Upload
others
View
6
Download
0
Embed Size (px)
DRAFT – Page 1 – February 8, 2012
New and Emerging Organophosphorus and Brominated Flame Retardants and/or Degradation Products in Herring
Gulls and Their Ecosystems From the Great Lakes
Robert J. Letcher and Da Chen
Environmental Chemistry Laboratory Seminar Series, California Department of Toxic Substances Control, Berkeley, California, U.S.A., Feb. 8, 2012
(contact e-mail: [email protected] and [email protected] )
Wildlife Toxicology Research Section, Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environmental Canada, National Wildlife Research Centre,
Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON, Canada
Photo: C. Weseloh
DRAFT – Page 2 – February 8, 2012
Presentation Overview
State-of-the-science on emerging flame retardants; relevant to biota and wildlife and this presentation
Legacy and emerging contaminants: Great Lakes Herring Gull Monitoring Program (GLHGMP)
FOCUS STUDY 1: organophosphorus flame retardants: Great Lakes herring gulls, spatial distribution, temporal trends, food web dynamics, fate and sources
FOCUS STUDY II: novel methoxy-polybromodiphenoxy benzene (MeO-PBDPB) contaminants: Great Lakes herring gulls, spatial distribution, temporal trends, sources, and connection to flame retardants
Photo: R. Letcher
DRAFT – Page 3 – February 8, 2012
Acknowledgements
EC-Ecotoxicology and Wildlife Health DivisionEnvironment Canada’s Chemicals Management Plan Natural Sciences and Engineering Research Council (to R.J.L. supporting PDF Dr. Da Chen)
Funding
Letcher Group (NWRC, Environment Canada, Carleton University):
Wellington Laboratories (Guelph, Ontario, Canada):Brock Chittim, Robert McCrindle, David Potter
EC contributors and (CWS) field staff (Ontario region) part of the GLHGMP: Chip Weseloh, Craig Hebert, Kim Williams, Doug Crump
EC-National Wildlife Specimen Bank (NWRC, Ottawa)
LewisGauthier
Dr. Da Chen
Dr. Shaogang Chu
DRAFT – Page 4 – February 8, 2012
(Howard, Muir. 2010. Environ. Sci. Technol. 44:2277-2286)
What Matters to Biota Including Wildlife:Persistence + Bioaccumulation (P+B) Characteristics of Chemicals
Ramifications in the EnvironmentP+B Characteristics a
Indicative of tendency to absorb to sediment and bioaccumulate
BCF estimates bioaccumulation potential
Indicates stability to atmospheric oxidation
Described air-water partitioning; long-range transport
Number of chemicals with these P+B characteristics is small
Biomagnification in air-breathing organisms
Must also consider chemical metabolites, degradation products, stereoisomers, etc.
“Wildlife” defined as all vertebrates excluding fish (e.g., birds, mammals, amphibians and reptiles)
DRAFT – Page 5 – February 8, 2012
“New” Flame Retardants (FRs): An Environmental Concern in a Post-PBDE World
Bis(2,4,6-triromophenoxy)ethane (BTBPE) (FF-680)
Known PBDE replacements
Unknowns- Novel BFR chemicals engineered by industries- Already in use, but never reported in environment media
Howard and Muir, ES&T, 2010, 44, 2277-2285
- A total of 610 substances under review have P&B properties, of them 500 had yet to be reported in environmental media
- Of the listed 610 substances, 62% halogenated (80 were brominated)
polybrominated diphenyl ether (PBDE) BFRs; increasing regulation / phase-outs of Penta-/Octa-BDE/deca-BDE (BDE-209) technical mixtures
Currently at least 75 different non-PBDE BFRs in production / commerce (www.bsef.com); not reported in environmental media
DRAFT – Page 6 – February 8, 2012
Triester Organophosphate Flame Retardants (OPFRs) ------ “Re-emerging” Contaminants
Environmental reports:Sheldon and Hites, 1978;Saeger et al., 1979
Toxicity studies: (Blum et al., 1977 and 1978)Certain OPFRs have cancer hazards
Environmental reports:Sheldon and Hites, 1978;Saeger et al., 1979
Toxicity studies: (Blum et al., 1977 and 1978)Certain OPFRs have cancer hazards
Studies performed due to concerns of possible (bio)accumulation and (bio)degradation and toxic effectse.g., (Muir et al., 1983) uptake, clearance and metabolism of four OPFRs in trout and minnow
Studies performed due to concerns of possible (bio)accumulation and (bio)degradation and toxic effectse.g., (Muir et al., 1983) uptake, clearance and metabolism of four OPFRs in trout and minnow
Studies mostly discontinued, as most phosphates initially considered were found to be degradable in the environment
P O
OO
R2
R3R1
O
1960s 1970s 1980s 1990s 2000s
In use: FRs and plasticizers in plastics, foams, textiles, furniture and many others
In use: FRs and plasticizers in plastics, foams, textiles, furniture and many others
Reports in indoor environment:Carlson et al., 1997;Stapleton et al., 2009;Bergh et al., 2012
In water, sediments and sludge:Rodriguez et al., 2006;Fries and Puttmann, 2006;Marklund et al., 2005
Reports in indoor environment:Carlson et al., 1997;Stapleton et al., 2009;Bergh et al., 2012
In water, sediments and sludge:Rodriguez et al., 2006;Fries and Puttmann, 2006;Marklund et al., 2005
(Marklund et al., 2010; WHO 1990, 1991, 1995, 1998 and 2000.) (Howard, Muir. 2010. Environ. Sci. Technol. 44:2277-2286.)
