 2,41 0,69

Đ6.1 1,3 2,4 2,5 2,6 3,5 3,7 4,1 y = 0,3649x + 1,4931 0,92 1,49 0,43

Đ6.2 1,2 2,2 2,7 3,0 3,2 3,5 3,5 y = 0,2516x + 1,8921 0,91 1,89 0,54

Đ6.3 1,7 3,4 3,8 4,7 5,1 5,1 5,2 y = 0,3810x + 2,8330 0,86 2,83 0,81

Đ6.4 2,1 3,8 4,0 4,1 5,2 5,4 5,9 y = 0,4486x + 2,7031 0,93 2,70 0,77

Đ7.1 1,6 2,3 3,2 3,3 4,2 4,3 3,3 y = 0,5035x + 1,4490 0,92 1,45 0,41

Đ7.2 1,1 2,2 2,5 2,6 3,2 3,6 3,8 y = 0,3376x + 1,4551 0,97 1,46 0,42

Đ7.3 1,9 3,0 4,0 4,1 4,6 5,4 5,4 y = 0,4667x + 2,2940 0,94 2,29 0,66

Đ7.4 2,1 3,2 4,2 4,6 5,1 5,2 5,2 y = 0,3844x + 2,8376 0,83 2,84 0,81

Chú thích:

+ Mẫu Đx.1: mẫu x tầng 0 – 25 cm; Mẫu Đx.2: mẫu x tầng 25 – 50 cm; Mẫu Đx.3: mẫu x tầng 50 – 75 cm;

Mẫu Đx.4: mẫu x tầng 75 – 100 cm.

+ y (mg Si/l) là nồng độ Si tại thời điểm >2 giờ; x (giờ, x > 2) là thời gian thí nghiệm; a (mg DSi/giờ) là hệ

số góc của phương trình, biểu thị tốc độ giải phóng Si từ các khoáng silica trong đất; b là hệ số biểu thị nồng

độ Si chỉ do lượng BSi hòa tan hết gây ra mà không tính tới sự đóng góp của các khoáng vật.

Hàm lượng phytolith có xu hướng giảm dần theo chiều sâu phẫu diện và dần

ổn định ở độ sâu > 50 cm với giá trị trung bình tại các tầng đất nghiên cứu lần lượt

là 0,49 ± 0,06; 0,53 ± 0,13; 0,71 ± 0,17 và 0,73 ± 0,11% tương ứng với tầng 0 – 25

Page 55: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

47  

cm; 25 – 50 cm; 50 – 75 cm và 75 – 100 cm (Hình 22). Quá trình xáo trộn lớp đất

mặt trong mỗi vụ canh tác trong điều kiện ngập nước thúc đẩy quá trình hoà tan

phytolith. Bên cạnh đó, việc sinh khối chứa phytolith được đưa ra khỏi hệ canh tác

qua sản phẩm thu hoạch như thóc và rơm rạ; hay không được bổ sung lại đất do thói

quen đốt rơm rạ tại nơi tập kết lúa sau khi đã tuốt trong những năm gần đây là

nguyên nhân dẫn đến sự suy giảm hàm lượng phytolith tại tầng đất mặt trong khu

vực nghiên cứu. Tuy nhiên, sự biến đổi, chuyển hóa của phytolith trong môi trường

đất tương đối phức tạp và phụ thuộc vào các yếu tố như pH, Eh, nồng độ cation,

anion trong dung dịch hay sự có mặt của chất hữu cơ hòa tan… (Nguyễn Ngọc

Minh, 2012). Do đó, cần có thêm những nghiên cứu cụ thể hơn để giải thích rõ ràng

cho quy luật phân bố phytolith trong đất tại khu vực nghiên cứu.

Hình 22. Hàm lượng phytolith trung bình tại khu vực nghiên cứu

3.3.   Ảnh hưởng của sự tích luỹ phytolith đến một số tính chất đất

3.3.1.   Ảnh hưởng đến một số tính chất lý học đất

-  Thành phần cấp hạt và tỷ trọng

Kích thước của phytolith có thể từ dao động từ 5 - 200 µm và hầu hết trong

khoảng 10 - 30 µm (Pearsall, 1990), chúng có hình dạng rất đa dạng và phong phú

tùy thuộc vào loài thực vật và bộ phận mà nó khu trú. Khoảng kích thước này trùng

Page 56: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

48  

với kích thước phân loại của cấp hạt limon trong đất. Do đó, trong môi trường thuỷ

tĩnh, vận tốc chìm lắng của chúng là như nhau và kết quả phân tích thành phần cấp

hạt 0,002 – 0,05 mm sẽ bao gồm cả limon và phytolith. Tuy nhiên, phytolith có cấu

trúc vi xốp và lưới điện tích âm bề mặt lớn với có nhiều nhóm hoạt động bề mặt

trong khi limon lại là vật liệu trơ hình thành do phong hoá cơ học trong quá trình

hình thành đất. Như vậy, không chỉ có cấp hạt sét mà trong các phương pháp phân

tách thành phần cơ giới hiện tại, cấp hạt limon cũng trở nên có hoạt tính nhờ sự có

mặt của phytolith. Bên cạnh đó, quá trình tích luỹ phytolith trong đất sẽ gián tiếp

làm tỷ lệ cấp hạt 0,002 – 0,05 mm gia tăng. Tại khu vực nghiên cứu, phytolith trong

rơm rạ có đường kính ~20 µm và chiếm lần lượt 0,82; 0,87; 1,28 và 1,73% trong

cấp hạt 0,002 – 0,05 mm ở các tầng 0 – 25 cm; 25 – 50 cm; 50 – 75 cm và 75 – 100

cm.

Tỷ trọng của phytolith đạt ~2,3 g/cm3 (Piperno, 2006) và nhỏ hơn các cấp hạt

khác trong đất (tỷ trọng của sét, limon và cát lần lượt là 2,83; 2,79 và 2,65 g/cm3, do

vậy, sự tích luỹ phytolith trong đất có thể sẽ dẫn đến giảm tỷ trọng của đất. Tuy

nhiên, mối quan hệ giữa hàm lượng phytolith trong đất và tỷ trọng đất tại khu vực

nghiên cứu lại không rõ ràng vì tỷ lệ của phytolith tương đối thấp so với các cấp hạt

khác. Tầng đất có tỷ trọng lớn nhất tại 50 – 100 cm nơi có hàm lượng sét đạt cao

nhất mặc dù đây cũng là đô sâu tích luỹ nhiều phytolith hơn so với tầng 0 - 50 cm.

- Dung tích trao đổi cation (CEC)

Phytolith với bề mặt âm điện sẽ có vai trò như một keo âm trong đất, do đó,

mối quan hệ giữa CHC, hàm lượng khoáng sét và hàm lượng phytolith với CEC

được phân tích để đánh giá sự đóng góp của mỗi thành tố trên trong khả năng hấp

phụ trao đổi cation của đất. Kết quả được trình bày trong Hình 23.

Kết quả nghiên cứu cho thấy, giá trị CEC trong đất nghiên cứu phụ thuộc chủ

yếu vào hàm lượng sét và phytolith biểu thị qua hệ số tương quan R² lần lượt đạt

0,79 và 0,76. Trong khi đó, giá trị này chỉ đạt 0,1 trong phép tương quan giữa hàm

lượng CHC và CEC. Tuy có giá trị lớn hơn rất nhiều so với phytolith nhưng thành

Page 57: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

49  

phần khoáng sét chủ yếu trong mẫu nghiên cứu đều là những khoáng sét có CEC

thấp, điều này cho thấy, sự có mặt của phytolith trong đất ảnh hưởng khá nhiều tới

khả năng hấp phụ trao đổi cation của đất.

