51
Neutrino-floor with nuclear structure calculations Dimitrios K. Papoulias IFIC (CSIC-Valencia U.) 15th MultiDark Consolider Workshop, 3–5 April, Zaragoza 1 / 26

Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Neutrino-floor with nuclear structure calculations

Dimitrios K. Papoulias

IFIC (CSIC-Valencia U.)

15th MultiDark Consolider Workshop, 3–5 April, Zaragoza

1 / 26

Page 2: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Outline

1 IntroductionPhysics Motivations of neutrino-nucleus studiesTheoretical background

2 CEνNS and WIMP-nucleus ratesElectromagnetic neutrino propertiesNew Z ′ and scalar mediatorsImpact on the neutrino floor

3 Nuclear PhysicsNuclear radiiNuclear structure methods (BCS, QRPA)Conventional methods for calculating the nuclear form factor

4 Summary and Outlook

2 / 26

Page 3: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Physics Motivations of CEνNS

SM CEνNS reaction (conventional)

να + (A, Z)→ να + (A, Z), α = (e, µ, τ)

Conventional, well-studied ν-process theoretically

Finally observed by COHERENT in August 2017, CONUS (hints)(other: MINER, TEXONO, CONNIE, Ricochet, νGEN, ν-cleus etc.)

Very high experimental sensitivity (low detector threshold) is required

Z

(A,Z)

να

(A,Z)

να

irreducible background for direct dark matter experiments: neutrino-floor "

can probe nuclear form factors "

any deviation from the SM would indicate a glimpse on new physics (NSIs, EM

properties, novel mediators) "

competitive determination of sin2 θW at low-energy

valuable tool for sterile oscillation searches

important in supernova dynamics (investigate deep sky)

study gA quenching of electroweak interactions

3 / 26

Page 4: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

SM Cross sections and Nuclear Transition Matrix Elements

The SM CEνNS diff. cross section with respect to the scattering angle θ takes the form

dσSM,να

d cos θ=

G 2F

2πE 2ν (1 + cos θ)

∣∣∣〈g .s.||MSMV ,να ||g .s.〉

∣∣∣2

Eν : incident neutrino energy

Q2 = 4E 2ν sin2 θ

2: 4-momentum transfer (from kinematics: −q2 ≡ Q2 = −ω2 + q2 > 0)

|g.s.〉 = |Jπ〉 ≡ |0+〉: the nuclear ground state(for even-even nuclei is explicitly constructed by solving the BCS Eqs.)

gp(n)V

: polar-vector coupling of proton (neutron) to the Z boson

The SM nuclear matrix element is given in terms of the electromagneticproton(neutron) nuclear form factors FZ(N)(Q

2) (CVC theory)

For SM g .s.→ g .s. transitions (i.e. |0+〉 → |0+〉) only the Coulomb operatorcontributes∣∣∣MSM

V ,να

∣∣∣2 ≡ ∣∣∣〈g .s.||M00||g .s.〉∣∣∣2 =

[gp

VZFZ (Q2) + gnVNFN (Q2)

]2

D.K. Papoulias and T.S. Kosmas, Phys.Lett. B728 (2014) 482

4 / 26

Page 5: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Analysis of the COHERENT data: SMSM diff. cross section

dσSM

dTN

(Eν ,TN ) =G 2

F M

π

[(QV

W )2

(1−

MTN

2E 2ν

)

+ (QAW )2

(1 +

MTN

2E 2ν

)]F 2(TN ) ,

SM vector and axial vectorcouplings

QVW =

[gV

p Z + gVn N],

QAW =

[gA

p (Z+ − Z−) + gAn (N+ − N−)

],

single-bin counting problem (flux, quenchingfactor, and acceptance uncertainties areincorporated)

χ2(s2

W ) = minξ,ζ

[(Nmeas − NSM

να(s2

W )[1 + ξ]− B0n [1 + ζ])2

σ2stat

+

σξ

)2

+

σζ

)2 ],

search between 6 ≤ nPE ≤ 30

0 10 20 30 40 50

−10

0

10

20

30

40

COHERENT:14.57 kg CsI

Number of Photoelectrons (nPE)

Counts/2PE

COHERENT data

this work

0.1 0.2 0.3 0.4 0.50

2

4

6

8COHERENT:

14.57 kg CsI

90% C.L.

sin2 θW

∆χ2

simple syst.

full syst.

D.K. Papoulias and T.S. Kosmas, Phys.Rev. D97 (2018) 033003

for future perspectives see Canas et al., Phys.Lett. B784 (2018) 159-162 5 / 26

Page 6: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Analysis of the COHERENT data: EM properties

Neutrino magnetic momentcontrbution

(dσ

dTN

)SM+EM

= GEM(Eν ,TN )dσSM

dTN

,

GEM = 1 +1

G 2F

M

(QEM

QVW

)2 1−TN/EνTN

1− MTN2E2ν

.

EM charge: QEM =πaEMµνα

meZ

Vogel et al. Phys.Rev. D39 (1989) 3378

Neutrino charge radiusredefinition of the weak mixing angle

sin2θW → sin2

θW +

√2πaEM

3GF

〈r2να〉 .

see also Cadeddu et al., arXiv:1810.05606

10−10 10−9 10−8 10−7 10−60

5

10

15

COHERENT:

14.57 kg CsI

90% C.L.

µνα/µB

∆χ2

µνα = µν

µνα = µνeµνα = µνµ

−80 −60 −40 −20 0 20 40 60 800

5

10

15

20

COHERENT:14.57 kg CsI

90% C.L.

〈r2να〉 [10−32cm2]

∆χ2

rνα = rνrνα = rνerνα = rνµ

D.K. Papoulias and T.S. Kosmas, Phys.Rev. D97 (2018) 033003

6 / 26

Page 7: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Analysis of the COHERENT data: combined constraints

0.1 0.2 0.3 0.4 0.5−12

−10

−8

−6

?

COHERENT:

14.57 kg CsI90% C.L.

sin2(θW )

log(µν/µB)

−10 −5 0 5 10−12

−10

−8

−6

?

COHERENT:

14.57 kg CsI90% C.L.

〈r2ν〉 [10−32cm2]

log(µν/µB)

−12 −11 −10 −9 −8 −7 −6−12

−10

−8

−6

COHERENT:

14.57 kg CsI90% C.L.

log (µνe/µB)

log( µνµ/µB

)

−60 −40 −20 0 20 40−60

−40

−20

0

20

40

?

COHERENT:14.57 kg CsI

90% C.L.

〈r2νe〉 [10−32cm2]

〈r2 νµ〉[

10−32cm

2]

D.K. Papoulias and T.S. Kosmas, Phys.Rev. D97 (2018) 033003 7 / 26

Page 8: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Analysis of the COHERENT data: novel light mediatorsvector Z ′ mediator Cerdeno,JHEP 1605 (2016) 118

Lvec = Z ′µ(

gqV

Z′ qγµq + gνVZ′ νLγ

µνL

)+ 1

2M2

Z′Z′µZ ′µ

Z ′ contribution to CEνNS cross section

(dσ

dTN

)SM+Z′

= G2Z′ (TN )

dσSM

dTN

,

GZ′ = 1−1

2√

2GF

QZ′QV

W

gνVZ′

2MTN + M2Z′,

Z ′ charge: QZ′ =(

2guVZ′ + gdV

Z′)

Z +(

guVZ′ + 2gdV

Z′)

N

Scalar φ mediator Dent et al. PRD 96 (2017) 095007

Lsc = φ(

gqSφ

qq + gνSφ νRνL + H.c.

