27
Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda, Zs. Molnár, M. Balla, D. Bódizs, IWIRad Bucharest, 20-21 June 2005

Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Embed Size (px)

Citation preview

Page 1: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Neutron Activation Analysis

at the Radiochemical Laboratory, Institute of Nuclear Techniques,

Budapest University of Technology and Economics

N. Vajda, Zs. Molnár, M. Balla, D. Bódizs,

IWIRadBucharest, 20-21 June 2005

Page 2: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Contents

• Facility• INAA –accredited procedure

uncertainty budgetmethod validation

Application examples:geological samplesarchaeological samplesbiological samples

• RNAAanalysis of 129I

Page 3: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Equipment for the measurement of trace elements by NAA

γ spectrometer

training reactor pneumatic transport Фth= 2E12 /s/cm2 system

Page 4: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Radiochemical laboratories

for „high” activity samples

for low activity samples

hot cell facility for processing irradiated samples

Page 5: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

• Training reactor vertical irradiation channels with several thermal irradiation positionsrabbit system with 2 irradiation positions

φth: 2.6E12/cm2/s (100 kW, thermal channel)φth/φepi: 26-33 (100 kW, thermal channel)

• HPGe detectors and MCAsefficiency: resolution:

well type Ge 14 % 1.95 keVPOP-TOP Ge 22 % 2.5 keV

• MCA: S100 (16k), Accuspec B (8k)

• SAMPO 90, Gennie 2000

NAA in numbers

Page 6: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

INAA

• Comparator technique: Au comparator

Zr flux monitor

cx = korIk Ix

x sp

,

* = N

S DC

p

x x x

x

/N

SDCm k Mp

x

*

* * * */ /

1 1

,

Standard conditions: sample preparation

irradiation

measurement

standardization

Page 7: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Sample preparation:

weighing :sample, gold, Zr

humidity,

impurities of vials

Irradiation:

Measurement:

Standardisation

flux variation,

the,

irr. time

counting statistics,

geometry, dead time,

timing, background

canalyte

Uncertainty budget / major sources of uncertainty:

counting statistics: 0.2-30 %; k factors: 2-7 %

Page 8: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Uncertainties of k factors

Element EnergykeV

Uncertainty ofk-factors %

Element EnergykeV

Uncertainty ofk-factors %

Sm-153 103,18 3 Sb-122 563,93 2.5Ce-141 145,44 3 Sb-124 602,71 3Lu-177 208,36 3,7 Sb-124 1691,00 4Np-239 228,18 3,5 Cs-134 604,70 3Np-239 277,60 3,5 Cs-134 795,84 3Pa-233 311,98 2,8 Tb-160 879,36 5Cr-51 320,08 3 Sc-46 889,25 2,2Yb-175 396,32 3 Sc-46 1120,30 2,2Au-198 411,00 2 Rb-86 1076,60 6Hf-181 482,03 3 Fe-59 1099,20 3La-140 487,03 2.5 Fe-59 1291,50 3La-140 1596,50 2.5 Zn-65 1115,50 4,6Ba-131 496,00 4,5 Ta-182 1221,40 5Nd-147 91,00 7 Co-60 1332,50 3Nd-147 531,00 7 Co-60 1173,10 3As-76 559,10 3 Na-24 1368,50 3As-76 657,03 5 Eu-152 1408,00 3

Page 9: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

FA S7 MS FA S7 MS FA S7 MSNo. ofmeasurements

9 3 15 9 3 15 9 3 15

As As As Ba Ba Ba Ce Ce CeCertified val. 145 13,4 5,8 1500 159 4400 168 61 92

15 0,8 0,8 40 30 200 8 8 8Meas. val. 138 13,3 6,18 1422 170 4455 170 61,0 93,6

2,59 0,36 0,71 90,51 8,02 191,87 9,82 1,00 4,27 1,9% 2,7% 11,4% 6,4% 4,7% 4,3% 5,8% 1,6% 4,6%u test 0,47 0,11 -0,36 0,78 0,36 0,20 0,14 0,00 0,18