Chlorinated OPFRs Included in the 4th EU priority list (2000) for risk assessments and found to be rather persistent
DRAFT – Page 7 – February 8, 2012
Main (Additive) OPFRs Studied and of Environmental Interest
Compound Name R1 = R2 = R3 Abbreviation LogKow BCF Toxicity
Triphenyl phosphate TPhP 4.59 324-1368 Neurotoxic
Tricresyl phosphate TCrP 5.11 770-2768 Neurotoxic
Tris(2-butoxyethyl) phosphate
TBEP 3.75 Suspected carcinogenic
Tris(1-chloro-2-propyl) phosphate
TCPP 2.59 3 Suspected carcinogenic
Tris(1,3-dichloro-2-propyl) phosphate
TDCPP 3.65 47-107 Suspected carcinogenic
Tris(2-chloroethyl) phosphate
TCEP 1.44 0.9-2.2 Carcinogenic
P O
OO
R2
R3R1
O
Marklund et al., 2010; WHO 1990, 1991, 1995, 1998 and 2000;
CH3
OCl
Cl
Cl
Cl
Howard, Muir. 2010. Environ. Sci. Technol. 44:2277-2286
DRAFT – Page 8 – February 8, 2012
OPFRs: Environmental Release and Contamination Reports
A/B
A/B/C/E/F
A
A/C A/BA B/CB/C/D/E/ CFA
A: sludge and wastewaterBester 2005; Klosterhaus et al., 2009; Mayer et al., 2004; Marklund et al., 2005;Quintana et al., 2006; Reemtsma et al., 2006;Rodil et al., 2005
B: surface/ground water/sediments
Ishikawa et al., 1985; Fukushima et al., 1992;Martinez-Carballo et al., 2007; Fries et al., 2003;Paxeus 2002; Andresen et al., 2004;Knepper et al., 1999; Stackelberg et al., 2004;Andressen et al., 2006; Ernst 1999;Kawagoshi et al., 1999; Fries et al., 2001
C: indoor air and dustCarlsson et al, 1997; Hartmann et al., 2004;Marklund et al., 2003, 2005; Salto et al., 2007;Sanchez et al., 2003; Staff et al., 2005;Ingerowski et al., 2001; Stapleton et al., 2009;Meeker et al., 2010; Kasper et al., 2011;van den Eede et al., 2011; Bergh et al., 2012
D: Baby ProductsStapleton et al., 2011
E: Human blood, milk, urineMarklund et al., 2010; Amini and Crescenzi, 2003;Cooper et al., 2011
F: Environmental BiotaMarklund et al., 2010; Campone et al., 2010; Kim et al., 2011
Most were performed in abiotic environment; few biota investigations;
No reports in scientific literature about wildlife exposure except for (freshwater) fish
Most were performed in abiotic environment; few biota investigations;
No reports in scientific literature about wildlife exposure except for (freshwater) fish
Studies focussed on:TCPP and TDCPP
F
DRAFT – Page 9 – February 8, 2012
Organophosphate Flame Retardants (OPFRs): “New” High-Production-Volume FRs
US EPA Inventory Updating Report: manufacturers or importers report site and manufacturing information for certain chemicals manufactured or imported in amounts >= 25,000 pounds at a single site
US EPA Inventory Updating Report: manufacturers or importers report site and manufacturing information for certain chemicals manufactured or imported in amounts >= 25,000 pounds at a single site
Estimation of annual flame retardant consumption in Western Europe
Estimation of annual flame retardant consumption in Western Europe
TCPP
1982 1986 1990 1994 1998 2002 2006 201005
10152025303540455055
MinMax
US EPA Inventory Update Report (www.epa.gov/iur/)
TDCPP
1982 1986 1990 1994 1998 2002 2006 201005
10152025303540455055
MinMax
TCEP
1982 1986 1990 1994 1998 2002 2006 20100123456789
1011
MinMax
TPhP
1982 1986 1990 1994 1998 2002 2006 201005
10152025303540455055
MinMax
2001 2005 20060
102030405060708090
OPFRsBFRs
Data from Western Europe (Reemtsma et al., 2008)
P O
OO
O
Cl
Cl
Cl
P O
OO
O
Cl
Cl
Cl
P O
OO
O
P O
OO
O
Cl
Cl
ClCl
Cl
Cl
Tris(1-chloro-2-propyl) phosphate
Tris(2-chloroethyl) phosphate
Tris(1,3-dichloro-2-propyl) phosphate
Triphenyl phosphate
DRAFT – Page 10 – February 8, 2012
Great Lakes Herring Gull Monitoring Program (GLHGMP)
program started in 1974 by collecting herring gull eggs from 15 colonies in the Great Lakes to monitor contaminants
10-13 individual eggs (in spring) from all 15 GLHGMP sitesspatial and temporal trends have been monitored in the herring gull
eggs for various environmental pollutants: Legacy POPs, e.g. PCBs, OC pesticides and dioxins/furans (Weseloh, Hebert et al.) – recently, emerging POPs and other compounds including various legacy and current-use flame retardants
Photo: R. Letcher
Canada
L. Ontario
L. Erie
L. HuronL. Michigan
L. Superior
U.S.A.
Agawa Rocks
Turkey Is.
Channel-Shelter Is.
Chantry Is.
Toronto
Niagara R. (above the falls)
Gull Is.
Granite Is.
Big Sister Is.
Big Chicken Is.
Double Is. Strachan Is.