)− 1

2M2φφ

2

φ contribution to CEνNS cross section

(dσ

dTN

)scalar

=G 2

F M2

G2φM4

φTN

E 2ν

(2MTN + M2

φ

)2F 2(TN )

Gφ =gνSφ QφGF M2

φ

scalar charge: Qφ =∑N ,q g

qSφ

mNmq

f(N )

T,q

for NSI in CEνNS see: Liao et al. PLB 775 (2017)

Abdullah et al. PRD98 (2018) 015005

Dutta et al. PRD 93 (2016) 013015

−4 −2 0 2 4 6−10

−8

−6

−4

−2

0

2

degeneracy area

COHERENT:14.57 kg CsI

90%C.L.

log (MZ′)

log( g

2 Z′)

−4 −2 0 2 4 6−10

−8

−6

−4

−2

0

2

COHERENT:14.57 kg CsI

90%C.L.

log (Mφ)

log( g

2 φ

)

D.K. Papoulias and T.S. Kosmas, Phys.Rev. D97 (2018) 033003 8 / 26

Page 9: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

WIMP-nucleus cross sectionCross section in lab. frame

dσ(u, υ)

du=

1

2σ0

(1

mpb

)2 c2

υ2

dσA(u)

du,

spin (axial current) & scalarcontributions

dσA

du=[

f 0A Ω0(0)

]2F00(u)

+ 2f 0A f 1

A Ω0(0)Ω1(0)F01(u)

+[

f 1A Ω1(0)

]2F11(u) +M2(u) .

coherent contribution

M2(u) =(

f 0S [ZFZ (u) + NFN (u)]

+ f 1S [ZFZ (u)− NFN (u)]

)2.

model dependent parametersf 0A , f 1

A for the isoscalar and isovector parts of theaxial-vector current

f 0S , f 1

S for the isoscalar and isovector parts of the

scalar current

Spin structure coefficients

Fρρ′ (u) =∑λ,κ

Ω(λ,κ)ρ (u)Ω

(λ,κ)

ρ′ (u)

Ωρ(0)Ωρ′ (0)

with ρ, ρ′ = 0, 1 for the isoscalar and isovectorcontributions

Ω(λ,κ)ρ (u) =

√4π

2Ji + 1

× 〈Jf ||A∑

j=1

[Yλ(Ωj )⊗ σ(j)

jλ(√

u rj )ωρ(j)||Ji 〉 .

ω0(j) = 1 and ω1(j) = τ(j) with τ = +1(−1)for protons (neutrons)Ωj : solid angle for the position vector of the j-thnucleon.

evaluation of the reduced nuclear matrix element(first calculate the single particle matrixelements)

〈ni li ji ||t(l,s)J ||nk lk jk〉 =√(2jk + 1)(2ji + 1)(2J + 1)(s + 1)(s + 2)

×

li 1/2 jilk 1/2 jkl s J

〈li ||√4π Y l ||lk〉 〈ni li |jl (kr)|nl lk〉 ,

D.K. Papoulias et al., Adv. Adv.High Energy Phys. 2018

(2018) 6031362 9 / 26

Page 10: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

WIMP-nucleus cross sectionCross section in lab. frame

dσ(u, υ)

du=

1

2σ0

(1

mpb

)2 c2

υ2

dσA(u)

du,

spin (axial current) & scalarcontributions

dσA

du=[

f 0A Ω0(0)

]2F00(u)

+ 2f 0A f 1

A Ω0(0)Ω1(0)F01(u)

+[

f 1A Ω1(0)

]2F11(u) +M2(u) .

coherent contribution

M2(u) =(

f 0S [ZFZ (u) + NFN (u)]

+ f 1S [ZFZ (u)− NFN (u)]

)2.

model dependent parametersf 0A , f 1

A for the isoscalar and isovector parts of theaxial-vector current

f 0S , f 1

S for the isoscalar and isovector parts of the

scalar current

Spin structure coefficients

Fρρ′ (u) =∑λ,κ

Ω(λ,κ)ρ (u)Ω

(λ,κ)

ρ′ (u)

Ωρ(0)Ωρ′ (0)

with ρ, ρ′ = 0, 1 for the isoscalar and isovectorcontributions

Ω(λ,κ)ρ (u) =

√4π

2Ji + 1

× 〈Jf ||A∑

j=1

[Yλ(Ωj )⊗ σ(j)

jλ(√

u rj )ωρ(j)||Ji 〉 .

ω0(j) = 1 and ω1(j) = τ(j) with τ = +1(−1)for protons (neutrons)

Ωj : solid angle for the position vector of the j-th

nucleon.

0 1 2 3 40

0.2

0.4

0.6

0.8

1

71Ga

u

Fρρ′

F00

F01

F11

D.K. Papoulias et al., Adv. Adv.High Energy Phys. 2018

(2018) 603136210 / 26

Page 11: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

WIMP-nucleus ratesdifferential WIMP-nucleus event rate

dR(u, υ)

dq2= Ntφ

dq2f (υ) d3

υ, φ = ρ0υ/mχ

with the dimensional parameter u = q2b2/2

ρ0 is the local WIMP density

0 20 40 60 80 100 120 140 1600

50

100

150

71Ga

D1

Tthres = 0 keV

Tthres = 5 keV

Tthres = 10 keV

0 20 40 60 80 100 120 140 1600

50

100

150

71Ga

D2

Tthres = 0 keV

Tthres = 5 keV

Tthres = 10 keV

0 20 40 60 80 100 120 140 1600

50

100

150

71Ga

D3

mχ [GeV]

Tthres = 0 keV

Tthres = 5 keV

Tthres = 10 keV

0 20 40 60 80 100 120 140 1600

100

200

300

71Ga

D4

mχ [GeV]

Tthres = 0 keV

Tthres = 5 keV

Tthres = 10 keV

f (υ): distribution of WIMP velocity(Maxwell-Boltzmann)for consistency with the LSP

WIMP-nucleus rate

〈R〉 =(f 0A )2D1 + 2f 0

A f 1A D2 + (f 1

A )2D3

+ A2(

f 0S − f 1

S

A− 2Z

A

)2

|F (u)|2D4 .

with

Di =

∫ 1

−1dξ

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ)Xi du ,

andX1 = [Ω0(0)]2 F00(u) ,

X2 =Ω0(0)Ω1(0)F01(u) ,

X3 = [Ω1(0)]2 F11(u) ,

X4 =|F (u)|2 .