Hình 23. Tương quan giữa CHC, khoáng sét và phytolith với CEC của đất

- Tương tác với hệ keo đất (keo sét)

Do có bề mặt mang điện tích, phytolith có thể biểu hiện đặc tính keo và

tương tác với các thành phần keo khác trong đất. Với bản chất là một keo âm, nên

giữa phytolith và các keo âm như keo mùn và keo sét sẽ tồn tại một lực đẩy làm

tăng trạng thái phân tán của cả hệ keo trong đất. Các khoáng chất dinh dưỡng (hấp

phụ bởi hệ keo) có khả năng bị mất đi một khi các phần tử keo ở trạng thái phân tán

và bị cuốn trôi bởi dòng chảy bề mặt. Mặt khác, phytolith cũng có thể tạo ra ái lực

liên kết với các keo dương (oxit sắt) và thúc đẩy sự tụ keo. Tuy nhiên, trong môi

trường đất lúa thường xuyên ngập nước, tương tác của phytolith với các keo dương

có thể ít bắt gặp do sự phá hủy của các oxit sắt, mangan trong điều kiện môi trường

khử. Trên thực tế, hàm lượng phytolith trong đất nhỏ hơn rất nhiều so với cấp hạt

sét, sự tương tác trực tiếp giữa hai cấu tử này cũng hạn chế. Do đó, ảnh hưởng của

Page 58: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

50  

phytolith tới sự phân tán của cấp hạt sét được cho là do anion SiO44- mang lại khi

mà phần lớn anion này trong đất tạo ra do sự phân giải phytolith.

Sự ảnh hưởng của anion SiO44- lên đặc tính keo của khoáng sét trong dung

dịch được tiến hành trong ống nghiệm với sự có mặt của anion SiO44- ở các nồng độ

khác nhau và ở các pH khác nhau. Kết quả nghiên cứu thí nghiệm phân tán sét trong

ống nghiệm cho thấy với nồng độ SiO44- khác nhau thì có khả năng thúc đẩy phản

ứng tán keo với tốc độ khác nhau và nhìn chung khi nồng độ SiO44- tăng dần thì tốc

độ keo tụ giảm dần (Hình 24).

 Hình 24. Ảnh hưởng của Si đến sự phân tán của khoáng sét tại các pH khác nhau

Khi nồng độ anion SiO44- thay đổi thì quá trình phân tán của khoáng sét diễn

ra mạnh mẽ có thể nhận biết được quá trình này thông qua giá trị của độ truyền qua

(T%). Độ truyền qua lần lượt được xác định là: 94,10 – 32,70% với mẫu không bổ

sung Si; 94,10 – 5,54% với nồng độ Si 5 mg/l; 93,90 – 3,06% với nồng độ Si 10

mg/l; 94,66 – 2,30% với nồng độ Si 15 mg/l; 94,39 – 2,26% với nồng độ Si 20 mg/l

và 92,53 – 2,57% với nồng độ Si 25 mg/l tương ứng với pH thay đổi từ 2 – 7.

Page 59: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

51  

Ngoài sự liên kết giữa anion SiO44- với điện tích dương trên bề mặt rìa của

khoáng sét còn có sự liên kết giữa anion SiO44- với các nhóm -OH trên bề mặt oxit

sắt liên kết với bề mặt cơ sở của khoáng sét, sự trao đổi giữa các phối tử này tạo ra

cấu trúc phức nối đôi phức tạp hơn (Parr và Sullivan, 2005) (Hình 25). Các liên kết

tạo ra khiến bề mặt của khoáng sét trở nên âm điện hơn và tương tác giữa các phân

tử mang điện cùng dấu sẽ dẫn đến sự phân tán mạnh mẽ hơn của khoáng sét trong

dung dịch.

Hình 25. Cơ chế tạo liên kết bề mặt của anion SiO44-

với các nhóm chức trên bề mặt khoáng sét

Trong thực tế tại khu vực nghiên cứu, pH đo được dao động trong khoảng 6

– 8 và hàm lượng Si dễ tiêu 6,5 - 13,8 mg/kg (tương đương 24,4 – 51,8 mg Si/l nếu

lớp nước trên bề mặt ruộng đạt 10 cm), như vậy sự hoà tan của phytolith sẽ thúc đẩy

quá trình tán keo của khoáng sét trong khu vực nghiên cứu (thể hiện qua độ truyền

qua thấp tại khoảng giá trị pH 6 – 8 và nồng độ Si 5 – 20 mg/l, Hình 24). Điều này

dẫn đến sự rửa trôi của khoáng sét cũng như gián tiếp giảm khả năng lưu giữ chất

dinh dưỡng của đất.

3.3.2.   Ảnh hưởng đến một số tính chất hoá học đất

3.3.2.1.   Nguồn cung cấp dinh dưỡng khoáng cho cây trồng

Kết quả phân tích hàm lượng nguyên tố trong phytolith ho thấy Si và K là hai

nguyên tố có hàm lượng cao nhất, đây cũng là hai nguyên tố quan trọng chi phối

trực tiếp tới năng suất lúa. Với ~150 kg phytolith trong 1 tấn rơm rạ khi được bồi

hoàn lại đất, lượng Si và K sẽ tương ứng 49,8 kg và 10,8 kg (lấy trung bình Si

chiếm 33,2% và K chiếm 7,2% trong phytolith, Hình 21). Thực tế trong phẫu diện

Page 60: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

52  

đất nghiên cứu với hàm lượng phytolith tích luỹ 0,49% ở 25 cm đất tầng mặt, tính

cho 1 ha với dung trọng trung bình là 1,5 g/cm3 với 3.750 tấn đất thì lượng Si và K

mà phytolith lưu trữ lại sẽ tương ứng 6,1 tấn và 1,3 tấn. Trong khi đó, cây lúa hằng

năm lấy đi 950 kg SiO2/ha (tương đương 443,3 kg Si/ha/năm) trong đó có 70% Si

có nguồn gốc từ đất và 30% trong nước tưới (Imaizumi và Yoshida, 1958). Bên

cạnh đó, theo Thomas Dierolf và nnk (2001), trung bình để đạt năng suất 4

tấn/ha/năm ở vùng Đông Nam Á cây lúa lấy đi 90 kg N; 13 kg P; 108 kg K. Như

vậy, lượng Si và K tích luỹ trong phytolith tại khu vực nghiên cứu cùng với lượng

bổ sung theo sinh khối rơm rạ quay vòng lại đất hàng năm là hoàn toàn có tiềm

năng cung cấp đủ cho sự phát triển của cây lúa.

Hình 26. Khả năng hoà tan của phytolith khi được xử lý ở các nhiệt độ khác nhau

Tuy nhiên, điều này phụ thuộc hoàn toàn vào khả năng “hoà tan” của

phytolith. Khi được đưa vào đất theo các phương thức khác nhau thì khả năng hoà

tan phytolith và giải phóng các nguyên tố dinh dưỡng cũng hoàn toàn khác nhau.

Trong trường hợp rơm rạ được vùi vào đất theo cách truyền thống, vỏ bọc hữu cơ sẽ

ngăn cản sự thuỷ phân của nước và kìm hãm quá trình hoà tan phytolith. Trong

trường hợp lớp CHC này được phân huỷ bởi nhiệt trong quá trình đốt rơm rạ trên

Page 61: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

53  

đồng ruộng thì tuỳ thuộc vào nhiệt độ tạo ra từ quá trình đốt tạo ra mà lượng CHC

còn lại nhiều hay ít và tính chất của phytolith cũng bị biến đổi theo. Khả năng hòa

tan của phytolith trong những điều kiện như vậy được minh họa qua Hình 26.  

Tại khoảng nhiệt từ 500 – 700oC, CHC bị oxy hoá mạnh để lộ ra lớp vỏ Si

của phytolith, khiến lớp vỏ này bị thuỷ phân nhanh chóng nên hàm lượng Si, K giải

phóng cũng là lớn nhất ~ 20,25 mg/l sau 24 giờ ngâm trong nước. Từ mức nhiệt độ

800 – 1000oC hàm lượng Si và K giải phóng giảm nhanh khi nhiệt độ xử lý cao do

phytolith bị biến đổi và chuyển hóa thành các dạng oxit silic bền vững khiến bề mặt

phytolith trở nên trơ hơn. Như vậy nhiệt độ tạo ra do đốt rơm rạ nếu đạt ~600oC sẽ

tạo ra phytolith có khả năng “trả lại” các chất dinh dưỡng vào đất là lớn nhất.

Phương thức đưa phytolith vào đất không chỉ ảnh hưởng tới khả năng mà

còn ảnh hưởng tới tốc độ giải phóng các nguyên tố dinh dưỡng từ phytolith (Hình

27).

