41
New Flame Regimes and Kinetic Study of Plasma Activated Low Temperature Combustion Joseph Lefkowitz, Wenting Sun, Sanghee Won, and Yiguang Ju Department of Mechanical and Aerospace Engineering, Princeton University Princeton, NJ 08544, USA AFOSR Plasma MURI 4 th Year Program Review 2013.10.22-24

New Flame Regimes and Kinetic Study of Plasma Activated ......2013/10/22  · 1. Plasma activated low temperature combustion: A comparative study of CH4 vs. dimethylether (Tasks 8

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • New Flame Regimes and Kinetic Study of

    Plasma Activated Low Temperature Combustion

    Joseph Lefkowitz, Wenting Sun, Sanghee Won, and Yiguang Ju

    Department of Mechanical and Aerospace Engineering, Princeton University Princeton, NJ 08544, USA

    AFOSR Plasma MURI 4th Year Program Review 2013.10.22-24

  • MURI Facility Summary and collaborative team structure

    (*All facilities designed and fabricated specifically for this program.)

    3000K

    1000K

    300K

    0.01atm 1atm 100atm

    Flame chemistry (Ju, Sutton)

    Flow Reactors ( Yetter,

    Adamovich)

    Shock Tube (Starikovskiy)

    RCM (Starikovskiy)

    MW+laser (Miles)

    JSR/Flow reactor Species and kinetics

    (Ju)

  • 1. Plasma activated low temperature combustion: A comparative study of CH4 vs. dimethyl ether (Tasks 8 and 9: Kinetic model validation)

    Today’s Presentation

    3. Multispecies diagnostics in a flow reactor with Mid-IR and molecular beam mass spectroscopy (MBMS)

    (Task 3: Multispecies measurements)

    2. New combustion regime: Plasma activated Cool Flames (Task 6: Ignition and Flame)

    4. Development of low temperature and high pressure kinetic mechanism for plasma combustion (HP-MECH)

    (Task 8 and 9: Kinetic model validation)

  • Residence time

    Tem

    pera

    ture

    Scramjet, afterburner

    Plasma generated species: O, H, O2(a∆g) …

    Most combustors

    New “S-curve” by Plasma assisted combustion for small molecule fuel such as H2, CH4

    the classical S-curve

    . Will PAC be able to activate low temperature combustion (LTC ) at conditions where normal LTC will not occur?

    . If yes, will PAC activated LTC allow us to create a stable COOL FLAME?

    Questions to answer:

    1. New flame and ignition regimes with in situ nano-second pulsed discharge

    Ignition

    Extinction

    Sun et al. Proc. Comb. Inst. 34, 2010

    0.05 0.10 0.15 0.20 0.25 0.30 0.35

    1x10152x10153x10154x10155x10156x10157x1015

    SmoothTransition

    Extinction

    Ignition

    χO2=34%χO2=62%

    Fuel mole fraction

    OH

    num

    ber d

    ensit

    y (c

    m-3)

    CH4

  • 5

    Residence time

    Tem

    pera

    ture

    Plasma activation

    LTC

    Ignition

    Extinction HTC

    LTC

    t2

  • Experimental method (in-situ plasma discharge) Methane vs. Dimethyl ether (DME)

    6

    25.4 mm

    P = 72 Torr f = 24 kHz

    Power ~ 17 W (repetitive pulses)

    Laser beam OH, CH2O PLIF

    E = 7500 V/cm, E/N ~ 900 Td Peak Voltage = 7.8 KV

  • 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    1x1015

    2x1015

    3x1015

    4x1015

    5x1015

    6x1015

    Ignition

    ExtinctionOH

    den

    sity

    (cm

    -3)

    Fuel mole fraction

    χO2=55%

    increase (CH4) decrease (CH4) increase (DME) decrease (DME)

    Top burner

    Bottom burner (fuel)

    OH fluorescence

    at Q1(6)

    Direct image

    OH PLIF measurements in CH4 and DME/O2 Ignition

    OH density vs. fuel mole fraction XO = 0.55, P = 72 Torr, f = 24 kHz, for DME (a = 250 1/s) and CH4 (a = 400 1/s,) as the fuel, respectively (solid square symbols: increasing XF, open square symbols: decreasing XF)

    S-shaped ignition and extinction curves

  • 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0000

    0.0005

    0.0010

    0.0015

    0.0020

    0.0025

    0.0030

    Simulation Experiments

    Position (cm)

    CH2O

    mol

    e fra

    ctio

    n

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    CH2 O

    PLIF (a.u.)

