50
Southern Finland Office M19/2323/2010/44 30.9.2010 Espoo Report of investigations on the Syväjärvi lithium pegmatite deposit in Kaustinen, Western Finland Timo Ahtola, Janne Kuusela, Esko Koistinen, Hannu Seppänen, Tarja Hatakka, Jaana Lohva

New Report of investigations on the Syväjärvi lithium pegmatite …tupa.gtk.fi/raportti/arkisto/m19_2323_2010_44.pdf · 2010. 10. 12. · arviointiin Gemcom GEMS-ohjelmistoa käyttäen

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Southern Finland Office M19/2323/2010/44 30.9.2010 Espoo

    Report of investigations on the Syväjärvi lithium pegmatite deposit in Kaustinen,

    Western Finland

    Timo Ahtola, Janne Kuusela, Esko Koistinen, Hannu Seppänen, Tarja Hatakka, Jaana Lohva

  • The Syväjärvi lithium pegmatite M19/2323/2010/44

    GEOLOGICAL SURVEY OF FINLAND DOCUMENTATION PAGE Date / Rec. no.

    30.9.2010

    Type of report

    Mineral deposit report, M19 Authors

    Timo Ahtola, Janne Kuusela, Esko Koistinen, Hannu Seppänen, Tarja Hatakka, Jaana Lohva Commissioned by

    Geological Survey of Finland (GTK)

    Title of report

    Report of investigations on the Syväjärvi lithium pegmatite deposit in Kaustinen, Western Finland

    Abstract

    The Syväjärvi lithium pegmatite deposit is located in the municipality of Kaustinen in Western Finland, about 60 km southeast of the city of Kokkola. The pegmatites of Syväjärvi contain spodumene (LiAlSi2O6), which is the only economical Li mineral. The area under the prospect, entitled “Syväjärvi”, mining register number 8179/1, covers 37 hectares. Suomen Mineraali Oy conducted the first explorations of the lithium pegmatites in Syväjärvi (previously known as Ruohojärvet) in the 1960s, which were continued in the 1980s by Paraisten Kalkki Oy. During 2006–2010, the Geological Survey of Finland (GTK) investigated the deposit using geological boulder mapping, a geophysical ground survey on a 1 km2 systematic grid, and diamond drilling of 2547 metres. Systematic laboratory analysis was performed for 200 lithium pegmatite samples; the methods included whole rock X-ray analysis and acid solution ICP-MS analysis for lithium. Whole rock analyses were carried out from polished thin sections using a microprobe analyser. The phase transformation temperature of spodumene was measured from 20 samples with differential thermal analysis (DTA) at the University of Oulu. The whole rock analysis resulted in a concentration of 1.0 (wt-%) Li2O, which corresponds to an average content of 13% spodumene throughout the Syväjärvi pegmatite body. The concentrations of separate spodumene grains had an average total of 7.0% (wt-%) Li2O. The phase transformation temperature of Leviäkangas spodumene mainly occurs at 959–965 ºC. This narrow temperature range is a positive signal for the industrial process. By combining previous investigations with GTK’s recent research, a spodumene-rich pegmatite dike swarm has been located along a 500 m distance with spodumene pegmatite bodies varying in width from 1–22 m. On the basis of solid modelling, the Syväjärvi deposit contains a 2.6 Mt indicated mineral resource with 0.98 wt-% Li2O (Table 10). On the basis of block modelling, it contains a 2.6 Mt indicated mineral resource with 0.78 wt-% Li2O for a 0.0% Li2O cut-off or a 1.1 Mt indicated mineral resource with 1.18 wt-% Li2O for a 1.0% Li2O cut-off. The deposit is still open at depth, north and south. Keywords

    Syväjärvi, Ruohojärvet, lithium deposit, spodumene, exploration, drilling, 3D modelling, mineral resources

    Geographical area

    Finland, Ostrobothnia, Kaustinen, Syväjärvi

    Map sheet

    2323 12 Other information

    Report serial

    M19 Archive code

    M19/2323/2010/44 Total pages

    49 Language

    English Price

    Confidentiality

    Confidential

    Unit and section

    Southern Finland Office, 211 Project code

    2551007 Signature/name

    Timo Ahtola, Geologist

    Signature/name

    Janne Kuusela, Geologist

  • The Syväjärvi lithium pegmatite M19/2323/2010/44

    GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä / Dnro

    30.9.2010

    Raportin laji

    Esiintymäraportti, M19 Tekijät

    Timo Ahtola, Janne Kuusela, Esko Koistinen, Hannu Seppänen, Tarja Hatakka, Jaana Lohva Toimeksiantaja

    Geologian Tutkimuskeskus

    Raportin nimi

    Raportti Kaustisen Syväjärven litium esiintymän tutkimuksista

    Tiivistelmä

    Geologian tutkimuskeskus (GTK) on vuosien 2006-2010 aikana tutkinut Kaustisen kunnassa karttalehdellä 2323 12 sijaitsevaa Syväjärven litiumpegmatiitti (spodumeeni) esiintymää. Esiintymä sijoittuu Pohjanmaan liuskevyöhykkeeseen Keski-Suomen graniittikompleksin ja Vaasan migmatiittikompleksin väliin. Syväjärvi -niminen valtaus (kaivosrekisterinumero 8179/1) on laajuudeltaan 37 ha. Syväjärvellä ei ole suojelu- tai Natura 2000 alueita. Suomen Mineraali Oy teki alueella tutkimuksia 1960-luvulla, jolloin kohdetta kutsuttiin nimellä Ruohojärvet. Paraisten Kalkki Oy jatkoi tutkimuksia 1980-luvulla. GTK on tehnyt alueella lohkarekartoitusta, geofysikaalisia maastomittauksia ja syväkairausta 24 reikää, yhteensä 2547 m. Syväjärven spodumeenipegmatiitti on n. 500 m pitkä ja 1-22 m leveä. Juonen sivukivi on pääasiassa kiilleliusketta. Spodumeenipegmatiittinäytteet (200 kpl) analysoitiin systemaattisesti XRF ja ICP-MS (Li, Ta, Nb, Be) menetelmillä. Mineraalien koostumus tutkittiin kiillotetuista ohuthieistä mikroanalysaattorilla. Spodumeenin faasitransformaatiolämpötila mitattiin 20 näytteestä differentiaalitermisellä analyysillä Oulun yliopistossa. Esiintymä 3D-mallinnettiin ja mineraalivaranto arviointiin Gemcom GEMS-ohjelmistoa käyttäen kairausten ja 194 kairasydännäytenalyysin perusteella. Kemiallisten analyysien perusteella esiintymän Li2O keskipitoisuus on 1.00 wt%, mikä vastaa n. 13 %:n spodumeenipitoisuutta. Spodumeenin Li2O keskipitoisuus on keskimäärin 7.00 %. Erot Syväjärven spodumeenin faasitransformaatiolämpötiloissa havaittiin pieniksi (959 – 965 ºC). Solidimallinnuksen perusteella Syväjärven esiintymän mineraalivaranto on 2.6 Mt Li2O-keskipitoisuuden ollessa 0.98 wt %. Blokkimallinnuksen perusteella esiintymän varanto on 2.6 Mt ja sen keskipitoisuus 0.78 wt % Li2O kun raja-arvona on 0.0 % Li2O. Asiasanat (kohde, menetelmät jne.)

