113
Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1 New experimental techniques: recent developments in particle detectors Rita De Masi IPHC-Strasbourg

New experimental techniques: recent developments in ... · Gas detectors working principle Depending on ΔV (and the type of the gas) the detector will work in ionisation mode, proportional

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

New experimental techniques:recent developments in particle detectors

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Outline of the course

• Interaction of particles with matter.• Micro-pattern gas detectors.• New generation semiconductor detectors.• Transition radiation detectors.• Cherenkov detectors and RICH.• Nuclear emulsions.• Calorimeters and bolometers.• Two examples of detector systems:

• CMS @ LHC• COMPASS @ SPS

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 3

Outline

• Interaction of particles with matter.• Charged particles• The special case of electrons and positrons• Photons• Neutrons• Neutrinos• What are detectors good for?

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

Interaction of particles with matter

Why:• particle detection• radiation shielding• effects on living organism

Interactions:• electromagnetic• strong• weak

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

Interaction of particles with matter

Why:• particle detection• radiation shielding• effects on living organism

Interactions:• electromagnetic ⇒ all charged particles, photons (neutrons)• strong ⇒ hadrons (protons, neutrons, …)• weak ⇒ in particular neutrinos!

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

Charged particles (but electrons)

• collisions with e-

• ionisation of atoms• loss of energy

approximate mean rate energy loss by Bethe-Bloch formula~1% accuracy for mips, otherwise corrections needed

• straggling

- dE = Kz2 Z 1 1 ln 2me c2 β2 γ2 Tmax - β2 - δdx A β2 2 I2 2

β = v/cγ2 = 1/ (1-β2)MeV g-1 cm2

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 7

Mean energy loss

From Particle Data Book

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 8

Fluctuations in energy loss

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 9

Material dependence

From Particle Data Book

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 10

Energy loss at low energies

Bragg peak 0

the heavier the projectile, the sharper the peak

application in nuclear radiation therapy

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 11

Multiple scattering

θplane = 13.6 MeV z √(x/X0) [1 + 0.038 ln(x/X0)]β c p

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 12

Electrons and positrons

From Particle Data Book

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 13

Photons

I = I0 e-σnx

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 14

Neutrons

• Indirect detection • Nuclear reaction -> detection of secondary particles• Scattering ->Scattered nucleus further ionises• I = I0 e-σnx

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 15

What’s about neutrinos?

• Neutrinos interact only by weak interaction!• Detection of the particles produced in its interaction.

νμ μ

W

e νe

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 16

Bibliography

• Particle Data Book, http://pdg.lbl.gov/2009/reviews/rpp2009-rev-passage-particles-matter.pdf• W. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag• Typically any first chapter of text books on detectors

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 17

What are detectors good for?

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 18

What are detectors good for?

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

Micro-pattern gas detectors

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Outline

• Problematic• Working principle

• Gas Electron Multiplier (GEM)• Micro-Mesh Gaseous Structure (Micromegas)

• Applications

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 3

Gas detectors working principle

Depending on ΔV (and the type of the gas) the detector will work in ionisation mode, proportional mode, Geiger-Müllermode, breakdown.

Wire chambers, drift tubes, resistive plate chambers, time proportional chambers, …

Gas volume

charged particle

+ -- +

- +- +

- +

+ -

+ -+ -

+

-

ΔVCharges migrate to the electrodes

⇓signal

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

ProblematicFirst gas detector in 1908!

Largely used in particle, nuclear and astro-particle physics, as well as for imaging, material science, security inspection.

Advantages:• Large surface (and limited price) • Very low material budget• Lot of know-how

Disadvantages:• Limited granularity (O(100μm))• Electrical discharges• Aging• Rate limitations• Custom made (and very laborious)

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

Micro-pattern detectors

• Photolithography technology• Multiplication stage in small region of space• Independent of read-out pattern

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

Gas Electron Multiplier

F. Sauli et al., NIM A386(1997) 531

50 μm thick kapton foil, copper clad on each side and perforated by high surface density (50-100/mm2) of bi-conical channels.