    CH2O PLIF measurement and numerical modeling in DME flames

    Fuel Oxidizer

    Large amount of CH2O formation before ignition on the fuel side

  • DME consumption and CH2O/radicals formation pathways

    LTC

    H+O2=OH+O

    XF = 0.01, XO = 0.4, P = 72 Torr, f = 24 kHz, a = 250 1/s

  • 0.01 0.1 1 10 100 10000.0000

    0.0005

    0.0010

    0.0015

    0.0020T=650 K No O addition

    1000 ppm O addition

    CH2O

    mol

    e fra

    ctio

    n

    Residence time (ms)

    Residence time

    Tem

    pera

    ture

    Plasma generated

    LTC

    Ignition

    Extinction

    HTC

    LTC

    t2 t1

    Effect of radical production by plasma on the enhancement of low temperature combustion

    DME/O2/He (3%/9%/88%) at To = 650 K with atomic O addition at different levels, at P = 72 Torr

    Ignition

    PSR

    HTC

    LTC

  • Plasma activated LTC and Direct Ignition to Flame transition without extinction limit

    11

    0.00 0.02 0.04 0.06 0.08 0.10 0.12

    1x105

    2x105

    3x105

    4x105

    5x105

    6x105

    Extinction

    increase decrease

    CH2O

    PLI

    F (a

    .u.)

    Fuel mole fraction

    Hot Ignition

    P = 72 Torr, a= 250 1/s, f = 24 kHz XO2=40%, varying Xf

    LTC

    HTC

    S-Curve

    0.00 0.02 0.04 0.06 0.08 0.10 0.12

    1x105

    2x105

    3x105

    4x105

    5x105

    6x105 increase decrease

    CH2O

    PLI

    F (a

    .u.)

    Fuel mole fraction

    P = 72 Torr, a= 250 1/s, f = 34 kHz, XO2=60%, varying Xf

    New ignition/extinction curve without extinction limit

    LTC HTC

    Radical production by plasma can activate LTC at much shorter timescale, lower pressure and temperature; and enable new flame regimes

  • 12

    Plasma activated LTC at much shorter time, lower pressure….

    2. Plasma activated Cool Flames :A new way to burn?

    Plasma

    Residence time

    Tem

    pera

    ture

    Plasma generated

    LTC

    Ignition

    Extinction

    HTC

    LTC

    t2 t1 t2

  • 2. Plasma activated Cool Flames: A new way to burn

    (a) Hot diffusion flame

    (b) Cool diffusion flame

    Heated N2 @ 550 K

    N2 @ 300 K

    Stagnation plane

    Oxidizer @ 300 K with plasma discharge

    Fuel/N2 @ 550 K

    Fig. 1 Schematic of experimental setup

    Fig. 2 Hot and cool n-heptane diffusion flames at the same condition

    500

    1000

    1500

    2000

    0.1 1 10 100 1000 10000 100000

    Max

    imum

    tem

    pera

    ture

    Tm

    ax[K

    ]

    Strain rate a [1/s]

    n-heptane/nitrogen vs oxygen/ozonein counterflow burner

    Xf = 0.05 and XO3 = 0.03Tf = 550 K and To = 300 K

    Extinction limit ofconventional hot diffusion flame

    Extinction limit ofcool diffusion flame

    Fig.3 Modeling of cool flame regime with plasma activation

    Tf~1900 K

    Tf~650 K

    Patent application, 2013.10

  • 3. Multispecies diagnostics in a flow reactor (Task 3: Multispecies time-history measurements)

    In situ intermediate species diagnostics beyond radicals

    • Will low temperature kinetics important for PAC of C2H4? •How well is the model prediction? •How do we develop and validate plasma-combustion kinetic model?