Snake Is.
Hamilton
Port Colborne
2
1
34 5
6
7
89
101112
13 1415
Photo: R. Letcher
DRAFT – Page 11 – February 8, 2012
1988 1993 1998 2003 2008-2011
Chlorinated and brominated phenolic compounds (e.g., OH-PCBs, OH-PBDEs in plasma samples from Hamilton Harbour and Scotch Bonnett Is. Gulls (2004) (Ucan-Marin et al. 2011. In prep.)
PFCs and precursors (21 compounds screened; 12 PFCAs (incl. PFOA) and PFSAs (incl. PFOS and isomers); ongoing (Gebbink et al. 2010. ES&T. 44:3739-3745; Gebbink et al. 2009. ES&T. 43:7443-7449;Gebbink et al. 2011a (Environ. Pollut.), 2011b (J. Environ. Monit.))
Penta-BDE derived PBDEs (25 di- to hepta-BDEs monitored, 1981-2000 trends at 7 sites) (Norstrom et al. 2002. ES&T 36:4783-4789)
Penta-, Octa- and Deca-BDE derived PBDEs (43 di- to deca-BDEs monitored, 1982-2006 trends at 7 sites) (Gauthier et al. 2008. ES&T 42:1524-1530)
Non-PBDE BFRs and other FRs (26 compounds screened; 1982-2006 trends possible for 10 substances for 7 sites) (Gauthier et al. 2007. ES&T 42:1524-1530)(Gauthier et al. 2009. ES&T 43:312-317)(Gauthier and Letcher 2009. Chemosphere 75:115-120)(Letcher et al. 2012. In prep.)
TBBPA and derivatives (Letcher and Chu. 2010. ES&T.44:8615-8621)
Back to the mid-1970’s – LEGACY contaminants: OC pesticides, PCB, dioxins/furans, metals (Hg); temporal monitoring
(Weseloh et al.Norstrom et al.)
GLHGMP and POPs – Long-Term Perspective on Research/Monitoring Using Collected and Archived Samples
Photo: C. Weseloh
DRAFT – Page 12 – February 8, 2012
Examples of non-PBDE FRs screened
for in gull eggs
ClClCl
Cl
ClCl
ClCl
ClClCl
Cl
ClCl
Cl
Cl
Cl Cl
Cl
Cl
ClCl
ClCl
syn-Dechlorane Plus (syn-DP) anti-DP
β-HBCD
γ-HBCD
α-TBECH
-TBECH
α-HBCD
hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO) bis(2-ethylhexyl)tetrabromophthalate (BEHTBP)
TBBP-A derivatives
DRAFT – Page 13 – February 8, 2012
Temporal Trend of BDE-47, -99, -100 in Herring Gull Egg Pools 1981-2006 (Channel-Shelter Is.)
Con
cent
ratio
n (n
g/g
ww
)
0
100
200
300
400
500
600
Ontario
Canada
U.S.A.
Collection Year
Post-2000:~250 to ~1600 ng/g ww(depending on site)
BDE-47, -99 + -100
post-2000: no sum conc. increases for BDE-47, -99 and -100 in all seven colonies under study
(Gauthier, Hebert, Weseloh, Letcher. 2008. Environ. Sci. Tech. 42:1524-1530)
BDE209Post-2000:<0.1 to ~40 ng/g ww(depending on site)
DRAFT – Page 14 – February 8, 2012
8.7 4.9 7.4 7.3 7.9 6.4
11 5.7 6.9 3.0 3.2 3.03.9 2.6 5.3 3.5 2.6 2.4
2.8 2.5 3.0 2.5 2.6 2.1
Doubling Times (Years) for PBDEs in Herring Gull Egg Pools From Selected Colonies in the Great Lakes
(1982-2006; n=12-15 time points)
BDE-209
-octa-BDEs
-nona-BDEs
-BDEs(47, 99 and -100)
rs = 0.63p<0.02
rs = 0.77p<0.0008
rs= 0.69p<0.01
rs= 0.57p<0.03
rs = 0.55p<0.05
rs= 0.63p<0.002
Statistical Data Treatment:Doubling times: rate of change of curve fit from a non-linear, exponential growth regression model using non-transformed PBDE con. data.
Spearman rank correlation coefficients (rs) and significance (p=0.05) for exponential curve fits.
DRAFT – Page 15 – February 8, 2012
Spatiotemporal Trends of Σ-syn + anti-DP Conc.(ng/g ww) in Great Lakes Herring Gull Egg Pools
(Gauthier, Letcher. 2009. Chemosphere 75:115-120)
1
2
34
76
5
DRAFT – Page 16 – February 8, 2012
“New” Environmental BFR: TBECH
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) isomers
α-TBECH -TBECH -TBECH -TBECH
52 to 100%β-TBECH isomer
Temporal Trends of sum-TBECH in Herring Gull Egg Pools from the Great Lakes
Ontario
Canada
U.S.A.
Gull Is, (L. Mich.) Channel Shelter Is., (L. Huron) Niagara River Toronto (L. Ont.)
(Gauthier, Potter, Hebert, Letcher. 2009. Environ. Sci. Technol. 43: 312-317)
DRAFT – Page 17 – February 8, 2012
Temporal Trends of -HBCD in Herring Gull Egg Pools from L. Superior and L. Michigan Sites
(Letcher, Gauthier, Chu 2012. In preparation)
Photo: C. Weseloh
Con
cent
ratio
n (n
g/g
w.w
)
Ontario
Canada
U.S.A.