    Syväjärvi, Ruohojärvet, litiumesiintymä, pegmatiitti, spodumeeni, kairaus, 3D-mallinnus, mineraalivarantoarvio Maantieteellinen alue (maa, lääni, kunta, kylä, esiintymä)

    Suomi, Länsi-Suomen lääni, Kaustinen

    Karttalehdet

    2323 12 Muut tiedot

    Arkistosarjan nimi

    M19 Arkistotunnus

    M19/2323/2010/44 Kokonaissivumäärä

    49 Kieli

    englanti Hinta

    Julkisuus

    luottamuksellinen Yksikkö ja vastuualue

    Etelä Suomen yksikkö, 211 Hanketunnus

    2551007 Allekirjoitus/nimen selvennys

    Timo Ahtola, geologi

    Allekirjoitus/nimen selvennys

    Janne Kuusela, geologi

  • The Syväjärvi lithium pegmatite M19/2323/2010/44

    Contents

    Documentation page Kuvailulehti

    1 INTRODUCTION 1 1.1 Geological Survey of Finland 1

    2 GEOGRAPHY AND GENERAL PROPERTY DESCRIPTION 2 2.1 Location 2

    3 REGIONAL GEOLOGY 5 3.1 Geological setting 5 3.2 Syväjärvi Claim 6 3.3 Early research history 6 3.4 Economic geology 6

    4 SURVEY DESCRIPTION 7 4.1 Current survey program 7 4.2 Research techniques and results 7

    4.2.1 Geological mapping 7 4.2.2 Geophysical surveys 7 4.2.3 Diamond drilling 8 4.2.4 RC drilling 9 4.2.5 Whole rock geochemistry 9 4.2.6 Mineralogical analyses 9 4.2.7 Phase transformation temperature measurements 9 4.2.8 Documentation 10

    5 SYVÄJÄRVI LITHIUM PEGMATITE 11 5.1 Bedrock geology 11 5.2 Chemical analyses 13 5.3 Mineralogy 14

    5.3.1 Spodumene, LiAlSi2O6 15 5.3.2 Plagioclase 17 5.3.3 K-feldspar 17 5.3.4 Quartz 18 5.3.5 Muscovite 18 5.3.6 Nb-Ta oxides and other accessory minerals 18

    5.4 Geophysics 20 5.5 Phase transformation temperature 22

    6 MINERAL RESOURCE ASSESMENT 24

    7 ENVIRONMENTAL STATEMENT 26 7.1 Quaternary deposits of the claim area and surroundings 26

  • The Syväjärvi lithium pegmatite M19/2323/2010/44

    7.2 Catchment area and current directions of water flow 28 7.3 Conservation areas 29 7.4 Chemical composition of the till, stream sediment, stream water and

    groundwater in the claim area 29 7.5 Summary 30

    8 CONCLUSIONS 31

    9 SUGGESTIONS FOR FUTURE WORK 31

    10 REFERENCES 32

  • The Syväjärvi lithium pegmatite 1 M19/2323/2010/44

    1 INTRODUCTION

    Since the 1950s, the Kaustinen area has been known for its spodumene pegmatites. Boulder fans and diamond drilling in the 1960s, 1980s and 2000s indicate that the Kaustinen region probably contains dozens of spodumene pegmatite veins. The most advanced lithium deposit is the fully permitted Länttä, owned by Keliber Oy. Keliber plans to commence the production in Länttä within the next few years and thus be the first producer of lithium carbonate in Europe (see www.keliber.no).

    Beginning in 2003, one of the main targets of the industrial mineral mapping project at GTK has been Li pegmatites in the Kaustinen-Kälviä region of Western Finland. The objective has been to map the Li (Ta, Nb, Be) potential and to discover new resources in the area. This report summarizes the procedures and results of investigations in the Syväjärvi claim area from 2006 to 2010. Another report summarizes the investigations on the Leviäkangas lithium pegmatite deposit (Ahtola et al., 2010).

    Due to the number of new applications, the demand for lithium is continuously increasing. Some of its most important applications are in the battery industry, the automotive industry, the glass and ceramics industry, metallurgy and the pharmaceutical industry. An increasing demand for lithium is particularly predicted within the battery industry, where lithium batteries are replacing the traditional Pb and Ni-Cd batteries on account of their higher energy density and high electrochemical potential.

    1.1 Geological Survey of Finland The Geological Survey of Finland (GTK) is Finland’s internationally oriented geoscience research agency. GTK was established in 1885 and it operates under the Ministry of Employment and the Economy (TEM). GTK’s main office is located in Espoo, near Helsinki, and it has regional offices in Kuopio, Kokkola and Rovaniemi. It has a permanent staff of over 600 people, including about 250 geologists, geochemists, and geophysicists.

    GTK is responsible for the acquisition and management of geoscience information in Finland, with particular emphasis on providing high quality data for the exploration and mining sector. Through a comprehensive mapping and research programme, GTK also identifies and documents areas with mineral potential in order to encourage follow-up exploration and exploitation by the private sector, with the aim of supporting the sustainable use of both bedrock resources and surficial deposits. All GTK discoveries are offered to the private sector through an open tendering process arranged by the Ministry of Employment and the Economy.

    GTK offers the minerals industry expertise in Fennoscandian economic geology, as well as confidential, client-tailored exploration services, including geophysical surveys and modern chemical, mineralogical and mineral processing laboratory services, both within Finland and worldwide. For further information, see http://www.gtk.fi.

  • The Syväjärvi lithium pegmatite 2 M19/2323/2010/44

    2 GEOGRAPHY AND GENERAL PROPERTY DESCRIPTION

    2.1 Location The Syväjärvi claim area is situated in the municipality of Kaustinen in Western Finland (Fig. 2), about 60 km SE of the city of Kokkola. The KKJ base map sheet is 2323 12A and the KKJ Zone 2 coordinates are 7062310 (X) and 2490445 (Y), corresponding to the EUREF-FIN geographic coordinates of (Lat.) 63° 39.691' and (Long.) 23° 48.424'. The UTM map sheet is Q4114C.

    The investigated area is easily accessible via a paved road (number 63) 5 km from the centre of Kaustinen, which then continues for 15 km as a gravel road through the village of Tastula and includes a bridge crossing over the Köyhäjoki River. Both the roads and the bridge are in good condition and can carry heavy vehicles. It is 20 km by road from Syväjärvi to the centre of the municipality of Kaustinen. The railway and seaport is in Kokkola (60 km). The nearest airport is in Kruunupyy (50 km).

    There are two lakes in the Syväjärvi claim area, Heinäjärvi in the north and Syväjärvi in the south. A creek joins the lakes and the region is called the Ruohojärvet lake area. In the west and north, shallow moraine hills characterize the claim area. The shore areas of the lakes are dominated by mires with Scots pine (Fig. 1). In the eastern part of the claim area, the mires are intensively drained.

  • The Syväjärvi lithium pegmatite 3 M19/2323/2010/44

    Figure 1. The area of the Syväjärvi claim is dominated by mires with young Scots pines (photo J. Kaunismäki).

  • The Syväjärvi lithium pegmatite 4 M19/2323/2010/44

    Figure 2. Location of the Syväjärvi claim area.

  • The Syväjärvi lithium pegmatite 5 M19/2323/2010/44

    3 REGIONAL GEOLOGY

    3.1 Geological setting The Syväjärvi claim area (Figs 2 & 3) is located in Western Finland in the Pohjanmaa Schist Belt, which forms a 350 km long and 70 km wide arc-shaped belt between the Central Finland Granite Complex in the east and the Vaasa Migmatite Complex in the west (Alviola et al., 2001). Alviola (2001) proposed that the lithium pegmatites in the Kaustinen region can be classified into the albite-spodumene subgroup of the LCT (Li, Cs, Ta) pegmatite family (Cerny et al., 2005). These paleoproterozoic 1.79 Ga (U-Pb columbite age) albite-spodumene pegmatites crosscut the Svecofennian 1.95–1.88 Ga supracrustal rocks, which are composed of greywackes and mica schists with some intercalations of sulphide-bearing black schists and volcanic metasediments. The metamorphic grade in the Pohjanmaa Schist Belt varies from low amphibolite facies in the eastern part to high amphibolite facies towards the Vaasa Granite complex. The LCT pegmatites at Pohjanmaa are younger than the 1.89–1.88 Ga peak of regional metamorphism (Alviola et al., 2001).

    Figure 3. Regional geological map after Korsman et al. 1997 and the location of the lithium claims, mining concessions and Natura protected areas.

  • The Syväjärvi lithium pegmatite 6 M19/2323/2010/44

    3.2 Syväjärvi Claim GTK currently has one claim at Syväjärvi (Table 1, Appendix 1). A claim (exploration licence) entitles the holder (individual or company) to carry out exploration activities in the claim area with or without the consent of the landowner. The claimant must, however, compensate the landowner in full for any permanent or temporary damage or inconvenience caused by the

    Table 1. General information on the Syväjärvi claim:

    Title Syväjärvi Mining register number 8179/1 Area 36.9306 ha Registration date 5.2.2007 Expiry date 5.2.2012

    exploration activities inside or outside the claim area. The claimant shall also act in compliance with environmental legislation and other laws and regulations.