  • Experimental Setup of In Situ Mid-IR PAC Diagnostics

    Detector

    QCL Laser

    Diluents

    Diluents Oxidizer

    Fuel

    Vacuum Pump

    Electrode

    Heated Vacuum Chamber

    Nanosecond - Pulsed

    Power Supply

    Pulsed Signal Generator

    Digital Delay Generator

    Function Generator

    Oscilloscope Ge Etalon

    Detector

    Observation Window

    Beam Splitter

    Collimating Lenses

    Mini-Herriott cell showing 24 pass

    configuration

    Reactor/Diagnostics Reactor size: 45 x 14 x 152 mm3

    Fuel: C2H4 Pressure: 60 Torr Flow speed in the reactor: ~40 cm/s Mid-IR QCL laser: 1296 cm-1 – 1423 cm-1

    Multi-pass Mini-Herriott cell (12.7 mm OD)

    Plasma Properties • Electrode (40 x 45 mm2) • Repetitively -pulsed nanosecond DBD discharge • 0- 40 kHz pulse repetition rate • 12 nanosecond pulse duration • 5-20 kV peak voltage

  • Experimental Apparatus

    Vacuum Chamber

    Detector

    Electrode Connection

    Alignment Laser

    QCL Laser

    N2 Purge Box

    Laser inlet purge tube

    To Vacuum

    Observation Window

  • Direct and ICCD Images of Plasma Discharge in a Reactor

    Stoichiometric mixtures: C2H4/O2 with 75% AR, 60 Torr, Vmax= 6 kV

    •Direct Image: 1 kHz, 3.6 mJ/pulse, 2 s exposure time. •ICCD images: Gate time = 100 ns, Gain = 250

    1000 Hz

    2000 Hz

    3000 Hz

    1000 Hz Direct

    ICCD

    Cathode

    Anode

  • Absorption Spectroscopy and temperature measurement

    Beer-Lambert Law

    Iν = Transmitted Signal S = Line strength of absorption line α = Absorption coefficient gV = Voigt profile line broadening function ν i = Light wavelength of the ith line h = Planck’s constant P = Pressure c = Speed of light T = Temperature k = Boltzmann Constant N = Number density of absorbers E’’ = Energy of lower state of transition L= Path length of light

    Two-line Temperature

    ( )( )

    " "2 1

    " "2 12 01

    2 1 0 0

    ( )ln ln( )

    A

    A

    hc E EkT

    E ES TI hcI S T k T

    −=

    −+ +

    [1] Simeckova et al., Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006)

    ( )

    −−=−= ∑

    iiVi NLgTSNLTPI

    I )()(exp),,(exp0

    ννναν

    ν

  • Absorption spectrum and wavelength scan

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    -0.01 -0.005 0 0.005

    Sign

    al [

    Arb.

    Uni

    ts]

    Time [s]

    AbsorptionBackgroundEtalonLaser Scan

    0

    100

    200

    300

    400

    0 0.001 0.002 0.003

    Scan

    Rat

    e [c

    m-1

    /s]

    Time [s]

    Etalon Data

    Polynomial Fit

    CH4 C2H2

    Calibrated wavelength vs. time Signal vs. laser scan time and etalon fringes

  • Experimental results: Species time history: C2H4 pyrolysis and oxidation

    0

    100

    200

    300

    400

    500

    600

    0 0.005 0.01 0.015

    Mol

    e Fr

    actio

    n (p

    pm)

    Time from first pulse (s)

    AcetyleneMethane

    Pyrolysis

    Final Pulse

    • Pyrolysis conditions – 0.9375 Ar/0.0625 C2H4 – V=40 cm/s – P=60 Torr – Ti=300 K – 150 Pulses, 30 kHz, 10 kV