Co Co Co Cr Cr Cs Cs CsCertified val. 43 8,9 76,7 196 58,4 10,4 5,4 9,4

2 1,2 1,2 6 1,3 0,8 0,7 0,7Meas. val. 42 8,67 71,1 193 58,5 10 5,43 8,66

0,51 0,38 2,07 6,19 2,33 0,21 0,21 0,32 1,2% 4,4% 2,9% 3,2% 4,0% 2,0% 3,8% 3,7%u test 0,66 0,19 2,36 0,30 0,05 0,04 0,05 4,23

Eu Eu Eu Fe Fe Fe Hf Hf HfCertified val. 3,5 1 5,3 9,4 2,57 4,6 7,2 5,1

0,3 0,3 0,3 0,1 0,1 0,1 0,5 0,5Meas. val. 3 0,94 4,84 10 2,69 4,43 7,16 5,13 4,45

0,10 0,09 0,14 0,20 0,08 0,13 0,49 0,47 0,20 2,9% 9,8% 2,8% 2,1% 2,8% 2,9% 6,8% 9,2% 4,6%u test 0,27 0,18 1,39 0,60 0,96 1,06 0,06 -0,05

La La La Lu Lu Lu Na Na % Na %Certified val. 79,1 28 67,8 1,075 0,3 1,46 1700 0,24 3,568

2 2,9 2,9 0,07 0,19 0,19 100 0,04 0,04Meas. val. 77,61 25,70 65,48 0,98 0,29 1,32 1730 0,22 3,21

1,97 0,70 2,34 0,04 0,01 0,07 80,09 0,00 0,09 2,5% 2,7% 3,6% 4,0% 4,0% 5,5% 4,6% 0,0% 2,8%u test 0,53 0,77 0,62 1,25 0,07 0,70 0,24 0,50 3,64

QC

Analysis of

SRMs

FA

fly ash,

S7

soil-7

MS

marine

sediment

Page 10: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

FA S7 MS FA S7 MS FA S7 MSNd Nd Nd Rb Rb Rb Sb Sb Sb

Certified val. 75,7 30 91,8 131 51 97,3 6,15 1,7 1,85 2 3,9 3,9 2 2,6 2,6 0,6 0,35 0,35

Meas. val. 58,1 29,00 81,60 128 47,7 84 6,43 1,70 2,08 11,60 11,36 12,83 11,45 5,51 13 0,10 0,20 0,08

19,9% 39,2% 15,7% 9,0% 11,6% 15,5% 1,6% 11,8% 3,7%u test 1,49 0,08 0,76 0,29 0,55 1,02 0,45 0,00 0,64

FA S7 MS FA S7 MS FA S7 MSSc Sc Sc Sm Sm Sm Ta Ta Ta

Certified val. 38,6 8,3 25,6 17,2 5,1 21,5 1,93 2 2,9 2,9 1 1,3 1,3 0,07

Meas. val. 38,5 8,47 26,56 16,39 4,84 19,96 2 0,96 1,11 0,71 0,12 0,76 0,29 0,20 0,59 0 0,08 0,13

1,8% 1,4% 2,9% 1,8% 4,0% 2,9% 4,6% 0,09 0,11u test 0,04 0,06 0,32 0,78 0,20 1,08 1,25 11,31

Tb Tb Tb Th Th Th U U UCertified val. 2,53 0,6 3,4 24,7 8,2 13,9 10,2 2,6 1,98

0,04 0,3 0,3 1 1,1 1,1 0,3 0,47 0,47Meas. val. 2 0,67 3,18 24,45 8,07 13,45 10,1 2,63 1,83

0 0,07 0,20 0,53 0,47 0,58 0,18 0,15 0,43 8,9% 0,10 0,06 2,2% 5,9% 4,3% 1,8% 5,8% 23,6%u test 0,66 0,23 0,60 0,22 0,11 0,36 0,30 -0,07 0,23