D.K. Papoulias et al., Adv. Adv.High Energy

Phys. 2018 (2018) 603136211 / 26

Page 12: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Neutrino Backgrounds to Dark Matter SearchesSolar neutrinosW. C. Haxton, R. G. Hamish Robertson, and A.M. Serenelli, Ann. Rev. Astron. Astrophys. 51(2013), 21

Low-energy Atmospheric neutrinos(FLUKA simulations)G. Battistoni, A. Ferrari, T. Montaruli, and P. R.

Sala, Astropart. Phys. 23 (2005) 526

Diffuse Supernova neutrinosS. Horiuchi, J. F. Beacom, and E. Dwek, Phys.

Rev. D79 (2009) 083013

type Eνmax [MeV] flux [cm−2s−1]

pp 0.423 (5.98± 0.006)× 1010

pep 1.440 (1.44± 0.012)× 108

hep 18.784 (8.04± 1.30)× 103

7Below 0.3843 (4.84± 0.48)× 108

7Behigh 0.8613 (4.35± 0.35)× 109

8B 16.360 (5.58± 0.14)× 106

13N 1.199 (2.97± 0.14)× 108

15O 1.732 (2.23± 0.15)× 108

17F 1.740 (5.52± 0.17)× 106

Solar neutrino fluxes and uncertainties in theframework of the high metallicity SSM

10−1 100 101 102 10310−4

100

104

108

1012

127Xe

NeutrinoEnergy [MeV]

NeutrinoFlux[M

eV

−1cm

−2s−

1]pp 7Be861.3

17F atm : νµ

hep 8B atm : νe DSN : νe

pep 13N atm : νe DSN : νe

7Be384.315O atm : νµ DSN : νx

D.K. Papoulias et al., Adv. Adv.High Energy Phys. 2018

(2018) 6031362

12 / 26

Page 13: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Differential Event CEνNS rates

10−3 10−2 10−1 100 101 102 10310−6

10−3

100

103

10671Ga

Recoil Energy [keV]

Diff

.E

vent

Rate

[ton

keV

year]

−1

pp pep 7Be861.313N 17F DSN

hep 7Be384.38B 15O atm tot

10−3 10−2 10−1 100 101 102 10310−6

10−3

100

103

10673Ge

Recoil Energy [keV]

10−3 10−2 10−1 100 101 102 10310−6

10−3

100

103

10675As

Recoil Energy [keV]

Diff

.E

vent

Rate

[ton

keV

year]

−1

pp pep 7Be861.313N 17F DSN

hep 7Be384.38B 15O atm tot

10−3 10−2 10−1 100 101 102 10310−6

10−3

100

103

106127I

Recoil Energy [keV]

13 / 26

Page 14: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Exploring the neutrino-floor through CEνNS constraints

use of Deformed Shell Model calculations

oblate-prolate structure of nuclei is considered

R =DSMevents

Helmevents

0 200 400 600 800 1,00010−1

100

101

102

Tthres [keV]

R

71Ga73Ge75As127I

D.K. Papoulias et al., Adv. Adv.High Energy Phys. 2018

(2018) 6031362

Dark Matter Events

0 20 40 60 80 100 1200

0.5

1

1.5

71Ga

73Ge

75As

127I

Tthres [keV]

Events

[kg−1year−

1]

Neutrino floor

10−3 10−2 10−1 100 101 102 103

10−2

100

102

104

SM

µν = 4.3 × 10−9 µB

MZ′ = 1 GeV

g2Z′ = 10−6

µνe = 2.9 × 10−11 µB

MZ′ = 10 MeV

g2Z′ = 10−6

Tthres [keV]

Events

[ton−1year−

1]

71Ga73Ge75As127I

related works: Boehm et al. JCAP 1901 (2019), Cerdeno et al. JHEP 1605 (2016), Billard et al. JCAP 1811 (2018)14 / 26

Page 15: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

slide from: M. Cadeddu @ NuFact 2018

15 / 26

Page 16: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Probing the neutron radii: COHERENT exp.

COHERENT F ′/F stat. uncertainty syst. uncertainty b (fm−1) 〈R2n 〉1/2 (fm)

phase I 1 current current 2.30+0.36−0.54 5.64+0.99

−1.2

scenario I 10 σstat = 0.2 σsys = 0.14 2.10+0.16−0.21 5.56+0.97

−0.49

scenario II 100 σstat = 0.1 σsys = 0.07 2.10+0.08−0.08 5.56+0.19

−0.23

Model independent form factor expansion Patton et al. Phys.Rev. C86 (2012)

Fp,n(Q2) ≈ 1− Q2

3!〈R2

p,n〉+Q4

5!〈R4

p,n〉 −Q6

7!〈R6

p,n〉+ · · · ,

0 2 4 6 80

2

4

6

8

⟨Rn

2⟩1/2 (fm)

⟨Rn4⟩1/4(f

m)

Unphysical

current

0 2 4 6 80

2

4

6

8

⟨Rn

2⟩1/2 (fm)

⟨Rn4⟩1/4(f

m)

Unphysical

scenario I

0 2 4 6 80

2

4

6

8

⟨Rn

2⟩1/2 (fm)⟨R

n4⟩1/4(f

m)

Unphysical

scenario II

Papoulias et al. arXiv:1903.0372216 / 26

Page 17: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the form factors (Klein-Nystrand)

Follows from the convolution of a Yukawapotential with range ak = 0.7 fm over aWoods-Saxon distribution, approximated asa hard sphere with radius RA.

FKN = 3j1(QRA)

qRA

[1 + (Qak )2

]−1

The rms radius is: 〈R2〉KN = 3/5R2A + 6a2

kS. Klein and J. Nystrand, Phys.Rev. C60 (1999) 014903

current

scenario I

scenario II

2 3 4 5 6 7 8 90

2

4

6

8

10

⟨Rn

2⟩1/2 (fm)

Δχ

2

Papoulias et al. arXiv:1903.03722

17 / 26

Page 18: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the form factors (Helm)

Convolution of two nucleonic densities, one being a uniform density with cut-off radius R0,(namely box or diffraction radius) characterizing the interior density and a second one that isassociated with a Gaussian falloff in terms of the surface thickness s.

FHelm(Q2) = FB FG = 3j1(QR0)

qR0e−(Qs)2/2

The first three moments

⟨R2

n

⟩=

3

5R2

0 + 3s2

⟨R4

n

⟩=

3

7R4

0 + 6R20 s2 + 15s4

⟨R6

n

⟩=

1

3R6

0 + 9R40 s2 + 63R2

0 s4 + 105s6 .

j1(x) is the known first-order Spherical-Bessel function

box or diffraction radius R0 (interior density)

s = 0.9 fm: surface thickness of the nucleus from spectroscopy data (Gaussian fallof).