    0

    100

    200

    300

    400

    500

    0

    100

    200

    300

    400

    500

    600

    0 0.005 0.01 0.015

    Tem

    pera

    ture

    (K)

    Mol

    e Fr

    actio

    n (p

    pm)

    Time from first pulse (s)

    AcetyleneMethaneWaterTemperature

    Oxidation

    Final Pulse

    • Oxidation Conditions – Stoichiometric C2H4/O2 – 25% Reactants, 75% Argon – V=40 cm/s – P=60 Torr – Ti=300 K – 150 Pulses, 30 kHz, 10 kV

  • Kinetic Modeling • Combustion chemistry: Princeton/Argonne High

    Pressure Mech for low temperature oxidation • Plasma chemistry: air plasma model by Uddi et

    al [2] + Argon/CH4/ reaction pathways Kosarev et al [3] – Ions: O2+, O+, O-, O2-, Ar+, CH4+, CH3+, CH2+ C2H4+,

    C2H3+, C2H2+ – Excited Species: O2(a1Δg), O2(b1Σ), O(1D),

    Ar(3p5(2P3/2)4s), Ar(3p5(2P1/2)4s), Ar(3p5(2P3/2)4p) (Ar* excitation energies of 11.5, 11.7, and 12.9 eV)

    [2] M. Uddi, N. Jiang, E. Mintusov, I. Adamovich, W. Lempert, Proc. Combust. Inst., 2009(32), 929-936 [3] I. Kosarev, N. Aleksandrov, S. Kindysheva, S. Starikovskaia, A. Starikovskii, Combust. Flame, 2008(154), 569-586

  • • Pascal Diévart, Xue Liang Yang , Ting Tan, Emily A. Carter, Fredrick L. Dryer, Yiguang Ju • Raghu Sivaramakrishnan, Nicole J. Labbe, Stephen Klippenstein

    High Pressure-Mech

    H2/O2 Bulke et al., 2012

    Reaction scheme

    CO Li et al., 2004

    CH3OH

    HCOOCH3

    Major Focus

    PU-Argonne , 2013

    DME/Biodiesel Hydrocarbons

    •High pressure experiment (20 atm) •Lower tempreature (RO2 chemistry) •HO2/H2O2 kinetics • Pressure dependent reactions (Ab-initio

    QC and measured rates) •H2O/CO2 effects

    C1-C2

    0.0E+00

    2.0E-03

    4.0E-03

    6.0E-03

    8.0E-03

    1.0E-02

    1.2E-02

    0 500 1000 1500

    CH3O

    H M

    ole

    Frac

    tion

    Time [μs]

    1266 K and 2.5 atm

    1368 K and 2.4 atm

    1458 K and 2.3 atm

    1610 K and 2.2 atm

    1% methanol in Argon

  • 0

    10

    20

    30

    40

    50

    0 5 10 15 20

    Flam

    e Sp

    eed

    (cm

    /s)

    Pressure/ bar

    USC Mech II

    C2H2/O2/N2/HeN2/O2=3.76Phi=1.6Tf= 1900 K

    0

    0.05

    0.1

    0.15

    0.2

    0 5 10 15 20 25 30

    Pressure, atm

    Mas

    s bu

    rnin

    g ra

    te (g

    cm

    -2 s

    -1)

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    USC-MECH IIUpdated H2 + USC-MECH II C1-C2

    H2/add/O2/dilφ=0.7Tf ~1600K

    H2/CO = 90/10

    H2/C2H4 = 90/10H2/C2H6 = 90/10

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 5 10 15 20 25 30Pressure (atm)

    Mas

    s bu

    rnin

    g ra

    te (g

    /cm

    ^2s)

    Present experimentsLi et al. (2007)Davis et al. (2005)Sun et al. (2007)Konnov (2008)O'Connaire et al. (2004)Saxena & Williams (2006)

    H2/O2/Ar, φ=2.5Tf ~1600K

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    0 5 10 15 20 25 30Pressure (atm)