Yb Yb Yb Zn Zn ZnCertified val. 7,5 2,4 9,8 220 104 160

0,13 1,1 1,1 10 3 3Meas. val. 8 2,29 9,88 241,5 106 194

0 0,11 0,37 45,03 15 25 2,7% 0,05 0,04 18,6% 14,4% 13,0%u test 0,18 0,10 0,07 0,47 0,15 1,34

u test (cref - cm) /SQRT (m2 + ref

2) 3.29

QC

Analysis of

SRMs

Page 11: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Ce 2000-2002

FA FAMS

MS

MSMS

MSMS

MS

MSMS S7 S7 S7

FAFA FA

FAMS

FA

FA

MS

MSMS

MS

MS

-4

-3

-2

-1

0

1

2

3

4

u t

est

Ce

Page 12: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Accuracy criteria:GBW 07313 Marine Sediment [ppm]:Element Reference

valueUncertainty Meas.value Uncertainty u test

As 5,8 0,8 5,42 0,60 0,38Ba 4400 200 4400 250 0Ce 92 8 86,37 3,30 0,65Co 76,7 1,2 73,82 2,50 1,04Cr 58,4 1,3 58,52 3,00 -0,04Cs 9,4 0,7 8,50 0,40 1,12Eu 5,3 0,3 4,82 0,18 1,37Fe 46000 1000 45300 1500 0,39Hf 4,38 0,22La 67,8 2,9 66,34 2,20 0,4Lu 1,46 0,19 1,37 0,06 0,45Na 35680 400 32600 1100 2,63Nd 91,8 3,9Rb 97,3 2,6 93,0 10 0,42Sb 1,85 0,35 2,05 0,10 -0,55Sc 25,6 2,9 26,9 0,70 -0,44Sm 21,5 1,3 18,32 0,60 1,12TaTb 3,4 0,3 3,24 0,21 0,44Th 13,9 1,1 13,60 0,50 0,25U 1,98 0,47

Yb 9,8 1,1 9,75 0,40 0,04Zn 160 3 224 25 -2,54

u test (cref - cm) /SQRT (m2 + ref

2)

Method

validation:

inter-

comparison

exercise

Page 13: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Precision criteria:

Five samples of GBW 07313 Standard Reference Material (Marine Sediment) were irradiated.

Precision index: SQRT((ref/cref)2 + (m/ cm)

2 25%

Concentrations in ppmElement Average conc. STDEV Uncertainty Precision

index %As 5,42 0,63 0,60 17,7Ba 4400 235 250 7,3Ce 89,9 1,4 3,30 9,4Co 73,8 1,81 2,50 3,7Cr 58,5 2,33 3,00 5,6Cs 8,50 0,31 0,40 8,8Eu 4,82 0,16 0,18 6,8Fe 45300 1000 1500 4,0Hf 4,38 0,13 0,22La 66,3 1,46 2,20 5,4Lu 1,37 0,06 0,06 13,7Na 32600 561 1100 3,6NdRb 93,0 10 10 11,1Sb 2,05 0,06 0,10 19,5Sc 26,94 0,62 0,70 11,6Sm 18,32 0,64 0,60 6,8TaTb 3,24 0,09 0,21 10,9Th 13,60 0,48 0,50 8,7U 0,30Yb 9,75 0,25 0,40 12Zn 224 15 25 11,3

Method

validation:

inter-

comparison

exercise

Page 14: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Sample 1 Sample 2 Sample 3 Element c c c Mn % 1,84 +- 0,1 1,89 +- 0,1 1,92 +- 0,1 Cu % 1,02 +- 0,2 1,13 +- 0,2 1,09 +- 0,2 V ppm 707 +- 50 695 +- 50 710 +- 50 Cr % 24,5 +- 1 24,6 +- 1 25,8 +- 1