    The claim area, “Syväjärvi”, is governed by private landowners. GTK also holds a licence for the other closest neighbouring claims. The Päiväneva claim borders the Syväjärvi claim towards the SE and the Leviäkangas claim is 4 km SW from Syväjärvi. The closest neighbouring mining concession, located 25 km E from Syväjärvi, is the Länttä Li deposit, which is owned by Keliber Oy, a Finnish mining company.

    3.3 Early research history Suomen Mineraali Oy conducted the first explorations of the lithium pegmatites in Syväjärvi (previously known as Ruohojärvet) in the 1960s, which were continued in the 1980s by Paraisten Kalkki Oy (Oy Partek Ab). The surveys were composed of boulder mapping and diamond-drilling (Table 2).

    3.4 Economic geology There are six claims for lithium in the Kaustinen region (Fig. 3): GTK holds four of them and Keliber Oy holds the other two. The most developed lithium deposit is the Länttä deposit, which is situated 25 km E from Syväjärvi and operated by Keliber Oy.

  • The Syväjärvi lithium pegmatite 7 M19/2323/2010/44

    4 SURVEY DESCRIPTION

    4.1 Current survey program GTK’s investigations at Syväjärvi began in early 2006. After reviewing the older data, GTK decided to further investigate the Syväjärvi pegmatites with the objective of outlining their dimensions and lithium potential.

    Several spodumene-rich pegmatite boulders SE from Syväjärvi form a boulder fan, which had previously led to the discovery of the Syväjärvi spodumene pegmatite in the 1960s (Säynäjärvi 1973). Drilling programmes performed by Suomen Mineraali Oy, and later by Oy Partek Ab, resulted in the discovery of spodumene-bearing pegmatite dikes in Syväjärvi (called Ruohojärvet at that time).

    The investigations during 2006–2010 included re-logging and analysing some drill cores from earlier drilling programmes during the period 1962–1981. Further research activities included two drilling programmes and some RC drilling. The samples were systematically analysed at the laboratories of GTK (2006–2007) and Labtium Oy (2007–2010).

    Geologists Olli Sarapää (2006), Asko Käpyaho (2006–2008) Timo Ahtola (2006–2010) and Janne Kuusela (2009–2010) carried out GTK’s survey at Syväjärvi. Research assistants Jukka Kaunismäki and Pekka Karimerto worked with boulder mapping, drill supervising and other research activities in the field. Geophysicist Jaana Lohva managed and interpreted the geophysical field measurements. Geologist Thair Al-Ani conducted the mineralogical analyses. Geologists Lassi Pakkanen and Bo Johansson performed the microprobe analyses. Research scientist Esko Koistinen and geologist Hannu Seppänen prepared the mineral resource assessment.

    4.2 Research techniques and results

    4.2.1 Geological mapping Boulder mapping comprised a major part of the fieldwork, since there is only one outcrop in the Syväjärvi area. Older boulder data in digitized form from Suomen Mineraali Oy have been at our disposal. During different stages of the investigation, it proved necessary to locate new boulders and to complement information about the boulders, such as their size, shape and chemical content, with survey (GPS) data. The boulder fan at Syväjärvi is presented in Figure 5. The geological map (Fig. 5) is based on diamond drilling and ground geophysical surveys.

    4.2.2 Geophysical surveys We conducted high-resolution, low-altitude airborne magnetic (Fig. 4), electromagnetic and radiation surveys of the Kaustinen area in 2004. The line spacing was 50 metres and the flight altitude was approximately 30 metres.

  • The Syväjärvi lithium pegmatite 8 M19/2323/2010/44

    Figure 4. Aeromagnetic map of the Kaustinen district. The ground survey area is marked on the map.

    We carried out magnetic and gravity ground geophysical surveys of 1 km² in the Syväjärvi exploration area in 2006. The line spacing in the magnetic survey was 50 metres and the point interval five metres. The line spacing in the gravity survey was 100 metres and the point interval 20 metres.

    4.2.3 Diamond drilling In total, GTK drilled 24 drill holes (2547 m) in the Syväjärvi prospect area in 2006–2010. The drill holes are listed in Table 2. The diamond drill core size was 46 mm (T56 bit). The distance between the drilling profiles varied from 50–100 m. We measured the locations of the drill holes afterwards with an accurate (

  • The Syväjärvi lithium pegmatite 9 M19/2323/2010/44

    4.2.4 RC drilling During 2007, GTK carried out a 56-sample RC drilling programme at Syväjärvi. The objective was to locate the pegmatite dike at the surface and to direct diamond drilling.

    4.2.5 Whole rock geochemistry The drill cores of the pegmatite rocks were systematically analysed at Labtium Oy in Espoo using X-ray fluorescence (XRF) (method code 175X). Determinations were carried out from pressed powder pellets. The amount of lithium and other REE elements was determined using ICP-MS method 307P/M (HF-HClO4 digestion). An average sample length of two metres was used. During 2006–2010, we analysed 200 samples from spodumene pegmatites. The results of chemical analyses are listed and the analysis methods explained on the appended CD.

    4.2.6 Mineralogical analyses Mineralogical studies were conducted on six polished thin sections from the Syväjärvi spodumene pegmatites. After identifying the main minerals with a polarizing microscope, their chemical compositions were determined using a Cameca SX100 microprobe analyser.

    4.2.7 Phase transformation temperature measurements In order to extract lithium from spodumene, the crystal structure of spodumene must be converted from the natural monoclinic α-form to the tetragonal β-form. For this, heat treatment is needed. The phase transformation temperature of 20 spodumene samples from Syväjärvi was measured with an SDT 2960 device at the University of Oulu.

  • The Syväjärvi lithium pegmatite 10 M19/2323/2010/44

    Hole -ID Year Company X Y Z Azimuth Dip LengthK232362R1 1962 Suomen Mineraali 7062135 2490493 83.2 0 -90 18.16K232362R2 1962 Suomen Mineraali 7062158 2490446 83.2 0 -90 18.76K232362R3 1962 Suomen Mineraali 7062168 2490474 83.2 0 -90 25.5

    K232365R001 1965 Suomen Mineraali 7062100 2490499 83.2 23 -45 68.8K232365R002 1965 Suomen Mineraali 7062069 2490488 83.2 23 -45 57.1K232365R003 1965 Suomen Mineraali 7062138 2490567 83.2 203 -45 87K232365R004 1965 Suomen Mineraali 7062217 2490438 83.4 203 -45 90.3

    K232381R1 1981 Oy Partek Ab * * * * * 200.3K232381R2 1981 Oy Partek Ab * * * * -45 200.5K232381R3 1981 Oy Partek Ab 7062100 2490370 83.2 95 -45 199.95K232381R4 1981 Oy Partek Ab 7062204 2490378 84 95 -45 199.8K232381R5 1981 Oy Partek Ab 7062194 2490479 84 95 -45 165.75K232381R6 1981 Oy Partek Ab 7062184 2490579 84 95 -45 199.05

    M232306R439 2006 GTK 7062099.94 2490328.43 85.88 90 -46 136.85M232306R440 2006 GTK 7062097.00 2490328.73 86.99 130 -47 101.02M232306R441 2006 GTK 7062237.89 2490400.39 83.67 90 -46 107.77M232306R442 2006 GTK 7062240.79 2490547.37 83.73 270 -46 161.55M232306R443 2006 GTK 7062243.33 2490485.47 82.46 90 -45 75.3M232307R458 2007 GTK 7062239.65 2490535.88 84.06 90 -45 26.2M232307R459 2007 GTK 7062239.60 2490541.66 83.88 90 -44 96.3M232307R460 2007 GTK 7062350.01 2490515.01 83.81 90 -46 148.7M232307R461 2007 GTK 7062350.59 2490490.56 84.29 90 -44 101.4M232307R462 2007 GTK 7062240.01 2490450.01 83.88 90 -45 119M232307R463 2007 GTK 7062240.00 2490590.00 83.75 90 -42 95.1M232307R464 2007 GTK 7061934.04 2490621.95 83.75 90 -44 101.5M232307R465 2007 GTK 7061933.47 2490670.29 83.87 90 -43 97.8M232307R466 2007 GTK 7061934.10 2490567.93 83.70 90 -43 102.35M232307R467 2007 GTK 7061934.27 2490512.27 83.87 90 -44 76.8M232310R506 2010 GTK 7062000.00 2490200.99 84.83 90 -45 122.4M232310R507 2010 GTK 7062000.00 2490271.99 86.80 90 -45 76M232310R508 2010 GTK 7062001.10 2490314.61 87.48 90 -43 109.8M232310R509 2010 GTK 7062301.71 2490343.00 84.34 90 -44 148.9M232310R510 2010 GTK 7062300.01 2490485.01 85.99 90 -46 70.6M232310R511 2010 GTK 7062300.01 2490403.01 84.45 90 -45 122.6M232310R512 2010 GTK 7062350.01 2490349.99 84.52 90 -60 95.7M232310R513 2010 GTK 7062400.00 2490329.99 84.78 90 -59 148.9M232310R514 2010 GTK 7062448.54 2490386.11 84.62 90 -60 104.8

    total 4078.31* not available

    Table 2. Diamond drilling in Syväjärvi during the period 1962-2010.