    Mas

    s bu

    rnin

    g ra

    te (g

    cm

    -2 s

    -1)

    0.000

    0.020

    0.040

    0.060

    0.080

    0.100

    0.120

    Present experimentsTse et al. (2000)Li et al. (2004)Updated model

    (a)

    (b) Φ=0.85 (1600K) Φ=0.30 (1400K)

    H2/O2/He mixture

    High Pressure Mech: Validation for H2, C2H2, C2H4, C2H6, CH3OH

  • Electron Collision Reactions Rate (cm3 molecule-1 s-1) Reference C2H4 + e- = C2H3 + H + e- f(E/n) [2] C2H4 + e- = C2H2 + H2 + e- f(E/n) [2]

    C2H4 + e- = C2H2 + H + H + e- f(E/n) [2] C2H4 + e- = C2H + H2 + H + e- f(E/n) [2]

    Excited Species Reactions Ar* + C2H4 = Ar + C2H2 + H + H 4.39 x 10-10 [4]

    Ar* + C2H4 = Ar + C2H3 + H 4.88 x 10-11 [4] Ar* + C2H4 = Ar + CH2 + CH2 4.88 x 10-11 [4] Ar* + C2H4 = Ar + C2H2 + H2 4.88 x 10-11 [4]

    Ion-molecule Reactions Ar(+) + C2H4 = Ar + C2H4 (+) 4.40 x 10-11 [5]

    Ar(+) + C2H4 = Ar + C2H3(+) + H 8.36 x 10-10 [5] Ar(+) + C2H4 = Ar + C2H2(+) + H + H 2.20 x 10-10 [5]

    Electron-ion Dissociative Recombination e- + C2H2(+) = C2H + H 2.34 x 10-6 (300/T)0.5 [6] e- + C2H2(+) = C2 + H2 9.35 x 10-8 (300/T)0.5 [6]

    e- + C2H2(+) = C2 + H + H 1.40 x 10-6 (300/T)0.5 [6] e- + C2H2(+) = CH2 + C 2.34 x 10-6 (300/T)0.5 [6] e- + C2H2(+) = CH + CH 6.08 x 10-7 (300/T)0.5 [6] e- + C2H3(+) = C2H2 + H 2.26 x 10-6 (300/T)0.5 [6] e- + C2H3(+) = C2H + H2 4.68 x 10-7 (300/T)0.5 [6]

    e- + C2H3(+) = C2H + H + H 4.60 x 10-6 (300/T)0.5 [6] e- + C2H3(+) = C2 + H2 + H 2.34 x 10-7 (300/T)0.5 [6]

    e- + C2H3(+) = CH3 + C 4.68 x 10-8 (300/T)0.5 [6] e- + C2H3(+) = CH2 + CH 2.34 x 10-7 (300/T)0.5 [6]

    C2H4 plasma reactions (Added)

    [4] J. E. Velazco, J. H. Kolts, D. W. Setser, J. Chem Phys 69, 4357 (1978) [5] Masaharu Tsuji, Hiroyuki Kouno, Kenichi Matsumura, Tsuyoshi Funatsu, Yukio Nishimura et al., J. Chem. Phys. 98, 2011 (1993) [6] J. B. A. Mitchell, Phys. Rep. 186 (5), 215 (1990)

  • Experiment/Model Comparison

    • Conditions for Oxidiation case: – Stoichiometric C2H4/O2 – 25% Reactants, 75% Argon – V=40 cm/s – P=60 Torr – Ti=300 K – 150 Pulses, 30 kHz, 10 kV – E/n = 37 Td

    • Acetylene measurements in the pyrolysis experiment were used to match the E/n ratio of model calculations

    0

    100

    200

    300

    400

    500

    0 0.005 0.01 0.015

    Mol

    e Fr

    actio

    n (p

    pm)

    Time from first pulse (s)

    Oxidation C2H2Oxidation CH4Oxidation H2OC2H2 ModelCH4 ModelH2O Model

    0

    100

    200

    300

    400

    500

    600

    0 0.005 0.01 0.015

    Mol

    e Fr

    actio

    n (p

    pm)