J. Engel, Phys.Lett. B 264 (1991) 114

18 / 26

Page 19: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the form factors (Symmetrized Fermi)

Adopting a conventional Fermi (Woods-Saxon) charge density distribution, the SF form factor iswritten in terms of two parameters (c, a)

FSF

(Q2)

=3

Qc [(Qc)2 + (πQa)2]

[πQa

sinh(πQa)

] [πQa sin(Qc)

tanh(πQa)− Qc cos(Qc)

],

The first three moments

⟨R2

n

⟩=

3

5c2 +

7

5(πa)2

⟨R4

n

⟩=

3

7c4 +

18

7(πa)2c2 +

31

7(πa)4

⟨R6

n

⟩=

1

3c6 +

11

3(πa)2c4 +

239

15(πa)4c2 +

127

5(πa)6 .

c: half-density radius

a fm: diffuseness

surface thickness: t = 4a ln 3

J.D. Lewin and P.F. Smith, Astropart.Phys. 6 (1996) 87-112

19 / 26

Page 20: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Probing nuclear form factors: COHERENT exp.

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

r0 (fm)

s(f

m)

current

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

r0 (fm)

s(f

m)

scenario I

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

r0 (fm)

s(f

m)

scenario II

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

a (fm)

c(f

m)

current

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

a (fm)

c(f

m)

scenario I

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.00

2

4

6

8

10

a (fm)

c(f

m)

scenario II

2 4 6 8 10 120

1

2

3

4

5

6

RA (fm)

ak(f

m)

current

2 4 6 8 10 120

1

2

3

4

5

6

RA (fm)

ak(f

m)

scenario I

2 4 6 8 10 120

1

2

3

4

5

6

RA (fm)

ak(f

m)

scenario II

Papoulias et al. arXiv:1903.03722 20 / 26

Page 21: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Impact of form factor on CEνNS: COHERENT exp.

Fp

Fn

Helm

FSM

KN

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.610-5

10-4

10-3

10-2

10-1

100

Q (fm-1)

F2(Q

2)

Fp

Fn

Helm

FSM

KN

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.610-5

10-4

10-3

10-2

10-1

100

Q (fm-1)

F2(Q

2)

Papoulias et al. arXiv:1903.03722

5 10 15 20 25 30 35-20

-10

0

10

20

30

40

Photoelectrons (PE)

Ev

en

ts/2

PE

χmin2 (DSM) = 2.73

χmin2 (Helm) = 3.18 χmin

2 (SF) = 3.14

χmin2 (KN) = 2.88

5 10 15 20 25 30 350.0

0.5

1.0

1.5

2.0

2.5

3.0

Photoelectrons (PE)

Ev

en

ts/2

PE

NHelm-NDSM

NSF-NDSM

NKN-NDSM

Bon

21 / 26

Page 22: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Nuclear ground state (BCS)Within the context of the quasi-particle random phase approximation (QRPA) method the formfactors for protons (neutrons) are obtained as

FNn =1

Nn

∑j

j〈g .s.||j0(|q|r)||g .s.〉(

vp(n)j

)2

where j =√

2j + 1, Nn = Z (or N), vp(n)j are the BCS probability amplitudes, determined by

solving iteratively the BCS equations.

T.S. Kosmas, J.D. Vergados, O. Civitarese and A. Faessler, NPA 570 (1994) 637

After choosing the active model space the following important parameters must be

properly adjustedthe harmonic oscillator (h.o.) size parameter b

the two pairing parameters gp (n)pair for proton (neutron) pairs that renormalise the monopole (pairing) residual

interaction of the Bonn C-D two-body potential (describing the strong two-nucleon forces)

η, π, ρ, ω, σ, φ

p(n) p(n)

p(n) p(n)

Realistic proton and neutron form factors

The Bonn C-D residual interaction is mediatedvia one-meson exchangeR. Machleidt, Phys.Rev. C63 (2001) 024001

22 / 26

Page 23: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

In-COHERENT calculationsInteraction Hamiltonian for neutral-current (NC) neutrino-nucleus scattering

〈f |Heff |i〉 =GF√

2

∫d3x 〈`f |j lept

µ (x)|`i 〉〈Jf |J µ(x)|Ji 〉

with 〈`f |j leptµ |`i 〉 = ναγµ(1− γ5)να e−iq·x, q : 3−momentum transfer

In the Donnelly-Walecka multipole decomposition method, the NC, double diff. SM crosssection from an initial |Ji 〉 to a final |Jf 〉 nuclear state (constructed explicitly throughQRPA realistic nuclear structure calculations), reads

d2σi→f

dΩ dω=

G 2F

π

εiεf

(2Ji + 1)

( ∞∑J=0

σJCL +

∞∑J=1

σJT

),

εi (εf ) is the initial (final) neutrino energy and ω is the nucleus excitation energy.Contributions to σJ

CL (Coulomb-longitudinal) and σJT (transverse electric-magnetic)

components T. W. Donnelly and R. D. Peccei, Phys. Rept. 50 (1979) 1

σJCL =(1 + a cos θ)|〈Jf ||MJ (κ)||Ji 〉|2 + (1 + a cos θ − 2b sin2 θ)|〈Jf ||LJ (κ)||Ji 〉|2

+[ωκ

(1 + a cos θ) + d]

2<e|〈Jf ||LJ (κ)||Ji 〉||〈Jf ||MJ (κ)||Ji 〉|∗ ,

σJT =(1− a cos θ + b sin2 θ)

[|〈Jf ||T mag

J (κ)||Ji 〉|2 + |〈Jf ||T elJ (κ)||Ji 〉|2

]∓[

(εi + εf )

κ(1− a cos θ)− d

]2<e|〈Jf ||T mag

J (κ)||Ji 〉||〈Jf ||T elJ (κ)||Ji 〉|∗

where the parameters a = 1, b = εiεf /κ2, d = 0 are obtained from the kinematics and κ = |q|23 / 26

Page 24: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the Nuclear Matrix Elements

Seven new operators are defined (proton-neutron representation) as

T JM1 ≡ MJ

M (κr) = δLJ jL(κr)Y LM (r),

T JM2 ≡ ΣJ

M (κr) = MJJM · σ,

T JM3 ≡ Σ′JM (κr) = −i

[1

κ∇×MJJ

M (κr)

]· σ,

T JM4 ≡ Σ′′JM (κr) =

[ 1

κ∇MJ

M (κr)]· σ,

T JM5 ≡ ∆J

M (κr) = MJJM (κr) ·

1

κ∇,

T JM6 ≡ ∆′JM (κr) = −i

[ 1

κ∇×MJJ

M (κr)]·

1

κ∇,

T JM7 ≡ ΩJ

M (κr) = MJM (κr)σ ·

1

κ∇ .

Closed compact analytic formulae for the single-particle reduced ME (upper) and many-body reduced ME (lower) for QRPAcalculations, are deduced.