Sb ppm 5,2 +- 0,2 4,9 +- 0,2 5,5 +- 0,2 As ppm 25,8 +- 0,7 23,9 +- 1 27,8 +- 1

Fe % 36 +- 1 36,3 +- 1 37,8 +- 1 Co ppm 370 +- 20 385 +- 20 390 +- 20

Ni % 28 +- 2 29 +- 2 29,5 +- 2 W ppm 68 +- 3 67 +- 3 72 +- 3 Mo % 3,05 +- 0,5 3,07 +- 0,5 3,26 +- 0,5

Sample 4 Sample 5 Sample 6 Element c c c Mn % Cu % V ppm Cr % 25,4 +- 1 26,3 +- 1 27 +- 1

Sb ppm 6,3 +- 0,8 As ppm

Fe % 37,6 +- 2 37,1 +- 2 40 +- 1,7 Co ppm 405 +- 20 415 +- 20 420 +- 20

Ni % 28,5 +- 2 30,4 +- 1 31,2 +- 1 W ppm Mo % 3,24 +- 0,5 +- 3,57 +- 0,5

Element Average σ (k=2)Mn % 1,88 +- 0,1

Cu % 1,08+- 0,2

V ppm 704 +- 50

Cr % 25,6+- 1

Sb ppm 5,2+- 0,3

As ppm 25,8 +- 2

Fe % 37,5 +- 1,5

Co ppm 398 +- 20

Ni % 29,4 +- 2

W ppm 69 +- 3

Mo % 3,24 +- 0,5

Analysis of steel BSS3 (intercomparison)

Page 15: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

APPLICATION EXAMPLE: INAA

Analysis of archaeological samples

Fingerprinting of archaeological ceramic materials: Multivariate statistical methods using trace element data for provenance studies of ceramics.

Terra sigillataceramics used in Aquincumwere not locally manufactured.

Page 16: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Jan Gunneweg, MartaJan Gunneweg, Marta BallaBalla

The Provenance of Qumran Pottery by Instrumental Neutron Activation Analysis

COST G8 Qumran Meeting 21-23 May 2005

Page 17: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Main goalsMain goals

• to trace pottery by its chemistry to their place(s) of manufacture

• to establish the relation between pottery found in the settlement and the caves

• to study what pottery was locally made and which was brought in from elsewhere

• to learn the interregional contact between Qumran and its surroundings

COST G8 Qumran Meeting 21-23 May 2005

Page 18: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Sample selectionSample selection

1. Qumran reference samples

2. Clay and ceramic samples from Jericho, Jerusalem, Hebron, Callirhoe, ‘Ain Feshkha

3. 166 pottery samples from the settlement and the caves

COST G8 Qumran Meeting 21-23 May 2005

Page 19: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Analytical resultsAnalytical results evaluated by multivariate evaluated by multivariate statisticsstatistics

Data points in PC1-PC2 space

-40

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350

PC1

PC

2outlayers

group 5

group 1

group 2

group 3

group 4 ?

group 5 ?

group 2 - subgroup ?

group 3 ?

Conf. ellip. - group 5

Conf. ellip. - group 1

Conf. ellip. - group 2

Conf. ellip. - group 3

Conf. ellip. - group 4

PC1-PC2-PC3

-433 -389.4 -345.8 -302.2 -258.6 -215 -171.4 -127.8 -84.2 -40.6 3-54

-43.2

-32.4

-21.6

-10.8

0

10.8

21.6

32.4

43.2

54

centers for the iteration

Co - La projection

0

10

20

30

40

50

0 10 20 30

COST G8 Qumran Meeting 21-23 May 2005

Page 20: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Most important results and archaeological Most important results and archaeological conclusionsconclusions

• Qumran’s local chemical fingerprint has been defined• 5 chemically different groups of pottery were

determined and their probable provenance have been localized

• Analysis of clay and ceramic samples from other sites of the Dead Sea region provided reference data for workshop assignment

• Pottery serves as a connecting link between the settlement and the caves

COST G8 Qumran Meeting 21-23 May 2005

Page 21: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

APPLICATION EXAMPLE: INAA

Analysis of geological samples mineral separates, bulk rocklanthanides and other incompatible trace elements