Hình 27. Cường độ giải phóng Si và K từ phytolith

Sau 7 ngày, nồng độ Si, K giải phóng từ các mẫu xử lý ở 400oC, 800oC

tương ứng là 48,91; 36,97 mg Si/l và 7,04; 12,22 mg K/l. Phytolith tạo ra ở nhiệt độ

Page 62: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

54  

800oC có lượng Si giải phóng sau 7 ngày tương ứng khoảng 75% so với mẫu ở

400oC, trong khi đó lượng K giải phóng của mẫu 400oC tương ứng khoảng 58% so

với mẫu xử lý ở 800oC. Sau 7 ngày nồng độ Si, K hòa tan của mẫu xử lý tại 400oC

có xu hướng chuyển sang trạng thái bão hòa, từ ngày thứ 6 lượng Si hòa tan tăng

không đáng kể. Trái ngược xu hướng trên, mẫu 800oC, lượng Si, K tiếp tục được

giải phóng và chưa có xu hướng đạt trạng thái bão hòa.

Như vậy, phytolith được tạo ra ở nhiệt độ đốt rơm rạ thấp hơn có xu hướng

phân giải nhanh và tạo ra nhiều Si, K hơn so với những mẫu đốt ở nhiệt độ cao.

Nhiệt độ đốt rơm rạ thường không cao hơn 500oC, do đó phytolith được đưa vào đất

có khả năng hoà tan rất cao. Trong đất nhiệt đới nói chung và tại khu vực nghiên

cứu nói riêng, thành phần khoáng sét illit và kaolinit chiếm ưu thế dẫn đến hàm

lượng K dễ tiêu trong đất thấp. Phytolith tích luỹ trong đất lúc này trở thành nguồn

cung cấp K dễ tiêu cũng như tham gia điều tiết hàm lượng K và Si hoà tan phục vụ

nhu cầu của cây trồng.

3.3.2.1.   Cân bằng và giải phóng nguyên tố dinh dưỡng trong đất

Hình 28. Hàm lượng Si hoà tan và phytolith trong phẫu diện đất nghiên cứu

Page 63: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

55  

Si hoà tan trong đất là chỉ tiêu quan trọng cho phép đánh giá khả năng cung

cấp dinh dưỡng Si cho cây trồng của đất. Hiện nay, phương pháp phổ biến và được

cho là tốt nhất để chiết rút dạng Si này ra khỏi đất là sử dụng dung dịch chiết CaCl2

0,01M (Camargo và nnk, 2007). Hàm lượng Si hoà tan chiết rút bằng CaCl2 0,01M

(Si-CaCl2) trung bình trong 100 cm phẫu diện tại khu vực nghiên cứu dao động

trong khoảng 6,5 - 13,8 mg/kg và đạt cao nhất tại độ sâu 50 – 75 cm (Hình 28).

Nếu lớp nước trên bề mặt ruộng đạt 10 cm và lượng Si hoà tan trong đất

phân bố đều trong lớp nước này thì giá trị Si hoà tan trong nước sẽ đạt 24,4 – 51,8

mg Si/l. Tuy nhiên, giá trị Si hoà tan trong đất tại khu vực nghiên cứu còn tương đối

thấp so với nhu cầu Si hoà tan cần cho sự sinh trưởng và phát triển của cây lúa nước

(≥ 40 mg Si/kg, Barbosa-Filho và nnk năm 2001). Kết quả nghiên cứu cũng cho

thấy, hàm lượng Si-CaCl2 trong các tầng đất có quy luật biến đổi theo đúng quy luật

phân bố của phytoltith trong đất (Hình 28). Tương quan tỷ lệ thuận giữa hàm lượng

phytolith và Si-CaCl2 tương đối chặt chẽ, thể hiện qua hệ số hồi quy R2 đạt 0,98

trong khi tương quan này chỉ đạt 0,70 giữa Si-CaCl2 và Si tổng số trong đất (Hình

29).

Hình 29. Mối quan hệ giữa Si-CaCl2 với Si tổng số và phytolith trong đất

Page 64: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

56  

Nói các khác, hàm lượng Si dễ tiêu trong đất bị chi phối hoàn toàn bởi sự có

mặt của phytolith. Kết quả này tương đồng với kết quả đã công bố của Bartoli

(1985), khi các nghiên cứu này cho rằng 85% và 74% lượng Si hoà tan trong đất có

nguồn gốc từ sự tan rã của phytolith. Mặt khác, khi so sánh khả năng hoà tan của

phytolith và khoáng silicat trong đất, Fraysse và nnk (2009) kết luận rằng, phytolith

có khả năng hoà tan giải phóng Si cao gấp 10.000 lần so với khoáng smectit,

kaolinit và illit trong khoảng pH 6 – 8. Đây cũng là ba loại khoáng chính cũng như

khoảng pH đo được tại khu vực nghiên cứu.

Ngoài Si, phytolith khi hoà tan còn giải phóng các nguyên tố khác như K,

Na, Ca, Mg, Cl, S, P … (kết quả chi tiết trong Bảng 5, mục 3.2.5). Với ~150 kg

phytolith / 1 tấn rơm rạ khi hoà tan sẽ đưa vào đất tương ứng 75,8; 78,2; 33,1; 27,0;

3,0; 0,5 và 2,1 g các ion hoà tan Na+, K+, Ca2+, Mg2+, Cl-, PO43- và SO4

2-. Trong

tầng 0 – 25 cm của phẫu diện nghiên cứu, với 0,49% lượng phytolith tích luỹ, lượng

ion hoà tan này sẽ tương ứng là 9,28; 9,57; 4,04; 3,31; 0,37; 0,06 và 0,25 kg (3.750

tấn đất / 1 ha có độ s`âu 25 cm với dung trọng trung bình 1,5 g/cm3). Điều này có

ảnh hưởng lớn tới tổng lượng ion hoà tan cũng như độ dẫn (EC) của đất.

Hình 30. Tương quan giữa hàm lượng phytolith và

tổng lượng Ca, Mg trao đổi trong đất

Page 65: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

57  

Trong 7 ion kể trên, Ca và Mg không chỉ là nguyên tố trung lượng cần thiết

cho cây trồng mà còn đóng vai trò tăng cường cấu trúc cho đất vì thế hàm lượng

hoà tan của hai nguyên tố này trong đất hết sức được quan tâm. Trong mẫu đất

nghiên cứu, tổng hàm lượng Ca và Mg có mối quan hệ tỷ lệ thuận với hàm lượng

phytolith biểu thị qua giá trị hồi quy tương quan R2 = 0,8 (Hình 30).

Như vậy, qua các phép phân tích mối tương quan giữa hàm lượng phytolith

và các nguyên tố hoà tan trong đất có thể rút ra nhận xét như sau: Sự có mặt của

phytolith trong đất không chỉ đóng vai trò như kho dự trữ chất dinh dưỡng (Si, K,

Ca, Mg) mà phytolith còn tham gia vào việc điều tiết các nguyên tố dinh dưỡng này

thông qua quá trình hoà tan, phân giã dưới các điều kiện môi trường. Tuy nhiên,

phytolith cũng như các hợp phần khác trong đất luôn đặt trong mối tương tác qua lại

lẫn nhau, do đó cần có thêm những thí nghiệm trên thực tế đồng ruộng với hàm

lượng phytolith được bổ sung ở mức độ khác nhau để đánh giá chi tiết hơn về ảnh

hưởng của sự có mặt phytolith tới các tính chất của đất.

Page 66: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

58  

KẾT LUẬN

Ngoài những thông tin về một số tính chất đất cơ bản tại khu vực nghiên cứu

tại xã Đại Áng, huyện Thanh Trì, thành phố Hà Nội, kết quả nghiên cứu của luận

văn cung cấp những thông tin chi tiết về đặc điểm chung của phytolith trong rơm rạ

như thành phần hoá học; đặc điểm hình thái; cấu trúc, đặc điểm khoáng vật học và

đặc điểm hoá học bề mặt của chúng. Luận văn cũng xác định được hàm lượng cũng

như sự phân bố của phytolith theo các tầng sâu phẫu diện tại xã Đại Áng, huyện

Thanh Trì, thành phố Hà Nội. Cụ thể: Hàm lượng phytolith trong đất tại khu vực

nghiên cứu dao động từ 0,41 – 1,01% trong các phẫu diện có độ sâu 100 cm với giá

trị trung bình đạt 0,49 ± 0,06%; 0,53 ± 0,13%; 0,71 ± 0,17% và 0,73 ± 0,11% tương

ứng với tầng 0 – 25 cm; 25 – 50 cm; 50 – 75 cm và 75 – 100 cm. Đây là công bố

khoa học đầu tiên và hết sức có ý nghĩa về sự tồn tại của phytolith cũng như hàm

lượng của chúng trong đất xã Đại Áng nói riêng và đất nông nghiệp Việt Nam nói

chung. Bên cạnh đó, việc phân tích mối tương quan giữa hàm lượng tích luỹ của

phytolith với tính chất lý hoá học cơ bản của đất tại khu vực nghiên cứu cũng phần

nào chỉ ra được sự ảnh hưởng của sự có mặt của phytolith tới các tính chất này của

đất. Kết quả nghiên cứu cho thấy, sự có mặt của phytolith trong đất sẽ góp phần làm

tăng tỷ lệ cấp hạt limon (0,002 – 0,05 mm), làm giảm tỷ trọng của đất và thúc đẩy

quá trình phân tán của cấp hạt sét (<0,002 mm). Với sự tích luỹ 0,49%, phytolith

lưu trữ lại tương ứng 6,1 và 1,3 tấn Si và K trong tầng đất 25 cm bề mặt. Sự hoà tan

của hàm lượng phytolith trong tầng đất này có thể giải phóng vào đất 9,28; 9,57;

4,04; 3,31; 0,37; 0,06 và 0,25 kg các ion Na+, K+, Ca2+, Mg2+, Cl-, PO43- và SO4

2-.