    4.2.8 Documentation All available digital data related to the Syväjärvi project are included on the data CD appended to this report. Other material, comprising thin sections, hand specimens, primary notes of observation and field maps, are stored at GTK’s Espoo office. Drill cores and crushed samples are stored at GTK’s drill-core depot at Loppi.

  • The Syväjärvi lithium pegmatite 11 M19/2323/2010/44

    Primary digital data, including reports of the chemical analyses, are stored in GTK’s database. The digital geophysical x,y,z data are stored in GTK’s geophysical database, and all of the geological observations, including field observations and drill core logs, can also be found in the database.

    5 SYVÄJÄRVI LITHIUM PEGMATITE

    5.1 Bedrock geology There is only one outcrop in the Syväjärvi prospect area. The majority of the general geological outlines are based on information obtained from diamond drilling and ground geophysical surveys.

    Typical rocks for the Syväjärvi area are mica schists, intermediate volcanic rocks with associated agglomeratic sections, spodumene pegmatites, muscovite pegmatites and some more sulphide-rich schists. The mica schists are mostly greywackes and may sometimes contain staurolite. The schists are in some places skarnated with tremolite and garnet present. The rock that we have interpreted as an intermediate volcanic rock has plagioclase phenocrysts, biotite aggregates and locally green amphibole, and sometimes also present are sections with rounded but also edgy fragments. We have logged the latter as agglomerates. The spodumene pegmatite is mainly intruded into mica schist and the contact zone between mica schist and the intermediate volcanic rock. The spodumene pegmatites cut both the mica schists and the intermediate volcanites.

    The Syväjärvi spodumene pegmatite is composed of several dikes that have a varying strike from SW–NE to SE–NW, and occasionally also N–S. In our interpretation, which is based on solid modelling, the spodumene pegmatite strikes from the left corner of Syväjärvi to the NE for roughly 250 m, after which the strike direction changes towards the NW for approximately 200 m and then turns to a northward direction (Fig. 5).The majority of the indicated tonnage belongs to a flat-lying NW–SE striking spodumene pegmatite. The bending nature of the dikes may be because the dike swarm has intruded into a fold structure, or alternatively has later been folded with the surrounding rocks. The pegmatites dip approximately 30-40º to a westerly direction, and they vary in thickness from 1 to 22 metres (Fig. 5).

    The main minerals in the spodumene pegmatites are spodumene, albite, quartz, K-feldspar and muscovite. The accessory minerals in spodumene pegmatites are apatite (fluorapatite), Nb-Ta oxides (Mn- and Fe-tantalite), tourmaline (schorl), garnet (almandine), arsenopyrite and sphalerite. The spodumene grains are unevenly distributed in the dike and, in some cases, completely transformed into white mica. In most cases, the spodumene content increases from the wall rock contact point towards the core section of the dike. A dominant feature for the elongated spodumene grains is that their c-axes point towards the wall rock perpendicular to the direction of the dike.

  • The Syväjärvi lithium pegmatite 12 M19/2323/2010/44

    Figure 5. A geological map of the Syväjärvi lithium pegmatite deposit. Plan projection of the drill core and RC drilling sites and the locations of spodumene pegmatite boulders.

  • The Syväjärvi lithium pegmatite 13 M19/2323/2010/44

    5.2 Chemical analyses

    We analysed 210 drill core samples, of which 200 were spodumene pegmatites. A summary of the spodumene pegmatite analyses is presented in Table 3. The average Li2O content in Syväjärvi spodumene pegmatite is 1.00%. It varies between 0.03 and 2.09%. The geochemical data for the whole rock samples, with explanations of the methodology, are listed on the data CD.

    Table 3. Summary of whole rock chemical compositions and methodology from analysed spodumene pegmatite samples at Syväjärvi.

    method code number of samples average max min stdevNa2O % XRF + 175X 200 4.42 6.72 2.42 0.93MgO* % XRF + 175X 200 0.11 1.17 0.02 0.13Al2O3 % XRF + 175X 200 16.00 22.10 12.70 0.82SiO2 % XRF + 175X 200 74.96 79.20 65.60 1.56P2O5 % XRF + 175X 200 0.35 1.09 0.14 0.13K2O % XRF + 175X 200 2.64 6.18 0.83 0.87CaO % XRF + 175X 200 0.35 2.34 0.14 0.22MnO % XRF + 175X 200 0.10 0.27 0.02 0.04Fe2O3 % XRF + 175X 200 0.60 2.57 0.27 0.22Li2O % ICP-AES 307Pp 200 1.00 2.09 0.03 0.47Beo ppm ICP-MS 307M 200 148 497 67 66Nb2O5 ppm ICP-MS 307M 200 36 149 11 19Ta2O5 ppm ICP-MS 307M 200 26 119 4 16* below detection limit (0.0199 or 0.0332) in 73 samples

    Spodumene pegmatite veins in Syväjärvi are weakly zoned. In most cases, the amount of Li2O (spodumene) increases and the amounts of Na2O (albite) and K2O (potassium feldspar) decrease from the wall zone to the core. Similarly, a higher Na2O content seems to correspond to a lower Li2O content (Fig. 6).

  • The Syväjärvi lithium pegmatite 14 M19/2323/2010/44

    Drill hole R511 94.25-109.20 m

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    R511 94.25-96.25

    R511 96.25-98.25

    R511 98.25-100.25

    R511100.25-102.25

    R511102.25-104.25

    R511104.25-106.25

    R511106.25-108.25

    R511108.25-109.20

    Li2

    O, K

    2O, N

    a2O

    (wt-%

    )

    Na2OK2OLi2O

    Figure 6. Zoning in spodumene pegmatite of the drill hole R511 94.25–109.20 m.

    The main mineral content and abundance (normative mineralogy) for spodumene pegmatites was estimated using the GCD kit 2.3 software program (after Vojtech Janousek, 2008). We used the major element oxides as inputs for the calculation. The average mineral composition of Syväjärvi spodumene pegmatite was estimated as 37% albite, 27% quartz, 16% K-feldspar, 13% spodumene and 6% muscovite (Table 4).

    Table 4. Normative mineral percentages (wt %) for the Syväjärvi spodumene pegmatite.

    Albite Quartz K-feldspar Spodumene Muscovite Totalmax 57 40 37 28 12min 20 10 5 0.4 1average 37 27 16 13 6 99

    5.3 Mineralogy Researchers from GTK have identified at least 11 mineral species (polarising microscope, SEM, microprobe) in the Syväjärvi spodumene pegmatite. The main minerals are plagioclase (albite), quartz, K-feldspar, spodumene and muscovite (Fig. 8). The accessory minerals are apatite, Nb-Ta oxides, tourmaline, garnet, arsenopyrite and sphalerite.

    We determined the chemical composition of Syväjärvi minerals from five polished thin sections using an electron microprobe analyser. Nb-Ta oxides were studied in 2008 (Al-Ani et al.) from separated grains.