〈(n1`1)j1||T Ji ||(n2`2)j2〉 = e−y yβ/2

nmax∑µ=0

P i, Jµ yµ, y = (κb/2)2

, nmax = (N1 + N2 − β) /2, Ni = 2ni + `i

〈f ‖T J‖0+gs〉 =

∑j2≥j1

〈j2‖T J‖j1〉J

[Xj2 j1

up(n)j2

vp(n)j1

+ Yj2 j1v

p(n)j2

up(n)j1

]

V.Ch. Chasioti and T.S. Kosmas, Nucl. Phys. A 829 (2009) 234P.G. Giannaka, D.K. Papoulias, T.S. Kosmas, unpublished (for any configuration (j1, j2)J)

24 / 26

Page 25: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Summary and Outlook

The neutrino floor constitutes an irreducible background in directdetection dark matter experiments

sensitivity era of direct dark matter detection experiments in CEνNS-induced backgroundevents from several astrophysical sources (Solar, Atmospheric, DSNB)

advanced nuclear physics methods enable a better determination of the neutrino floor indark matter searches

nuclear structure (neutron form factor, rms radius etc)

Study of CEνNS contributions to the neutrino floor due to new physicsinteractions

neutrino magnetic moments

new light mediators e.g. Z ′, φ

25 / 26

Page 26: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Thank you for your attention !

26 / 26

Page 27: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Extras

1 / 25

Page 28: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Impact of the nuclear form factor

The dσ/dTN , dσ/d cos θ and σtot cross sections for 48Ti.

0 0.1 0.2 0.3 0.4 0.5 0.610−6

10−5

10−4

10−3

10−2

10−1

100

48Ti

20 MeV

50 MeV

80 MeV

100 MeV

120 MeV

TN (MeV)

dσ/dTN

(10−37cm

2M

eV

−1)

FOPF=1

0 20 40 60 80 100 120 140 16010−6

10−5

10−4

10−3

10−2

10−1

100

101

10248Ti

Eν (MeV)

dσ/dcosθ(1

0−39cm

2)

15o

60o

90o

165o

0 20 40 60 80 100 120 140 16010−2

10−1

100

101

102

48Ti

Eν (MeV)

σto

t(1

0−39cm

2)

FOPF=1

Differences can be up to 30%

The effect is more important forheavier nuclear isotopes

D.K. Papoulias, PhD Thesis

2 / 25

Page 29: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

SM Event rates for supernova neutrinos

Various nuclear methods tested D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

10−2

10−1 20Ne

dN

dTN

(ton−1keV

−1)

F = 1Shell-Model

F (q2)BCSexp.

1

2

3

4

5

20Ne

counts

(ton−1year−

1)

10−1 100 101 10210−3

10−2

10−1

100

40Ar

TN (keV)

dN

dTN

(ton−1keV

−1)

F = 1Shell-Model

F (q2)BCSexp.FOP

10−1 100 101 102

2

4

6

8

10

12

40Ar

T thres.N (keV)

counts

(ton−1year−

1)

Dark-matter detectors are also sensitive to Supernova neutrinos3 / 25

Page 30: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

SM Event rates for supernova neutrinos (continued)

Various nuclear methods tested D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

10−3

10−2

10−1

100

101 76Ge

dN

dTN

(ton−1keV

−1)

F = 1Shell-Model

F (q2)BCSexp.

0

5

10

15

20

25

30

76Ge

counts

(ton−1year−

1)

10−1 100 101 10210−3

10−2

10−1

100

101 132Xe

TN (keV)

dN

dTN

(ton−1keV

−1)

F = 1Shell-Model

F (q2)BCS

10−1 100 101 1020

10

20

30

40 132Xe

T thres.N (keV)

counts

(ton−1year−

1)

Dark-matter detectors are also sensitive to Supernova neutrinos4 / 25

Page 31: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Study of the neutrino-floor at Dark Matter detectors

10−3 10−2 10−1 100 101 102 103

10−3

10−1

101

103

10571Ga

Tthres [keV]

Events

[ton−1year−

1]

pp pep 7Be861.313N 17F DSN

hep 7Be384.38B 15O atm tot

10−3 10−2 10−1 100 101 102 103

10−3

10−1

101

103

10573Ge

Tthres [keV]

10−3 10−2 10−1 100 101 102 103

10−3

10−1

101

103

10575As

Tthres [keV]

Events

[ton−1year−

1]

pp pep 7Be861.313N 17F DSN

hep 7Be384.38B 15O atm tot

10−3 10−2 10−1 100 101 102 103

10−3

10−1

101

103

105127I

Tthres [keV]

5 / 25

Page 32: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Multipole expansion of the hadronic current

At low and intermediate energies, any semi-leptonic process is described by an effective

interaction Hamiltonian, written in terms of the leptonic j leptµ and hadronic J µ currents as

Heff =G√

2

∫d3x j lept

µ (x)J µ(x) ,

Leptonic current ME, between an initial |`i 〉 and a final state |`f 〉〈`f |j leptµ |`i 〉 = `µ e−iq·x .

Define a complete orthonormal set of spatial unit vectors: l =∑λ=0,±1 lλe†λ

Expand the plane wave as:

e iq·x =∑

l

i l√

4π(2l + 1)jl (ρ)Yl0(Ωx ) , ρ = κ|x|, κ = |q|

The Clebsch-Gordan coefficient limits the sum on l to three terms, l = J and J ± 1.Evaluating for λ = ±1, one finds

eqλe iq·x = −∞∑

J≥1

√2π(2J + 1)iJ

λjJ (ρ)YλJJ1 +

1

κ∇×

[jJ (ρ)YλJJ1

],

and for λ = 0

eq0e iq·x =−i

κ

∞∑J≥0

√4π(2J + 1)iJ∇ [jJ (ρ)YJ0] .

T.W. Donnelly and J.D.Walecka, Nucl. Phys. A 274 (1976) 368 6 / 25

Page 33: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Tensor multipole operators

Substituting one finds

〈f |Heff |i〉 = − G√2〈f |∑

J≥0

√4π(2J + 1)(−i)J

(l3LJ0(κ)− l0MJ0(κ)

)

+∑λ=±1

∑J≥1

√2π(2J + 1)(−i)J lλ

(λT mag

J−λ(κ) + T elJ−λ(κ)

)|i〉 .

The multipole expansion procedure gives 8 independent irreducible tensor multipoleoperators, acting on the nuclear Hilbert space and having rank Jfour operators are defined for the polar vector component Jλ = (ρ, J) and

four for the the axial vector component J5λ = (ρ5, J5) of the hadronic current

MJM (κ) = McoulJM − Mcoul5

JM =

∫drMJ

M (κr)J0(r),

LJM (κ) = LJM − L5JM = i

∫dr

(1

κ∇MJ

M (κr)

)· J (r),

T elJM (κ) = T el

JM − T el5JM =

∫dr

(1

q∇×MJJ

M (κr)

)· J (r),

T magJM (κ) = T mag

JM − T mag5JM =

∫drMJJ

M (κr) · J (r) ,

the V-A structure of the weak interaction is adopted: Jµ = Jµ − J5µ = (ρ, J)− (ρ5, J5) .