0
50
100
150
200
250
Agawa RocksGull Island
-HBCD
Post-2000: ~250 ng/g ww, lower limit for BDE-47, -99 +-100
Post-2000: ~40 ng/g ww, upper limit for BDE-209
Con
cent
ratio
n (n
g/g
w.w
)
020406080
<0.1
Photo: R. Letcher
DRAFT – Page 18 – February 8, 2012
FOCUS STUDY I:
Organophosphorus Flame Retardantsin Herring Gulls:
Spatial Distribution, Temporal Trends, Food Web Dynamics, Fate and Sources
Photo: R. Letcher
DRAFT – Page 19 – February 8, 2012
2 g egg homogenate spiked with diatomaceous earth
Add I.S. 10 ng d27-Tributyl phosphate
Dry with Na2SO4, solvent exchange to HEX and reduce volume to 0.5 mL
ASE extraction with 50:50 DCM/HEX
Load 0.5 mL extract and rinse with additional 0.5 mL HEX
Condition 1 g aminopropyl silica gel (Isolute) with 15 mL 50:50 Methanol/DCM, 15 mL DCM and 20 mL HEX
Fraction #1: elute with 2 mL 20:80 DCM/HEX Fraction #3: elute with 16 mL DCM
Reduce extract to dryness; add 200 uL methanol and transfer to LC vial after filtering for LC-ESI(+)-MS/MS analysis
Triester OPFRMethod
Remove contamination from silica, etc. (TCPP, TCEP and TBP)
Remove contamination from silica, etc. (TCPP, TCEP and TBP)
Skip gel permeation chromatography (GPC)Skip gel permeation chromatography (GPC)
(Chen, Letcher, Chu. 2012. J. Chromatogr. A 1220: 169-164)
Fraction #2: elute with 4 mL 20:80 DCM/HEC + 8 mL DCM
DRAFT – Page 20 – February 8, 2012
Quantitative LC-ESI(+)-MS/MS Analysis of 12 Triester OPFRs
OPFR Compound Acronym MRM transitions (m/z)
Mean % Matrix Effect (2 g egg, n=5)
Mean Overall % Recovery (n=6)
MLOQ (ng/g wet weight)
Tris(2-chloroethyl) phosphate TCEP 284.9 > 63 94 (4) 101 (10) 0.10Tripropyl phosphate TPrP 225.3 > 99 99 (5) 96 (15) 0.10Tris(2-chloroisopropyl) phosphate TCPP 329.1 > 99 95 (5) 89 (10) 0.20Tris(1,3-dichloro-2-propyl) phosphate
TDCPP 430.9 > 99 90 (6) 90 (8) 0.06
Triphenyl phosphate TPhP 327.1 > 77.1 94 (7) 93 (8) 0.10Tris(2,3-dibromopropyl) phosphate TDBPP 698.6 > 99 79 (9) 54 (5) 0.15Tributyl phosphate TBP 267.1 > 99 89 (5) 100 (12) 0.10Tricresyl phosphate TCrP 369.1 > 91 94 (7) 96 (11) 0.122-Ethylhexyl diphenyl phosphate EHDPP 363.2 > 250.8 92 (7) 94 (16) 0.09
Tris(2-butoxyethyl) phosphate TBEP 399 > 199 86 (5) 92 (7) 0.15Tris(2-bromo-4-methylphenyl) phosphate
TBMPP 604.9 > 90 90 (23) 51 (25) 0.10
Tris(2-ethylhexyl) phosphate TEHP 435.3 > 99 96 (22) 104 (13) 0.07Deuterated tributyl phosphate (I.S.)
d27-TBP 294.3 > 102 89 (7) 81 (3) n/a
Photo: R. Letcher
(Chen, Letcher, Chu. 2012. J. Chromatogr. A 1220: 169-164)
DRAFT – Page 21 – February 8, 2012
OPFRs in Eggs of Herring Gulls From a Representative Colony Site (Channel-Shelter Is.; Lake Michigan)
Egg Lipid% TCEP TCPP TBEP TPhP TDCPP
1 6.0 0.23 0.37 0.23 <MLOQ n.d.2 7.5 0.16 0.41 0.24 <MLOQ <MLOQ3 7.4 <MLOQ 0.21 0.65 <MLOQ <MLOQ4 8.0 0.16 0.32 0.45 n.d. <MLOQ5 7.7 0.12 0.20 0.57 <MLOQ <MLOQ6 8.1 0.23 0.40 2.2 0.13 <MLOQ7 7.5 0.21 0.42 0.44 0.13 0.178 6.9 <MLOQ 0.22 0.16 <MLOQ n.d.9 6.8 0.28 0.60 0.41 <MLOQ n.d.10 8.0 0.17 0.21 0.62 <MLOQ <MLOQ11 10 0.55 1.4 0.49 0.11 <MLOQ12 8.7 <MLOQ 4.1 0.70 <MLOQ 0.1113 7.6 0.20 <MLOQ 0.40 <MLOQ <MLOQ
* Reported values were already subjected to blank subtraction.
Concentration* (ng/g wet weight) of OPFRs in the herring gull eggs (n=13)
Ontario
Canada
U.S.A.
TCEP TCPP TBEP TPhP0.01
0.1
1.0
10
100
Con
c. (n
g/g
lipid
wei
ght)
DRAFT – Page 22 – February 8, 2012
Spatial Patterns of Non-Chlorinated OPFRs in Herring Gull Egg Pools (n=13 each; collected in 2010)
P O
OO
O
05
101520
Con
c. (n
g/g
lw)
P O
OO
O
O
O
O
0
5
10
(Letcher, Chen et al. 2012. In prep.)