    Time from first pulse (s)

    Pyrolysis C2H2Pyrolysis CH4C2H2 ModelCH4 Model

    Oxidation Pyrolysis

    • Conditions for pyrolysis case: – 0.9375 Ar/0.0625 C2H4 – V=40 cm/s – P=60 Torr – Ti=300 K – 150 Pulses, 30 kHz, 10 kV – E/n = 37 Td

    • Methane is greatly over-predicted by the model

  • C2H4

    C2H5

    + H +M 31%

    + Ar* 5%

    C2H2

    + Ar(+) 13% C2H3+

    + e- 30% CH2CH2OH

    + OH 15%

    CH3+ HCO

    + O 13%

    H + CH2CHO

    + O 11%

    + e- 65%

    C2H

    CO + CH2O + OH

    + O2 46%

    + H 21%

    CH20 + HCO

    + O 21%

    CH3O2

    + O2 + M 85%

    CH3O

    + X 95%

    CH2O

    + X 96%

    C2H5O2

    + O2 + M 97%

    C2H5O2H

    + HO2 98%

    HCO + CO

    + O2 100%

    O2C2H4OH

    + O2 100%

    2 CH2O + OH

    100%

    M = Third body collider X = Radical

    Red = High temperature, Blue = Plasma Green= Low temperature

    Ethylene Oxidation Pathways

    LTC HTC

    PAC activates C2H4 low temperature chemistry

  • Reaction Pathways of Measured Species

    C2H2

    e- + C2H4 Ar*+ C2H4

    87% 13%

    CH4

    CH3 + HO2 O + C2H4

    71% 18%

    CH3 + CH3O

    7%

    H2O

    C2H4 + OH

    16% 41%

    HO2 + OH

    19%

    CH2 + O2

    4%

    CH3O + H

    8%

    CH2CHO + OH

    9%

    CH2O + OH

    Only sensitive to plasma-related reactions!

    X = Radical M = Third body collider

  • Reaction Pathways of Radicals

    O

    58%

    e- + O2

    33%

    Ar*+ O2

    3%

    O*+ O2

    OH

    28%

    CH3O2 + H

    27%

    HO2 + X

    35%

    CH2CHO+ O2

    6% CH2 + O2

    H

    3%

    e- + C2H4

    13%

    Ar*+ C2H4

    39%

    Ar(+) + C2H4

    27% O + C2H4

    7% O2 + C2H3

    X = Radical M = Third body collider

    HO2

    10%

    H + O2 + M

    85%

    HCO + O2

    3%

    O2 + C2H5

  • C2H4

    C2H5

    + H + M 50% + Ar* 14%

    C2H2

    + Ar(+) 22%

    C2H3+

    + e- 29%

    + e- 65%

    C2H

    C2H2+ + Ar(+) 6%

    + X 100%

    + e- 50%

    + e- 13%

    + e- 30%

    C2

    CH

    + H +M 100%

    C2H3

    + H 5%

    + C2H5 95%

    X = Radical M = Third body collider

    Green= Low temperature Red = High temperature Blue = Plasma

    Pathways for Ethylene Pyrolysis

  • Measured Species

    C2H2

    e- + C2H4 Ar*+ C2H4

    87% 5%

    CH4

    CH3 + H + M CH3 + C2H5

    95% 4%

    X = Radical M = Third body collider

    H + C2H4

    6%

    CH3

    CH4 + C2H CH2 + C2H5

    94% 6%

    Ar*+ C2H4

    100%

    H + C2H4 +M

    100%

    H

    3%

    e- + C2H4

    43%

    Ar*+ C2H4

    47%

    Ar(+) + C2H4

  • 32

    µGC

    Cross validation with MBMS

    4. Species Measurements in RF Discharge using Molecular Beam Mass Spectrometry

  • Experimental setup

    Thermocouple

    20 mm

    Copper electrodes

    MBMS Probe nozzle

    Quartz flow tube: Inner 9x4x0.4mm3

    20 mm

    Gas mixture

    Fig. 1 Experimental setup of RF discharge and MBMS measurement, RF Power at 90 W, 13.56MHz, Flow rate at 1500 SCCM,

