27
NEWCOM-WPR 3 MEETING SIDDIK YARMAN (ISIK) NOTE: S. YARMAN IS NOW WITH ISTANBUL UNIVERSITY

NEWCOM-WPR 3 MEETING

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

NEWCOM-WPR 3 MEETING

SIDDIK YARMAN (ISIK)NOTE: S. YARMAN IS NOW

WITH ISTANBUL UNIVERSITY

ACTIVITIES

• RESEARCH: REAL FREQUENCYTECHNIQUES WITH LUMPED ANDDISTRIBUTED ELEMENTS

– ANTENNA MODELING TECHNIQUES– DESIGN OF MATCHING NETWORK– DESIGN OF MICROWAVE AMPLIFIERS

COMPUTER PACKAGES BEINGDEVELOPED

• MODELLING• DESIGN OF MATCHING NETOWRKS• DESIGN OF MULTI STAGE AMPLIFIERS• SYNTHESIS OF NETWORK FUNCTIONS WITH

LUMPED AND DISTRIBUTED ELEMENTS• NOTE: PACKAGES ARE NOT YET AVAILABLE

FOR PROFESSIONAL USE. MORE LABOR ISREQUIRED TO MAKE THEM PROFESSIONAL

JOINT ACTIVITIES

• 1 week crash course on Real FrequencyTechniques in Istanbul March 7-11, 2005

• Antenna Cluster Meeting in Istanbul,March 8, 2005.

• Course Materials had been prepared byIsik&Istanbul University and distributed toattendees.

COURSE CONTENTS

• March 7, 2005: Prof. Dr. Sıddık Yarman

• TUTORIAL 1: Network theoretical fundamentals of RealFrequency Broad Band Matching

• TUTORIAL 2: General Overview of Real Frequency Techniques(Line segment Technique, Direct Computational Technique,Parametric Approach)

• TUTORIAL 3: Scattering based Simplified Real FrequencyTechnique

• TUTORIAL 4: Design of Matching Networks and MultistageAmplifiers via Simplified Real Frequency Technique (SRFT)

Course Contents

• March 8,2005: Prof. Dr. Ahmet Aksen (IsikUniversity)-Prof. Dr. Sıddık Yarman (IstanbulUniversity)

• TUTORIAL 5: Multivariable characterization of mixedlumped and distributed networks via SRFT

• TUTORIAL 6: Design of Matching Networks withMixed Lumped and Distributed Elements via SRFT

• TUTORIAL 7: Design of Multi-Stage Amplifiers withMixed Lumped and Distributed Elements via SRFT

COURSE CONTENTS

• March 9,2005: Prof. Dr. Sıddık Yarman, Dr. Ali Kılınç

• TUTORIAL 8: Practical Circuit Modeling forNumerical Data

• TUTORIAL 9: Immitance based Data modeling

• TUTORIAL 10: Scattering Based Data Modeling

COURSE CONTENTS

• March 10,2005 Dr. Ali Kılınç, Dr. Ebru Gürsu Çimen, Metin Sengul,Hacı Pınarbaşı,

• WORKSHOPS• WORKSHOP 1: Circuit models• WORKSHOP 2: Real Frequency Design• WORKSHOP 3: Design examples• March 11,2005• Further Design Examples• WPR-3 ANTENNA CLUSTER MEETING

RFT COURSE HELD IN ISTANBUL

• ATTENDANCY

CTTC, EspaniaXavier Nieto

CTTC, EspaniaPavel Miskovsky

CTTC, EspaniaAntonio Mollfullleda

CTTC, EspaniaJordi Mateu

Uppsala University, SwedenPeter Lindberg

Uppsala University, SwedenEric Öjefors

Technishe Universitat Ilmenau, GermanyJohannes Trabert

Technishe Universitat Ilmenau, GermanyJörn Weber

Local Attendance

• Dogus University Group: Students of Yarman• Lerzan Akbulu• Hüsyin Kaftan• Emel Alisoğlu• Faruk Tufan• Suphi Yildiz

• Ferhat Bektaş (Mersin University)

RFT COURSEISIK & ISTANBUL UNIVERSITY TEAM

• Metin Sengul• Hacı Pınarbaşı• Ali Kılınc• Ebru Gürsu Çimen• Ahmet Aksen• Sıddık Yarman

Future Integration Activities:

• Antenna measurements• Active device measurements• Antenna Modeling and design of Matching

Networks for antennas• Design of Microwave Power Amplifiers

Team• Metin Sengul (PhD Student)• Haci Pinarbasi (PhD Student)• Dr. Ali Kilinc (Post Doc.)• Dr. Ebru Gürsu Çimen (Post Doc)• Prof. Dr. Ahmet Aksen• Prof. Dr. Sıddık Yarman (Istanbul University)• Note: Dr. Yarman will add more Ph. D Students

from Istanbul University.• Problem: Contract must be revised to cover new

appointment of Dr. Yarman

Publications• Yarman, Sengul, Kilinc, Aksen, “Circuit Model for Given

Reflectance Data Constructed with Mixed Lumped andDistributed Elements for High Speed/High FrequencyCommunication Systems”, NDS-2005, 4 th InternationalWorkshop on Multi Dimensional Systems, 10-13 July,2005, Wuppertal, Germany.

• Full length version of the above paper has beenprepared.

• Yarman, Kilinc, Aksen, “Immitance Based Data Modeling”International Journal of Circuit Theory and Applications,December 2004.