Con
c. (n
g/g
lw)
TPhP: <MLOQ – 7.9 ng/g lipid wt.(Geomean = 2.5)
TBEP: <MLOQ – 20.4 ng/g lipid wt.(Geomean = 5.9)
DRAFT – Page 23 – February 8, 2012
TCPP: 3.7 – 55.4 ng/g lipid wt. (Geomean = 9)
020406080
Con
c. (n
g/g
lw)
P O
OO
O
Cl
Cl
Cl
Spatial Patterns of Chlorinated OPFRs in Herring Gull Egg Pools (n=13 each; collected in 2010)
TCEP: 3.5 – 45 ng/g lipid wt.(Geomean = 8.2)
0123456789
1011
MinMax
Milli
ons
of L
bs
05
10152025303540455055
Milli
ons
of L
bs
MinMax
US EPA Inventory Updating Report (www.epa.gov/iur/)
US EPA Inventory Updating Report (www.epa.gov/iur/)
020406080
Con
cent
ratio
n (n
g/g
lw)
P O
OO
O
Cl
Cl
Cl
DRAFT – Page 24 – February 8, 2012
OPFR Temporal Trends (1990-2010) for Chantry Is. (Lake Huron)
Ontario
Canada
U.S.A.
0
5
10
15 TCEP
Con
cent
ratio
n (n
g/g
lipid
wei
ght)
TCPP
1990 1995 2000 2005 20100
5
10
15 TPP
Year1990 1995 2000 2005 2010
TBEP
Year
Photo: R. Letcher
Preliminary years assessed: 1990, 1992, 1994, 1996, 1998, 2000, 2002, 2004, 2006, 2008, 2009 and 2010
<MLOQ = < 1 ng/g (lipid weight)
(Letcher, Chen et al. 2012. In prep.)
DRAFT – Page 25 – February 8, 2012
Sources and Factors Influencing Bioaccumulation of Emerging Contaminants in Herring Gulls
x
xxx
x
x
x
x
xx
xx
x x
x
DIET: Colony Site Proximity to Urban Centres
DIET: Gull Migratory Patterns During
Breeding
DRAFT – Page 26 – February 8, 2012
Aquaticfood web
Terrestrial(e.g. human garbage/refuse, mammal, insects, other birds)
Dietary Tracers:δ15N/δ13C stable isotopes; fatty acid profiles
Chemical Tracers and the Herring Gull Diet
σ-3 (n-3) FAs: AQUATICσ-6 (n-6) FAs: TERRESTRIAL
(Hebert et al. 2006. ES&T40:5618-5623)
-HBCD
(Marvin et al. 2006. Chemosphere 64:268-275.)Chantry Is.
Toronto Harbour
Fighting Is.
Channel-Shelter Is.Agawa Rocks
Niagara River
Gull Is.
(Hebert, Arts, Weseloh. 2006. ES&T 40:5618-5623)
Estimate of Gull Trophic Position (TP) = [δ15Ngull-δ15Nfish] / 3.4 + 3
Gul
l TP
Mean n-3:n-6 FA ratio
Gull diet composition colony-dependent but also shifting to greater terrestrial input over time (Hebert, Weseloh, Idrissi, Arts, O'Gorman, Gorman,
Locke, Madenjian, Roseman. 2008. Ecology 89:891-897)
DRAFT – Page 27 – February 8, 2012
Triester OPFR Are Metabolized to Diester Phosphoric Acids
P
O
OH
O O
P
O
OH
O OCl
Cl
Cl
Cl
Diphenyl phosphoric acid (DPhP)
Di(1,3-dichloro-2-propyl) phosphoric acid (DDCPP)
P
O
O
O O
P
O
O
O OCl
Cl
Cl
Cl
Cl
Cl
Triphenyl phosphate (TPhP)
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP)
Physiological / Biochemical Factors:- In ovo transfer (e.g. phospholipid protein binding?)- Metabolism (e.g., TCDPP to DDCPP metabolism rapid in vitro in rat microsomes
(Chu, Letcher, Chen. 2011. J. Chromatogr. A. 1218 : 8083-8088)
DRAFT – Page 28 – February 8, 2012
Dicationic Ion-Pairing of Diester Phosphoric Acid Flame Retardant (DOPFR) Metabolites, Post-HPLC and determination by ESI(+)-ToF-MS
and Quantification by ESI(+)-Tandem Quadrupole MS/MS
Diester Phosphoric Acid Acronym MRM transitions (m/z) LODs(ng/mL)
LOQs(ng/mL)
Mean % RSD(ng/mL)
(n=7 rep.)