  • The Syväjärvi lithium pegmatite 15 M19/2323/2010/44

    5.3.1 Spodumene, LiAlSi2O6

    The Syväjärvi spodumene is coarse grained and occurs as elongated light green (Fig. 7), sometimes light greyish, lath-shaped crystals. They are usually 0.5–10 cm long. The pegmatites are commonly zoned, having higher spodumene concentrations towards the core of the dike, with the c-axes of spodumene grains pointing towards the wall rock contact point. The mean content of spodumene in the Syväjärvi pegmatite is 13%, which corresponds to 1% Li2O (wt-%). We analysed 9 spodumene grains from 5 thin sections. It is not possible to determine Li with the Cameca SX100 microprobe. Thus, we derived the total Li2O content of the spodumene grains in Table 5 from microprobe analyses by assuming that the total percentage with Li2O would be 100%. This gave values between 6.26–7.40% for Li2O and an average concentration of 7.00% Li2O from the Syväjärvi samples. The FeO content in spodumene was determined to vary between 0.33–0.61% (Table 5).

    Figure 7. Greenish-grey spodumene in the Syväjärvi spodumene pegmatite (drill hole R443 42.50 m).

  • The Syväjärvi lithium pegmatite 16 M19/2323/2010/44

    Figure 8. Thin section of spodumene pegmatite from Syväjärvi. Spd = Spodumene, Qtz = Quartz, Kfs = Potassium feldspar, Ab = Albite, Ms = Muscovite.

    Table 5. Electron microprobe analyses (wt-%) of the Syväjärvi spodumene. Li2O* calculated by assuming that the total percentage of spodumene with Li2O would be 100%.

    hole id R3/81 R3/81 R4/81 R5/81 R5/81 R5/81 R5/81 R5/81 R5/81depth 9.3 9.3 56.35 27.45 27.45 29.65 29.65 76.6 76.6grain 1 2 1 1 2 1 2 1 2Na2O 0.10 0.06 0.08 0.12 0.10 0.10 0.10 0.08 0.06SiO2 65.48 65.70 65.06 65.20 64.80 64.76 65.07 64.91 64.60CaO 0.03 0.01 0.03 0.02 0.03 0.01 0.01 0.02 0.02K2O 0.02 0.01 0.01 0.03 0.02 0.01 0.02 0.01 0.00

    Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00TiO2 0.01 0.00 0.01 0.03 0.02 0.01 0.01 0.01 0.01MnO 0.08 0.08 0.10 0.15 0.10 0.14 0.17 0.14 0.21FeO 0.56 0.59 0.42 0.50 0.33 0.61 0.33 0.43 0.55

    Al2O3 27.08 27.13 26.73 26.71 27.11 26.84 27.29 27.13 27.08MgO 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00SrO 0.13 0.11 0.13 0.13 0.14 0.12 0.13 0.13 0.14

    F 0.02 0.02 0.01 0.03 0.04 0.03 0.02 0.01 0.01SO2 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

    Cs2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

    Total 93.54 93.74 92.60 92.95 92.70 92.66 93.18 92.89 92.70Li2O* 6.46 6.26 7.40 7.05 7.30 7.34 6.82 7.11 7.30

    *Li2O = 100 - total

  • The Syväjärvi lithium pegmatite 17 M19/2323/2010/44

    5.3.2 Plagioclase The plagioclase is albite. It is the dominant mineral in the Syväjärvi pegmatite, with an average content of 37 wt-% (Table 4), and is sometimes present as cleavelandite. The albite laths are white to grey coloured and sometimes up to 10 cm in size. We analysed albite from eight grains from five separate thin sections (Table 6). The albite from Syväjärvi consists of very pure Na-Al silicate. The CaO content varies between 0.08 and 0.28 (wt-%), while the iron content is very low (max 0.01 wt-% FeO).

    Table 6. Electron microprobe analyses (wt-%) of the Syväjärvi plagioclase.

    hole id R3/81 R3/81 R4/81 R5/81 R5/81 R5/81 R5/81 R5/81depth 9.30 9.30 56.35 27,45 27,45 29.65 76.6 76.6grain 1 2 1 1 2 1 1 2Na2O 11.35 11.17 10.74 11.05 11.17 11.12 10.99 10.85SiO2 67.99 67.61 66.92 67.11 65.69 67.43 66.85 65.77CaO 0.16 0.13 0.21 0.08 0.26 0.17 0.13 0.28K2O 0.07 0.06 0.08 0.17 0.11 0.10 0.07 0.07

    Cl 0.00 0.01 0.01 0.04 0.00 0.01 0.01 0.00BaO 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

    TiO2 0.00 0.01 0.00 0.02 0.01 0.01 0.00 0.01MnO 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01

    Cr2O3 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.02V2O3 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00

    FeO 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00NiO 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01

    Al2O3 19.37 18.98 19.03 18.92 18.67 19.24 18.78 18.70MgO 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.00SrO 0.11 0.11 0.10 0.14 0.10 0.11 0.10 0.12

    F 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00P2O5 0.13 0.08 0.18 0.07 0.07 0.12 0.08 0.11

    SO2 0.02 0.02 0.03 0.01 0.01 0.01 0.01 0.02ZnO 0.01 0.00 0.01 0.00 0.02 0.02 0.00 0.01

    Total 99.25 98.19 97.36 97.65 96.16 98.38 97.08 95.99

    5.3.3 K-feldspar The average K-feldspar content of the Syväjärvi pegmatite is 16 wt-% (Table 4). The potassium feldspar is usually perthitic and grey or slightly reddish, and sometimes up to 5 cm in size. The abundance of K-feldspar increases from the Li-rich core zone of the dike to the wall rock contact point (Fig. 6). We analysed K-feldspar from seven grains from five separate thin sections (Table 7). The K2O content was determined to vary between 15.04 and 16.24 (wt-%), while the iron content is very low (max 0.02 wt-% FeO).

  • The Syväjärvi lithium pegmatite 18 M19/2323/2010/44

    Table 7. Electron microprobe analyses (wt-%) of the Syväjärvi potassium feldspar.

    hole id R3/81 R4/81 R5/81 R5/81 R5/81 R5/81 R5/81depth 9.30 56.35 27.45 27.45 29.65 29.65 76.6grain 1 1 1 2 1 2 1Na2O 0.25 0.27 0.28 0.18 0.13 0.14 0.12SiO2 63.51 62.83 62.21 62.43 63.83 63.66 62.81CaO 0.03 0.01 0.08 0.04 0.00 0.00 0.29K2O 16.24 16.01 16.10 16.16 15.60 15.04 15.04

    Cl 0.01 0.01 0.06 0.00 0.01 0.01 0.01BaO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

    TiO2 0.00 0.01 0.01 0.01 0.01 0.02 0.01MnO 0.01 0.01 0.03 0.02 0.00 0.01 0.02

    Cr2O3 0.01 0.01 0.02 0.03 0.01 0.01 0.01V2O3 0.00 0.00 0.01 0.02 0.02 0.02 0.01

    FeO 0.01 0.01 0.02 0.01 0.01 0.00 0.01NiO 0.01 0.00 0.01 0.00 0.01 0.00 0.01

    Al2O3 17.79 17.79 17.49 17.60 17.52 17.45 16.75MgO 0.00 0.00 0.00 0.00 0.01 0.00 0.01SrO 0.15 0.01 0.01 0.03 0.03 0.00 0.02

    F 0.00 0.00 0.00 0.00 0.00 0.00 0.00P2O5 0.03 0.22 0.10 0.20 0.00 0.01 0.01

    SO2 0.01 0.01 0.02 0.01 0.00 0.02 0.01ZnO 0.01 0.02 0.00 0.02 0.03 0.01 0.03

    Total 98.08 97.22 96.42 96.76 97.21 96.43 95.15

    5.3.4 Quartz The average quartz content in the Syväjärvi spodumene pegmatite is 27 wt-% (Table 4). The quartz occurs as greyish, sometimes light brownish (smoky quartz) 0.51 cm crystals. The microprobe analyses revealed that quartz occurs as a pure mineral. The iron content of quartz was below the detection limit (164 ppm) in all nine of the analysed quartz grains.

    5.3.5 Muscovite The average normative muscovite content in Syväjärvi is 6 wt% (Table 4). The muscovite of the studied pegmatites appears flaky, ranging from colourless to silvery-greenish aggregates, and is generally associated with or replaces spodumene.

    5.3.6 Nb-Ta oxides and other accessory minerals The typical phases of the accessory minerals present in spodumene pegmatites are apatite (fluorapatite), Nb-Ta oxides (Mn- and Fe-tantalite), tourmaline (schorl), garnet (almandine), arsenopyrite and sphalerite.