  • 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.250

    1x104

    2x104

    3x104

    4x104

    Mol

    e Fr

    actio

    n (p

    pm)

    Equivalence Ratio

    Fuel: C2H4 Measured:C2H4

    RF off RF on

    0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.250.0

    5.0x103

    1.0x104

    1.5x104

    2.0x104

    2.5x104

    Mol

    e Fr

    actio

    n (p

    pm)

    Equivalence Ratio

    Fuel: C2H4 Measured: CO

    RF off RF on

    0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.250

    1x104

    2x104

    3x104

    4x104

    5x104

    Mol

    e Fr

    actio

    n (p

    pm)

    Equivalence Ratio

    Fuel: C2H4 Measured: CO2

    RF on

    0.5 1.0 1.5 2.00.0

    4.0x103

    8.0x103

    1.2x104

    1.6x104

    Mol

    e Fr

    actio

    n (p

    pm)

    Equivalence Ratio

    Fuel: C2H4 Measured: H2O

    RF off RF on

    C2H4 (2.5%)-O2(He-Ar):

  • 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

    0.0

    5.0x103

    1.0x104

    1.5x104 Fuel: CH4 Measured: H2O

    RF off RF on

    Mol

    e Fr

    actio

    n (p

    pm)

    Equivalence Ratio

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0

    2.0x104

    4.0x104

    6.0x104

    8.0x104

    Mol

    e Fr

    actio

    n (p

    pm)

    Equivalence Ratio

    Fuel: CH4 Measured: O2

    RF off RF on

    Fig.2 H2O formation w/wo RF discharge Fig.3 O2 mole fraction w/wo RF discharge

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0

    5.0x103

    1.0x104

    1.5x104

    2.0x104

    2.5x104

    3.0x104

    3.5x104M

    ole

    Frac

    tion

    (ppm

    )

    Equivalence Ratio

    Fuel: CH4 Measured: CH4

    RF off RF on

    0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.20.0

    5.0x103

    1.0x104

    1.5x104

    Equivalence Ratio

    Mol

    e Fr

    actio

    n (p

    pm)

    Fuel: CH4 Measured: CO

    RF on

    CH4(3%)-O2-He-Ar(2%) mixture

  • Conclusions 1. In situ plasma discharge can activate low temperature chemistry and

    enable LTC at shorter residence time, lower pressure, and leaner mixture.

    2. Plasma activated Cool Flame and a new direct ignition to flame (DIF) regime was observed for large hydrocarbons with rich LTC chemistry.

    3. A HP-MECH for PAC was developed. The results showed that low

    temperature kinetics via RO2 is an important pathway for even PAC of C2H4.

    4. In situ mid-infra red absorption spectroscopy and MBMS system are

    developed. The results provide important validation targets and show that the existing plasma kinetics is not able to predict the intermediate species.

    5. Future research should focus on kinetics and combustion phenomena of

    plasma assisted low temperature combustion.

  • Acknowledgement

    37

    This work was supported by the plasma MURI and AFOSR research grants from the Air Force Office of Scientific Research (Drs. Chiping Li and Julian Tishkoff).

  • C2H4 Plasma Reactions Ar* + CH4 Quenching Ar* A (cm3/s) Branching ratio Kosarev et al. Calculated Ar(3P2) 4.98E-10 Ar + CH2 + H + H 0.650 3.30E-10 3.32E-10 Ar(3P0) 5.50E-10 Ar + CH + H2 + H 0.117 5.80E-11 5.96E-11 Average 5.11E-10 Ar + CH3 + H 0.117 5.80E-11 5.96E-11

    [1] Ar + CH2 + H2 0.117 5.80E-11 5.96E-11 [2] [3]