Diphenyl(metabolite of TPhP)
DPhP 507.3 > 243.3 0.14 0.46 0.46
dibutyl(metabolite of TBP)
DBP 467.4 > 243.3 0.03 0.10 0.10
di(1,3-dichloro-2-propyl) (metabolite of TDCPP)
DDCPP 577.2 > 243.3 0.14 0.45 0.45
di(2-ethyhexyl) (metabolite of TEHP)
DEHP 579.5 > 243.3 0.02 0.07 0.07
Further DOPFR method development underway:- For expanded suite of DOPFRs- Application for DOPFR quantification in HERG eggs- investigation of OPFR to DOPFR fate and spatiotemporal trends in herring gulls spanning the Great Lakes
[[M-H]-D2+]+
[(CH3)2N(CH2)10N(CH3)3]+
P
O
OH
O OCl
Cl
Cl
Cl
N N(CH3)3+
(H3C)3+
HO-HO-
N N(CH3)3+
(H3C)3+
Br-Br-
+
P
O
O
O OCl
Cl
Cl
Cl
N N(CH3)3+
(H3C)3+-
- H2O
[[M-H]-D2+]+
decamethonium bromide
post-HPLC ion-pairing ion-pair cation
column (30 × 1.1 cm i.d.), Amberlite IRA-400 (chloride form)50 mL, 1 M NaOH, 50 mL ultrapure water1 mL 0.1 M decamethonium bromideelution with 80 mL of waterTotal hydroxylation, eluant pH = ~7
(Chu, Letcher, Chen. 2011. J. Chromatogr. A. 1218 : 8083-8088)
DRAFT – Page 29 – February 8, 2012Trophic Position
0.01.02.03.04.05.06.07.0
TBEPTCPPTPPTBPEHDPPTCEP
Con
c. (n
g/g
ww
)
Ontario
Canada
U.S.A.
OPFR Triester Bioaccumulation in a Lake Ontario Food Web (2010): Preliminary Results
DRAFT – Page 30 – February 8, 2012
Relative Concentrations (Recent Years) and Temporal Changes (1990-2008) of Emerging Organohalogen Conc.
(Lipid Weight) in Great Lakes Herring Gull Egg Pools From Selected Colony Sites
Ontario
Canada
U.S.A.Photo: R. Letcher
OrganohalogenGroup
CollectionYear
L. Ont.(Toronto Hbr.)
L. Mich.(Channel-Shelter Is.)
L. Superior(Agawa Rocks)
L. Ont.(Toronto Hbr.)
L. Mich.(Channel-Shelter Is.)
L. Superior(Agawa Rocks)
-OPFR 2010 24 22 96 ? ? ?-MeO-PBDPB 2009 49 490 9 -Dechlorane Plus 2006 30 20 55 ---- ---- -----7PBDE 2006 7910 6100 3960 ---- ---- ----
BDE-209 2006 180 100 61
-TBECH 2006 1.7 5.4 1.6 ---- ---- -----HBCD 2006 46 <0.1 120 ? ? ?BTBPE 2006 0.9 0.8 1.1 ---- ---- ----PFOSA (w.w.) 2010 <0.05 <0.05 <0.05
PFOS (w.w.) 2010 7890 1790 1410
-PFCAs (w.w.) 2010 630 550 850
Numerous, current-use and non-PBDE BFRs found at concentrations < 1.0 ng/g lw)
Recent Conc. (lipid weight) Temporal Change Direction
DRAFT – Page 31 – February 8, 2012
FOCUS STUDY I: Conclusions
OPFRs:
Among 2010-collected eggs/egg pools screening, of 12 OPFRs, TCEP, TCPP, TBEP and TPhP quantifiable from sites across the Great Lakes
Large inter-individual variations in egg conc. (e.g. Channel-Shelter Is.); spatial patterns not obvious(influenced by diet, metabolism, feeding and migration during breeding, proximity to urban centres, OPFR-selection in ovo transfer)
Longer-term temporal trends of TCEP, TCPP, TBEP and TPhP for Chantry Is. (Lake Huron) suggest that present in herring gulls (eggs) is a post-1995 phenomenon
Preliminary bioaccumulation studies in Lake Ontario food web; some bioaccumulation to gulls and trout, but exposure may be largely underestimated due to triester metabolism
Largely unknown for OPFR Triesters and Diesters:Spatiotemporal trends for OPFR diesters, and relationship to triestersMetabolism for OPFRs to DOPFRs influence bioaccumulation and fate (e.g., TCDPP (triester)
to DDCPP (diester)) in herring gulls and subsequently in their eggs?Food web dynamics (biomagnify? Terrestrial vs. Aquatic? (use of chemical tracers)) Environmental contamination (sources?)Effects in exposed biota and wildlife?
DRAFT – Page 32 – February 8, 2012
Recent Examples of OPFR (Neurotoxicological) Effects Studies
Dishaw et al (2011) Toxicol. Appl. Pharmacol. 256: 281-289: - PC12 cells (cell line, rat adrenal medulla), model system for
neuronal differentiation neurotoxicity investigated for tris (2-chloroethyl) phosphate (TCEP),
tris (1-chloropropyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP)
using undifferentiated and differentiating PC12 cells, TDCPP displayed concentration-dependent neurotoxicity
different OPFRs show divergent effects on neurodifferentiation, suggesting the participation of multiple mechanisms of toxicity, e.g. neurodevelopment
Ren et al. (2008) Chemosphere 74: 84-88: TCEP; at the time, effects at environmental concentrations unknown renal effects, primary cultured rabbit renal proximal tubule cells (PTCs) TCEP at 10 mgL(-1), decreased cell viability, increased lactate
dehydrogenase, inhibited expression of CDK4, cyclin D1, CDK2, and cyclin E, and increased expression of p21(WAF/Cip1) and p27(KiP1)
DRAFT – Page 33 – February 8, 2012
Photo: R. Letcher
FOCUS STUDY II:
Methoxy-Polybromodiphenoxy Benzenes (MeO-PBDPBs) in Herring Gulls:
Spatial Distribution, Temporal Trends, Sources, and Connection to Flame Retardants
DRAFT – Page 34 – February 8, 2012
★
Herring gull egg from Lake Huron (2008)Herring gull egg from Lake Huron (2008)
GC-MS (ECNI) (m/z 81, 79)GC-MS (ECNI) (m/z 81, 79)
• Three unknown peaks present in the same fraction as PBDEs
• They are novel contaminants that have never been reported before
• What are they?