    Fluorapatite is the most abundant phosphate. Garnet is sometimes present and occurs as orange-red grains within albite-rich zones.

    The average niobium and tantalum content of the Syväjärvi spodumene pegmatites was determined to be 36 ppm Nb2O5 and 26 ppm Ta2O5. Both of these elements are carried by Fe-tantalite and Mn-tantalite (Al-Ani et al., 2008). The range of Nb and Ta contents in whole-rock analyses was 11–149 ppm Nb2O5 and 4–119 ppm Ta2O5 (Table 3). The grain sizes of Mn- and

  • The Syväjärvi lithium pegmatite 19 M19/2323/2010/44

    Fe-tantalites in Syväjärvi are small, about 0.2– 2 mm (Fig. 9). The highest Nb and Ta contents occur within the most albite rich zones. In 2008, researchers from GTK separated 19 Nb-Ta oxide grains from the drill core sample R443 62.15-64.15 m of the Syväjärvi spodumene pegmatite. The grains were analysed with a microprobe at GTK. About half of the grains were Fe-tantalite and the other half were Mn-tantalite (Table 8). Table 8. Microprobe analyses from the Nb-Ta oxides of the Syväjärvi spodumene pegmatite from drill holes R443 62.15-64.15 m (after Al-Ani et al., 2008).

  • The Syväjärvi lithium pegmatite 20 M19/2323/2010/44

    A B Figure 9. Nb-Ta oxides of the Syväjärvi spodumene pegmatite. A) A tabular crystal of Mn-tantalite (Table 8, grain 10) and B) A tabular crystal of Fe-tantalite (Table 8, grain 16), both from drill hole R443 62.15-64.15 m.

    5.4 Geophysics The purpose of the geophysical ground surveys was to support the geological mapping and to define the borders of the spodumene pegmatite deposit. The petrophysical properties of the spodumene pegmatites are quite similar to mica schist, which is the most common wall rock in the Kaustinen area. The electric conductivity of spodumene pegmatites is low; it is non-magnetic and the density is 2.7–2.8 kg/cm³. The Syväjärvi ground survey area is situated in the middle of NW–SE trending, moderately magnetic zone. The anomaly is caused by intermediate volcanic rocks. In the southern part of Syväjärvi the anomaly is significantly weakened, which is possibly due to an E–W fracture zone cutting the intermediate volcanic rocks. The surrounding mica schist has slight magnetic changes (Fig. 10).

  • The Syväjärvi lithium pegmatite 21 M19/2323/2010/44

    Figure 10. Ground magnetic map of the Syväjärvi exploration area. The blue lines show the magnetic profiles and the red patterned line marks the spodumene pegmatite. Basemap © National Land Survey of Finland, license number MML/VIR/TIPA/217/10. Bouguer and gravity trend maps are presented in Figure 11. The gravity trend map shows the variation in gravity in the area when the regional effect is removed. The gravity profiles were interpreted in order to define the soil thickness and to outline whether the spodumene pegmatites can be seen as a changed elevation in the interpreted topography of the bedrock. While there were some changes in the gravity interpretation, there were no defined pegmatites. The soil thickness was approximately 10 metres in the area.

  • The Syväjärvi lithium pegmatite 22 M19/2323/2010/44

    A. B.

    Figure 11. A) Bouguer and B) gravity trend map from the Syväjärvi area. The deposit of pegmatites is marked with a red patterned line. Basemap © National Land Survey of Finland, license number MML/VIR/TIPA/217/10.

    5.5 Phase transformation temperature In order to extract lithium from spodumene, the crystal structure of spodumene must be converted from the natural monoclinic α-form to the tetragonal β-form. Heat treatment at about 1000 ºC is needed. The phase transformation temperature of Syväjärvi spodumene was measured for 20 samples from drill hole R422 (Table 9) with differential thermal analysis (DTA) at the University of Oulu, Department of Process and Environmental Engineering, Laboratory of Process Metallurgy. Based on the results (Leppälä, 2009), the phase transformation of Syväjärvi spodumene mainly occurs at a temperature of between 959–965 ºC. The average result from the measurements was 961 ºC. The narrow temperature range is a positive signal for the industrial process.

  • The Syväjärvi lithium pegmatite 23 M19/2323/2010/44

    Table 9. Phase transformation temperature of Syväjärvi spodumene.

    sample heating rate weight phase transformation temperature

    [hole id/depth] [°C/min] [mg] [°C] R442 13,12–13,18 A 20 30,3 963R442 13,12–13,18 B 20 29,7 959R442 33,91–33,97 A 20 31,3 970R442 33,91–33,97 B 20 30,6 962R442 41,53–41,56 A 20 30,6 962R442 41,53–41,56 B 20 31,1 965R442 44,86–44,90 A 20 30,9 948R442 44,86–44,90 B 20 29,9 947R442 58,84–58,86 A 20 31,2 960R442 58,84–58,86 B 20 29,6 965R442 65,15–65,22 A 20 30,2 961R442 65,15–65,22 B 20 30,9 961R442 65,15–65,22 C 20 29,9 961R442 65,15–65,22 D 20 31,5 959R442 86,15–86,21 C 20 30,6 958R442 102–102,4 A 20 31,4 965R442 102–102,4 B 20 29,7 964R442 102–102,4 C 20 29,4 965R442 131,05–131,11 A 20 31,5 962R442 131,05–131,11 B 20 30,6 962

    max 970min 947

    average 961

  • The Syväjärvi lithium pegmatite 24 M19/2323/2010/44

    6 MINERAL RESOURCE ASSESMENT

    3D modelling and a preliminary mineral resource assessment for the Syväjärvi deposit was done in two ways: first, by solid modelling using conventional sectional geological outlining of the mineralized bodies as polygons (Fig. 12), and second, by block modelling in 2x2x2 m2 blocks using inverse distance interpolation (Fig. 13). Modelling and the estimates were based on the assays from 194 systematically analysed diamond drill core samples. 3D -modelling and a mineral resource assessment of the deposit was carried out with Gemcom GEMS software. On the basis of solid modelling, the Syväjärvi deposit contains a 2.6 Mt indicated mineral resource with 0.98 wt% Li2O. On the basis of block modelling, it contains a 2.6 Mt indicated mineral resource with 0.78 wt% Li2O with a cut off for Li2O at 0.0 wt%, or a 1.1 Mt indicated mineral resource with 1.18 wt% Li2O with a cut off for Li2O at 1.0 wt%. The estimations were reached mainly to a depth of 70-85 m (elevation z = 0). The blocks below the elevation z = 0 contain a 0.2 Mt resource with a cut off for Li2O at 0.0 wt%. Half of the resources (40-60 % depending on the cut off) were considered as a measured resource and half as an indicated resource. We applied the recommendations of the Finnish Association of Mining and Metallurgical Engineers to the classifications used. The assessments are consistent with JORC and EFG/PERC standards. The deposit is still open at depth and to the north and south and, hence, it is possible that the present resource assessment will prove to be conservative with respect to tonnage. Although the mineralisation seems to have a fairly good continuity, more drill core samples are needed for a more reliable resource assessment and 3D modelling. 3D -modelling and a mineral resource assessment of the deposit is described in detail by Koistinen et al. 2010.

  • The Syväjärvi lithium pegmatite 25 M19/2323/2010/44

    Figure 12. . A solid model of the Syväjärvi lithium deposit seen downwards to north. Length of the deposit is 500 m.

    Figure 13. A 3D view of Li2O % in blocks seen to west (colours: see fig 6).

    Table 10. Summary of mineral resource assessment

    Indicated (solid model) Indicated (block model) Cut off Li2O wt%

    Tonnage Mt

    Li2O wt %

    Tonnage Mt

    Li2O wt %

    0.0 2.6 0.98 2.6

    0.78

    1.0 1.1

    1.18

  • The Syväjärvi lithium pegmatite 26 M19/2323/2010/44

    7 ENVIRONMENTAL STATEMENT There are two lakes in the Syväjärvi claim area, Heinäjärvi in the north and Syväjärvi in the south. A creek joins the lakes and the region is called the Ruohojärvet lake area. In the west and north, shallow moraine hills characterize the claim area. The highest hill, Marjakangas, reaches an elevation of about 100 metres above sea level. There is no settlement in the Syväjärvi claim area or in its neighbourhood. The shore areas of the lakes are dominated by mires with Scots pine (Fig. 1). In the eastern part of the claim area, the mires are intensively drained. The Ruohojärvioja stream starting from Lake Syväjärvi in the west collects surface waters in surroundings of the lake and discharges towards the north and further into Ullavanjoki River via the Rytilampinoja stream.