Mặt khác, sự có mặt của phytolith có “đóng góp” tương đương với khoáng sét trong

giá trị CEC của đất thể hiện qua mối quan hệ giữa hàm lượng khoáng sét, phytolith

với CEC của đất (R² lần lượt đạt 0,79 và 0,76) cũng như chi phối hàm lượng Si,

tổng lượng Ca và Mg dễ tiêu trong đất thể hiện qua hệ số tương quan R2 = 0,98 và

0,8. Tuy nhiên, cần có thêm các nghiên cứu “đặt” phytolith trong hệ tương tác giữa

các hợp phần khác nhau của đất trong điều kiện thực tế ngoài đồng ruộng để có thể

đánh giá chính xác hơn sự ảnh hưởng của phytolith tới tính chất đất.

Page 67: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

59  

TÀI LIỆU THAM KHẢO

v   Tiếng Việt:

1.   Cơ hội Kinh doanh Sinh khối tại Việt Nam (2012), Chương trình Năng lượng

sinh khối Bền vững của Hà Lan, thực hiện bởi Tổ chức Phát triển Hà Lan

SNV.

2.   Đỗ Hải Triều (2008), “Nghiên cứu ảnh hưởng của phân bón silica đến sinh

trưởng, năng suất và chất lượng lạc trên đất phù sa cũ bạc màu tỉnh Vĩnh

Phúc”, Luận văn Thạc sĩ Khoa học Nông nghiệp.

3.   Khương Minh Phượng (2011), “Ứng dụng mô hình Hydrus - 1D để mô phỏng

sự di chuyển của kim loại nặng (Cu, Pb, Zn) trong đất lúa xã Đại Áng,

huyện Thanh Trì, Hà Nội”, Luận văn ThS. Khoa học môi trường và bảo vệ

môi trường, mã số: 60 85 02; Người hướng dẫn khoa học: TS. Nguyễn

Ngọc Minh.

4.   Nguyễn Ngọc Minh (2012), “Vai trò của silic sinh học (Phytolith) trong rơm

rạ đối với môi trường đất và dinh dưỡng cây trồng”, Tạp chí Nông nghiệp

và Phát triển Nông thôn, 11, 47 – 52.

v   Tiếng Anh:

5.   Barão, L., Clymans, W., Vandevenne, F., Meire, P., Conley, D.J., Struyf, E.

(2014), “Pedogenic and biogenic alkaline-extracted silicon distributions

along a temperate land-use gradient”, Eur. J. Soil Sci.

6.   Barbosa-Filho, M.P, Snyder, G.H, Elliott, C.L, Datnoff, L.E (2001),

“Evaluation of soil test procedures for determining rice-available silicon”,

Commun Soil Sci. Plant Anal, 32, 1779-1792.

7.   Bartoli, F. (1985), “Crystallochemistry and surface—properties of biogenic

opal”, Journal of Soil Science, 36:335–350

8.   Bartoli, F. (1983), “The biogeochemical cycle of silicon in two temperate

foresty ecosystems”, Environmental Biogeochemistry, Ecol. Bull.

(Stockholm), 35, 469-476.

Page 68: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

60  

9.   Berthelsen, S., Noble, A. D., and Garside A. L. (2001), “Silicon research down

under: Past, present and future”, Silicon in agriculture, Pp. 241–256.

10.   Blackman, E. (1969), “Observations on the development of the silica cells of

the leaf sheath of wheat (Triticumaestivum)”, Canadian Journal of Botany

47:827-838.

11.   Carey, J.C., Fulweiler, R.W. (2012), “Human activities directly alterwatershed

dissolved silica fluxes”, Biogeochemistry, 111, 125–138.

12.   Cary, L., Alexandre, A., Meunier, J.D., Boeglin, J.L., Braun, J.J. (2005),

“Contribution of phytoliths to the suspended load of biogenic silica in the

Nyong basin rivers (Cameroon)”, Biogeochemistry, 74, 101–114.

13.   Clarke, J. (2003), “The occurrence and significance of biogenic opal in the

regolith”, Earth Science Reviews, 60:175–194.

14.   Conley, D.J., and Schelske, C.L. (2001), “Biogenic silica. In: Smol J.P., Birks

H.J.B. and Last W.M. (eds), Tracking Environmental Changes in Lake

Sediments: Volume 3: Terrestria” l, Algal, and Siliceous Indicators.

Kluwer Academic Publishers, Dordrecht, pp. 281–293.

15.   Cornelis, J.T., Delvaux, B., Georg, R.B., Lucas, Y., Ranger, J., Opfergelt, S.

(2011), “Tracing the origin of disolved silicon transferred fromvarious

soil-plant systems towards rivers”: Biogeosciences 8, 89–112.

16.   Cornelis, J.T., Delvaux, B., Ranger, J., Iserentant, A. (2010a), “Tree species

impact the terrestrial cycle of silicon through various uptakes”,

Biogeochemistry, 97, 231–245.

17.   Cornelis, J.T., Titeux, H., Ranger, J., Delvaux (2011b), “Identification and

distribution of the readily soluble silicon pool in a temperate forest soil

belowthree distinct tree species”, Plant Soil, 342, 369–378.

18.   Datnoff, LE, Rodrigues FA (2005), “The role of silicon in suppressing rice

diseases”, APS net Feature Story, 1–28.

Page 69: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

61  

19.   Datnoff, L.E., Raid, R.N., Snyder, G.H., and Jones, D.B. (1991), Effect of

calcium silicate on blast and brown spot intensities and yields of rice,

Plant Disease, 75:729-732.

20.   DeMaster, D.J. (1979), “The marine budgets of silica and 32Si. Ph.D.

Dissertation”, Yale University, 308 pp.

21.   DeMaster, D.J. (1981), “The supply and accumulation of silica in the marine

environments”, Geochim. Cosmochim. Acta: 1715–1732.

22.   DeMaster, D.J. (1991), “Measuring biogenic silica in marine sediments and

suspended matter”, Geophysical Monograph 63, America Geophysical

Union, pp. 363–367.

23.   Desplanques, V., Cary, L., Mouret, J.-C., Trolard, F., Bourrie, G., Grauby, O.,

Meunier, J.-D. (2006) “Silicon transfers in a rice field in Camargue

(France)”, J. Geochem. Explor., 88, 190–193.

24.   Dierolf, T., Fairhurst T., Mutert E. (2001), Soil fertility kit. A toolkit for acid,

upland soil fertility management in Southeast Asia. 1st ed., Oxford

Graphic Printers, page 113.

25.   Dietzel, M. (2002), “Interaction of polysilicic and monosilicic acid with

mineral surfaces”, Water–rock interaction, pp. 207–235.

26.   Dolores R Pipernoand MD Lanham (2006), Phytoliths: A Comprehensive

Guide for Archaeologists and Paleoecologists, AltaMira Press.

27.   Dorweiler, J.E., Doebley, J. (1997), “Development analysis of Teosinte Glume

Architecture1”: American Journal of Botany, 84, 1313-1322

28.   Dove P.M. (1999), “The dissolution kinetics of quartz in aqeous mixed cation

solutions”, Geochim. Cosmochim. Acta. 63, 3715-3727.