• Three unknown peaks present in the same fraction as PBDEs
• They are novel contaminants that have never been reported before
• What are they?
Unknown Bromide Anion Response Peaks in a GC(ECNI)-MS SIM analysis
Channel-Shelter Island (L. Huron)
183/176
207208
IS-3 (BDE205)
179
? ?
? BTBPE191? 190/171
? (+ low 206)
??
209
Unknown #1
Unknown #2 Unknown #3
(Gauthier, Potter, Hebert, Letcher, 2009. Environ. Sci. Technol. 43: 312-317)(Gauthier, Potter, Hebert, Letcher, 2009. Environ. Sci. Technol. 43: 312-317)
DRAFT – Page 35 – February 8, 2012
4 g Channel-Shelter Island egg homogenate (ten replicates)
ASE extraction with 50:50 DCM/HEX
GPC
500 mg Bakerbond silica gel SPE
Self-packed 7 g silica gel SPE
F1: 100 mL HEX and 30 mL 20:80
DCM:HEX
F2: 30 mL 80:20 DCM:HEX (for GC-
MS analyses)
Matrix Cleanup
(Chen, Letcher, Gauthier, Chu, McCrindle, Potter, 2011. Environ. Sci. Technol. 45: 9523-9530)
(Chen, Letcher, Gauthier, Chu, McCrindle, Potter, 2011. Environ. Sci. Technol. 45: 9523-9530)
Agilent 6890 GC – 5973 MS (EI full scan)Agilent 6890 GC – Waters Autospec Ultima MS (EI full scan)
DRAFT – Page 36 – February 8, 2012
100000
10000
20000
30000
40000
50000
60000
70000
80000
90000
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
0
235
356
366
432
451
526
592
608
686
(526-OPhBr)
(526-CH3Br)(M-Br2)
(M-CH3Br)
(M-Br+H)
(M)
(C6H3Br2) (M-C6H3Br2)(M-Br2-Br2)
m/z
Abundance
OC
H3
Br x
C19H11O3Br5
Fullscan (m/z 30 – 800 amu)
GC-MS(ECNI) Mass Spectrum (U1)
(Chen, Letcher, Gauthier, Chu, McCrindle, Potter, 2011. Environ. Sci. Technol. 45: 9523-9530)(Chen, Letcher, Gauthier, Chu, McCrindle, Potter, 2011. Environ. Sci. Technol. 45: 9523-9530)
DRAFT – Page 37 – February 8, 2012
Fullscan (m/z 30 – 800 amu)
GC-MS(EI) Mass Spectra (U1, U2, U3 and U4)
100000
10000
20000
30000
40000
50000
60000
70000
80000
90000
50 100 150 200 250 300 350 400 450 500 550 600 650 7000
235
263
356
366
432
451
526
592
608
686U1
(M-Br2)/2
(526-OPhBr)
(526-CH3Br)
(M-Br2)
(M-CH3Br)(M-Br+H)
(M)
(C6H3Br2)(M-C6H3Br2)
(M-Br2-Br2)
OC
H3
Br x
Abundance
m/z m/z
700
608(M-Br+H)
Br x
50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
120000
130000 766
686
671
606
510
446
(M)
(M-Br+H)
(M-CH3Br)
(M-Br2)
(606-CH3Br)
(M-Br2-Br2)
U3
50 100 150 200 250 300 350 400 450 500 550 600 650 700 7500
20004000
6000
8000
10000
1200014000
16000
18000
2000022000
24000
26000
2800030000
32000
34000
3600038000
40000
42000
4400046000
48000
50000
(M)608
m/z
O
OBrz
O C H 3
Bry
B r x
x + y + z = 4
U4686(M)
50 100 150 200 250 300 350 400 450 500 550 600 650
120000
0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
110000
526592
432
263235
366451
(M-CH3Br)(M-Br2)
(M-C6H3Br2)
(526-CH3Br)
(M-Br2-Br2)
(M-Br2)/2(C6H3Br2)
OC
H3
Br x
U2
m/z
DRAFT – Page 38 – February 8, 2012
O
OBrz
O C H 3
Bry
B r x
Methoxylated Polybrominated Diphenoxy Benzenes (MeO-PBDPBs)
Br4 -MeO-PBDPB
Br5 -MeO-PBDPBBr6 -MeO-PBDPB
DRAFT – Page 39 – February 8, 2012
O OBr
Br Br
Br Br
Br Br
Br Br Br Br
Br
Br Br
Tetradecabromodiphenoxybenzene (SAYTEX® 120 flame retardant)SAYTEX 120 flam retardant finds application inhigh performance polyamide and linear polyesterengineering resins and alloys, as well as inpolyolefins, wire and cable, and styrenic resins.
O OBr
Br Br
Br Br
Br Br
Br Br Br Br
Br
Br Br
O OBry
Brz
Brx
O OBry
Brz
Brx
O O
OCH3
Bry
Brz
Brx
Hypothesis I
Hypothesis II
– Brn
+ CH3
x + y + z < 14
Is SAYTEX 120 the precursor of MeO-PBDPBs?