7 / 25

Page 34: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Required Nuclear Matrix Elements

We proceed by defining

MJM (κr) = McoulJM + Mcoul5

JM

= F V1 MJ

M (κr)− iκ

MN[FAΩJ

M (κr) +1

2(FA + q0FP )Σ

′′JM (κr)] ,

LJM (κr) = LJM + L5JM

=q0

κF V

1 MJM (κr) + iFAΣ

′′JM (κr)] ,

T elJM (κr) = T el

JM + T el5JM

MN[F V

1 ∆′JM (κr) +

1

2µV ΣJ

M (κr)] + iFAΣ′JM (κr)] ,

T magJM (κr) = T mag

JM + T magn5JM

= − q

MN[F V

1 ∆JM (κr)− 1

2µV Σ

′JM (κr)] + iFAΣJ

M (κr)] ,

with FX (Q2), X=1,A,P and µV (Q2) being the free nucleon form factors

CVC Theory: only seven operators are linearly independentPolar-vector: Coulomb Mcoul

JM , longitudinal LJM , transverse electric T elJM [with normal

parity π = (−)J ] and transverse magnetic T magJM [with abnormal parity π = (−)J+1].

Axial-vector: Mcoul5JM , L5

JM , T el5JM (with abnormal parity) and T mag5

JM (with normal parity).

J. D. Walecka, Theoretical Nuclear And Subnuclear Physics, World Scientific, Imperial College Press

8 / 25

Page 35: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the Nuclear Matrix Elements

Seven new operators are defined (proton-neutron representation) as

T JM1 ≡ MJ

M (κr) = δLJ jL(κr)Y LM (r),

T JM2 ≡ ΣJ

M (κr) = MJJM · σ,

T JM3 ≡ Σ′JM (κr) = −i

[1

κ∇×MJJ

M (κr)

]· σ,

T JM4 ≡ Σ′′JM (κr) =

[ 1

κ∇MJ

M (κr)]· σ,

T JM5 ≡ ∆J

M (κr) = MJJM (κr) ·

1

κ∇,

T JM6 ≡ ∆′JM (κr) = −i

[ 1

κ∇×MJJ

M (κr)]·

1

κ∇,

T JM7 ≡ ΩJ

M (κr) = MJM (κr)σ ·

1

κ∇ .

Closed compact analytic formulae for the single-particle reduced ME (upper) and many-body reduced ME (lower) for QRPAcalculations, are deduced.

〈(n1`1)j1||T Ji ||(n2`2)j2〉 = e−y yβ/2

nmax∑µ=0

P i, Jµ yµ, y = (κb/2)2

, nmax = (N1 + N2 − β) /2, Ni = 2ni + `i

〈f ‖T J‖0+gs〉 =

∑j2≥j1

〈j2‖T J‖j1〉J

[Xj2 j1

up(n)j2

vp(n)j1

+ Yj2 j1v

p(n)j2

up(n)j1

]

V.Ch. Chasioti and T.S. Kosmas, Nucl. Phys. A 829 (2009) 234P.G. Giannaka, D.K. Papoulias, T.S. Kosmas, unpublished (for any configuration (j1, j2)J)

9 / 25

Page 36: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Concrete Example

(n1l1)j1 − (n2l2)j2 J µ = 0 µ = 1 µ = 2 µ = 3 µ = 4

0p1/2 − 0s1/2 1√

16

0p3/2 − 0s1/2 1 −√

13

0

0d5/2 − 0s1/2 2 −√

35

0

0f5/2 − 0p1/2 2 −√

75

√2063

0

0d7/2 − 0p1/2 4√

863

0

1p3/2 − 1s1/2 1 −√

59

√4

45−√

445

0

0d3/2 − 0f7/2 3 −√

16175

√4

45−√

161575

0

1f5/2 − 2p3/2 2 0√

87

−√

288343

√2888

27783−√

3227783

The Geometrical coefficients P6, Jµ for the the 〈j1||∆′JM ||j2〉.

PJµ are simple rational numbers for the diagonal elements (not shown here), or square

roots of rational numbers for the non-diagonal elements.

Calculable for any configuration

Advantages: the method is faster, the coefficients can be computed at once and stored,there is no-need to evaluate the Talmi integrals

D.K. Papoulias and T.S. Kosmas, J.Phys.Conf.Ser. 410 (2013) 012123

10 / 25

Page 37: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

The nuclear BCS wavefunction

The concept of quasi-particles, made out of particle and hole components with certainoccupation amplitudes, is introduced.

The nucleons are assumed to couple in pairs with vanishing angular momentum formingbosonic states and behave as being in a superconducting state.

The ground state (g .s.) wavefunction of an even-even nucleus can be represented by theansatz

|BCS〉 =∏α>0

(ua − va c†α c†α

)|core〉 .

c†αc†α: creates an identical nucleonic pair and c†α (cα) is the creation (annihilation)operator for physical particles.

Baranger notation: α ≡ (a,mα), where a ≡ (na, la, ja). For instance, in the case where agiven Hamiltonian is invariant under time reversal, such as the Harmonic Oscillator basis(spherical basis) one would readily write|α〉 = |nalaja; mα〉 |α ≡ −α〉 = |nalaja;−mα〉, mα > 0 .

for the assumed spherical nuclei the ua and va parameters are independent of theprojection quantum number mα.

ua and va, are considered as variational parameters representing the probabilityamplitudes, (v2

a and u2a constitute the probability that a conjugate pair state (α, α) is

occupied or unoccupied respectively).

The latter are not independent and obey the condition

u2a + v2

a = 1 for all a .

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer 2007

11 / 25

Page 38: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

BCS quasi-particles I

We define the quasi-particle creation (annihilation) operator a† (a) as linear combinationsof particle operators via the Bogoliubov-Valatin (BV) transformation

a†α =uac†α + vacα, c†α = uaa†α − vaaα ,

a†α =uac†α − vacα, c†α = uaa†α + vaaα ,

aα =uacα + vac†α, cα = uaaα − vaa†α ,

aα =uacα − vac†α, cα = uaaα + vaa†α .

The corresponding anticommutation relations preserve the basic commutation relations(i.e. BV is a quantum mechanical canonical transformation), as

a†α, a†β = 0, aα, aβ = 0, aα, a†β = δαβ ,

emphasising that the quasi-particles are (generalised) fermions like the physical particlesthey are built from.

This discussion mostly follows the notation of:

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer 2007

Other notable books:P. Ring and P. Schuck, The Nuclear Many-body Problem, Springer, Heidelberg, Germany, 1980

A. de Shalit and H. Feshbach, Theoretical Nuclear Physics: Nuclear structure, John Wiley & Sons Inc, New York, USA, 1974

12 / 25

Page 39: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

BCS quasi-particles II

the quasi-particle is to be viewed as partly particle and simultaneously partly hole, ratherthan bare particle or bare hole.

In other words, the operator a†α creates a quasi-particle, in an orbital α, that is a particlewith probability amplitude ua and a hole with probability amplitude va.

above the Fermi surface (v2a small) it is nearly particle, while below the Fermi surface (u2

asmall) it is nearly hole.

In this framework, a j-orbital, is occupied with (2j + 1)v2j particles and (2j + 1)u2

j holes.In addition, through the BV transformation, it is achieved a representation of the groundstate of pairwise interacting particles in terms of a gas of non-interacting quasi-particles.