29.   Drees, L. R., Wilding, L. P., Smeck, N. E., and Sankayi, A. L. (1989), “Silica

in soils: Quartz and disordered silica polymorphs”, Minerals in soil

environments, pp. 913–974.

30.   Dürr, H.H., Meubeck, M., Harttmann, J., Laruelle, G.G., Roubeix, V. (2011),

“Global spatial distribution of natural riverine silica inputs to the coastal

Page 70: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

62  

zone”, Biogeosciences, 8, 5978-620.

31.   Ehrlich H., Demadis K.D., Pokrovsky O.S., Koutsoukos P.G. (2010), “Modern

Views on Desilicification: Biosilica and Abiotic Silica Dissolution in

Natural and Artificial Environments”, Chem. Rev. 110, 4656–4689.

32.   Elbauma R., Melamed-Bessudo C., Tuross N., Levy A.A., Weiner S. (2009),

“New methods to isolate organic materials from silicified phytoliths reveal

fragmented glycoproteins but no DNA”, Quaternary International, 193,

11–19.

33.   Eneji E, Inanaga S, Muranaka S, Li J, An P, Hattori T, Tsuji W (2005), “Effect

of calcium silicate on growth and dry matter yield of Chloris gayana and

Sorghum sudanense under two soil water regimes”, Grass and Forage

Science, 60:393–398.

34.   Epstein, E. (1994), “The anomaly of silicon in plant biology”, Proceedings of

the National Academy of Sciences of the United States of America, 91, 11.

35.   Epstein, E. and Bloom, A. J. (2005), “Mineral Nutrition of Plants: Principles

and Perspectives”, Second Edition. Sinauer.

36.   Ersan Putunand Esin Apaydin. Ricestraw as a bio-oil source via pyrolysis and

steampyrolysis. Energy, 29 (2004) 2171 – 2180.

37.   Follett, E.A.C., McHardy, W.J., Mitchell, B.D. and Smith, B.F.L. (1965),

“Chemical dissolution techniques in the study of soil clays”, Part I. Clay

Minerals, 6: 23–34.

38.   Foster, M.D. (1953), “The determination of free silica and free alumina in

ontmorillonites”, Geochim. Cosmochim., Acta 3: 143–154.

39.   Fraysse, F., Pokrovsky, O. S., Schott, J., Meunier, J.-D. (2009), “Surface

chemistry and reactivity of plant phytoliths in aqueous solutions”, Chem.

Geol., 258, 197–206.

40.   Fraysse F., Pokrovsky O.S., Schott J., Meunier J.D. (2006) “Surface

properties, solubility and dissolution kinetics of bamboo phytoliths”,

Geochim. Cosmochim. Acta. 70, 1939-1951.

Page 71: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

63  

41.   Harrison, C.C (1996), “Evidence for intramineral macromolecules containing

protein from plant silicas”, Phytochemistry, 41, 37-42

42.   Harsh, J. B., J. Chorover, and E. Nizeyimana. (2002), “Allophane and

imogolite”, Soil mineralogy with environmental applications, pp. 291–

322.

43.   Haysom, M.B.C. and Chapman, L.S. (1975), “Some aspects of the calcium

silicate trials at Mackay”, Proc. Austr. Sugar CaneTechnol., 42:117–122

44.   Herbauts, J., Dehalu, F.A., Gruber, W. (1994), “Quantitative determination of

plant opal content in soils, using a combined method of heavy liquid

separation and alkali dissolution”, Eur. J. Soil Sci., 45, 379–385.

45.   Houben, D., Sonnet, P., Cornelis, J.T. (2014), “Biochar from Miscanthus: a

potential silicon fertilizer”, Plant Soil, 374, 871–882.

46.   Iler R.K. (1979), “The Chemistry of Silica”, Wiley and Sons, New York, pp

621.

47.   Imaizumi, K. and Yoshida, S. (1958), “Studies on silicon supply of paddy

soil”, Bull. Jpn. Agric. Tech. Inst., B8, 261-304.

48.   Jaynes, E.F, Bigham, J.M (1986), “Multiple cation-exchange capacity

measurements on standard clays using a commercial mechanical

extractor”, Clays Clay Miner, 34:93-98,

49.   Jones, L. H. P., and K. A. Handreck (1965), “Studies of silica in the oat plant.

III. Uptake of silica from soils by the plant”, Plant and Soil, 23:79-96.

50.   Jones, L. H. P., and K. A. Handreck (1969), “Uptake of silica by

Trifoliumincarnatum in relation to the concentration in the external

solution and to transpiration”, Plant and Soil, 30:71-80.

51.   Jones, L.P.H., Handreck, K.A. (1967), “Silica in soils, plants, and animals”,

Advances in Agronomy, 19, 107–149.

52.   K. Prajapati, S. Rajendiran, M. VassandaCoumar, M. L. Dotaniya, V. D.

Meena, Ajay Srivastava, N. K. Khamparia, A. K. Rawat, S. Kundu (2015),

“Bio-Sequestration of Carbon in Rice Phytoliths”, Natl. Acad. Sci. Lett.,

Page 72: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

64  

38(2):129–133

53.   Kauss H, Seehaus K, Franke R, Gilbert S, Dietrich RA, Kroger N (2003),

“Silica deposition by a strongly cationic proline-rich protein from

systemically resistant cucumber plants”, Plant Journal, 33, 87-95

54.   Klotzbücher T, Leuther F, Marxen A, Vetterlein, D., Jahn, R. (2014), Silicon

cycling and budgets in rice production systems of. Laguna, the

Philippines, 6th Int. Conference on Silicon in Agriculture, 26-30 August

2014, Stockholm Sweden.

55.   Kohut C.K (1994), “Chemistry and mineral stability in saline, alkaline soil

environments”, Doctoral thesis, University of Alberta, Edmonton, AB,

Canada.

56.   Koning E., Epping E. and Van Raaphorst W (2002), “Determining biogenic

silica in marine samples by tracking silicate and aluminium concentrations

in alkaline leaching solutions”, Aquat. Geochem., 8, 37–67.

57.   Li, Z.M., Song, Z.L., Parr, J.F., Wang, H.L. (2013), “Occluded C in rice

phytoliths: implications to biogeochemical carbon sequestration”, Plant

Soil, 370, 615–623.

58.   Liang, Y., Si, J., Römheld, V. (2005), Silicon uptake and transport is an active

process in Cucumis sativus, New Phytol., 167(3):797-804.

59.   Liexang, Li, YutaIshikawwa, MachitoMihara (2012), “Effects of Burning

Crop Residues on Soil Quality in Wenshui”, International Journal of

Environmental and Rural Development, 3-1, 30 – 35.

60.   Lucas, Y. (2001), “The role of plants in controlling rates and products of

weathering: Importance of biological pumping”, Annual Review Earth

Planet Science, 29:135–163.

61.   Ma J.F. (2004), “Role of Silicon in enhancing the resistance of plants to biotic

and abiotic stresses”, Soil Sci. Plant Nutr, 50, 11-18

62.   Ma, J. F., Takahashi, E. (1990), “Effect of silicon on the growth and

phosphorus uptake of rice”, Plant Soil, 126, 115-119

Page 73: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

65  

63.   Ma, J.F., Miyake, Y., Takahashi, E (2002), “Soil, Fertilizer, and Plant Silicon

Research in Japan”, Elsevier Science.

64.   Ma, J.F., Miyake, Y., Takahashi, E. (2001), “Silicon as a beneficial element

for crop plants. In Datonoff L., Korndorfer G., Snyder G., eds, Silicon in

Agriculture”, Elsevier Science Publishing, New York, 17-39.

65.   Ma, J.F., Nishimura, K., Takahashi, E. (2012), “Effect of silicon on the growth

of rice plant at different growth stages”, Soil Science and Plant Nutrition,

35(3), 347 – 356

66.   Ma, J.F., Yamaji, N. (2006), “Silicon uptake and accumulation in higher

plants”, Trends Plant Sci., 11, 392–397.

67.   Marxen, A., Klotzbücher, T., Vetterlein, D., Jahn, R. (2013), Controls on

silicon cycling in Southeast Asian rice production systems, EGU General

Assembly 2013, held 7-12 April, in Vienna, Austria, id. EGU2013-9821

68.   McNaughton, S. J., and J. L. Tarrants (1983), “Grass leaf silicification:

Natural selection for an inducible defense against herbivores”,

Proceedings of the National Academy of Science, 80:790-791.