Source Identification
O O
OH
Bry
Brz
Brx+ OH
– Br
DRAFT – Page 40 – February 8, 2012
UV-C ( = 271 nm) 0 min
UV-C ( = 271 nm) 1 min
UV-C ( = 271 nm) 60 min
Br14 O OBr
Br Br
Br Br
Br Br
Br Br Br Br
Br
Br Br
O OBry
Brz
Brx
O OBry
Brz
Brx
Br13
Br12
Br5
Br6
Source Identification – SAYTEX 120 Photodegradation
Agilent 1200 Series – 6520 Accurate-Mass Q-TOF LC/MS (APPI)
(Chen, Letcher et al., 2012. In prep.)(Chen, Letcher et al., 2012. In prep.)
DRAFT – Page 41 – February 8, 2012
Source Identification – SAYTEX 120 Photodegradation
O OBr
Br Br
Br Br
Br Br
Br Br Br Br
Br
Br Br
O OBry
Brz
Brx
O OBry
Brz
Brx
Fluorescent Lamp: Day 0
Fluorescent Lamp: Day 10
Fluorescent Lamp: Day 25
Br14
Br13
Br12
Br11
Br11
Br12Br10
DRAFT – Page 42 – February 8, 2012
Natural light: Day 0
Natural light: Day 6
O OBr
Br Br
Br Br
Br Br
Br Br Br Br
Br
Br Br
O OBry
Brz
Brx
Br14
Br8 - Br10
O OBr
Br Br
Br Br
Br Br
Br Br Br Br
Br
Br Br
O OBry
Brz
Brx
O O
OCH3
Bry
Brz
Brx
Hypothesis I Hypothesis II
Source Identification – SAYTEX 120 Photodegradation
DRAFT – Page 43 – February 8, 2012
Spatial DistributionSemi-quantification of MeO-PBDPBs:
I.S.: MeO-BDE-137Br4-PBDPB: based on BDE-170Br5-PBDPB: based on BDE-194Br6-PBDPB: based on BDE-206
GC-MS(ECNI) SIM (79 & 81)
0306090
120
66
51
9.2<2.4
26
490
15
120
8.712.7
<2.5
49 4816
2009 Egg Collection:ΣMeO-PBDPBs(ng/g lipid wt)
Channel-Shelter Island
(Chen, Letcher, Gauthier, Chu, McCrindle, Potter, 2011. Environ. Sci. Technol. 45: 9523-9530)(Chen, Letcher, Gauthier, Chu, McCrindle, Potter, 2011. Environ. Sci. Technol. 45: 9523-9530)
Photo: R. Letcher
DRAFT – Page 44 – February 8, 20121980 1985 1990 1995 2000 2005 2010
5
10
15
20
25
1980 1985 1990 1995 2000 2005 2010
0.1
1
1980 1985 1990 1995 2000 2005 20102
3
4
5
6
7
1980 1985 1990 1995 2000 2005 2010
1
2
Temporal Trends
1980 1985 1990 1995 2000 2005 2010
100
1000 PBDEs
Con
cent
ratio
n (n
g/g
wet
wei
ght)
Year
MeO-PBDPBs
(Chen, Letcher et al., 2012. In prep.)(Chen, Letcher et al., 2012. In prep.)
DRAFT – Page 45 – February 8, 2012
Dietary Influence
-26 -24 -22 -20 -1810
20
30
40
50
60
70
80
MeO-PBDPBs
13C (‰)
MeO
-PB
DP
B C
once
ntra
tion
(ng/
g w
w)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Hexa/Penta
Hex
a / P
enta
TerrestrialAquatic
Individual Eggs (n = 13) from Channel-Shelter Is. (1999)
Hexa = Br6-MeO-PBDPB
Penta = Br5-MeO-PBDPB
(Chen, Letcher et al., 2012. In prep.)(Chen, Letcher et al., 2012. In prep.)
DRAFT – Page 46 – February 8, 20121980 1985 1990 1995 2000 2005 2010
0.6
0.7
0.8
0.9
1.0
1.1
Hexa/Penta 13C
Year
Hex
a / P
enta
-26
-24
-22
-20
δ13
C (‰
)δ1
3 C
1980 1985 1990 1995 2000 2005 20100.5
1.0
1.5
2.0
2.5
-25
-23
-21
-19
-17A: Fighting Island
1980 1985 1990 1995 2000 2005 20100.5
1.0
1.5
2.0
2.5Hexa/Penta13C
-25
-23
-21
-19
-17B: Toronto Harbour
1980 1985 1990 1995 2000 2005 20100.5
1.0
1.5
2.0
2.5
-27
-25
-23
-21
-19C: Big Sister Island
Year
1980 1985 1990 1995 2000 2005 20100.5
1.0
1.5
2.0
2.5
-26
-24
-22
-20D: Agawa Rocks
Year
Dietary Influence
(Chen, Letcher et al., 2012. In prep.)(Chen, Letcher et al., 2012. In prep.)
DRAFT – Page 47 – February 8, 2012
FOCUS STUDY II: Conclusions
Six Br4-Br6 MeO-PBDPB congeners identified in the herring gull eggs from the Great Lakes
They were detected in the egg pools from the colonies spanning the Great Lakes
Levels up to 1800 ng/g lipid wt, indicating substantial bioaccumulation potential; Temporal trend: peaked in the late 1990s at least for one colony site, Channel-Shelter Is.
Nothing is known about their sources, environmental behaviour and toxic effects
O
OBrz
O C H 3
Bry
B r x
x + y + z = 4 - 6
More congeners? Potential parent compounds are flame retardants
DRAFT – Page 48 – February 8, 2012
Thank you!
Questions?