    Ar* + C2H6 Quenching Ar* A (cm3/s) Branching ratio Kosarev et al. Calculated Ar(3P2) 7.03E-10 Ar + C2H4 + H + H 0.860 7.00E-10 6.05E-10

    [1] Ar + C2H5 + H 0.090 6.33E-11 Ar + CH3 + CH3 0.020 1.41E-11 Ar + C2H4 + H2 0.020 1.41E-11

    [2] [3] Ar* + C2H4 Quenching Ar* A (cm3/s) Branching Ratio Calculated Ar(3P2) 5.85E-10 Ar + C2H2 + H + H 0.750 4.39E-10

    [1] Ar + C2H3 + H 0.083 4.88E-11 Ar + CH2 + CH2 0.083 4.88E-11 Ar + C2H2 + H2 0.083 4.88E-11

    Estimate

    [1] J. E. Velazco, J. H. Kolts, D. W. Setser, J. Chem Phys 69, 4357 (1978) [2] J. Balamuta, M. F. Golde, Y. Ho, J. Chem Phys 79, 2822 (1983) [3] I. N. Kosarev, N.L Aleksandrov, S.V. Kindysheva, S. M. Starikoskaia, A. Yu. Starikovskii, Combust. Flame 154, 569 (2008)

  • C2H4 Plasma Reactions Ar(+) + C2H4 A (cm3/s) Branching Ratio Calculated

    1.10E-09 Ar + C2H5 (+) 0.040 4.40E-11 [4] Ar + C2H3(+) + H 0.760 8.36E-10

    Ar + C2H2(+) + H + H 0.200 2.20E-10 [4]

    e- + C2H2+ A (cm3/s) (300/T)^n Branching Ratio Calculated

    2.70E-07 0.5 C2H + H 0.500 2.34E-06 [5] C2 + H2 0.020 9.35E-08

    C2 + H + H 0.300 1.40E-06 CH2 + C 0.050 2.34E-07 CH + CH 0.130 6.08E-07

    [5] e- + C2H3+ A (cm3/s) (300/T)^n Branching Ratio Calculated

    4.50E-07 0.5 C2H2 + H 0.290 2.26E-06 [5] C2H + H2 0.060 4.68E-07

    C2H + H + H 0.590 4.60E-06 C2 + H2 + H 0.030 2.34E-07 CH3 + C 0.006 4.68E-08 CH2 + CH 0.030 2.34E-07

    [5]

    [4] Masaharu Tsuji, Hiroyuki Kouno, Kenichi Matsumura, Tsuyoshi Funatsu, Yukio Nishimura et al., J. Chem. Phys. 98, 2011 (1993) [5] J. B. A. Mitchell, Phys. Rep. 186 (5), 215 (1990)

    New Flame Regimes and Kinetic Study of �Plasma Activated Low Temperature CombustionMURI Facility Summary and collaborative team structure�Slide Number 3Slide Number 4Slide Number 5Experimental method (in-situ plasma discharge)� Methane vs. Dimethyl ether (DME)Slide Number 7Slide Number 8Slide Number 9Slide Number 10Plasma activated LTC and Direct Ignition to Flame transition without extinction limitSlide Number 12Slide Number 13Slide Number 14Slide Number 15Experimental Setup of In Situ Mid-IR PAC DiagnosticsExperimental ApparatusDirect and ICCD Images of Plasma Discharge in a Reactor��Stoichiometric mixtures: C2H4/O2 with 75% AR, 60 Torr, Vmax= 6 kV�Absorption Spectroscopy and temperature measurementAbsorption spectrum and wavelength scanExperimental results: Species time history: �C2H4 pyrolysis and oxidationKinetic Modeling Slide Number 23Slide Number 24C2H4 plasma reactions (Added)Experiment/Model ComparisonEthylene Oxidation PathwaysReaction Pathways of Measured SpeciesReaction Pathways of RadicalsPathways for Ethylene PyrolysisMeasured SpeciesSlide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36AcknowledgementSlide Number 38Slide Number 39C2H4 Plasma ReactionsC2H4 Plasma Reactions