31 x 31 cm2

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 7

Gas Electron Multiplier

Field lines

Ε ~ 100 kV/cm ΔV ~ 500V

tiny proportional chamber

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 8

GEM detectors

charged particle

+ -- +

- +- +

- +

+ -

+ -+ -

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 9

Triple GEMTriple GEM

reduced gain/foil ⇓

negligible discharge probability

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 10

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 11

Characteristics of GEM detectors

• spatial resolution 50 μm• gain 105 → single electron detection• ion feedback suppression• efficiency ~ 100%• rate capability 1MHz/mm2

• minor dependence from drift field• highly radiation tolerant• flexible detector shapes and read-out patterns

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 12

GEM applications

• Detectors for HEP (also in TPC and RICH detectors)• Dark matter search• Neutron detectors• Plasma monitoring• Photomultiplier• Muon tomography• Medical imaging• Irradiation monitoring during cancer treatment• …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 13

GEM applications

• Detectors for HEP (also in TPC and RICH detectors)• Dark matter search• Neutron detectors• Plasma monitoring• Photomultiplier• Muon tomography• Medical imaging• Irradiation monitoring during cancer treatment• …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 14

GEM applications

• Detectors for HEP (also in TPC and RICH detectors)• Dark matter search• Neutron detectors• Plasma monitoring• Photomultiplier• Muon tomography• Medical imaging• Irradiation monitoring during cancer treatment• …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 15

MICROMEsh GAseous Structure

Y. Giomataris et al., NIM A376(1996) 29

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 16

MicroMeGaS characteristics

• spatial resolution 12 μm• ion feedback suppression• efficiency ~ 100%• rate capability 109 particles/mm2/s • highly radiation tolerant• flexible detector shapes and read-out patterns

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 17

A MicroMeGaS application: Gossip/GridPix

• low drift field (100-700 V/mm)• High amplification field (~10kV/mm) to induce gas avalanche• Micromegas holes centred on pads pixel chip• Avalanche broadened by diffusion to 15-20 μm

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 18

Others MicroMeGaS applications

• High energy physics• Neutron beam profile monitoring• …• Potentially similar to GEM

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 19

The future?

Electron emission foil with vacuum Micro-Channel Plate

electron emission foil

Minimum Ionising Particle (MIP)

H. van der Graaf, VCI 2010

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 20

Bibliography

• http://gdd.web.cern.ch/GDD/ GEM• http://vci.hephy.at/2010 slides and proceedings• http://mpgd.web.cern.ch micropattern gas detectors

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

Semiconductor detectors

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Outline

• Working principle and radiation damage• Hybrid detectors • Monolithic detectors

• CCD• DEPFET• MAPS

• Integration techniques• Bonding• 3D

• 3D detectors• APD• Diamond

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 3

Semiconductor detectors working principle

semiconductor

charged particle

+ -- +

- +- +

- +

+ -

+ -+ -only 3.7 eV to create an e--h pair

(~30 eV for gas )

~ 80 e- created in 1μm O(1

00 μ

m)

they may recombine with thermally generated free charge carriers

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

Semiconductor detectors working principle

• p-n junction inversely biased for detection• free charge carriers are removed from sensitive volume• signal is collected and processed

semiconductor

charged particle

+ -- +

- +- +

- +

+ -

+ -+ -

O(1

00 μ

m)

n+

p++

-

ΔV

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

Semiconductors

• Silicon (Si) → most commonly used• Germanium (Ge) → x-ray, infrared, but require cooling• Compound (GaAs, CdTl, SiC, …)

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

Advantages of semiconductor detectorsSemiconductor detectors crucial for charm discovery!