    7.1 Quaternary deposits of the claim area and surroundings Quaternary deposits in the claim area and in its surroundings mainly consist of peat and till (Fig. 14). The texture is sandy till. However, sediments underlying the peat deposits have not been studied in detail. According to the drillings in the Syväjärvi claim area, the thickness of Quaternary deposits varies from 3.6 to 15.7 metres. There are no important sand or gravel aquifers in the claim area, which could have importance for the local water supply. The nearest aquifers are located in the Ullava area, about 6 km to the northeast, and in the Jylhä area, about 8 km to the southwest from the claim area. According to till studies in the Syväjärvi area, the groundwater level is at a depth of 3–4 metres. According to the base map, there are no springs in the claim area or in the neighbouring area.

  • The Syväjärvi lithium pegmatite 27 M19/2323/2010/44

    Figure 14. Quaternary map of the Syväjärvi claim area.

  • The Syväjärvi lithium pegmatite 28 M19/2323/2010/44

    7.2 Catchment area and current directions of water flow The Syväjärvi claim area is a small part of the Rytilampioja catchment located in the southern corner of the catchment (Fig. 15). Waters from Lake Syväjärvi discharge into the Ruohojärvioja stream in the west, turning towards the north, where it collects surface waters from the surrounding drained mires. The Ruohojärvenoja stream joins the Rytilampinoja stream, which discharges into the Ullavanjoki River, about 5 km to the northeast of the claim area.

    Figure 15. The Rytilampinoja stream catchment area, where the Syväjärvi claim area is located. Current flow directions of surface waters are marked with brown arrows and the groundwater gradient with blue arrows. Basemap © Maanmittauslaitos, lupanro MML/VIR/TIPA/217/10.

  • The Syväjärvi lithium pegmatite 29 M19/2323/2010/44

    7.3 Conservation areas There are no conservation areas in the Syväjärvi claim area. The closest conservation area is Vionneva protected area (FI1000019), 2.5 km to the east from the claim area. Vionneva belongs to the EU Natura 2000 network of protected areas. No endangered animal or plant species have been reported in the Syväjärvi claim area.

    7.4 Chemical composition of the till, stream sediment, stream water and groundwater in the claim area

    The regional geochemical mapping data of the Geological Survey of Finland (GTK) include seven till samples taken from surroundings of the Syväjärvi claim area (Salminen 1995). Median concentrations of the elements in these samples (

  • The Syväjärvi lithium pegmatite 30 M19/2323/2010/44

    7.5 Summary There is no settlement in the Syväjärvi claim area. Quaternary deposits in the claim area mainly consist of peat and sandy till. The thickness of the Quaternary deposits varies from 3.6 to 15.7 metres. The surface waters flow firstly towards the west in the Ruohojärvenoja stream and further to the north via the Rytilampioja stream, and discharge into Ullavanjoki River. Ullavanjoki discharges into Emmes Storträsket Lake and further into the Isojärvi Lake in the west of the Rytilampioja catchment, where the claim area is located. The claim area has no groundwater aquifers classified as important or suitable for water supply. Furthermore, there are no conservation areas in Syväjärvi claim area, and no endangered animal or plant species have been reported. In an earlier geochemical till mapping project, GTK took seven till samples for geochemical analysis from the surroundings of the Syväjärvi claim area. Lithium, copper and nickel concentrations in the till were on average higher than those in the tills of Central Ostrobothnia. No geochemical stream sediment, stream water or groundwater samples have been taken from the claim area. Therefore, comprehensive local background data (baseline data) have not been collected.

  • The Syväjärvi lithium pegmatite 31 M19/2323/2010/44

    8 CONCLUSIONS

    Several spodumene-bearing pegmatite dikes were penetrated during drilling by GTK in 2006 –2010. They belong to the Syväjärvi dike swarm, which Suomen Mineraali Oy previously investigated in the 1960s and Paraisten kalkkivuori Oy in the 1980s. The dikes can be traced to within a distance of approximately 500 m. The Syväjärvi spodumene pegmatite is composed of several dikes that have a varying strike from SW–NE to SE–NW and occasionally also N–S. In our interpretation, which is based on solid modelling, the spodumene pegmatite strikes from the left corner of Syväjärvi to the NE for roughly 250 m, after which the strike changes towards the NW for approximately 200 m and then turns to a northwards direction. The width of the drill intersections ranges between 1 and 22 m. The average Li2O calculated from the spodumene pegmatite drill core samples is 1.00 wt-%. The indicated resource, depending on the method of estimation, is estimated at a depth of 70 - 85m to be 2.6 Mt, with 0.78 – 0.98% Li2O. The pegmatite has an albite-dominated mineral composition and a rather homogeneous internal structure and preferred orientation of spodumene. Spodumene grains are mainly orientated perpendicularly to the dike walls. Internally, the spodumene pegmatites are in most cases zoned, with increasing spodumene towards the centre. The spodumene of Syväjärvi has a rather high Fe content, and it is therefore probably not suitable for glass or ceramic end uses. The possible products are most likely to be different kinds of lithium chemicals. Nb-Ta oxides may also have some economic value as a by-product. The Fe content of feldspars and quartz is low. The Syväjärvi spodumene has a narrow phase transformation temperature range, which is a positive signal for the industrial process.

    9 SUGGESTIONS FOR FUTURE WORK The dimensions of the Syväjärvi pegmatites have still only partly been explored. The pegmatite is probably larger than is at present known.

    - The deposit is still open at depth and to the north and south along the strike. More drilling is also required to obtain more accurate estimates between the current sections.

    - Beneficiation tests will be needed to investigate the concentrate process of spodumene and other valuable minerals.

  • The Syväjärvi lithium pegmatite 32 M19/2323/2010/44

    10 REFERENCES

    Ahtola, T., Kuusela, J., Koistinen, E., Seppänen, H., Hatakka, J., Lohva, J. 2010. Report of investigations on the Leviäkangas lithium pegmatite deposit in Kaustinen, Western Finland. M19/2323/2010/32.

    Alviola R., Mänttäri I., Mäkitie H., Vaasjoki M. 2001. Svecofennian rare-element granitic pegmatites of the Ostrobothnia region, Western Finland; their metamorphic environment ad time of intrusion. Geological Survey of Finland, Special paper 30:9-29.

    Al-Ani, Thair., Pakkanen, Lassi & Ahtola, Timo. 2008. Nb-Ta Oxide Minerals from Complex Granitic Spodumene Pegmatites in the Kaustinen district, Western Finland. 37 p., 2app. Geological Survey of Finland, research report, M19/2323/2008/59.

    Al-Ani, Thair& Ahtola, Timo 2008. Mineralogy of spodumene pegmatites, Kaustinen, Western Finland. 26 p., 18 app. Geological Survey of Finland, research report M19/2323/2008/61.

    Černy, P. 1991. Rare-Element Granitic Pegmatites. Part 1: Anatomy and Interna1 Evolution of Pegmatite Deposits. Geosciences Canada, vol. 18, pp. 49-67.

    Koistinen, E., Seppänen, H., Ahtola, T., Kuusela, J. 2010. Mineral resource assessment and 3D modelling of the Syväjärvi lithium pegmatite deposit, Western Finland. 13p. Geological Survey of Finland. Archive report: M19/2323/2010/45.

    Koljonen, T. 1992. Results of the mapping. In: Koljonen, T. (ed.) Suomen geokemian atlas, osa 2: moreeni - The Geochemical Atlas of Finland, Part 2: Till. Geological Survey of Finland, Espoo, pp. 106-125.

    Korsman, K. (ed.); Koistinen, T. (ed.); Kohonen, J. (ed.); Wennerström, M. (ed.); Ekdahl, E. (ed.); Honkamo, M. (ed.); Idman, H. (ed.); Pekkala, Y. (ed.) 1997. Suomen kallioperäkartta = Berggrundskarta över Finland = Bedrock map of Finland 1:1 000 000. Espoo: Geologian tutkimuskeskus.