Disadvantage: the BV transformation does not conserve the particle number due to themixing of creation and annihilation operators.

aα and aα operations on the BCS vacuum: aα|BCS〉 = 0, aα|BCS〉 = 0

contraction properties (normal ordered operators):

aαa†β ≡ 〈BCS |aαa†β |BCS〉 = δαβ , all other contractions = 0 .

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer 2007

13 / 25

Page 40: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Quasi-particle representation of the nuclear Hamiltonianwithin the context of BCS

In second quantisation the many-body nuclear Hamiltonian, H = T + V , is expressed as asum of a one-quasi-particle term that describes the quasi-particle mean-field, and aresidual interaction, as

H =∑α

εαc†αcα +1

4

∑αβγδ

vαβγδc†αc†βcδcγ ,

where the first sum represents the one-body kinetic energy, T , of the Hamiltonian, whilethe second sum represents the two-body potential V .The antisymmetrised two-nucleon interaction matrix elements are denoted by

vαβγδ = 〈αβ|V |γδ〉 − 〈αβ|V |δγ〉 ,The normalised and antisymmetrised two-nucleon states with respect to the appropriateparticle vacuum |0〉 (e.g. |0〉 ≡ |core〉 in our case) are given by

|αβ〉 = c†αc†β |0〉, |γδ〉 = c†γc†δ |0〉 .In angular-momentum-coupled representation, the normalised two-nucleon state takes theform

|ab; JM〉 = Nab(J)[c†a c†b

]JM|0〉 ,

with

Nab(J) =

√1 + δab(−1)J

1 + δab.

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer 2007 14 / 25

Page 41: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

BCS equations IThe BCS equations can be derived by minimising the BCS ground-state expectation value

E = 〈BCS |H|BCS〉 ,which can be viewed as a constrained variational problem with respect to the occupationamplitudes uα and vα.Fixing the weak point of the method (e.g. the non-conservation of the particle number):the variational problem is forced to reproduce the correct average particle number,n ≡ (Z ,N), subject to the constraint

〈BCS |H|BCS〉 = n , n =∑

a

j2a v2

a .

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer 2007

In our numerical calculations, protons and neutrons are treated separately (proton-neutronpairing is ignored). The variational problem is then solved by employing the method of theLagrange multipliers (in order to become unconstrained) which enter via the definition ofthe auxiliary Hamiltonian

H ≡ H − λn .

In this context, the parameter λ, namely the chemical potential (or the Fermi energy), isdetermined through the variational problem

δ〈BCS |H|BCS〉 = 0 ,

or equivalently

δ

(H0 − λ

∑a

j2a v2

a

)≡ δH0 = 0 .

15 / 25

Page 42: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

BCS equations II

The auxiliary Hamiltonian becomes

H0 =∑

a

(εa − λ) j2a v2

a +1

2

∑abJ

v2a v2

b J2 [Nab(J)]−2 〈ab; J|V |ab; J〉

+1

2

∑ab

ja jbuavaubvb〈aa; 0|V |bb; 0〉 ,

thus, the single-particle energies εa are sifted as εa → εa − λ.

It is convenient to introduce the following abbreviations

∆b ≡−[jb

]−1∑a

jauava〈aa; 0|V |bb; 0〉 ,

µb ≡−[jb

]−2∑aJ

v2a J2 [Nab(J)]−2 〈ab; J|V |ab; J〉 ,

ηb ≡εb − λ− µb .

∆b: is called the pairing-gap

µa: is the self-energy, describes a renormalisation of the single-particle energy, εa, due tothe fact that the energy of a nucleon in the orbital, a, gets additional contributions fromits interactions with the other nucleons.

J. Suhonen, From Nucleons to Nucleus Concepts of Microscopic Nuclear Theory, Springer 2007

16 / 25

Page 43: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the form factors (Shell-Model)

The form factor FZ (q2), for h.o. wavefunctions reads

FZ (q2) =1

Ze−(|q| b)2/4Φ (|q| b,Z) , Φ (q b,Z) =

Nmax∑λ=0

θλ(|q| b)2λ .

The radial nuclear charge density distribution ρp(r) is written in compact form, as

ρp(r) =1

π3/2b3e−(r/b)2

Π( rb,Z), Π (χ,Z) =

Nmax∑λ=0

fλχ2λ

The coefficients fλ are expressed as

fλ =∑

(n,`)j

π1/2(2j + 1)n! Cλ−`n`

2Γ(

n + ` + 32

)The coefficients θλ are expressed as

θλ =

√π

Nmax∑(n,`)j

(2n+`>λ)

2n∑m=s

(2j + 1)n!C mn`Λλ(m + `, 0)(` + m)!

2Γ(n + ` + 32

)

with

Λk (n, `) =(−)k

k!

(n + ` + 1/2

n − k

), C m

n` =m∑

k=0

Λm−k (n, `)Λk (n, `), s =

0, if λ− ` ≤ 0

λ− ` if λ− ` > 0

T.S. Kosmas and J.D. Vergados, Nucl.Phys. A 536 (1992) 72

17 / 25

Page 44: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the form factors (Fractional occupationprobabilities, FOP)

Shell model assumes that the proton occupation probabilities equal to unity (zero) for thestates below (above) the Fermi surface.Introduce depletion and occupation numbers, to parametrise the partially occupied levelsof the states that satisfy the relation T.S. Kosmas and J.D. Vergados, NPA 536 (1992) 72∑

(n,`)jall

αn`j (2j + 1) = Nn, Nn = Z or N

In this approximation we have a number of active surface nucleons

Π(χ,Z , αi ) =Π(χ,Z2)α1

Z1 − Z2+ Π(χ,Z1)

[α2

Zc − Z1− α1

Z1 − Z2

]+ Π(χ,Zc )

[Z ′ − Z

Z ′ − Zc− α2

Zc − Z1− α3

Z ′ − Zc

]+ Π(χ,Z ′)

[Z − Zc

Z ′ − Zc+

α3

Z ′ − Zc− α4

Z ′′ − Z ′

]+ Π(χ,Z ′′)

[α4

Z ′′ − Z ′− λ

Z ′′′ − Z ′′

]+ Π(χ,Z ′′′)

λ

Z ′′′ − Z ′′,

with λ = α1 + α2 − α3 − α4 D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

fit the parameters to reproduce the proton charge density distribution

18 / 25

Page 45: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Evaluation of the form factors (experimental data)

The proton nuclear form factor is evaluated through the Fourier transformof the proton charge density distribution, as

FZ (q2) =4π

Z

∫ρp(r)j0(|q|r) r2 dr ,

with j0 being the zero order spherical Bessel function.D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

The proton charge density distribution ρp(r) is obtained from a modelindependent Fourier-Bessel analysis of electron scattering experiments

ρ(r) =

∑Nv=1 av j0(vπr/R) for r ≤ R ,

0 for r > R ,

where R is the cutoff radius and N = R|q|max/π.H. De Vries, C.W. De Jager and C. De Vries, At. Data and Nucl. Data Tables 36 (1987) 495536

this method assumes FN(q2) ' FZ (q2) (not always a goodapproximation)

19 / 25

Page 46: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Bonn C-D potential

The Bonn C-D potential is based upon meson exchange

All mesons with masses below the nucleon mass are included, i.e. π, η, ρ(770), ω(782)and two scalar-isoscalar σ bosons

Lagrangians describing the couplings of themesons of interest to nucleons

Lπ0NN =− gπ0 ψiγ5τ3ψφ(π0)

Lπ±NN =−√

2gπ± ψiγ5τ±ψφ(π±)

LσNN =− gσψψφ(σ)

LωNN =− gωψγµψφ

(ω)µ

LρNN =− gρψγµτψ · φ(ρ)

µ −fρ

4Mpψσµντψ ·

(∂µφ

(ρ)ν − ∂νφ(ρ)

µ

)

η, π, ρ, ω, σ, φ

p(n) p(n)

p(n) p(n)

ψ is the nucleon field, φ denotes a meson field, Mp is the proton mass and τ3,± are thePauli matrices (a vanishing coupling of η to the nucleon is assumed).