• High granularity (O(1μm))• High density ⇒ thin (O(100μm))• High rate capability• Rigidity• Electronic can be integrated on the substrate

Some disadvantage:• Cost• Material budget• Radiation damage

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 7

Radiation damage

• ionising and non-ionising radiation• surface and bulk damage• Frenkel pair• NIEL

charged particle

vacancy + interstitial

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 8

Impact on the detector performances

Valence band

Conduction band

• New energetic levels in the forbidden gap• Leakage current• Charge recombination• Collection time

decrease of signal-to-noise ratio

can be improved with time, temperature, material engineering, sensor design, …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 9

Working principle

semiconductor

charged particle

+ -- +

- +- +

- +

+ -

+ -+ -

O(1

00 μ

m)

n+

p++

-

ΔV

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 10

Strip and pixel detectors

p/n side segmented ⇒ position sensitive device

2nn2

Strip• less channels (2n)• multiple hit ambiguity• double sided segmentation possible, but complex• material budget• better suited for large areas

Pixel• more channels (n2)• no multiple hit ambiguity• 1 sensor gives 2 spatial coordinates• vertex detectors

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 11

Hybrid pixel detectors

Used in almost all LHC experiments, X-rays imaging, space radiation detector,…

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 12

An example: a Medipix2 detector

http://medipix.web.cern.ch/MEDIPIX

MEDIPIX2 readout chip (series developed for mammography first, for LHC later…)• 1.4 x 1.4 mm2 active area• 55 μm pitch• counting rate 1MHz• noise free• coupled to photon sensitive devices (GaAs, …) for low dose imaging• sensitivity to single photons

MEDIPIX FILM

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 13

Monolithic detectors

• Sensing volume and electronics on the same substrate• Thickness, simpler, only one technology

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 14

Charge-Coupled Device (CCD)

• Invented in the sixties• Nobel price in 2009• Shift register• High quantum efficiency (70%)• Light detector (found in cameras)• Application in astrophysics, medical imaging, …• Moderate speed• Need trigger to determine position• Sensitive to radiation damage• Needs cooling

Signal treatment

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 15

CCD in high energy physics: the SLD vertex detector

• completed in 1996• ~ 3 x 108 pixels• 96 CCD • 80 x 1.6 cm2 sensitive area each• liquid nitrogen cooling• 20 μm pitch• σIP =14 μm for high energy particles• enhancement of heavy quarks measurement performances

• J. Brau, Design and performances of the new CCD vertex detector at SLD and implications for the next linear collider, Nucl.Inst.Meth.A 418-1 (1998) 52• C.Damerell, Charge-coupled devices as particle tracking detectors, Rev.Sci.Intrum. 69 (1998) 1549

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 16

DEPleted Field Effect Transistor (DEPFET)

• developed in ’90s• in-pixel detection and amplification• depleted volume• low capacitance -> low noise• low power consumption• collect-read-clear• tracker and X-rays imager

J. Kemmer and G. Lutz, Experimental confirmation of a new semiconductor detector principle, Nucl.Inst.Meth.A 288 (1990) 92

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 17

Monolithic Active Pixel Sensor (MAPS)

• CMOS technology• alternative to CCD in commercial application (cameras, video recorder, …)• in-pixel signal treatment

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 18

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 19

MAPS sensing principleSignal collection

• Charges generated in epitaxial layer → ~1000 e- for MIP.• Charge carriers propagate thermally.• In-pixel charge to signal conversion.

Advantages• High granularity (< 10 μm pitch).• Thickness ( <50μm).• Integrated signal processing.• Standard process (cost, prototyping, …)

Issues• Undepleted volume limitations .

• radiation tolerance.• intrinsic speed.

• Small signal O(100e-)/pixel.• In-pixel μ-circuits with NMOS transistors only.

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 20

Basic performances• Room temperature operation.

• Noise ~10-15e-.

• Signal to noise ratio ~ 15-30.

• Detection efficiency ~100% @ fake hit rate O(10-4 -10-5).

• Radiation tol. > 1MRad and 1013neq/cm2 with 10μm pitch (2x1012neq/cm2 with 20μm pitch).