69.   Meunier JD, Guntzer F, Kirman S, Keller C (2008), “Terrestrial plant-Si and

environmental changes”, Mineral. Mag., 72:263–267.

70.   Meunier, J. D., F. Colin, and C. Alarcon. (1999), “Biogenic silica storage in

soils”, Geology, 27:835–838.

71.   Meunier, J.D., Guntzer, F., Kirman, S., Keller, C. (2008), “Terrestrial plant–Si

and environmental changes”, Mineral. Mag., 72, 263–267.

72.   Miller, Á. (1980), “Phytoliths as indicators of farming techniques”, Paper

presented at the 45th annual meeting of the Society for American

Archaeology, Philadelphia.

73.   Monger, H. C., and E. G. Kelly. (2002), “Silica minerals”, Soil mineralogy

with environmental applications, pp. 611–636.

74.   MônicaSartori de Camargo, Hamilton Seron Pereira, Gaspar Henrique

Korndörfer, Angélica Araújo Queiroz and Caroline Borges dos Reis

Page 74: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

66  

(2007), Soil reaction and absorption of silicon by rice, Sci. agric.

(Piracicaba, Braz.), vol. 64, no. 2, Piracicaba.

75.   Mortlock R.A. and Froelich P.N. (1989), “A simple method for the rapid

determination of biogenic opal in pelagic marine sediments”, Deep-Sea

Res, 36(9): 1415–1426.

76.   Motomura, K, Fuji, T, Suzuki, M (2004), “Silica deposition in relation to

ageing of leaf tissues in Sasaveitchii (Carrière) Rehder (Poaceae:

Bambusoideae)”, Ann. Bot., 93:235–248

77.   Moulton, K. L., J. West, and R. A. Berner (2000), “Solute flux and mineral

mass balance approaches to the quantification of plant effects on silicate

weathering”, American Journalof Science, 300:539–570.

78.   Müller P.J. and Schneider R. (1993), “An automated leaching method for the

determination of opal in sediments and particulate matter”, Deep-Sea Res

I, 40(3): 425–444.

79.   Ngoc Nguyen, M., Dultz, S., Guggenberger, G. (2014), “Effects of

pretreatment and solution chemistry on solubility of rice-straw phytoliths”,

J. Plant Nutr. Soil Sci., 177, 349–359.

80.   Okuda, Á., and E. Takahashi (1964), “The role of silicon. In The Mineral

Nutrition of the Rice Plant. Proceedings of the Symposium of the

International Rice” Research Institute, pp. 123-46.

81.   Okuda, A., Takahashi, E. (1965), “The role of silicon”, In: Themineral

nutrition of the rice plant, 123-146.

82.   Parr J.F., Sullivan L. A. (2005), “Soil carbon sequestration in phytolith”, Soil

Boil. Biochem, 37, 117 – 124

83.   Parr, J.F., Sullivan, L.A. (2011), “Phytolith occluded carbon and silica

variability in wheat cultivars”, Plant Soil, 342, 165–171.

84.   Parr, J.F., Sullivan, L.A., Quirk, R. (2009), “Sugarcane phytoliths:

encapsulation and sequestration of a long-lived carbon fraction”, Sugar

Technol., 11, 17–21.

Page 75: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

67  

85.   Parry, D. W., and A. Winslow (1977), “Electron-probe microanalysis of

silicon accumulation in the leaves and tendrils of Pisumsativum (L.)

following root severance”, AnnaU of Botany, 41:275-278.

86.   Pearsall, D. M. (1990), “Application of phytolith analysis to recon-struction of

past environments and subsistence: Recent research in the Pacific”,

Micronesica Suppl., 2, 65–74

87.   Perry, CC, Belton, D, Shafran, K. (2003), “Studies of biosilicas; structural

aspects, chemical principles, model studies and the future”, Progress in

Molecular and Subcellular Biology, 33: 269–299.

88.   Perry, CC, Keeling-Tucker T (1998), “Aspects of the bioinorganic chemistry

of silicon in conjunction with the biometals calcium, iron and aluminium”,

J InorgBiochem, 69:181–191

89.   Piperno, D.R, Holst, I, Wessel-Beaver L, Andres TC (2002), “Evidence for the

control of phytolith formation in Cucurbita fruits by the hard rind (Hr)

genetic locus: Archaeological and ecological implications”, Proceeding of

the National Academy of Sciences, USA 99, 10923-10928.

90.   Puppe, D., O. Ehrmann, D. Kaczorek, M. Wanner& M. Sommer (2015), “The

protozoic Si pool in temperate forest ecosystems – Quantification, abiotic

controls and interactions with earthworms”, Geoderma, 243-244, 196-204.

91.   Rajendiran, S., Coumar, M.V., Kundu, S., Ajay, Dotaniya, M.L., Rao, A.S.

(2012), “Role of phytolith occluded carbon of crop plants for enhancing

soil carbon sequestration in agro-ecosystems”, Curr. Sci., 103, 911–920.

92.   Raven, J.Á. (1983), “The transport and function of silica in plants”, Biological

Reviews of the Cambridge Philosophical Society, 58:179-207.

93.   Ross G.J. (1975), “Experimental alteration of chlorites into vermiculites by

chemical oxidation”, Nature 255:133-134,.

94.   Ross G.J., Kodama H., (1976), “Experimental alteration of chlorites into a

regularly interstratified chlorite – vermiculite by chemical oxidation”,

Clays Clay Miner, 24:183-190,.

Page 76: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

68  

95.   Saccone L., Conley D.J., Koning E., Sauer D., Sommer M., Kaczorek D.,

Blecker S.W., Kelly E.F. (2007), “Assessing the extraction and

quantification of amorphous silica in soils of forest and grassland

ecosystems”, European Journal of Soil Science 58:1446–1459.

96.   Sauer, D., Saccone, L., Conley, D.J., Herrmann, L., Sommer, M. (2006),

“Review of methodologies for extracting plant-available and amorphous

Si from soils and aquatic sediments”, Biogeochemistry, 80, 89–108.

97.   Saxena, Prasad, V., Singh, I. B., Chauhanand, M.S., Hasan, R. (2006),

“evidence for rice-basedagriculture”, Current Science, Vol. 90, No. 11,

1547 – 152.

98.   Schlesinger W. H. (1990), “Evidence from chronosequence studies for a low

carbon-storage potential of soils”, Nature, 348 , 232–234.

99.   Sommer, M., Kaczorek, D., Kuzyakov, T., Breuer, J. (2006), “Silicon pools

and fluxes in soils and landscapes—a review”, J. Plant Nutr. Soil Sci.,

169, 310–329.

100.  Song, Z.L., Parr, J.F., Guo, F.S. (2013), “Potential of global cropland phytolith

carbon sink from optimization of cropping system and fertilization”, PLoS

ONE 8, 1–6.

101.  Song, Z.L., Wang, H.L., Strong, P.J., Guo, F.S. (2014), “Phytolith carbon

sequestration in China's croplands”, Eur. J. Agron., 53, 10–15.

102.  Struyf, E., Conley, D.J. (2012), “Emerging understanding of the

ecosystemsilica filter”, Biogeochemistry, 107, 9–18.

103.  Tréguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A.,

Quéguiner, B. (1995), “The silica balance in the world ocean: a

reestimate”, Science, 268, 375–379.

104.  Van Cappellen, P. (2003), “Biomineralization and global biogeochemical

cycles”, Rev. Mineral. Geochem., 54, 357–381.

105.  Van der Worm, P. D. J. (1980), “Uptake of Si by five plant species as

influenced by variations in Sisupply”, Plant and Soil, 56:153-156.

Page 77: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

69  

106.  Vandevenne, F., Struyf, E., Clymans, W., Meire, P. (2012), “Agricultural

silica harvest: have humans created a new loop in the global silica cycle?”

Front. Ecol. Environ., 10, 243–248.

107.  Yoshinori Miura and Tadanori Kanno (1997), “Emissions of trace gases (CO2,

CO, CH4, and N2O) resulting from rice straw burning”, Soil Science and

Plant Nutrition, 43:4, 849 - 854

108.  Zhao, Z., Pearsall, D.M. (1998), “Experiments for improving phytolith

extraction from soils”, J. Archaeol. Sci., 25, 587–598.

v  Websites:

109.  http://www.gso.gov.vn/default.aspx?tabid=717

Page 78: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

70  

PHỤ LỤC

 

 

Page 79: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

PHỤ LỤC

Phụ lục 1: Kết qủa phân tích một số tính chất cơ bản của đất

1. Thàn phần nguyên tố hoá học

Kết quả phân tích thành phần nguyên tố hoá học của đất theo kỹ thuật phân tích PIXE

trên hệ máy gia tốc Pelletron 5SDH-2.