Element LD ppm

Element LD ppm

As 2,8 Nd 25 Ba 300 Rb 35 Ce 4,5 Sb 0,4 Co 2 Sc 6e-2 Cr 9 Sm 0,1 Cs 0,9 Ta 0,2 Eu 0,12 Tb 0,6 Fe 600 Th 0,7 Hf 0,8 U 1,7 La 0,5 Yb 0,7 Lu 0,1 Zn 20 Na 80

Typical detection limits:

Processes of igneous petrogenesis, paleotectonic and paleogeographic position of rocks

Page 22: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

APPLICATION EXAMPLE: INAA

Analysis of biological samples brain biopsy samples to study Alzheimer deseasealkali metals + iodine

Uncertainties LD

INAA ICPMS ICPAES INAA ICPMS ICPAES

unc% STD% unc% STD% unc% STD%

Li(ng/g) - - 3 32 5 28 3 1

Na(ug/g) 1 2 5 8 40 2

K(ug/g) 5 3 2 6 1300 90

Rb(ug/g) 5 4 2 11 0,6 0,02

Cs(ng/g) 10 5 5 24 7 20

I(ng/g) 7

Good reproducibility in INAA!

Page 23: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

RNAAfor the analysis of radionuclides

Methods:

α spectrometry

β spectrometry

γ spectrometry

RNAA

Long-lived„difficult to determine nuclides„ (DDN) in the nuclear fuel cycle

e.g. 129IT1/2=1.57E7

y 129I(n,γ)130IT1/2=12.4 h99Tc T1/2=2.13E5

y99Tc(n,γ)100TcT1/2=15.8 s

Too short!

Page 24: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Radiochemical separation procedure for the simultaneous separation of DDNs

Sample Tracers, carriers

DestructionNAA

pre-, post- irradiationseparation

Fe(OH)2 coprecipitation TBP extraction

γ spectrometry UTEVA TEVA129I

α spectrometry

NiDMG Ca oxalate 232Th,230Th,228Thprecipitation coprecipitation α spectrometry α spectrometry

239,240Pu, 238Pu 238U, 235U, 234U

DMG TRU LSC α spectrometry LSC241Pu 237Np 99Tc

Sr Resin TEVA

59Ni

X spectrometry

LSC LSC α spectrometry63Ni 90Sr, 89Sr 241Am, 244Cm, 242Cm

129I

99Tc

Pu-Np-UNi

Sr Am-Cm

Page 25: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

APPLICATION EXAMPLE: RNAA

129I analysis:

- Ground level measurements in well water on the site of the future radioactive waste

disposal area: analysis of 100 L of water<μBq/L

- Analysis of nuclear wastes:evaporation concentrates: 10-100 mBq/Lspent ion exchange resins: 1-10 Bq/L

Page 26: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

• γ spectrometry• Determination of Gamma Emitting Fission and Corrosion Nuclides in NPP Primary Coolant by Gamma Spectrometry • Determination of Activity Concentration of

Nuclear Power Waste by Gamma-Spectrometry• Determination of Activity Concentration of Environmental Samples by Gamma-SpectrometryNAA • NAA of geological and environmental samples • NAA of archaeological potteries α and β spectrometries• Analysis of Uranium, Plutonium, Americium, Curium, Nickel and Strontium Nuclides in Radioactive Wastes • Determination of Strontium and Plutonium Isotopes in Concentrates of Water Samples

Accredited procedures:

Page 27: Neutron Activation Analysis at the Radiochemical Laboratory, Institute of Nuclear Techniques, Budapest University of Technology and Economics N. Vajda,

Staff: N. Vajda, Zs. Molnár, M. Balla, D. Bódizs,Gy. Csuday, J. Szabó, K. Jovicza

PhD students: A. Kerkápoly, Sz. Osváth, É. Kabai, D. Tar, G. Surányi