    Lahermo, P.; Väänänen, P.; Tarvainen, T.; Salminen, R. 1996. Suomen geokemian atlas. Osa 3 : Ym päristögeokemia - purovedet ja -sedimentit = Geochemical atlas of Finland. Part 3 : Environmental geochemistry - stream waters and sediments. Espoo: Geologian tutkimuskeskus. 149 p.

    Leppälä, M. 2009. Syväjärven spodumeenin faasitransformaatio ja lämmönsiirto epäsuorasti lämmitettävässä rumpu-uunissa. Diplomityö. Oulun Yliopisto, Prosessi- ja Ympäristötekniikan osasto, Prosessimetallurgian Laboratorio. 54 s.

    Salminen, R. (toim.) 1995. Alueellinen geokemiallinen kartoitus Suomessa vuosina 1982 – 1994. Espoo: Geologian tutkimuskeskus, Tutkimusraportti 130, 47 s. (English summary: Regional Geochemical Mapping in Finland in 1982 – 1994).

    Säynäjärvi, K. 1973. Ruohojärvi 1. 1941/1. Valtausraportti Kaivosrekisterinumero 1941/1 Ministry of Trade and industry (claim report).

  • The Syväjärvi lithium pegmatite 33 M19/2323/2010/44

    APPENDICES

    1. Claim area 2. Drill hole locations 3. Drilling cross sections

    3.1 Section II 3.2 Section III 3.3 Section IV 3.4 Section V 3.5 Section VI 3.6 Section VII 3.7 Section VIII 3.8 Section IX 3.9 Section X 3.10 Section XI

    4. Data CD-ROM

  • 232312232309

    Syväjärvi8179/1

    Kokkola

    Kaustinen

    Pitkäsaari

    Halkohuhta

    Marjakangas

    Tuoreetsaaret

    Nurilankangas

    Ruohojärvenkangas

    Isonkoivikonkangas

    Konttilampinkangas

    Aapelin hautakangas

    83.2

    83.3

    Ruohojä

    rvenoja

    Syväjärvi

    Heinäjärvi

    Ruohojärvet85

    90

    2490000 2490500 2491000

    706150

    0706

    2000

    706250

    0706

    3000

    0 200 400100 m

    Appendix 1

    Basemaps: © National Land Survey of Finland, licence no MML/VIR/TIPA/217/10

  • PRO_10 PRO_10

    PRO_11 PRO_11

    PRO_2 PRO_2

    PRO_3 PRO_3

    PRO_4 PRO_4

    PRO_5

    PRO_5

    PRO_6

    PRO_6

    PRO_7 PRO_7

    PRO_8 PRO_8

    PRO_9 PRO_9

    K232362R1 K232365R003

    K232

    381R

    3

    K232365R001K232365R002

    K232362R3K232362R2

    K232365R004

    M232 306R

    441

    M232 306R

    442M

    232 307R466

    M232 307R

    464

    M232 307R

    463

    M232 307R

    460M

    232 307R467

    M232 307R

    465

    M232 307R

    462

    M2 32 307R

    459 K23

    2381

    R6

    K232

    381R

    5

    K232

    381R

    4

    M232 306R

    443

    M232 307R

    458

    M232 307R

    461

    M232 310R

    509

    M232 310R

    511

    M232 310R

    512

    M232 310R

    514

    M232 310R

    513

    M232 310R

    506

    M232 306R

    439

    M232 310R

    510

    M232 310R

    507

    M232

    306R

    440

    M232 310R

    508

    -200 0 200

    Scale 1:4000

    2490

    000.

    00 E

    W

    2490

    500.

    00 E

    W

    2491

    000.

    00 E

    W

    7062000.00 NS

    7062500.00 NS

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Drill hole locations

    Appendix 2.

  • M232

    307R

    464

    M232

    307R

    467

    M232

    307R

    466

    M232

    307R

    465

    -50 0 50

    Scale 1:1000

    300.

    00 X

    400.

    00 X

    500.

    00 X

    600.

    00 X

    700.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 2

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.1

    1 cm = 2 % Li2O

  • 0.98

    M232

    310R

    508

    1.35

    M232

    310R

    506

    M232

    310R

    507

    -50 0 50

    Scale 1:1000

    0.00

    X

    100.

    00 X

    200.

    00 X

    300.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 3

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.2

    1 cm = 2 % Li2O

  • K232365R003

    0.79

    K232

    381R

    3

    K232365R

    001M2

    3230

    6R43

    9

    1.19

    1.02

    M2323

    06R440

    0.12

    K232365R

    002

    -50 0 50

    Scale 1:1000

    100.

    00 X

    200.

    00 X

    300.

    00 X

    400.

    00 X

    500.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 4

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.3

    1 cm = 2 % Li2O

  • M232

    306R

    439

    0.68

    M232

    306R

    440

    M232

    307R

    467

    -50 0 50

    Scale 1:1000

    200.

    00 X

    300.

    00 X

    400.

    00 X

    500.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 5

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.4

    1 cm = 2 % Li2O

  • K232365R004

    0.51

    K232

    381R

    4

    1.17

    1.21

    0.45

    0.50

    0.88

    1.26

    0.88

    K232

    381R

    5

    0.59

    0.37

    K232

    381R

    6

    -50 0 50

    Scale 1:1000

    300.

    00 X

    400.

    00 X

    500.

    00 X

    600.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 6

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.5

    1 cm = 2 % Li2O

  • 1.37

    1.34

    1.07

    0.86

    0.93

    M232

    306R

    443 M232306R442

    1.38

    1.60

    0.70

    1.06

    1.10

    0.84

    1.01

    0.92

    1.08

    1.15

    1.03

    0.29

    M232

    307R

    458

    M232

    307R

    462

    0.89

    1.02

    M232

    307R

    459

    0.96

    M232

    307R

    463

    0.46

    M232

    306R

    441

    0.94

    0.70

    1.17

    -50 0 50

    Scale 1:1000

    300.

    00 X

    400.

    00 X

    500.

    00 X

    600.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 7

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.6

    1 cm = 2 % Li2O

  • M232

    310R

    509

    1.24

    0.98 0.54

    0.62

    0.40

    M232

    310R

    510

    1.27

    0.88

    1.00

    M232

    310R

    511

    1.05

    -50 0 50

    Scale 1:1000

    200.

    00 X

    300.

    00 X

    400.

    00 X

    500.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 8

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.7

    1 cm = 2 % Li2O

  • M232

    307R

    461

    0.69

    M232

    307R

    460

    M2323

    10R512

    0.27

    -50 0 50

    Scale 1:1000

    200.

    00 X

    300.

    00 X

    400.

    00 X

    500.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 9

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.8

    1 cm = 2 % Li2O

  • 0.76

    M2323

    10R513

    0.58

    0.57

    -50 0 50

    Scale 1:1000

    100.

    00 X

    200.

    00 X

    300.

    00 X

    400.

    00 X

    -100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 10

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.9

    1 cm = 2 % Li2O

  • 0.97

    M2323

    10R514

    0.71

    -50 0 50

    Scale 1:1000

    100.

    00 X

    200.

    00 X

    300.

    00 X

    400.

    00 X

    500.

    00 X-100.00 Z

    0.00 Z

    100.00 Z

    Syväjärvi

    EK 30.9.2010

    Kaustinen

    Section PRO 11

    0.00 0.200.20 0.600.60 1.001.00 100.00

    LI2O: %

    AgglomerateSkarn

    Mica schistQuartz veinOverburdenCore lossPegmatite

    Spodumene pegmatiteStaurolite mica schist

    Intermediate volcanic rockSulphide rich schist

    Plagioclase porphyrite

    ROCKTYPE

    Appendix 3.10

    1 cm = 2 % Li2O

    M19_2323_2010_44_12_10_2010.pdfAppendix 1.pdfAppendix 2 Drill Map.pdfAppendix 3 VSects.pdfVS_A3 p2VS_A3 p3VS_A3 p4VS_A3 p5VS_A3 p6VS_A3 p7VS_A3 p8VS_A3 p9VS_A3 p10VS_A3 p11