Hệ máy gia tốc Pelletron 5SDH-2 là loại máy gia tốc tĩnh điện có điện áp 1.7 MV. Hệ máy gồm các thành phần chính như: Nguồn Ion, Buồng gia tốc chính, Hệ chân không, Các bộ phận hội tụ điều chỉnh chùm tia, Kênh phân tích, Kênh cấy ghép!

Sơ đồ hệ máy gia tốc được trình bày ở hình dưới đây:

Hình. Sơ đồ hệ máy gia tốc Pelletron 5SDH-2

Nguyên lý hoạt động:

Chùm ion âm sinh ra từ một trong hai nguồn tạo ion (nguồn RF hoặc nguồn SNICS) được gia tốc sơ bộ và đi vào buồng gia tốc. Sau khi ra khỏi buồng gia tốc, nhờ cấu trúc gia tốc kép mà năng lượng của ion sau khi gia tốc sẽ bằng (n+1)*e*V, với e là điện tích electron, V là điện thế đỉnh, n là hóa trị của ion. Nam châm chuyển kênh (nam châm lái hướng) điều chỉnh hướng chùm tia ra kênh phân tích hoặc kênh cấy ghép tùy mục đích sử dụng.

Kỹ thuật phân tích PIXE.

Page 80: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

Phương pháp huỳnh quang tia X (tên tiếng anh: Particle Induce X-Ray Emission, viết tắt: PIXE) là một trong các phương pháp phân tích không phá hủy mẫu tiên tiến, được ứng dụng rộng rãi trong nhiều lĩnh vực như y học, khảo cổ, môi trường… Phương pháp này có các ưu điểm nổi bật như: Có thể phân tích đồng thời nhiều nguyên tố với khoảng điện tích nguyên tố Z rộng cùng độ nhạy phân tích cao, cỡ ppm và thời gian phân tích ngắn.

Để sử dụng kỹ thuật phân tích PIXE ta điều chỉnh chùm tia (chùm proton) đi vào buồng phân tích. Trong buồng phân tích có gắn sẵn mẫu cần phân tích và mẫu chuẩn để chuẩn năng lượng và các hệ số phân tích. Chiếu chùm proton bắn vào mẫu, các nguyên tử trong mẫu sẽ bị kích thích và phát ra tia X đặc trưng cho từng nguyên tố. Các tia X phát ra sẽ được thu nhận bởi Detecter tia X gắn trong buồng phân tích. Số liệu sau khi được ghi nhận sẽ được sử lý bằng phần mềm GUPIX. Phần mềm GUPIX sử dụng thuật toán bình phương tối thiểu phi tuyến để tiến hành khớp phổ và tính toán hàm lượng dựa trên diện tích đỉnh phổ tia X đặc trưng được nhận diện và nhập vào chương trình.

Các bước tiến hành:

Mẫu đo dạng bột được xác định là mẫu dày chưa biết thành phần và hàm lượng các nguyên tố chính. Mẫu được hòa với nước cất, sau đó gắn vào giá đựng mẫu làm bằng Graphit dạng tròn với bán kính 0.4cm. Đem mẫu đi sấy với nhiệt độ 1030C. Gắn mẫu chuẩn Nist vào giá đựng mẫu. Đưa mẫu vào buồng phân tích. Đo phép chiếu năng lượng thấp để xác định thành phần các nguyên tố chính ( các nguyên tố nhẹ). Đo mẫu chuẩn Nist 611 để chuẩn năng lượng và các hệ số.

Thông số Phép chiếu năng lượng thấp

Năng lượng ( keV) 831

Diện tích chùm tia (cm2) 0.4*0.4

Thời gian chiếu ( s) 850

Cường độ dòng (nA) 10

Kết quả phân tích: Hàm lượng nguyên tố (ppm)

Page 81: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

Mẫu Na Mg Al Si P S Cl K Ca Ti Cr Mn Fe Đ1.1 4396 13484 131642 282833 244.7 1031 71.88 28246 3874 5693 122.7 332.7 53571 Đ1.2 4465 13658 146503 297033 161.2 439.3 78.7 30275 3426 5832 133 514.3 46896 Đ1.3 2939 11243 150973 272408 81.47 326.3 76.79 28165 3330 5309 179.1 249.6 42719 Đ1.4 3328 11323 152725 272637 117 355.3 108 28356 3496 5214 152.9 354.4 48575 Đ2.1 4738 14502 122910 259633 291 4286 303.6 27523 7640 4968 176.4 560.8 46933 Đ2.2 4348 13744 118761 251335 192.9 3266 135.7 26501 6931 5179 165 729.9 49094 Đ2.3 4189 13010 140062 264843 97.87 4825 268.1 28341 8416 5065 178.4 569.5 41993 Đ2.4 3041 11462 137005 245624 146.7 5280 336.1 26618 8527 4405 221.3 306.3 36292 Đ3.1 5509 12171 108319 224549 189.9 4069 129.8 24963 6421 4587 253.3 442.3 46824 Đ3.2 4956 13096 111856 236394 307 260.5 135.9 26029 3448 5361 145.4 673.9 52251 Đ3.3 3701 10804 139327 244837 93.29 7852 103.4 27363 10693 4817 132.2 177.2 33949 Đ3.4 3672 12192 155799 272564 91.51 983.4 173 29841 4421 4972 190.8 309.2 33617 Đ4.1 5258 14530 124737 270501 276.3 5180 139.9 28113 8008 5241 241.9 649.2 53427 Đ4.2 4762 14989 128228 276183 391.5 584.3 166.8 29500 4186 5551 153.2 766.9 57343 Đ4.3 4653 15276 134313 289665 356.4 1189 182.3 30146 4697 5887 151.3 757.1 58015 Đ4.4 3637 12548 150771 279616 95.54 2040 292.8 29547 5471 5266 232.1 272.1 39450 Đ5.1 5363 13832 119644 252759 257.9 3749 356.6 27018 6349 5197 118.4 464 48985 Đ5.2 4995 15091 132565 267473 337.1 382.5 199.4 29964 3604 5811 187.2 714 58586 Đ5.3 4643 12490 149214 272472 173.9 1045 210.5 29526 4292 5277 184 435.8 41874 Đ5.4 3242 11841 157142 271203 21.64 824 204.5 29633 3987 4909 166.3 288.7 33983 Đ6.1 5638 14038 121283 263860 514.8 3977 213.5 27531 6958 5228 71.97 643.5 51821 Đ6.2 4985 15553 136243 299926 504 1182 166.1 31547 4688 6105 146.8 981.8 61298 Đ6.3 4714 12476 149769 279802 163.9 1742 188.7 30024 4539 5353 161.9 549.4 44538 Đ6.4 3332 11398 150951 267299 100.5 1975 195.8 28958 4736 4791 167.5 145.9 41451 Đ7.1 6117 14391 122663 268677 900.4 3045 262.8 27968 6647 5270 459.8 678.4 53940 Đ7.2 5887 13313 114537 238257 413.1 3065 675.6 24796 5962 4874 180 823.7 50876 Đ7.3 3251 11573 152401 268286 66.38 1153 202.7 29168 4191 4976 125.5 202.5 32619 Đ7.4 3479 11574 147529 264390 146.1 1312 183.1 28285 4312 4947 160.9 254.9 35653

Page 82: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

2. Thành phần cấp hạt (%)

mẫu sét limon cát mẫu sét limon Cát Đ1.1 65,31 31,17 3,52 Đ4.3 14,00 83,59 2,41 Đ1.2 70,75 27,02 2,23 Đ4.4 32,20 63,16 4,64 Đ1.3 63,15 24,13 12,72 Đ5.1 22,63 68,04 9,33 Đ1.4 68,33 21,84 9,83 Đ5.2 14,80 82,70 2,50 Đ2.1 34,40 57,64 7,96 Đ5.3 29,60 62,83 7,57 Đ2.2 34,40 60,37 5,23 Đ5.4 54,40 38,03 7,57 Đ2.3 29,20 65,96 4,84 Đ6.1 28,40 57,40 14,20 Đ2.4 38,40 57,15 4,45 Đ6.2 30,40 58,91 10,69 Đ3.1 23,60 67,66 8,74 Đ6.4 43,20 48,45 8,35 Đ3.2 26,00 64,87 9,13 Đ6.3 44,40 47,25 8,35 Đ3.3 42,93 50,19 6,88 Đ7.1 18,40 61,94 19,66 Đ3.4 53,20 38,59 8,21 Đ7.2 38,40 48,96 12,64 Đ4.1 22,80 75,48 1,72 Đ7.3 38,73 54,17 7,10 Đ4.2 8,40 85,98 5,62 Đ7.4 64,80 29,19 6,01