Design Example: Single StageAmplifier

CAP

C=ID=

1.3 pFC2

IND

L=ID=

1.814 nHL1

IND

L=ID=

3.777 nHL2

IND

L=ID=

4.32 nHL3

IND

L=ID=

3.246 nHL4

TLIN

F0=EL=Z0=ID=

15.78 GHz90 Deg42.36 OhmTL1

TLIN

F0=EL=Z0=ID=

15.78 GHz90 Deg49.21 OhmTL2

TLIN

F0=EL=Z0=ID=

15.78 GHz90 Deg58.28 OhmTL3

TLIN

F0=EL=Z0=ID=

15.78 GHz90 Deg52.56 OhmTL4

1 2

SUBCKT

NET=ID=

"S_Parameters"AM012MXQFPORT

Z=P=

50 Ohm1

PORT

Z=P=

50 Ohm2CAP

C=ID=

2.3 pFC1

Front – End Equalizer

22

23 2

22 2

22

2

( , )( , )

( , )

( , ) (0.6148 1.3484 1.4053 1)

(2.7302 3.4821 1.8313) (1.765 1.161)

( , ) (0.6474 1.105 1) (2.2035 2.196)

0.8608

n pZ p

d p

n p p p p

p p p

d p p p p

λλ

λ

λ

λ λ

λ λ

λ

=

= + + + +

+ + + +

= + + + +

+

Back – End Equalizer2

22

3 21

2 2

21

2

( , )( , )

( , )

( , ) (0.7156 0.8858 1.8967 1)

(3.2864 2.9152 2.2168) (1.482 1.1087)

( , ) (0.6592 0.816 1) (2.319 1.809)

0.9019

n pZ p

d p

n p p p p

p p p

d p p p p

λλ

λ

λ

λ λ

λ λ

λ

=

= + + + +

+ + + +

= + + + +

+

Frequency (GHz)

1 1.2 1.4 1.6 1.8 2

15

16

17

18

19

20

21Tr

ansd

ucer

Pow

er G

ain

(dB

)MATLAB

AWR

Design Example: Single StageAmplifier

Design Example:Two StageAmplifier

Scattering Parameters of the 0.3mm Low-noise Gate GaAs MESFET NE76000Biased at VDS = 3 V, IDS = 10 mA

0.67 -160.66 -230.64 -300.62 -360.60 -420.59 -470.58 -530.57 -

580.57 -

63

0.04 740.06 660.07 590.09 510.09 470.10 410.11 360.11 300.12 29

3.191583.081482.951382.811292.671202.551132.45104

2.33 972.24 90

0.99 -27

0.97 -39

0.95 -50

0.92 -61

0.89 -70

0.87 -78

0.86 -87

0.83 -96

0.81 -

2.03.04.05.06.07.08.09.0

10.0

s22m p

s12m p

s21m p

s11m p

Freq.GHz

Coefficients of Equalizers

⎥⎦⎤

⎢⎣⎡−

=Λ 8863.105205.003784.10

H

⎥⎦⎤

⎢⎣⎡=Λ 8863.19817.15205.0

000.14290.20000.1G

⎥⎦

⎤⎢⎣

⎡−

=Λ6065.204949.008592.10

H

⎥⎦

⎤⎢⎣

⎡=Λ

6065.22715.24949.00000.17307.20000.1

G

⎥⎥⎥

⎢⎢⎢

−−=Λ

3766.103765.0009160.305094.0

2332.006678.20

H

⎥⎥⎥

⎢⎢⎢

⎡=Λ

3766.14398.13765.004782.14621.54263.35094.00268.11765.30584.40000.1

G

Input matching network:

Interstage matching network:

Output matching network:

Design Example:Two StageAmplifier

1 2NEC76000

1 2NEC760001 2

Input matchingnetwork

1 2

Interstage matchingnetwork

1 2

Output matchingnetwork

Z=50 Ohm Z=50 Ohm

Z0

50 Ohm

Z0

C50 Ohm

50 Ohm 50 OhmCC

Z1 Z1Z2

Input InterstageZ0= 95.1842ΩC= 0.33136pF

Z0 = 114.7467 ΩC = 0.31506pF Z1= 95.6074 Ω

Z2= 145.0932 ΩC = 0.16215pF

OutputTransducer Power Gain

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

Frequency GHz

Gain dB

Input GainPerformance of amplifier

Design Example:Two StageAmplifier

⎥⎥⎥

⎢⎢⎢

−−−

−−−

004797.005887.20215.09181.23663.01706.1

9890.05352.10

H

⎥⎥⎥

⎢⎢⎢

004797.005887.26803.0

9181.26279.26526.14065.16776.21

G

⎥⎥

⎢⎢

⎡−

−=Λ

01384.02299.05375.07650.05099.06233.04481.00

H

⎥⎥

⎢⎢

⎡=Λ

01384.02299.05375.05828.18484.01783.11348.21

G

⎥⎥

⎢⎢

⎡ −=Λ

01308.12796.00368.70495.14506.00087.58473.00

H

⎥⎥

⎢⎢

⎡=Λ

01308.12796.00368.77581.28731.01076.55963.31

G

Front-End

Coefficients of Mixed Element EqualizerScattering Data for HP 1 µm FET

Interstage Back-End

Design Example:Two StageAmplifier

4 4.5 5 5.5 6 6.5 7 7.5 84

5

6

7

8

9

10

11

12

13

14

15

Frequency(GHz)

TPG

(dB

)

2nd stage gain1st stage gain

Transducer Power Gain

τ5=τ6=0.25

C4=170.8pF,

Z6=16.82Ω

L3=60.2pH,

Z5=40Ω,C3=182pF,

τ3=τ4=0.2

Z4=200ΩC2=52.8pF

Z3=20ΩL2=165pH

τ 1= τ2=0.2

Z2=30ΩC1=170pF

Z1=54.23Ω

L1=42.3pH

ALL THE BEST FROM ISTANBUL&

THANK YOU ALL FOR YOUR PATIONS