• Spatial resolution 1-5 μm (pitch and charge-encoding dependent).

• Macroscopic sensors (Ex. MIMOSA-5: 1.7 x 1.7 mm2, 106 pixels).

• Used in beam telescopes and VTX demonstrators.

http://www.iphc.in2p3.fr/-CMOS-ILC-.html

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 21

An example of sensor: Mimosa-26

• Active area ~2 cm2.

• 0.35 μm technology.

• Binary output (3.5 - 4 μm spatial resolution).

• In-pixel CDS + preamp.

• Column level discrimination.

• Power dissipated ~280 mW/cm2 (rolling shutter).

• Integration time ~100μs.

21.5 mm

13.7

mm

Pixel array: 576 x 1152, pitch: 18.4 µmActive area: ~10.6 x 21.2 mm2

1152 column-level discriminatorsZero suppression logic

Memory IP blocks

Fast full scale sensors: ~10kFrame/scolumn parallel architecture + integrated zero-suppression

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 22

MIMOSA-26 beam test

• TAPI = IPHC-Strasbourg BT for MIMOSA development.

• Test @ CERN-SPS (120 GeV π- beam).

• 6 MIMOSA-26 sensors running simultaneously at 80 MHz.

• 3 x 106 triggers.

ε = 99.5 ± 0.1 (stat.) ± 0.3 (prel.) %@ fake hit rate O(10-4)

xz

y

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 23

A vertex detector for the International Linear Collider

Sensor requirements• Single point resolution ~ 3μm.• Material budget 0.16/0.11% X0/layer.• Integration time 25 – 100 μs.• 16/15 mm inner radius.• Radiation tolerance ~0.3MRad, few 1011neq/cm2.• O(103) hit pixels/cm2/10 μs on the inner layer.• Averaged power dissipated << 100 W.

Accelerator a (μm) b (μm GeV)LEP 25 70

SLD 8 33

LHC 12 70

RHIC-II 13 19

ILC < 5 < 10

a depends on the intrinsic resolution and inner radius

b depends on material budget

σ IP = a ⊕ b/psin3/2θ

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 24

Other HEP applications

CBM @ FAIR Micro vertex detector

STAR @ RHIC pixel detector

Beam telescopes, interest from ALICE @ sLHC, …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 25

Other (non HEP) applications

ebCMOS:• IPHC-IPNL-PHOTONIS.• Single (visible) photon detection.• Fluorescence microscopes.

X-rays :• Direct illumination below 10 keV• Converter above 10keV (Columnar CsI crystals from Hammamatsu)

• Dosimetry, surgery camera, telescope for hadron therapy, …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 26

Integration techniques: bonding

Connect the sensor to its readout electronics• wire bonding• bump bonding

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 27

Further developments: 3D IT

Benefits:• Increase integrated processing.• 100% sensitive area.• Select best process per layer task.

To be assessed:• Material budget?• Power dissipation?

Example• Tier1: charge collection.• Tier2: analog signal processing.• Tier3: digital signal processing.• Tier4: data transfer.

R. Yarema, ILC Vertex 2008, Menaggio (IT)

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 28

3D sensors

• Increase tolerance to non-ionising radiation• lower depletion voltage• thicker detectors• fast signal• smaller trapping probability• higher capacitance• more complicated fabrication

Parker, Nucl.Instr.Meth. A, 395(1997) 328

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 29

Avalanche Photo Diodes (APD)

semiconductor

charged particle

+ -- +

- +- +

- +

+ -

+ -+ -

O(1

00 μ

m)

n+

p++

-

ΔV

ΔV~ 100 V → ~ 1000 Vcharge multiplication

• only e- create secondary charge• single photon detection• proportional mode

• sensitive to voltage and temperature changes• amplification needed• low single photon efficiency

• Geiger mode• high efficiency• low fluxes

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 30

Silicon Photomultiplier (SiPM)