Bonn C-D fits the world proton-proton data below 350 MeV

R. Machleidt, Phys.Rev. C63 (2001) 024001

20 / 25

Page 47: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Construction of the nuclear ground state |i〉The gap-equation: consider the monopole part of the Bonn C-D potential (pairing interaction)

∆b = −g

p (n)pair

2jb

∑a

ja∆a√η2

a + ∆2a

〈aa; 0|V |bb; 0〉 ,

pairing gaps are obtained through the three-point formula as follows

∆expn =−

1

4[Sn(A− 1, Z)− 2Sn(A.Z) + Sn(A + 1, Z)] ,

∆expp =−

1

4

[Sp (A− 1, Z − 1)− 2Sp (A.Z) + Sp (A + 1, Z + 1)

],

where, Sn (Sp ) denotes the experimental separation energy for neutrons (protons), respectively, of the target nucleus(A, Z) and the neighbouring nuclei (A± 1, Z ± 1) and (A± 1, Z).D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

Nucleus model-space b ∆p ∆n gppair gn

pair12C 8 (no core) 1.522 4.68536 4.84431 1.12890 1.1964816O 8 (no core) 1.675 3.36181 3.49040 1.06981 1.13636

20Ne 10 (no core) 1.727 3.81516 3.83313 1.15397 1.2760028Si 10 (no core) 1.809 3.03777 3.14277 1.15568 1.2313532S 15 (no core) 1.843 2.03865 2.09807 0.8837 0.95968

40Ar 15 (no core) 1.902 1.75518 1.76002 0.94388 1.0134848Ti 15 (no core) 1.952 1.91109 1.55733 1.05640 0.9989076Ge 15 (no core) 2.086 1.52130 1.56935 0.95166 1.17774

114Cd 18 (core 16O) 2.214 1.41232 1.35155 1.03122 0.98703132Xe 15 (core 40Ca) 2.262 1.19766 1.20823 0.98207 1.13370

The values of proton gppair and neutron gn

pair pairs that renormalise the residual interaction and reproduce the respective

empirical pairing gaps ∆p and ∆n . The active model space and the harmonic oscillator parameter, for each isotope, are also

presented. 21 / 25

Page 48: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

The excited nuclear states-Diagonalisation of QRPA Eqs.

The excited states |f 〉 are derived by solving the QRPA equations:(A B−B −A

)(Xν

Y ν

)= ΩνJπ

(Xν

Y ν

),

First we define new amplitudes Pm, Rm

(A− B)Pm = Rm , (A+ B)Rm = Ω2mPm

which are related to the X ,Y through

Xm =

√1

2(Ω1/2

m Pm + Ω−1/2m Rm) , Y m =

√1

2(−Ω1/2

m Pm + Ω−1/2m Rm)

Finally, the diagonalisation of the QRPA equations gives:

X and Y forwards and backwards going amplitudes

QRPA excitation spectrum

V. Tsakstara and T.S. Kosmas, Phys.Rev. C83 (2011) 054612

22 / 25

Page 49: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Low-lying QRPA Excitation Spectrum

Reproducibility of the excitation spectrum is achievedQRPA spectra fit well the experimental data for low lying excitations

P.G. Giannaka and T.S. Kosmas, Phys.Rev. C92 (2015) 014606

23 / 25

Page 50: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Comparison of the nuclear methods

D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

0 1 2 3 4 5 6 7

0.02

0.04

0.06

0.08

0.1 40Ar

r(fm)

ρ(r

)

Shell-ModelFOPexp.

0 1 2 3 4 5 6 7

48Ti

r(fm)

0 0.5 1 1.5 2 2.5

10−4

10−3

10−2

10−1

100

40Ar

q(fm−1)

∣ ∣ F(q

2)∣ ∣

Shell-Model

F (q2)BCSFOPexp.

0 0.5 1 1.5 2 2.5

48Ti

q(fm−1)

D.K. Papoulias and T.S. Kosmas, Adv.High Energy Phys. 2015 (2015) 763648

24 / 25

Page 51: Neutrino-floor with nuclear structure calculations · Conventional methods for calculating the nuclear form factor 4 Summary and Outlook 2/26. Physics Motivations of CE NS SM CE NS

Deformed Shell ModelThe construction of the many-body wave functions for the initial |Jπi 〉 and final |Jπf 〉 nuclear states in the framework of DSMinvolves performance of the following steps

(i) selection of model space consisting of a given set of spherical single-particle (sp) orbits, sp energies and theappropriate two-body effective interaction matrix elements.

(ii) Assuming axial symmetry and solving the HF single particle equations self-consistently, the lowest-energy prolate (oroblate) intrinsic state for the nucleus in question is obtained

(iii) The various excited intrinsic states then are obtained by making particle-hole (p-h) excitations over thelowest-energy intrinsic state (lowest configuration).

(iv) Then, because the HF intrinsic nuclear states |χK (η)〉 (K is azimuthal quantum number and η distinguishes states

with same K) do not have definite angular momentum, angular momentum projected states |φJMK (µ)〉 are constructed

as,

|φJMK (η)〉 =

2J + 1

8π2√

NJK

∫dΩ DJ∗

MK (Ω)R(Ω)|χK (η)〉 .

In the previous expression, Ω = (α, β, γ) represents the Euler angles, R(Ω) denotes the known general rotation

operator and the Wigner D-matrices are defined as DJMK (Ω) = 〈JM|R(Ω)|JK〉. Here, NJK is the normalisation

constant which by assuming axial symmetry is defined as

NJK =2J + 1

2

∫ π0

dβ sin β dJKK (β)〈χK (η)|e−iβJy |χK (η)〉 , (1)

where the functions dJKK (β) are the diagonal elements of the matrix dJ

MK (β) = 〈JM|e−iβJy |JK〉.(v) Finally, the good angular momentum states φJ

MK are orthonormalised by band mixing calculations and then, interms of the index η, it is possible to distinguish between different states having the same angular momentum J,

|ΦJM (η)〉 =

∑K,α

SJKη(α)|φJ

MK (α)〉 . (2)

25 / 25