3. pH và hàm lượng chất hữu cơ (%)

mẫu pH CHC mẫu pH CHC Đ1.1 6,61 1,794 Đ4.3 7,26 1,56 Đ1.2 6,97 1,17 Đ4.4 6,75 2,106 Đ1.3 6,8 1,014 Đ5.1 7,05 2,028 Đ1.4 7,38 0,78 Đ5.2 7,09 1,17 Đ2.1 7,27 2,418 Đ5.3 6,83 1,872 Đ2.2 7,39 1,404 Đ5.4 6,5 1,404 Đ2.3 7,16 2,028 Đ6.1 7,94 0,624 Đ2.4 6,62 2,262 Đ6.2 7,23 1,482 Đ3.1 6,64 2,418 Đ6.4 7 1,794 Đ3.2 7,15 1,482 Đ6.3 7,47 1,638 Đ3.3 6,71 2,184 Đ7.1 6,86 2,496 Đ3.4 6,62 1,95 Đ7.2 7,13 0,78 Đ4.1 7,19 2,652 Đ7.3 6,65 1,872 Đ4.2 7,4 1,092 Đ7.4 6,74 1,404

Page 83: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

Phụ lục 2: Kết quả phân tích một số tính chất cơ bản của mẫu phytolith

1. Nhiễu xạ đồ Xray của các mẫu phytolith xử lý tại các nhiệt độ khác nhau

!Mẫu Phytolith tại 500oC

!Mẫu Phytolith tại 700oC!

VNU$HN$SIEMENS*D5005*$*Mau*Tro

33$116 1*(D)*$*Qu artz,*syn*$*SiO2*$*WL:*1.54056*$*d*x*b y:*1 .000Fi le:*Quang$Moitruong$Tro.raw*$*Type :*2Th/Th*locked*$*Start:*1.000*°*$*End:*70 .000*°*$*Step:*0.010*°*$*Step*time:*1.0 *s*$*Temp.:*25.0*°C*(Room)*$*Anode :*Cu*$*Creation:*04/07/11*09:3 2:13

Lin*(Cps)

0

100

200

300

400

500

600

2$Theta*$*Scale

1 10 20 30 40 50 60 70

d=3.340*

VNU$HN$SIEMENS*D5005*$*Mau*tro*700C

05$058 6*(*)*$*Calci te,*syn*$*CaCO3*$*Y:*1.85*%*$*d *x*by:*1.000*$*WL:*1.5405639$142 5*(*)*$*Cristobali te,*syn*$*SiO2*$*Y:*1.81 *%*$*d*x*by:*1.000*$*WL:*1.5405616$015 2*(D)*$*Tridymi te*$*SiO2*$*Y:*1.93 *%*$*d*x*by:*1.000*$*WL:*1.5405646$104 5*(*)*$*Quartz,*syn*$*SiO2 *$*Y:*1 .83*%*$*d*x*by:*1.000*$*WL:*1.5 4056Fi le:*Quang$Moitruong$Tro$70 0C.raw*$*Type:*2Th/Th*l ocked *$*Start:*3.00 0*°*$*End:*69.990*° *$*Step:*0.030*°*$*Step*time:*1.0*s*$*Temp.:*25.0*°C*(Room)*$*Anode:*Cu*$*Creation:*05/05 /14*14:41:25

Lin*(Cps)

0

100

200

300

400

2$Theta*$*Scale5 10 20 30 40 50 60 70

d=4.266*

d=4.086*

d=3.340*

d=3.022*

Page 84: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

!Mẫu Phytolith tại 800oC!

!Mẫu Phytolith tại 900oC!

VNU$HN$SIEMENS*D5005*$*Mau*tro*800C

39$142 5*(*)*$*Cristobali te,*syn*$*SiO2*$*Y:*4.53 *%*$*d*x*by:*1.000*$*WL:*1.54056

16$015 2*(D)*$*Tridymi te*$*SiO2*$*Y:*3.12 *%*$*d*x*by:*1.000*$*WL:*1.54056

46$104 5*(*)*$*Quartz,*syn*$*SiO2 *$*Y:*1 .74*%*$*d*x*by:*1.000*$*WL:*1.5 4056

Fi le:*Quang$Moitruong$Tro$80 0C$1.raw*$*Type:*2Th/Th*l ocked *$*Start:*3.000*°*$*End:*69.990*° *$*Step:*0.030*°*$*Ste p*time:*1.0*s*$*Temp.:*25.0*°C*(Room)*$*Anode:*Cu*$*Creation:*05/05 /14*16:21:45

Lin*(Cps)

0

100

200

300

400

2$Theta*$*Scale

5 10 20 30 40 50 60 70

d=4.077*

d=3.343*

d=2.4899*

d=4.294*

VNU$HN$SIEMENS*D5005*$*Mau*tro*900C

39$142 5*(*)*$*Cristobali te,*syn*$*SiO2*$*Y:*6.55 *%*$*d*x*by:*1.000*$*WL:*1.54056

16$015 2*(D)*$*Tridymi te*$*SiO2*$*Y:*2.26 *%*$*d*x*by:*1.000*$*WL:*1.54056

46$104 5*(*)*$*Quartz,*syn*$*SiO2 *$*Y:*1 .16*%*$*d*x*by:*1.000*$*WL:*1.5 4056

Fi le:*Quang$Moitruong$Tro$90 0C.raw*$*Type:*2Th/Th*l ocked *$*Start:*3.00 0*°*$*End:*69.990*° *$*Step:*0.030*°*$*Step*time:*1.0*s*$*Temp.:*25.0*°C*(Room)*$*Anode:*Cu*$*Creation:*05/05 /14*17:00:14

Lin*(Cps)

0

100

200

300

400

2$Theta*$*Scale

5 10 20 30 40 50 60 70

d=17.777*

d=4.277*

d=4.069*

d=2.9641*

d=2.4905*

d=1.6165*

d=1.4322*

d=3.340*

Page 85: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

!Mẫu Phytolith tại 1000oC!

2. Phổ hấp thụ hồng ngoại (FTIR) của các mẫu phytolith xử lý tại các nhiệt độ khác nhau

!Mẫu phytolith tại 300oC

!

VNU$HN$BRUKER$*Mau*Tro*rom*ra

47$170 1*(N)*$*Potassium*Oxid e*$*K2O*$*Y:*10.91*% *$*d*x*by:*1.00 0*$*WL:*1.54056

11$069 5*(D)*$*Cristobalite,*syn*$*SiO2 *$*Y:*89.09 *%*$*d*x*by:*1.000*$*WL:*1.54056

16$015 2*(D)*$*Tridymi te*$*SiO2*$*Y:*29.09*%*$*d*x*b y:*1 .000 *$*WL:*1.54056

Fi le:*Ninh$Mo itruong$Tro*rom*ra.raw *$*Type:*2Th/Th*locked*$*Start:*5.0 00*° *$*En d:*70.010*°*$*Step:*0 .030 *°*$*Step*time:*1.0*s*$*Temp.:*25.0 *°C*(Room)*$*Anode:*Cu*$*Crea tion :*04/28/14 *18:32:10

Lin*(Cps)

0

100

200

300

400

500

600

2$Theta*$*Scale

5 10 20 30 40 50 60 70

d=4.065*

d=3.230*

d=2.9701*

d=2.8591*

d=2.8084*

d=2.4960*

d=2.2989*

d=1.9739*

d=1.8776*

Page 86: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

!Mẫu phytolith tại 400oC

Mẫu phytolith tại 800oC

Page 87: Nghiên cứu ảnh hưởng của sự tích luỹ Phytolith đến vài tính chất lý – hoá học đất lúa

!Mẫu phytolith tại 800oC

!Mẫu phytolith tại 1000oC

!!

!