• matrix of APDs on a common substrate• output proportional to the number of photons• compact and robust• high quantum efficiency• large gain• fast• can be operated in a magnetic field• calorimeters, medical applications, air-shower Cherenkov telescopes

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 31

Diamond detectors

• no doping• low signal• low leakage current • low capacitance• high thermal conductivity• very fast• radiation hard • expensive• RD42 collaboration• ATLAS Beam Conditions Monitor

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 32

More bibliography

General• G. Lutz, Semiconductor radiation detector , Springer (1999)• H.G. Moser, Silicon detector systems in high energy physics, Progress in Particle and Nuclear Physics 63 (2009) 186-237Radiation DamageM. Moll, Radiation damage in silicon particle detectors, PhD Thesis (1999)

and several talk at the VCI 2010 conference…

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

Cherenkov and transition radiation detectors

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Outline

• Cherenkov and transition radiation• Working principle• Applications

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 3

Cherenkov light

• discovered in 1934 (Nobel prize in 1958)• charged particle in medium radiates if v > c/n• cos ( θ ) = 1/(βn) β = v/c• threshold effect• no energy loss θ

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

Where do you see Cherenkov light

• nuclear reactors• cosmic rays → air-shower Cherenkov telescopes• labelled bio-molecules

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

Cherenkov detectors

• exploit the Cherenkov effect to identify particles• v > c/n• two particles with same momentum but different mass will have different velocity

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

Ring Imaging CHerenkov (RICH) detectors

separate particles as function of θ

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 7

Where are the RICHes?

• nuclear and particles experiments• astroparticles• neutrino physics

SuperKamiokande50000 tons of water

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 8

Transition radiation

• predicted by Ginsburg and Frank in 1945 (J.Phys. 9 (1945) 353)• particle traversing a boundary of two media with different dielectric properties• no energy loss• ultra-relativistic particles emit TR in the X-band• radiated energy is proportional to the particle’s energy• particle identification at high energy• average number of photons emitted at boundary ~ 1/137

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 9

ATLAS Transition Radiation Tracker (TRT)

• LHC experiment aimed at Higgs boson discovery and physics beyond the Standard Model• straw tubes in radiator• 420000 channels

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 10

ATLAS Transition Radiation Tracker (TRT)

• LHC experiment aimed at Higgs boson discovery and physics beyond the Standard Model• straw tubes in radiator• 420000 channels

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 11

ATLAS Transition Radiation Tracker (TRT)

• LHC experiment aimed at Higgs boson discovery and physics beyond the Standard Model• straw tubes in radiator• 420000 channels

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 12

ALICE TRD

• LHC experiment• quark-gluon plasma

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 13

TRACER• direct measurements of heavy cosmic ray nuclei (O to Fe) @ 1013 -1014 eV• 4 plastic fibre radiators + double layer of proportional tubes• balloon experiment

http://tracer.uchicago.edu

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 14

Alpha Magnetic Spectrometer (AMS)• search for dark matter and anti-matter• to be launched end of 2010 towards ISS

http://www.ams02.org

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

Bolometers

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Definition

• Measurement of electromagnetic radiation via temperature changes• Absorber + heat sink• Optimal for sub-millimetre astronomy (200μm – 1 mm)• Need to be cooled down (tens – hundreds of mK)• Slow• No particle discrimination• Excellent energy resolution (~ 10 eV @ few KeV)

ΔT

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 3

Bolometers in nuclear and particle physics

• low energy rare events (a few KeV)• WIMP search• low energy neutrino interactions (double β-decay)• very rare nuclear decays

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

Scintillating bolometers in WIMP searches: CRESST

• scintillating material @ low temperature• light vs. heat discrimination technique• CaWO4

• feeble scintillating nuclear recoil (WIMP)• electron recoil (large β and γ background)• Gran Sasso laboratories (under ~ 1400 Km rock)• 10 Kg detector (33 modules)• Tungsten superconducting thermometers

http://www.cresst.de

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

A semiconductor bolometer: EDELWEISS

http://www.edelweiss2.in2p3.fr

• Germanium crystals @ low temperature• ionisation vs. heat discrimination technique• Laboratories @ Modane (under Frejus mountain)• 30 Kg detector

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

Nuclear emulsions

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Working principle

emulsion of silver salts (AgBr)

ionising particle• exposing• developing• observing

+ -+ -+ -- +

- +

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 3

Applications

• discovery of cosmic rays (1910)• discovery of pions (1947)• astrophysics• medical radiography• photography

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

Characteristics

• 3-D spatial information• high granularity ~ 300 hits/mm ⇒ short lived particles• high spatial resolution <1μm

• continuously sensitive • offline analysis ⇒ low cross section experiments

neutrino physicsmicro-autoradiography

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

OPERA experiment

http://operaweb.lngs.it

• νμ → ντ oscillations• neutrino beam from CERN to Gran Sasso (O(1000 Km))• emulsion cloud chamber (ECC)

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

Scanning

http://iopscience.iop.org/1742-6596/41/1/023/pdf/jpconf6_41_023.pdf

2 cm2/h → 20 cm2/h

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

The COMPASS experiment

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Physics goals

• nucleon spin structure• gluon polarisation• helicity and transverse parton distribution functions• generalised parton distributions

• hadron spectroscopy• pion/kaon polarisability• glueballs• hybrids• double charmed baryons

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 33

N

SPSLHC

Jura

mounta

insLac Léman

COMPASS

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

SM1SM1

SM2SM2

66LiD or LiD or NHNH33 TargetTarget

160

160 Ge

VGeVμμ

RICH

ECal & HCal

μ filter

SiliconMicromegas

SciFi

GEMs

Drift chambers

StrawsMWPC

50 m

μ filter

• fixed (polarised) target experiment• polarised muon/hadron beams (~ 160 GeV)• ~ 108 particles/s• taking data since 2001

The experiment

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

The beam reconstruction

SM1SM1

SM2SM2

66LiD or LiD or NHNH33 TargetTarget

160

160 Ge

VGeVμμ

RICH

ECal & HCal

μ filter

SiliconMicromegas

SciFi

GEMs

Drift chambers

StrawsMWPC

50 m

μ filter

350 ps time resolution14 μm spatial resolution

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

The target

solenoid 2.5Tdipole magnet 0.5Tacceptance ± 180 mrad

3He – 4He dilutionrefrigerator (T~50mK)

μ

6LiD or NH350/90% polarization40/16% dilution factor

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 7

The tracking system

SM1SM1

SM2SM2

Micromegas

GEMs

Drift chambers

Straws

MWPC

50 m

Stage 1 (Large Angle Spectrometer)•1Tm•Δp/p ~ 1%•5-50GeVStage 2 (Small Angle Spectrometer)•5.2 Tm•Δp/p ~1%•30-100GeV

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 8

The particle identification

RICH

ECal & HCal

μ filter

μ filter

μ→ μ filterπ, K, p separation → RICHe, γ → ECAlhadrons → HCal

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 9

The data acquisition system (DAQ)

∼200000 detector channelsup to 100kHz trigger rate40kByte/event → up to 4000MByte/s

SPS duty cycle

4.8s 12 s

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 10

Event reconstruction

trackingvertexingPIDcomplete event

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 11

Data analysis

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 1

The CMS experiment

Rita De MasiIPHC-Strasbourg

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 2

Main physics goals

• Higgs boson• Extradimensions• Dark matter• SUSY• …

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 33

N

SPSLHC

Jura

mounta

insLac Léman

CMS

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 4

The detector

proton-proton collider (7+7 TeV)

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 5

The detector

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 6

One typical event

Ecole Doctorale de Physique et Chimie Physique - Mai 2010 7

The GRID 5

• 5 petaBytes/year of data (1015!!!!)• similar to the WEB, but also sharing computing power and storage capacity• presently 200 sites (20000 computers)• simulation of drugs against avian flu and malaria•…